Integration Application
THP-FTP-UB
Basic applications
Areas under curves
The area above the x-axis between
the values x = a and x = b and
beneath the curve in the diagram is
given as the value of the integral
evaluated between the limits x = a
and x = b:
where
 ( ) ( )
( ) ( )
b
b
x a
x a
f x dx F x
F b F a



 

( ) ( )f x F x
Basic applications
Areas under curves
If the integral is negative then the
area lies below the x-axis. For
example:
33 3
2 2
1 1
1
3
1
3
( 6 5) 3 5
3
( 3) (2 )
5
x x
x
x x dx x x
 
 
     
 
  
 

In order to make it easy,you may sketch the function graph first
The Area of The Region Between Two Curves
Example
Find the area of the region between the curves 𝑦 = 𝑥4
and 2𝑥 − 𝑥2.
Answer
Sketch the functions graph first, then finding where the
two curves intersect.
Try! Find the area of the region between 𝒚 𝟐
= 𝟒𝒙 and
4x – 3y = 4
The Area Bounded By the Curves in Form of
Parametric Equations
Example
Try!
Find the area of the
indicated region
A curve has parametric equations 𝑥 = 𝑐𝑜𝑠2
𝑡, 𝑦 = 3𝑠𝑖𝑛2
𝑡. Find the
area bounded by the curve, the x-axis and the ordinates at 𝑡 =
0 𝑎𝑛𝑑 𝑡 = 2𝜋
Volumes of Solid of Revolutions:
Method of Disks
Let 𝑉 be the volume of the solid generated.
Since the solid generated is a flat cylinder, so 𝑉 is:
We finally obtain:
Volumes of Solid of Revolutions:
Method of Washers
Sometimes, slicing a solid of revolution result in disks with hole in
the middle
Find the volume of the solid generated by revolving the region
bounded by the parabolas 𝑦 = 𝑥2 and 𝑦2 = 8𝑥 about the 𝑥 −axis
15
Jika V(t) adl volume air dlm waduk pada waktu t, maka turunan V’(t) adl
laju mengalirnya air ke dalam waduk pada waktu t.
)V(t)V(tdt(t)V' 12
2t
1t

perubahan banyaknya air dalam waduk diantara t1 dan t2
Penerapan Integral dalam Ilmu Sains
 
2t
1t
dt
dt
d[C]
[C](t2)-[C](t1)
Jika [C](t) adl konsentrasi hasil suatu reaksi kimia
pd waktu t,maka laju reaksi adl turunan d[C]/dt
perubahan konsentrasi C dari waktu t1 ke t2
17
Jika laju pertumbuhan populasi adl dn/dt, maka
)n(t)n(tdt
dt
dn
12
2t
1t

pertambahan populasi selama periode waktu t1 ke t2

Integration application (Aplikasi Integral)

  • 1.
  • 2.
    Basic applications Areas undercurves The area above the x-axis between the values x = a and x = b and beneath the curve in the diagram is given as the value of the integral evaluated between the limits x = a and x = b: where  ( ) ( ) ( ) ( ) b b x a x a f x dx F x F b F a       ( ) ( )f x F x
  • 3.
    Basic applications Areas undercurves If the integral is negative then the area lies below the x-axis. For example: 33 3 2 2 1 1 1 3 1 3 ( 6 5) 3 5 3 ( 3) (2 ) 5 x x x x x dx x x                  
  • 4.
    In order tomake it easy,you may sketch the function graph first
  • 6.
    The Area ofThe Region Between Two Curves Example Find the area of the region between the curves 𝑦 = 𝑥4 and 2𝑥 − 𝑥2. Answer Sketch the functions graph first, then finding where the two curves intersect. Try! Find the area of the region between 𝒚 𝟐 = 𝟒𝒙 and 4x – 3y = 4
  • 7.
    The Area BoundedBy the Curves in Form of Parametric Equations Example
  • 8.
    Try! Find the areaof the indicated region A curve has parametric equations 𝑥 = 𝑐𝑜𝑠2 𝑡, 𝑦 = 3𝑠𝑖𝑛2 𝑡. Find the area bounded by the curve, the x-axis and the ordinates at 𝑡 = 0 𝑎𝑛𝑑 𝑡 = 2𝜋
  • 9.
    Volumes of Solidof Revolutions: Method of Disks Let 𝑉 be the volume of the solid generated. Since the solid generated is a flat cylinder, so 𝑉 is:
  • 12.
  • 13.
    Volumes of Solidof Revolutions: Method of Washers Sometimes, slicing a solid of revolution result in disks with hole in the middle Find the volume of the solid generated by revolving the region bounded by the parabolas 𝑦 = 𝑥2 and 𝑦2 = 8𝑥 about the 𝑥 −axis
  • 15.
    15 Jika V(t) adlvolume air dlm waduk pada waktu t, maka turunan V’(t) adl laju mengalirnya air ke dalam waduk pada waktu t. )V(t)V(tdt(t)V' 12 2t 1t  perubahan banyaknya air dalam waduk diantara t1 dan t2 Penerapan Integral dalam Ilmu Sains
  • 16.
      2t 1t dt dt d[C] [C](t2)-[C](t1) Jika [C](t)adl konsentrasi hasil suatu reaksi kimia pd waktu t,maka laju reaksi adl turunan d[C]/dt perubahan konsentrasi C dari waktu t1 ke t2
  • 17.
    17 Jika laju pertumbuhanpopulasi adl dn/dt, maka )n(t)n(tdt dt dn 12 2t 1t  pertambahan populasi selama periode waktu t1 ke t2