SlideShare a Scribd company logo
1 of 54
Download to read offline
Inequalities & Graphs
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2      Oblique asymptote:
Inequalities & Graphs
                 x2
e.g. i  Solve     1                       x2         4
                x2      Oblique asymptote:      x2
                                            x2        x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1                       x2         4
                x2      Oblique asymptote:      x2
                                            x2        x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1                       x2         4
                x2      Oblique asymptote:      x2
                                            x2        x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1         x2
                x2                1
                              x2
                             x2  x  2
                           x2  x  2  0
                          x  2 x  1  0
                         x  2 or x  1
Inequalities & Graphs
                 x2
e.g. i  Solve     1          x2
                x2                 1
                               x2
                              x2  x  2
                            x2  x  2  0
                           x  2 x  1  0
                           x  2 or x  1

                                x2
                                    1
                               x2
                         x  2 or  1  x  2
(ii) (1990)




Consider the graph y  x
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x
   dy     1
      
   dx 2 x
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x
   dy     1
      
   dx 2 x
  dy
  0 for x  0
  dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x                              at x  0, y  0
 dy   1
    
 dx 2 x
 dy
  0 for x  0
 dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x                              at x  0, y  0
   dy     1                            when x  0, y  0
      
   dx 2 x
  dy
  0 for x  0
  dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x                              at x  0, y  0
   dy     1                            when x  0, y  0
      
   dx 2 x
  dy
  0 for x  0                   curve is increasing for x  0
  dx
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
                                    n
                  1  2    n   xdx
                                    0
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
                                     n
                  1  2    n   xdx
                                     0
                                           n
                                    2 x x
                                   
                                    3    0
                                          
                                    2
                                    n n
                                    3
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
                                     n
                  1  2    n   xdx
                                     0
                                           n
                                    2 x x
                                   
                                    3    0
                                          
                                    2
                                    n n
                                    3
                                    n
                                       2
               1  2    n   xdx  n n
                                0
                                       3
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
 L.H .S  1
        1
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                      41  3
 L.H .S  1                                   R.H .S          1
                                                         6
        1
                                                      7
                                                    
                                                      6
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                      41  3
 L.H .S  1                                   R.H .S          1
                                                         6
        1
                                                      7
                                                    
                                                      6
                         L.H .S  R.H .S
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                      41  3
 L.H .S  1                                   R.H .S          1
                                                         6
        1
                                                      7
                                                    
                                                      6
                       L.H .S  R.H .S
                   Hence the result is true for n = 1
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
                                        4k  3
              i.e. 1  2    k                 k
                                           6
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
                                        4k  3
               i.e. 1  2    k                k
                                           6
Prove the result is true for n  k  1
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
                                        4k  3
                i.e. 1  2    k               k
                                           6
Prove the result is true for n  k  1
                                            4k  7
        i.e. Prove 1  2    k  1                k 1
                                               6
Proof:
Proof:   1  2  k 1  1  2  k  k 1
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                k  k 1
                            6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                 k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                   2


                                     6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                 k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                    2


                                      6
                           16k 3  24k 2  9k  6 k  1
                        
                                        6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                  k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                     2


                                       6
                           16k 3  24k 2  9k  6 k  1
                        
                                         6
                            k  116k 2  8k  1  1  6 k  1
                        
                                             6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                  k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                     2


                                       6
                           16k 3  24k 2  9k  6 k  1
                        
                                         6
                            k  116k 2  8k  1  1  6 k  1
                        
                                             6
                         
                            k  14k  12  1  6 k  1
                                          6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                  k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                     2


                                       6
                           16k 3  24k 2  9k  6 k  1
                        
                                         6
                            k  116k 2  8k  1  1  6 k  1
                        
                                              6
                         
                            k  14k  12  1  6 k  1
                                           6
                         
                            k  14k  1  6 k  1
                                            2


                                         6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                   k  k 1
                             6
                        
                            4k  3 k  6 k  1
                                      2


                                        6
                            16k 3  24k 2  9k  6 k  1
                        
                                           6
                             k  116k 2  8k  1  1  6 k  1
                        
                                               6
                         
                             k  14k  12  1  6 k  1
                                            6
                         
                             k  14k  1  6 k  1
                                             2


                                          6
                           4k  1 k  1  6 k  1
                         
                                          6
                         
                           4k  7  k  1
                                    6
Hence the result is true for n = k +1 if it is also true for n =k
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
   1  2    10000 to the nearest hundred
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
   1  2    10000 to the nearest hundred
           2                          4n  3
             n n  1  2  n              n
           3                            6
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1  2  n               n
            3                            6
2                                          410000  3
  10000 10000  1  2    10000                    10000
3                                                6
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1  2  n               n
            3                            6
2                                          410000  3
  10000 10000  1  2    10000                    10000
3                                                6
          666700  1  2    10000  666700
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1  2  n               n
            3                            6
2                                          410000  3
  10000 10000  1  2    10000                    10000
3                                                6
          666700  1  2    10000  666700
 1  2    10000  666700 to the nearest hundred
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1  2  n               n
            3                            6
2                                          410000  3
  10000 10000  1  2    10000                    10000
3                                                6
          666700  1  2    10000  666700
 1  2    10000  666700 to the nearest hundred


                            Exercise 10F

More Related Content

What's hot (15)

1003 ch 10 day 3
1003 ch 10 day 31003 ch 10 day 3
1003 ch 10 day 3
 
Unexpected ineq
Unexpected ineqUnexpected ineq
Unexpected ineq
 
1008 ch 10 day 8
1008 ch 10 day 81008 ch 10 day 8
1008 ch 10 day 8
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
iTute Notes MM
iTute Notes MMiTute Notes MM
iTute Notes MM
 
Day 6 multiplying binomials
Day 6 multiplying binomialsDay 6 multiplying binomials
Day 6 multiplying binomials
 
09 trial melaka_s2
09 trial melaka_s209 trial melaka_s2
09 trial melaka_s2
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
Sol Purcell Ingles
Sol Purcell InglesSol Purcell Ingles
Sol Purcell Ingles
 
Slides September 16
Slides September 16Slides September 16
Slides September 16
 
Day 1 adding polynomials
Day 1 adding polynomialsDay 1 adding polynomials
Day 1 adding polynomials
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
 
Lesson 54
Lesson 54Lesson 54
Lesson 54
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
0308 ch 3 day 8
0308 ch 3 day 80308 ch 3 day 8
0308 ch 3 day 8
 

Viewers also liked

11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]Nigel Simmons
 
11 X1 T01 06 equations and inequations (2010)
11 X1 T01 06 equations and inequations (2010)11 X1 T01 06 equations and inequations (2010)
11 X1 T01 06 equations and inequations (2010)Nigel Simmons
 
11 x1 t03 01 inequations & inequalities (2012)
11 x1 t03 01 inequations & inequalities (2012)11 x1 t03 01 inequations & inequalities (2012)
11 x1 t03 01 inequations & inequalities (2012)Nigel Simmons
 
11X1 T01 06 equations & inequations (2011)
11X1 T01 06 equations & inequations (2011)11X1 T01 06 equations & inequations (2011)
11X1 T01 06 equations & inequations (2011)Nigel Simmons
 
11X1 T03 04 absolute value (13)
11X1 T03 04 absolute value (13)11X1 T03 04 absolute value (13)
11X1 T03 04 absolute value (13)Nigel Simmons
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 

Viewers also liked (6)

11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
11 X1 T01 06 equations and inequations (2010)
11 X1 T01 06 equations and inequations (2010)11 X1 T01 06 equations and inequations (2010)
11 X1 T01 06 equations and inequations (2010)
 
11 x1 t03 01 inequations & inequalities (2012)
11 x1 t03 01 inequations & inequalities (2012)11 x1 t03 01 inequations & inequalities (2012)
11 x1 t03 01 inequations & inequalities (2012)
 
11X1 T01 06 equations & inequations (2011)
11X1 T01 06 equations & inequations (2011)11X1 T01 06 equations & inequations (2011)
11X1 T01 06 equations & inequations (2011)
 
11X1 T03 04 absolute value (13)
11X1 T03 04 absolute value (13)11X1 T03 04 absolute value (13)
11X1 T03 04 absolute value (13)
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

Similar to Solve Inequalities & Graphs Problems

Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Septiko Aji
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16derry92
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)Nigel Simmons
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)Nigel Simmons
 
X2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphsX2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphsNigel Simmons
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)Nigel Simmons
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)Nigel Simmons
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)Nigel Simmons
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)Nigel Simmons
 
Stationary Points Handout
Stationary Points HandoutStationary Points Handout
Stationary Points Handoutcoburgmaths
 
Differential equations
Differential equationsDifferential equations
Differential equationsjanetvmiller
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsTarun Gehlot
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsTarun Gehlot
 
11X1 T10 01 first derivative (2011)
11X1 T10 01 first derivative (2011)11X1 T10 01 first derivative (2011)
11X1 T10 01 first derivative (2011)Nigel Simmons
 
11 x1 t10 01 first derivative (2012)
11 x1 t10 01 first derivative (2012)11 x1 t10 01 first derivative (2012)
11 x1 t10 01 first derivative (2012)Nigel Simmons
 
11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)Nigel Simmons
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometryphysics101
 
STUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberSTUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberAPEX INSTITUTE
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)Nigel Simmons
 
11X1 T09 01 first derivative
11X1 T09 01 first derivative11X1 T09 01 first derivative
11X1 T09 01 first derivativeNigel Simmons
 

Similar to Solve Inequalities & Graphs Problems (20)

Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)
 
X2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphsX2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphs
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)
 
Stationary Points Handout
Stationary Points HandoutStationary Points Handout
Stationary Points Handout
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
11X1 T10 01 first derivative (2011)
11X1 T10 01 first derivative (2011)11X1 T10 01 first derivative (2011)
11X1 T10 01 first derivative (2011)
 
11 x1 t10 01 first derivative (2012)
11 x1 t10 01 first derivative (2012)11 x1 t10 01 first derivative (2012)
11 x1 t10 01 first derivative (2012)
 
11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometry
 
STUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberSTUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex number
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)
 
11X1 T09 01 first derivative
11X1 T09 01 first derivative11X1 T09 01 first derivative
11X1 T09 01 first derivative
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 

Recently uploaded (20)

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 

Solve Inequalities & Graphs Problems

  • 2. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 3. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 4. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 5. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 6. Inequalities & Graphs x2 e.g. i  Solve 1 x2 Oblique asymptote:
  • 7. Inequalities & Graphs x2 e.g. i  Solve 1 x2 4 x2 Oblique asymptote:  x2 x2 x2
  • 8. Inequalities & Graphs x2 e.g. i  Solve 1 x2 4 x2 Oblique asymptote:  x2 x2 x2
  • 9. Inequalities & Graphs x2 e.g. i  Solve 1 x2 4 x2 Oblique asymptote:  x2 x2 x2
  • 10. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 11. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 12. Inequalities & Graphs x2 e.g. i  Solve 1 x2 x2 1 x2 x2  x  2 x2  x  2  0  x  2 x  1  0 x  2 or x  1
  • 13. Inequalities & Graphs x2 e.g. i  Solve 1 x2 x2 1 x2 x2  x  2 x2  x  2  0  x  2 x  1  0 x  2 or x  1 x2 1 x2 x  2 or  1  x  2
  • 14. (ii) (1990) Consider the graph y  x
  • 15. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0
  • 16. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx
  • 17. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x dy 1  dx 2 x
  • 18. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x dy 1  dx 2 x dy   0 for x  0 dx
  • 19. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x at x  0, y  0 dy 1  dx 2 x dy   0 for x  0 dx
  • 20. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x at x  0, y  0 dy 1 when x  0, y  0  dx 2 x dy   0 for x  0 dx
  • 21. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x at x  0, y  0 dy 1 when x  0, y  0  dx 2 x dy   0 for x  0  curve is increasing for x  0 dx
  • 22. b) Hence show that; n 2 1  2    n   xdx  n n 0 3
  • 23. b) Hence show that; n 2 1  2    n   xdx  n n 0 3
  • 24. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve
  • 25. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve n 1  2    n   xdx 0
  • 26. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve n 1  2    n   xdx 0 n 2 x x  3 0  2  n n 3
  • 27. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve n 1  2    n   xdx 0 n 2 x x  3 0  2  n n 3 n 2  1  2    n   xdx  n n 0 3
  • 28. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6
  • 29. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1
  • 30. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 L.H .S  1 1
  • 31. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6
  • 32. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S
  • 33. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1
  • 34. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer
  • 35. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer 4k  3 i.e. 1  2    k  k 6
  • 36. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer 4k  3 i.e. 1  2    k  k 6 Prove the result is true for n  k  1
  • 37. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer 4k  3 i.e. 1  2    k  k 6 Prove the result is true for n  k  1 4k  7 i.e. Prove 1  2    k  1  k 1 6
  • 39. Proof: 1  2  k 1  1  2  k  k 1
  • 40. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6
  • 41. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6
  • 42. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6
  • 43. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6
  • 44. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6  k  14k  12  1  6 k  1 6
  • 45. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6  k  14k  12  1  6 k  1 6  k  14k  1  6 k  1 2 6
  • 46. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6  k  14k  12  1  6 k  1 6  k  14k  1  6 k  1 2 6 4k  1 k  1  6 k  1  6  4k  7  k  1 6
  • 47. Hence the result is true for n = k +1 if it is also true for n =k
  • 48. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n
  • 49. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred
  • 50. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6
  • 51. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6 2 410000  3 10000 10000  1  2    10000  10000 3 6
  • 52. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6 2 410000  3 10000 10000  1  2    10000  10000 3 6 666700  1  2    10000  666700
  • 53. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6 2 410000  3 10000 10000  1  2    10000  10000 3 6 666700  1  2    10000  666700  1  2    10000  666700 to the nearest hundred
  • 54. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6 2 410000  3 10000 10000  1  2    10000  10000 3 6 666700  1  2    10000  666700  1  2    10000  666700 to the nearest hundred Exercise 10F