SlideShare a Scribd company logo
Integration
Area Under Curve
Integration
Area Under Curve
Integration
Area Under Curve
Integration
Area Under Curve
           Area  11  12 
                      3      3
Integration
Area Under Curve
           Area  11  12 
                      3      3


           Area  9
Integration
Area Under Curve
           Area  11  12 
                      3      3


           Area  9
Integration
Area Under Curve
       10   11  Area  11  12 
           3      3              3      3


                      Area  9
Integration
Area Under Curve
       10   11  Area  11  12 
           3      3              3      3


                  1  Area  9
Integration
Area Under Curve
       10   11  Area  11  12 
           3      3              3      3


                  1  Area  9


         Estimate Area  5 unit 2
Integration
Area Under Curve
       10   11  Area  11  12 
           3      3              3      3


                  1  Area  9


         Estimate Area  5 unit 2
           Exact Area  4 unit 2
Area  0.40.43  0.83  1.23  1.63  23 
Area  0.40.43  0.83  1.23  1.63  23 
Area  5.76
Area  0.40.43  0.83  1.23  1.63  23 
Area  5.76
0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23 
                                     Area  5.76
0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23 
                              2.56  Area  5.76
0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23 
                              2.56  Area  5.76
                         Estimate Area  4.16 unit 2
Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
  Area  4.84
Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
  Area  4.84
0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  
    Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
      Area  4.84
0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  
    Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
3.24  Area  4.84
0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  
    Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
3.24  Area  4.84
                          Estimate Area  4.04 unit 2
As the widths decrease, the estimate becomes more accurate, lets
investigate one of these rectangles.
            y
                                                y = f(x)




                                                      x
As the widths decrease, the estimate becomes more accurate, lets
investigate one of these rectangles.
            y
                                                y = f(x)




                                                      x
As the widths decrease, the estimate becomes more accurate, lets
investigate one of these rectangles.
            y
                                                y = f(x)




                                    c                 x

                 A(c) is the area from 0 to c
As the widths decrease, the estimate becomes more accurate, lets
investigate one of these rectangles.
            y
                                                y = f(x)




                                    c    x            x

                 A(c) is the area from 0 to c
                 A(x) is the area from 0 to x
A(x) – A(c) denotes the area from c to x, and can be estimated by
the rectangle;
A(x) – A(c) denotes the area from c to x, and can be estimated by
 the rectangle;



                                  f(x)



                          x-c
A(x) – A(c) denotes the area from c to x, and can be estimated by
 the rectangle;



                                        f(x)



                             x-c
                A x   Ac    x  c  f  x 
A(x) – A(c) denotes the area from c to x, and can be estimated by
 the rectangle;



                                        f(x)



                             x-c
                A x   Ac    x  c  f  x 
                                 A x   Ac 
                         f x 
                                     xc
A(x) – A(c) denotes the area from c to x, and can be estimated by
 the rectangle;



                                        f(x)



                             x-c
                A x   Ac    x  c  f  x 
                                 A x   Ac 
                         f x 
                                     xc
                                 Ac  h   Ac 
                                                    h = width of rectangle
                                         h
A(x) – A(c) denotes the area from c to x, and can be estimated by
 the rectangle;



                                        f(x)



                             x-c
                A x   Ac    x  c  f  x 
                               A x   Ac 
                       f x 
                                   xc
                               Ac  h   Ac 
                                                h = width of rectangle
                                       h
As the width of the rectangle decreases, the estimate becomes more
accurate.
i.e. as h  0, the Area becomes exact
i.e. as h  0, the Area becomes exact
                       Ac  h   Ac 
        f  x   lim
                  h 0        h
i.e. as h  0, the Area becomes exact
                        Ac  h   Ac 
        f  x   lim
                   h 0         h
                        A x  h   A x 
                 lim
                  h 0
                                             as h  0, c  x 
                                h
i.e. as h  0, the Area becomes exact
                        Ac  h   Ac 
        f  x   lim
                   h 0         h
                        A x  h   A x 
                 lim
                  h 0
                                             as h  0, c  x 
                                h
             A x 
i.e. as h  0, the Area becomes exact
                                  Ac  h   Ac 
                  f  x   lim
                             h 0         h
                                  A x  h   A x 
                           lim
                            h 0
                                                       as h  0, c  x 
                                          h
                       A x 
 the equation of the curve is the derivative of the Area function.
i.e. as h  0, the Area becomes exact
                                  Ac  h   Ac 
                  f  x   lim
                             h 0         h
                                  A x  h   A x 
                           lim
                            h 0
                                                       as h  0, c  x 
                                          h
                       A x 
 the equation of the curve is the derivative of the Area function.

  The area under the curve y  f  x  between x  a and x  b is;
i.e. as h  0, the Area becomes exact
                                  Ac  h   Ac 
                  f  x   lim
                             h 0         h
                                  A x  h   A x 
                           lim
                            h 0
                                                       as h  0, c  x 
                                          h
                       A x 
 the equation of the curve is the derivative of the Area function.

  The area under the curve y  f  x  between x  a and x  b is;
                                  b
                           A   f  x dx
                                  a
i.e. as h  0, the Area becomes exact
                                  Ac  h   Ac 
                  f  x   lim
                             h 0         h
                                  A x  h   A x 
                           lim
                            h 0
                                                       as h  0, c  x 
                                          h
                       A x 
 the equation of the curve is the derivative of the Area function.

  The area under the curve y  f  x  between x  a and x  b is;
                                  b
                           A   f  x dx
                                  a
                              F b   F a 
i.e. as h  0, the Area becomes exact
                                  Ac  h   Ac 
                  f  x   lim
                             h 0         h
                                  A x  h   A x 
                           lim
                            h 0
                                                       as h  0, c  x 
                                          h
                       A x 
 the equation of the curve is the derivative of the Area function.

  The area under the curve y  f  x  between x  a and x  b is;
                                  b
                           A   f  x dx
                                  a
                              F b   F a 
           where F  x  is the primitive function of f  x 
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
         x= 2
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                        0
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                        0
                               2

                        x4 
                        1
                        4 0
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                          0
                                2

                        x4 
                        1
                        4 0

                           2  04 
                          1 4
                          4
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                          0
                                2

                        x4 
                        1
                        4 0

                           2  04 
                          1 4
                          4
                        4 units 2
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                                0
                                      2

                              x4 
                              1
                              4 0

                                 2  04 
                                1 4
                                4
                              4 units 2
          3
      ii   x 2  1dx
          2
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                             0
                                   2

                           x4 
                           1
                           4 0

                              2  04 
                             1 4
                             4
                           4 units 2
          3                             3

      ii   x  1dx  
                2         1 x 3  x 
                                     
            2             3         2
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                            0
                                  2

                          x4 
                          1
                          4 0

                             2  04 
                            1 4
                            4
                          4 units 2
          3                            3

      ii   x  1dx  
                2         1 x 3  x 
                                     
            2             3         2
                        1 33  3  1 2 3  2
                                                   
                           3            3         
e.g. (i) Find the area under the curve y  x 3 , between x = 0 and
                         2
         x= 2
                     A   x 3 dx
                            0
                                  2

                          x4 
                          1
                          4 0

                             2  04 
                            1 4
                            4
                          4 units 2
          3                            3

      ii   x  1dx  
                2         1 x 3  x 
                                     
            2             3         2
                        1 33  3  1 2 3  2
                                                   
                           3            3         
                          22
                        
                           3
5
iii   x 3dx
     4
5                    5
                 1  2 
iii   x dx   x 
          3

       4         2 4
5                    5
                 1  2 
iii   x dx   x 
          3

       4         2 4
                11 1 
                2  2
                2 5 4 
                9
             
               800
5                    5
                 1  2 
iii   x dx   x 
          3

       4         2 4

                2  2
                1 1 1
                       
                2 5 4 
                9
             
               800




                         Exercise 11A; 1

        Exercise 11B; 1 aefhi, 2ab (i,ii), 3ace, 4b, 5a, 7*

More Related Content

What's hot

3.4 Polynomial Functions and Their Graphs
3.4 Polynomial Functions and Their Graphs3.4 Polynomial Functions and Their Graphs
3.4 Polynomial Functions and Their Graphs
smiller5
 
3.5 Rational Functions
3.5 Rational Functions3.5 Rational Functions
3.5 Rational Functions
smiller5
 
Area between curves
Area between curvesArea between curves
Area between curves
djfromal
 
Asymptotes and holes 97
Asymptotes and holes 97Asymptotes and holes 97
Asymptotes and holes 97swartzje
 
Lesson 1
Lesson 1Lesson 1
Lesson 1
urenaa
 
9.3 Intro to Rational Functions
9.3 Intro to Rational Functions9.3 Intro to Rational Functions
9.3 Intro to Rational FunctionsKristen Fouss
 
Tutorials--Graphs of Rational Functions
Tutorials--Graphs of Rational FunctionsTutorials--Graphs of Rational Functions
Tutorials--Graphs of Rational Functions
Media4math
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functionsJessica Garcia
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functions
kristel ann gonzales-alday
 
Trapezoidal rule
Trapezoidal ruleTrapezoidal rule
Trapezoidal rule
Dr. Jennifer Chang Wathall
 
Vertical asymptotes to rational functions
Vertical asymptotes to rational functionsVertical asymptotes to rational functions
Vertical asymptotes to rational functionsTarun Gehlot
 
Adam Swenski's calculus presentation
Adam Swenski's calculus presentationAdam Swenski's calculus presentation
Adam Swenski's calculus presentationode2ops
 
Math powerpoint
Math powerpointMath powerpoint
Math powerpointAcoy1
 
M17 t1 notes
M17 t1 notes M17 t1 notes
M17 t1 notes
chrystal_brinson
 
Polynomial And Rational Funciotns 0921
Polynomial And Rational Funciotns 0921Polynomial And Rational Funciotns 0921
Polynomial And Rational Funciotns 0921ingroy
 
Exercise roots of equations
Exercise roots of equationsExercise roots of equations
Exercise roots of equationsDUBAN CASTRO
 
Graphs of polynomial functions
Graphs of polynomial functionsGraphs of polynomial functions
Graphs of polynomial functionsCarlos Erepol
 
Rational functions
Rational functionsRational functions
Rational functionstidtay81
 

What's hot (19)

3.4 Polynomial Functions and Their Graphs
3.4 Polynomial Functions and Their Graphs3.4 Polynomial Functions and Their Graphs
3.4 Polynomial Functions and Their Graphs
 
3.5 Rational Functions
3.5 Rational Functions3.5 Rational Functions
3.5 Rational Functions
 
Area between curves
Area between curvesArea between curves
Area between curves
 
Asymptotes and holes 97
Asymptotes and holes 97Asymptotes and holes 97
Asymptotes and holes 97
 
Lesson 1
Lesson 1Lesson 1
Lesson 1
 
9.3 Intro to Rational Functions
9.3 Intro to Rational Functions9.3 Intro to Rational Functions
9.3 Intro to Rational Functions
 
Tutorials--Graphs of Rational Functions
Tutorials--Graphs of Rational FunctionsTutorials--Graphs of Rational Functions
Tutorials--Graphs of Rational Functions
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functions
 
Graphing rational functions
Graphing rational functionsGraphing rational functions
Graphing rational functions
 
Trapezoidal rule
Trapezoidal ruleTrapezoidal rule
Trapezoidal rule
 
Graphing polynomials
Graphing polynomialsGraphing polynomials
Graphing polynomials
 
Vertical asymptotes to rational functions
Vertical asymptotes to rational functionsVertical asymptotes to rational functions
Vertical asymptotes to rational functions
 
Adam Swenski's calculus presentation
Adam Swenski's calculus presentationAdam Swenski's calculus presentation
Adam Swenski's calculus presentation
 
Math powerpoint
Math powerpointMath powerpoint
Math powerpoint
 
M17 t1 notes
M17 t1 notes M17 t1 notes
M17 t1 notes
 
Polynomial And Rational Funciotns 0921
Polynomial And Rational Funciotns 0921Polynomial And Rational Funciotns 0921
Polynomial And Rational Funciotns 0921
 
Exercise roots of equations
Exercise roots of equationsExercise roots of equations
Exercise roots of equations
 
Graphs of polynomial functions
Graphs of polynomial functionsGraphs of polynomial functions
Graphs of polynomial functions
 
Rational functions
Rational functionsRational functions
Rational functions
 

Similar to 11X1 T16 01 area under curve (2011)

11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
Areas and Definite Integrals.ppt
Areas and Definite Integrals.pptAreas and Definite Integrals.ppt
Areas and Definite Integrals.ppt
LaeGadgude
 
Lesson 11 plane areas area by integration
Lesson 11 plane areas area by integrationLesson 11 plane areas area by integration
Lesson 11 plane areas area by integration
Lawrence De Vera
 
Volume of revolution
Volume of revolutionVolume of revolution
Volume of revolution
Christopher Chibangu
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
Eka Puspita Sari
 
Calc05_2.ppt
Calc05_2.pptCalc05_2.ppt
Calc05_2.ppt
EricaOrtiz40
 
香港六合彩
香港六合彩香港六合彩
香港六合彩
baoyin
 
4 ftc and signed areas x
4 ftc and signed areas x4 ftc and signed areas x
4 ftc and signed areas x
math266
 
double integral.pptx
double integral.pptxdouble integral.pptx
double integral.pptx
ssuser521537
 
The Calculus Crusaders Volume
The Calculus Crusaders VolumeThe Calculus Crusaders Volume
The Calculus Crusaders Volumeazn_punkyfish07
 
Application of integral calculus
Application of integral calculusApplication of integral calculus
Application of integral calculus
Habibur Rahman
 
The Bird's Poop
The Bird's PoopThe Bird's Poop
The Bird's Poop
benchoun
 
1545 integration-define
1545 integration-define1545 integration-define
1545 integration-define
Dr Fereidoun Dejahang
 
1544 integration-define
1544 integration-define1544 integration-define
1544 integration-define
Dr Fereidoun Dejahang
 
Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)
Muhammad Luthfan
 
Unit ii vector calculus
Unit ii vector calculusUnit ii vector calculus
Unit ii vector calculusBabu Rao
 
Ch 7 c volumes
Ch 7 c  volumesCh 7 c  volumes
Ch 7 c volumes
David Blair
 
Integration
IntegrationIntegration
Integration
suefee
 
5.5 volumes
5.5 volumes5.5 volumes
5.5 volumesmath265
 

Similar to 11X1 T16 01 area under curve (2011) (20)

11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
Areas and Definite Integrals.ppt
Areas and Definite Integrals.pptAreas and Definite Integrals.ppt
Areas and Definite Integrals.ppt
 
Lesson 11 plane areas area by integration
Lesson 11 plane areas area by integrationLesson 11 plane areas area by integration
Lesson 11 plane areas area by integration
 
Volume of revolution
Volume of revolutionVolume of revolution
Volume of revolution
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Calc05_2.ppt
Calc05_2.pptCalc05_2.ppt
Calc05_2.ppt
 
香港六合彩
香港六合彩香港六合彩
香港六合彩
 
4 ftc and signed areas x
4 ftc and signed areas x4 ftc and signed areas x
4 ftc and signed areas x
 
double integral.pptx
double integral.pptxdouble integral.pptx
double integral.pptx
 
The Calculus Crusaders Volume
The Calculus Crusaders VolumeThe Calculus Crusaders Volume
The Calculus Crusaders Volume
 
Application of integral calculus
Application of integral calculusApplication of integral calculus
Application of integral calculus
 
Chap6_Sec1.ppt
Chap6_Sec1.pptChap6_Sec1.ppt
Chap6_Sec1.ppt
 
The Bird's Poop
The Bird's PoopThe Bird's Poop
The Bird's Poop
 
1545 integration-define
1545 integration-define1545 integration-define
1545 integration-define
 
1544 integration-define
1544 integration-define1544 integration-define
1544 integration-define
 
Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)Integration application (Aplikasi Integral)
Integration application (Aplikasi Integral)
 
Unit ii vector calculus
Unit ii vector calculusUnit ii vector calculus
Unit ii vector calculus
 
Ch 7 c volumes
Ch 7 c  volumesCh 7 c  volumes
Ch 7 c volumes
 
Integration
IntegrationIntegration
Integration
 
5.5 volumes
5.5 volumes5.5 volumes
5.5 volumes
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
deeptiverma2406
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Advantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO PerspectiveAdvantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO Perspective
Krisztián Száraz
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
chanes7
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
Mohammed Sikander
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
TechSoup
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
David Douglas School District
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
Digital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion DesignsDigital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion Designs
chanes7
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 

Recently uploaded (20)

How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Advantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO PerspectiveAdvantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO Perspective
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
Digital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion DesignsDigital Artifact 2 - Investigating Pavilion Designs
Digital Artifact 2 - Investigating Pavilion Designs
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 

11X1 T16 01 area under curve (2011)

  • 4. Integration Area Under Curve Area  11  12  3 3
  • 5. Integration Area Under Curve Area  11  12  3 3 Area  9
  • 6. Integration Area Under Curve Area  11  12  3 3 Area  9
  • 7. Integration Area Under Curve 10   11  Area  11  12  3 3 3 3 Area  9
  • 8. Integration Area Under Curve 10   11  Area  11  12  3 3 3 3 1  Area  9
  • 9. Integration Area Under Curve 10   11  Area  11  12  3 3 3 3 1  Area  9 Estimate Area  5 unit 2
  • 10. Integration Area Under Curve 10   11  Area  11  12  3 3 3 3 1  Area  9 Estimate Area  5 unit 2 Exact Area  4 unit 2
  • 11.
  • 12.
  • 13. Area  0.40.43  0.83  1.23  1.63  23 
  • 14. Area  0.40.43  0.83  1.23  1.63  23  Area  5.76
  • 15. Area  0.40.43  0.83  1.23  1.63  23  Area  5.76
  • 16. 0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23  Area  5.76
  • 17. 0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23  2.56  Area  5.76
  • 18. 0.403  0.43  0.83  1.23  1.63   Area  0.40.43  0.83  1.23  1.63  23  2.56  Area  5.76 Estimate Area  4.16 unit 2
  • 19.
  • 20.
  • 21. Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23 
  • 22. Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  Area  4.84
  • 23. Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  Area  4.84
  • 24. 0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83   Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  Area  4.84
  • 25. 0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83   Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  3.24  Area  4.84
  • 26. 0.203  0.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83   Area  0.20.23  0.43  0.63  0.83  13  1.23  1.43  1.63  1.83  23  3.24  Area  4.84 Estimate Area  4.04 unit 2
  • 27. As the widths decrease, the estimate becomes more accurate, lets investigate one of these rectangles. y y = f(x) x
  • 28. As the widths decrease, the estimate becomes more accurate, lets investigate one of these rectangles. y y = f(x) x
  • 29. As the widths decrease, the estimate becomes more accurate, lets investigate one of these rectangles. y y = f(x) c x A(c) is the area from 0 to c
  • 30. As the widths decrease, the estimate becomes more accurate, lets investigate one of these rectangles. y y = f(x) c x x A(c) is the area from 0 to c A(x) is the area from 0 to x
  • 31. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle;
  • 32. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c
  • 33. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c A x   Ac    x  c  f  x 
  • 34. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c A x   Ac    x  c  f  x  A x   Ac  f x  xc
  • 35. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c A x   Ac    x  c  f  x  A x   Ac  f x  xc Ac  h   Ac   h = width of rectangle h
  • 36. A(x) – A(c) denotes the area from c to x, and can be estimated by the rectangle; f(x) x-c A x   Ac    x  c  f  x  A x   Ac  f x  xc Ac  h   Ac   h = width of rectangle h As the width of the rectangle decreases, the estimate becomes more accurate.
  • 37. i.e. as h  0, the Area becomes exact
  • 38. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h
  • 39. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h
  • 40. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x 
  • 41. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x   the equation of the curve is the derivative of the Area function.
  • 42. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x   the equation of the curve is the derivative of the Area function. The area under the curve y  f  x  between x  a and x  b is;
  • 43. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x   the equation of the curve is the derivative of the Area function. The area under the curve y  f  x  between x  a and x  b is; b A   f  x dx a
  • 44. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x   the equation of the curve is the derivative of the Area function. The area under the curve y  f  x  between x  a and x  b is; b A   f  x dx a  F b   F a 
  • 45. i.e. as h  0, the Area becomes exact Ac  h   Ac  f  x   lim h 0 h A x  h   A x   lim h 0  as h  0, c  x  h  A x   the equation of the curve is the derivative of the Area function. The area under the curve y  f  x  between x  a and x  b is; b A   f  x dx a  F b   F a  where F  x  is the primitive function of f  x 
  • 46. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and x= 2
  • 47. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0
  • 48. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2   x4  1 4 0
  • 49. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2   x4  1 4 0  2  04  1 4 4
  • 50. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2   x4  1 4 0  2  04  1 4 4  4 units 2
  • 51. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2   x4  1 4 0  2  04  1 4 4  4 units 2 3 ii   x 2  1dx 2
  • 52. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2   x4  1 4 0  2  04  1 4 4  4 units 2 3 3 ii   x  1dx   2 1 x 3  x   2 3 2
  • 53. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2   x4  1 4 0  2  04  1 4 4  4 units 2 3 3 ii   x  1dx   2 1 x 3  x   2 3 2 1 33  3  1 2 3  2     3   3 
  • 54. e.g. (i) Find the area under the curve y  x 3 , between x = 0 and 2 x= 2 A   x 3 dx 0 2   x4  1 4 0  2  04  1 4 4  4 units 2 3 3 ii   x  1dx   2 1 x 3  x   2 3 2 1 33  3  1 2 3  2     3   3  22  3
  • 55. 5 iii   x 3dx 4
  • 56. 5 5  1  2  iii   x dx   x  3 4  2 4
  • 57. 5 5  1  2  iii   x dx   x  3 4  2 4 11 1     2  2 2 5 4  9  800
  • 58. 5 5  1  2  iii   x dx   x  3 4  2 4    2  2 1 1 1   2 5 4  9  800 Exercise 11A; 1 Exercise 11B; 1 aefhi, 2ab (i,ii), 3ace, 4b, 5a, 7*