MARKING SCHEME
                                 ADDITIONAL MATHEMATICS PAPER 2
                                   SPM TRIAL EXAMINATION 2010

N0.                                       SOLUTION                       MARKS
 1     x = 10 − 2 y                                                 P1
                                                                    K1 Eliminate x
       y 2 + (10 − 2 y ) y = 24
       y 2 − 10 y + 24 = 0                                          K1 Solve quadratic
       ( y − 4) ( y − 6) = 0                                           equation
       y=4               or         y=6
                                                                    N1
       x=2               or         x = −2
                                                                    N1

                                                                             5
 2
(a)    k=6                                                          P1

(b)    Mid point      23 , 28 , 33 , 38 , 43                        P1

(i)    Mean

       =
         ∑ fx      =
                     1 × 23 + 4 × 28 + 7 × 33 + 5 × 38 + 3 × 43
                                                                    K1 Use formula and
                                                                        calculate
         ∑f                       1+ 4 + 7 + 5 + 3
           685
       =       = 34.25                                              N1
           20


(ii)   Varian

       =
         ∑ fx2 − x 2
         ∑f                                                         K1 Use formula and
         1 × 232 + 4 × 282 + 7 × 332 + 5 × 382 + 3 × 432                calculate
       =                                                 − 34.252
                                20
         24055
       =         − 34.252
            20                                                      N1
       = 29.69


(iii) Median , m
             1                  1                               K1 Use formula and
              2N −F              2 (20) − 5                         calculate
       = L+          C = 30.5 +             5
              fm                     7      
                                                                N1
       = 34.07



                                                                             8

                                                                                         2
N0.                                      SOLUTION                                        MARKS
 3       1
      y = x3 − x 2 + 2
         3

(a)   dy
         = x2 − 2 x = 3                                                            K1 Equate and solve
      dx
      x2 − 2 x − 3 = 0                                                                quadratic
                                                                                      equation
      ( x + 1) ( x − 3) = 0
      x = −1 , 3
                          2
      x = −1            y=
                          3
      x=3               y=2

          2
       −1,         and      ( 3, 2 )                                             N1   N1
          3


(b)   Equation of normals :
                    1
      mnormal = −
                    3                                                              K1 Use mnormal to form
        2    1                                        1                               equations
      y−  = − ( x + 1)                        y−2=−     ( x − 3)
        3    3                                        3
          1    1                                   1                               N1    N1
      y=− x+           or equivalent          y = − x+3            or equivalent
          3    3                                   3

                                                                                              6
 4
       y
(a)


                                                                                   P1 Modulus sine
                                                                                      shape correct.
       2                                               y = 3sin 2 x − 1
                                                                                   P1 Amplitude = 3
                                                                                      [ Maximum = 2
       1
                                                                                      and Minimum =
                                                                                      -1]

        O                π           π       3π         2π              x          P1 Two full cycle in
       -1                2                    2                                       0 ≤ x ≤ 2π  π

                                                                         3x
                                                             y = 1−
       -2
                                                                         2π        P1 Shift down the
                                                                                      graph




                                                                                                          3
N0.                                  SOLUTION                                MARKS
 4
                           3x
(b)   3sin 2 x − 1 = 1 −
                           2π
      or                                                               N1 For equation

                 3x
      y = 1−
                 2π


                                             3x
      Draw the straight line        y = 1−                             K1 Sketch the
                                             2π                           straight line

      Number of solutions       =   5.                                 N1



                                                                                 7
 5

(a)   Common ratio,       r=4                                          N1



(b)        1                                                           K1
      A6 = π ( 32 )                                         1
                                                  T6 = ar = π ( 4 )
                    2                                   5          5
           4                        OR                      4
                                                                       N1
         = 256π                                      = 256π



(c)
      S6 − S 2                                                         K1 Use S6 or S2

        1
            (
          π 46 − 1
                     1
                      )     (
                       π 42 − 1      )                                 K1 Use S6 - S2
      = 4          −4
           4 −1         4 −1
                                                                       N1
      = 341.25π −1.25π
      = 340π




                                                                                 6

                                                                                          4
N0.                                    SOLUTION         MARKS
 6
(a)                                               K1 for using vector
(i)    uuu uuu uuu
         r     r     r                               triangle for a(i) or
       OD = OC + CD
                                                     a(ii)
           = 6a + 12b
              % %                                 N1

(ii)   uuu uuu uuu
         r     r     r
       AB = OB − OA
             1 uuu uuu
                  r     r
           = OD − OA
             2
           = 3a + 6b − 3a
              % % %                               N1
           = 6b
              %
       OR

       uuu 1 uuu
         r     r
       AB = CD = 6b            [ K1 N1 ]
           2      %


(b)
       uuur
       AE
         uuu uuu
            r  r
       = AB + BE                                  K1 for using vector
                                                                   uuu
                                                                     r
                 1 uuu 
                       r                             triangle and BE
       = 6b + h  OD 
          % 2           
       = 6b + h ( 3a + 6b )
          %        % %


       a + kb = 3ha + ( 6 + 6h ) b
                                                  K1
       % %        %              %

                              k = 6 + 6h          K1 for equating
       3h = 1                                        coefficients
                                       1
          1                     = 6 + 6            correctly
       h=                               3
          3
                                =8                N1      N1




                                                               8

                                                                            5
N0.                                   SOLUTION                                   MARKS
 7
(a)
            x           1        2            3      4        5      6
                                                                           N1   6 correct
        log10 y        0.65    0.87          1.08   1.30     1.52   1.74
                                                                                values of log y


                 log10 y
(b)                                                                        K1 Plot log10 y vs x
                                                                               Correct axes &
                                                                              uniform scale

                                                                           N1   6 points plotted
                                                                                 correctly

                                                                           N1   Line of best-fit
                0.43

                        0                                x



(c)    log10 y = ( k log10 A ) x + log10 A                                 P1
(i)    x = 2.6                                                             N1

(ii)   y-intercept = log10 y                                               K1

       A = 2.69                                                            N1

       gradient = k log10 A                                                K1
            gradient
       k=
            log10 A *
         = 0.51                                                            N1




                                                                                     10


                                                                                                   6
N0.                                              SOLUTION           MARKS
 8
(a)   P(5, 1 )                                              P1

      Q(1, 0 )                                              P1



(b)                   1

                  ∫ (4y         + 1) dy                               ∫ x dy
                            2
      A=                                                    K1 use
                  0

                                                            K1 correct limit
                       4y3             1
          =                + y
                       3               0
                                                            K1 integrate
                                                               correctly
              7
      =                                  OR   equivalent
              3                                             N1




                      5
                          x −1
(c)   V= π∫                    dx                           K1 integrate
                            4
                      1
                                                                 π ∫ y 2 dx
                                                            K1 correct limit
              π  x2                5
          =     − x
            4 2                    1
                                                            K1 integrate
                                                               correctly

          = 2π                                              N1




                                                                        10




                                                                               7
N0.                                SOLUTION                      MARKS
 9
(a)                   4                                     K1 Use ratio of
      cos ∠ POQ =
                     10                                        trigonometry or
                                                               equivalent

          ∠ POQ = 1.16 rad.
                                                            N1




(b)
      ( 2π – 1.16 ) rad                                     P1

      PQ = 10 ( 2π – 1.16 )                                 K1 Use s = rθ

      = 51.24 cm                                            N1

(c)
                                                            P1
        10 2 − 4 2
      = 9.17 cm

                                    1                       K1
      Area of trapezium POQR =        ( 6 + 10 ) × 9.17 *
                                    2
                                     = 73.36 cm2

                              1                             K1 Use formula
      Area of sector POQ =      (10) 2 (1.16)
                              2                                 1
                                                            A = r 2θ
                              = 58 cm2                          2



      Area of shaded region

      = 73.36 – 58                                          K1

      = 15.36 cm2                                           N1




                                                                     10

                                                                                 8
N0.                                         SOLUTION                      MARKS
10.
(a) Equation of str. line PQR :

                   1                                                K1
         m= −
                   2

              1                                                     N1
       y= −     x+1
              2


(b)                    1                                            K1   solving
       2x + 6 = −        x+1
                       2                                                  simultaneous
                                                                          equation
       P( –2, 2)                                                    N1




(c)    1( x) + 2(−2)                     1( y ) + 2(2)              K1   Use the ratio
                     =0        or                      =1
           1+ 2                              1+ 2                        rule



       R( 4, –1)                                                    N1

(d)
(i)                                  1                              K1   Use distance
         ( x − 4) 2 + ( y + 1) 2 =        ( x + 2) 2 + ( y − 2) 2
                                     2                                   formula

       4 [ x2 – 8x + 16 + y2 + 2y +1 ] = x2 + 4x + 4 + y2 – 4y +4

       x2 + y2 – 12x + 4y + 15 = 0                                  N1



(ii)   Substitute x = 0, y2 + 4y + 15 = 0                           K1 Substitute x = 0
                b2 – 4ac = (4)2 – 4(1)(15)                                      2
                                                                       and use b – 4ac
                         = – 44 < 0                                    to make a
                                                                       conclusion
        ⇒ No real root for y,

        ⇒ The locus does not intercept the y-axis.                  N1 if b2 – 4ac = -44




                                                                                           9
10
N0.                                   SOLUTION         MARKS
11
(a)
      µ = 80, σ = 12
                               65 − 80                         X −µ
      P ( X ≥ 65 ) = P ( Z ≥           )         K1 Use Z =
                                 12                                σ
                      = P ( Z ≥ − 1.25 )

                      = 1 – 0.1056               K1   Use 1 – Q(Z)
                      = 0.8944                   N1



(b)   0.1056 × 4000                              K1
      = 422 or 423                               N1



(c)    200                                       P1
           = 0.05
      4000

      Q( Z ) = 0.05
      Z = 1.645                                  K1 Find value of Z

      m − 80                                                  m−µ
             = − 1.645                           K1    Use
       12                                                      σ
                                                 K1    Use negative
                                                       value
          m = 60.26 g                            N1




                                                          10

                                                                       10
N0.                                                  SOLUTION                                                          MARKS
12
(a)   - 5 ms-1                                                                                               N1

(b)           v<0                                                                                            K1
                2
            t - 4t - 5 < 0                                                                                   K1
            (t – 5) (t +1) < 0

                      0<t<5                                                                                  N1


                        v
(c)                           8



                        7    7

                              6

                                                                                                             P1 (for shape )
                              4




                              2




      -5


                        0
                              0       2      5   6            10               15
                                                                                    t
                             -2
                                  2              6
                             -4
                                                                                                             P1 min(2,-9) , (6,7)
                       -5   -5

                             -6                                                                                 &(0,-5) must be
                             -8                                                                                 seen
                       -9    -9

                            -10




                            -12




(d)   Total dis tan ce
            5            6                                                                                   K1 for
      =     ∫ vdt        ∫
                      + vdt                                                                                       5           6

            0            5
                                                                                                                  ∫
                                                                                                                  0
                                                                                                                        and   ∫ 5
                                  5                       6
        t3               t3             
      =  − 2t 2 − 5 t  +  − 2 t 2 − 5 t 
        3
                      0
                          3
                                          5
                                           
                                                                                                             K1 (for Integration;
                                                                                                                  either one)




                 5 3                                216               5
                                                                                 3                     
           =         − 2 (5 ) 2 − 5 (5 )  − ( 0 )  +    2( 36 ) − 30  −    − 2 (5 ) 2 − 5 (5 )  
                 3
                
                                           
                                                      3
                                                                           3
                                                                               
                                                                                                       
                                                                                                          K1 (for use and
                                                                                                                      summation)
                    1              1 
           = −33      +  −30 − (−33 ) 
                    3              3 

               2
           = 36 m
               3                                                                                             N1



                                                                                                                                    11
10
N0.                                           SOLUTION                         MARKS
13
       P09
(a)        × 100 = 125                                                   K1
       60

                                                                         N1
       P09 = RM 75


(b)                  (125 × 4 ) + (120 m) + (80 × 5 ) + 150 m + 450      K1
(i)     120 =
                                        12 + 2 m

                                                                         K1 (use formula)
        1440 + 240 m = 1350 + 270 m

                                                                         N1
                         m = 3


(ii)
                              100
       P07 = RM 30 ×                                                     K1
                              120

                                                                         N1
           = RM 25


(c)
       120 + (120 × 0.15) = 138                                          K1



                                                                         K1
                       (125 × 4 ) + (138 × 3) + (80 × 5 ) + (150 × 6 )
         I 10 / 07   =
                                            18

                                                                         N1
                     = 123




                                                                                            12
10
N0.                                                     SOLUTION                                 MARKS
14
(a)    y      ≥ 200                                                                         N1

       x+y ≤                 800                                                            N1

       4x + y ≤            1400                                                             N1

(b)               y


           1000


                             4x + y = 1400
            900



            800



            700



            600                       (200,600)


            500



            400
                       R


            300

                                                                             y = 200
            200



            100
                                                                          x + y = 800
                                                                                        x
                       100      200        300    400   500   600   700    800   900




                  •   At least one straight line is drawn correctly from inequalities K1
                      involving x and y.
                                                                                      N1
                  •   All the three straight lines are drawn correctly


                  •   Region is correctly shaded                                            N1
(c)
(i)
       650                                                                                  N1

(ii)
       Maximum point (200, 600)                                                             N1

       Maximum profit = 20(200) + 6(600)                                                    K1

                                       =     RM 7600                                        N1




                                                                                                         13
10
N0.                                      SOLUTION                           MARKS
15
(a)     TQ2 = 92 + 62 – 2(9)(6)cos56o                                  K1

         TQ = 7.524 cm                                                 N1




(b)     sin ∠QTR sin 56 0                                              K1
                =
             6    7.524

          ∠QTR     = 41o 23’                                           N1




(c)               1                                                    K1
        42.28 =     ( RS )(6 )sin 56 o
                  2

           RS =   17

          ST = 17 − 9        (or    ST + 9       in formula of area)   K1

              = 8 cm                                                   N1

(d)                   1
          Area ∆ QTR = (9)(6) sin 56 0
                      2                                                K1
                                         2
                          = 22.38 cm




      Area of quadrilateral PQTS =           2(42.28) – 22.38          K1

                                         =       62.18 cm2             N1




                                                                             10




                                         END OF MARKING SCHEME

                                                                                    14

Add Maths 2

  • 1.
    MARKING SCHEME ADDITIONAL MATHEMATICS PAPER 2 SPM TRIAL EXAMINATION 2010 N0. SOLUTION MARKS 1 x = 10 − 2 y P1 K1 Eliminate x y 2 + (10 − 2 y ) y = 24 y 2 − 10 y + 24 = 0 K1 Solve quadratic ( y − 4) ( y − 6) = 0 equation y=4 or y=6 N1 x=2 or x = −2 N1 5 2 (a) k=6 P1 (b) Mid point 23 , 28 , 33 , 38 , 43 P1 (i) Mean = ∑ fx = 1 × 23 + 4 × 28 + 7 × 33 + 5 × 38 + 3 × 43 K1 Use formula and calculate ∑f 1+ 4 + 7 + 5 + 3 685 = = 34.25 N1 20 (ii) Varian = ∑ fx2 − x 2 ∑f K1 Use formula and 1 × 232 + 4 × 282 + 7 × 332 + 5 × 382 + 3 × 432 calculate = − 34.252 20 24055 = − 34.252 20 N1 = 29.69 (iii) Median , m 1  1  K1 Use formula and  2N −F   2 (20) − 5  calculate = L+  C = 30.5 +  5  fm   7      N1 = 34.07 8 2
  • 2.
    N0. SOLUTION MARKS 3 1 y = x3 − x 2 + 2 3 (a) dy = x2 − 2 x = 3 K1 Equate and solve dx x2 − 2 x − 3 = 0 quadratic equation ( x + 1) ( x − 3) = 0 x = −1 , 3 2 x = −1 y= 3 x=3 y=2  2  −1,  and ( 3, 2 ) N1 N1  3 (b) Equation of normals : 1 mnormal = − 3 K1 Use mnormal to form 2 1 1 equations y− = − ( x + 1) y−2=− ( x − 3) 3 3 3 1 1 1 N1 N1 y=− x+ or equivalent y = − x+3 or equivalent 3 3 3 6 4 y (a) P1 Modulus sine shape correct. 2 y = 3sin 2 x − 1 P1 Amplitude = 3 [ Maximum = 2 1 and Minimum = -1] O π π 3π 2π x P1 Two full cycle in -1 2 2 0 ≤ x ≤ 2π π 3x y = 1− -2 2π P1 Shift down the graph 3
  • 3.
    N0. SOLUTION MARKS 4 3x (b) 3sin 2 x − 1 = 1 − 2π or N1 For equation 3x y = 1− 2π 3x Draw the straight line y = 1− K1 Sketch the 2π straight line Number of solutions = 5. N1 7 5 (a) Common ratio, r=4 N1 (b) 1 K1 A6 = π ( 32 ) 1 T6 = ar = π ( 4 ) 2 5 5 4 OR 4 N1 = 256π = 256π (c) S6 − S 2 K1 Use S6 or S2 1 ( π 46 − 1 1 ) ( π 42 − 1 ) K1 Use S6 - S2 = 4 −4 4 −1 4 −1 N1 = 341.25π −1.25π = 340π 6 4
  • 4.
    N0. SOLUTION MARKS 6 (a) K1 for using vector (i) uuu uuu uuu r r r triangle for a(i) or OD = OC + CD a(ii) = 6a + 12b % % N1 (ii) uuu uuu uuu r r r AB = OB − OA 1 uuu uuu r r = OD − OA 2 = 3a + 6b − 3a % % % N1 = 6b % OR uuu 1 uuu r r AB = CD = 6b [ K1 N1 ] 2 % (b) uuur AE uuu uuu r r = AB + BE K1 for using vector uuu r  1 uuu  r triangle and BE = 6b + h  OD  % 2  = 6b + h ( 3a + 6b ) % % % a + kb = 3ha + ( 6 + 6h ) b K1 % % % % k = 6 + 6h K1 for equating 3h = 1 coefficients 1 1 = 6 + 6  correctly h=  3 3 =8 N1 N1 8 5
  • 5.
    N0. SOLUTION MARKS 7 (a) x 1 2 3 4 5 6 N1 6 correct log10 y 0.65 0.87 1.08 1.30 1.52 1.74 values of log y log10 y (b) K1 Plot log10 y vs x Correct axes & uniform scale N1 6 points plotted correctly N1 Line of best-fit 0.43 0 x (c) log10 y = ( k log10 A ) x + log10 A P1 (i) x = 2.6 N1 (ii) y-intercept = log10 y K1 A = 2.69 N1 gradient = k log10 A K1 gradient k= log10 A * = 0.51 N1 10 6
  • 6.
    N0. SOLUTION MARKS 8 (a) P(5, 1 ) P1 Q(1, 0 ) P1 (b) 1 ∫ (4y + 1) dy ∫ x dy 2 A= K1 use 0 K1 correct limit  4y3  1 =  + y  3  0 K1 integrate correctly 7 = OR equivalent 3 N1 5 x −1 (c) V= π∫ dx K1 integrate 4 1 π ∫ y 2 dx K1 correct limit π  x2 5 =  − x 4 2  1 K1 integrate correctly = 2π N1 10 7
  • 7.
    N0. SOLUTION MARKS 9 (a) 4 K1 Use ratio of cos ∠ POQ = 10 trigonometry or equivalent ∠ POQ = 1.16 rad. N1 (b) ( 2π – 1.16 ) rad P1 PQ = 10 ( 2π – 1.16 ) K1 Use s = rθ = 51.24 cm N1 (c) P1 10 2 − 4 2 = 9.17 cm 1 K1 Area of trapezium POQR = ( 6 + 10 ) × 9.17 * 2 = 73.36 cm2 1 K1 Use formula Area of sector POQ = (10) 2 (1.16) 2 1 A = r 2θ = 58 cm2 2 Area of shaded region = 73.36 – 58 K1 = 15.36 cm2 N1 10 8
  • 8.
    N0. SOLUTION MARKS 10. (a) Equation of str. line PQR : 1 K1 m= − 2 1 N1 y= − x+1 2 (b) 1 K1 solving 2x + 6 = − x+1 2 simultaneous equation P( –2, 2) N1 (c) 1( x) + 2(−2) 1( y ) + 2(2) K1 Use the ratio =0 or =1 1+ 2 1+ 2 rule R( 4, –1) N1 (d) (i) 1 K1 Use distance ( x − 4) 2 + ( y + 1) 2 = ( x + 2) 2 + ( y − 2) 2 2 formula 4 [ x2 – 8x + 16 + y2 + 2y +1 ] = x2 + 4x + 4 + y2 – 4y +4 x2 + y2 – 12x + 4y + 15 = 0 N1 (ii) Substitute x = 0, y2 + 4y + 15 = 0 K1 Substitute x = 0 b2 – 4ac = (4)2 – 4(1)(15) 2 and use b – 4ac = – 44 < 0 to make a conclusion ⇒ No real root for y, ⇒ The locus does not intercept the y-axis. N1 if b2 – 4ac = -44 9
  • 9.
    10 N0. SOLUTION MARKS 11 (a) µ = 80, σ = 12 65 − 80 X −µ P ( X ≥ 65 ) = P ( Z ≥ ) K1 Use Z = 12 σ = P ( Z ≥ − 1.25 ) = 1 – 0.1056 K1 Use 1 – Q(Z) = 0.8944 N1 (b) 0.1056 × 4000 K1 = 422 or 423 N1 (c) 200 P1 = 0.05 4000 Q( Z ) = 0.05 Z = 1.645 K1 Find value of Z m − 80 m−µ = − 1.645 K1 Use 12 σ K1 Use negative value m = 60.26 g N1 10 10
  • 10.
    N0. SOLUTION MARKS 12 (a) - 5 ms-1 N1 (b) v<0 K1 2 t - 4t - 5 < 0 K1 (t – 5) (t +1) < 0 0<t<5 N1 v (c) 8 7 7 6 P1 (for shape ) 4 2 -5 0 0 2 5 6 10 15 t -2 2 6 -4 P1 min(2,-9) , (6,7) -5 -5 -6 &(0,-5) must be -8 seen -9 -9 -10 -12 (d) Total dis tan ce 5 6 K1 for = ∫ vdt ∫ + vdt 5 6 0 5 ∫ 0 and ∫ 5 5 6 t3  t3  =  − 2t 2 − 5 t  +  − 2 t 2 − 5 t  3  0  3  5  K1 (for Integration; either one)  5 3    216  5 3  =  − 2 (5 ) 2 − 5 (5 )  − ( 0 )  +   2( 36 ) − 30  −  − 2 (5 ) 2 − 5 (5 )    3      3     3    K1 (for use and summation) 1  1  = −33 +  −30 − (−33 )  3  3  2 = 36 m 3 N1 11
  • 11.
    10 N0. SOLUTION MARKS 13 P09 (a) × 100 = 125 K1 60 N1 P09 = RM 75 (b) (125 × 4 ) + (120 m) + (80 × 5 ) + 150 m + 450 K1 (i) 120 = 12 + 2 m K1 (use formula) 1440 + 240 m = 1350 + 270 m N1 m = 3 (ii) 100 P07 = RM 30 × K1 120 N1 = RM 25 (c) 120 + (120 × 0.15) = 138 K1 K1 (125 × 4 ) + (138 × 3) + (80 × 5 ) + (150 × 6 ) I 10 / 07 = 18 N1 = 123 12
  • 12.
    10 N0. SOLUTION MARKS 14 (a) y ≥ 200 N1 x+y ≤ 800 N1 4x + y ≤ 1400 N1 (b) y 1000 4x + y = 1400 900 800 700 600 (200,600) 500 400 R 300 y = 200 200 100 x + y = 800 x 100 200 300 400 500 600 700 800 900 • At least one straight line is drawn correctly from inequalities K1 involving x and y. N1 • All the three straight lines are drawn correctly • Region is correctly shaded N1 (c) (i) 650 N1 (ii) Maximum point (200, 600) N1 Maximum profit = 20(200) + 6(600) K1 = RM 7600 N1 13
  • 13.
    10 N0. SOLUTION MARKS 15 (a) TQ2 = 92 + 62 – 2(9)(6)cos56o K1 TQ = 7.524 cm N1 (b) sin ∠QTR sin 56 0 K1 = 6 7.524 ∠QTR = 41o 23’ N1 (c) 1 K1 42.28 = ( RS )(6 )sin 56 o 2 RS = 17 ST = 17 − 9 (or ST + 9 in formula of area) K1 = 8 cm N1 (d) 1 Area ∆ QTR = (9)(6) sin 56 0 2 K1 2 = 22.38 cm Area of quadrilateral PQTS = 2(42.28) – 22.38 K1 = 62.18 cm2 N1 10 END OF MARKING SCHEME 14