BBMP 1103
      Mathematic Management
  Exam Preparation Workshop Sept 2011
Part 7 - Application of Partial Differentiation

           Presented By: Dr Richard Ng

                  26 Nov 2011
                    2ptg – 4ptg
7. Focus on Application of Partial Differentiation

    Question: 15 (May 2010)




Prepared by Dr Richard Ng (2011)                   Page 2
Suggested Answers:

         i) f ( x, y)        25 2 x 3 y x 2          y2   xy

                           fx      2 2x y       0     … (i)
                           fy          3 2y x       0 … (ii)

             (i) x 2:              4 4x 2 y         0 … (iii)

             (iii) - (ii):         3x 7 0
                                         7
                                   x
                                         3



Prepared by Dr Richard Ng (2011)                                Page 3
Substitute into (i):

                                           7
                              2 2                  y   0
                                           3

                                14
                              2            y       0
                                 3
                                   8
                                       y       0
                                   3
                                       8
                                   y
                                       3
                                                           7 8
             Hence, the critical point is                   ,
                                                           3 3

Prepared by Dr Richard Ng (2011)                                 Page 4
ii) To determine maximum or minimum use M Test:

                   fx       2 2x y                   fy    3 2y x
                  f xx        2                     f yy   2
                   f xy       1


                M         [( f xx )( f yy )] [( f xy )]2

                          [(2)(2)] [1]2
                          [4] [1]
                          3
        Since M > 0 and fxx > 0, hence the critical point is minimum
Prepared by Dr Richard Ng (2011)                                    Page 5
Question: 16 (Sept 2009)




Prepared by Dr Richard Ng (2011)   Page 6
Suggested Answers:

         i)     f ( x, y) 8x 2 8 y 2 8 xy 48x 5

                         fx        16x 8 y 48 0 … (i)

                        fy     16 y 8x      0   … (ii)


          Equation (i) x 2:

                              32x 16 y 96 0 … (iii)

          (iii) – (ii) :            24x 96 0
                                    x   4

Prepared by Dr Richard Ng (2011)                         Page 7
Substitute x = -4 into (ii):        16y 8( 4) 0
                                              16y        32
                                                y    2

          Hence, the critical point is = (-4, 2)

      ii) To determine maximum or minimum use M Test:

                   fx      16x 8 y 48    fy         16 y 8 x

                  f xx     16            f yy       16
                  f xy     8

Prepared by Dr Richard Ng (2011)                               Page 8
M       [( f xx )( f yy )] [( f xy )]2

                         [(16)(16)] [8]2
                         [256] [64]
                        192
        Since M > 0 and fxx > 0, hence the critical point is minimum

        iii) When x = - 4, y = 2:
                     f ( x, y) 8( 4) 2 8(2) 2 8( 4)(2) 48( 4) 5
                                   128 32 64 192 5
                                     101
        Hence, the minimum value is = -101
Prepared by Dr Richard Ng (2011)                                  Page 9
End of
Part 7

BBMP1103 - Sept 2011 exam workshop - part 7

  • 1.
    BBMP 1103 Mathematic Management Exam Preparation Workshop Sept 2011 Part 7 - Application of Partial Differentiation Presented By: Dr Richard Ng 26 Nov 2011 2ptg – 4ptg
  • 2.
    7. Focus onApplication of Partial Differentiation Question: 15 (May 2010) Prepared by Dr Richard Ng (2011) Page 2
  • 3.
    Suggested Answers: i) f ( x, y) 25 2 x 3 y x 2 y2 xy fx 2 2x y 0 … (i) fy 3 2y x 0 … (ii) (i) x 2: 4 4x 2 y 0 … (iii) (iii) - (ii): 3x 7 0 7 x 3 Prepared by Dr Richard Ng (2011) Page 3
  • 4.
    Substitute into (i): 7 2 2 y 0 3 14 2 y 0 3 8 y 0 3 8 y 3 7 8 Hence, the critical point is , 3 3 Prepared by Dr Richard Ng (2011) Page 4
  • 5.
    ii) To determinemaximum or minimum use M Test: fx 2 2x y fy 3 2y x f xx 2 f yy 2 f xy 1 M [( f xx )( f yy )] [( f xy )]2 [(2)(2)] [1]2 [4] [1] 3 Since M > 0 and fxx > 0, hence the critical point is minimum Prepared by Dr Richard Ng (2011) Page 5
  • 6.
    Question: 16 (Sept2009) Prepared by Dr Richard Ng (2011) Page 6
  • 7.
    Suggested Answers: i) f ( x, y) 8x 2 8 y 2 8 xy 48x 5 fx 16x 8 y 48 0 … (i) fy 16 y 8x 0 … (ii) Equation (i) x 2: 32x 16 y 96 0 … (iii) (iii) – (ii) : 24x 96 0 x 4 Prepared by Dr Richard Ng (2011) Page 7
  • 8.
    Substitute x =-4 into (ii): 16y 8( 4) 0 16y 32 y 2 Hence, the critical point is = (-4, 2) ii) To determine maximum or minimum use M Test: fx 16x 8 y 48 fy 16 y 8 x f xx 16 f yy 16 f xy 8 Prepared by Dr Richard Ng (2011) Page 8
  • 9.
    M [( f xx )( f yy )] [( f xy )]2 [(16)(16)] [8]2 [256] [64] 192 Since M > 0 and fxx > 0, hence the critical point is minimum iii) When x = - 4, y = 2: f ( x, y) 8( 4) 2 8(2) 2 8( 4)(2) 48( 4) 5 128 32 64 192 5 101 Hence, the minimum value is = -101 Prepared by Dr Richard Ng (2011) Page 9
  • 10.