Name _______________________________________             Date ____________________
Mrs. Labuski / Mrs. Portsmore Period ________            Unit 4 Lesson 6 GCF & Distributive
                                                         OC 3-5
Essential Question: How can using properties help you to represent mathematical relationships?
Objective: Students need to express a sum of two whole numbers as two factors with a common
factor as a multiple of the sum of two whole numbers with no common factor by applying the
Distributive Property.
                                 Example: 36 + 8 as 4(9 + 2).
Step 1: Find the GCF of the numbers in the sum. GCF of 36 and 8 is 4.

Step 2: Replace each number by a product of the GCF and its other factor.
                                36 + 8 = 4 • 9 + 4 • 2
Step 3: Replace the sum of the products by two factors with the GCF as a multiple of the sum of
two whole numbers.              36 + 8 = 4 • 9 + 4 • 2 = 4(9 + 2)
Write each of the following sums as two factors of their GCF and a sum:

1) 24 + 16 (GCF=_____)         2) 25 + 15 (GCF=_____)          3) 35 + 28 (GCF=_____)

      ______________                  _______________                ________________

4) 63 + 54 (GCF=_____)         5) 80 + 30 (GCF=_____)          6) 12 + 9    (GCF=_____)

      ______________                  _______________                ________________

7) 54 + 36 (GCF=_____)         8) 49 + 84 (GCF=_____)          9) 24 + 18 (GCF=_____)

      ______________                  _______________                ________________

10) 20 + 44                    11) 4 + 12                      12) 6 + 8

      ______________                  _______________                ________________

13) 25x + 40x                  14) 16a + 20a                   15) 60b + 72b

      ______________                  _______________                ________________

16) 42y + 63y                  17) 48y2 + 80y                  18) 9ab + 30a

      ______________                  _______________                ________________

19) 14x + 32x2                 20) 11a + 55a

      ______________                  _______________
Name _______________________________________             Date ____________________
Mrs. Labuski / Mrs. Portsmore Period ________            Unit 4 Lesson 6 GCF & Distributive
                                                         OC 3-5

Essential Question: How can using properties help you to represent mathematical relationships?

Objective: Students need to express a sum of two whole numbers as two factors with a common
factor as a multiple of the sum of two whole numbers with no common factor by applying the
Distributive Property.
Example: 36 + 8 as 4(9 + 2).

Step 1: Find the GCF of the numbers in the sum.
GCF of 36 and 8 is 4.

Step 2: Replace each number by a product of the GCF and its other factor.

36 + 8 = 4 • 9 + 4 • 2

Step 3: Replace the sum of the products by two factors with the GCF as a multiple of the sum of
two whole numbers.

36 + 8 = 4 • 9 + 4 • 2 = 4(9 + 2)

Write each of the following sums as two factors of their GCF and a sum:

1) 24 + 16                      2) 25 + 15                     3) 35 + 28
   4(6+4)                           5(5+3)                          7(5+4)

4) 63 + 54                      5) 80 + 30                     6) 12 + 9
   9(7+6)                            10(8+3)                      3(4+3)

7) 54 + 36                      8) 49 + 84                     9) 24 + 18
   18(3+2)                           7(7+12)                      6(4+3)

10) 20 + 44                     11) 4 + 12                     12) 6 + 8
    4(5+11)                            4(1+3)                     2(3+4)

13) 25x + 40x                   14) 16a + 20a                  15) 60b + 72b
    5x(5+8)                           4a(4+5)                           12b(5+6)

16) 42y + 63y                   17) 48 y2 + 80y                18) 9ab + 30a
    6y(7+9)                           16y(3y+5)                   3a(3+10)

19) 14x + 32x2                  20) 11a + 55a
    2x(7+16x)                         11a(1+5)
Name _______________________________________            Date ____________________
Mrs. Labuski / Mrs. Portsmore Period ________           Unit 4 Lesson 6 GCF&Distributive HW
                                                        OC 3-5

Write each of the following sums as two factors of their GCF and a sum:

1) 22 + 16 (GCF=_____)         2) 35 + 20 (GCF=_____)         3) 32 + 28 (GCF=_____)

      ______________                 _______________                 ________________

4) 63 + 45 (GCF=_____)         5) 70 + 40 (GCF=_____)         6) 18 + 42 (GCF=_____)

      ______________                 _______________                 ________________

7) 54 + 18 (GCF=_____)         8) 49 + 98 (GCF=_____)         9) 51 + 18 (GCF=_____)

      ______________                 _______________                 ________________

10) 24 + 40                    11) 20 + 24                    12) 49 + 63

      ______________                 _______________                 ________________

13) 25a + 30a                  14) 18cd + 24c                 15) 27x + 72x

      ______________                 _______________                 ________________

16) 42x2 + 63x                 17) 4a + 8a2                          18) 2.5 + 7.5

      ______________                 _______________                 ________________


19) 3.3 + 21                   20)   4.5 + 9

      ________________               ________________
Name ____________________________________Date ____________________
Mrs. Labuski / Mrs. Rooney Period ________ Application of Distributive Property HW

Write each of the following sums as two factors of their GCF and a sum:

1) 22 + 16 (GCF=__2___)        2) 35 + 20 (GCF=__5___)        3) 32 + 28 (GCF=__4___)

      2(11+8)                        5(7+4)                                 4(8+7)

4) 63 + 45 (GCF=__9___)        5) 70 + 40 (GCF=__10___)       6) 18 + 42 (GCF=__6___)

      9(7+5)                                 10(7+4)                        6(3+7)


7) 54 + 18 (GCF=_18____)       8) 49 + 98 (GCF=__7___)        9) 51 + 18 (GCF=__3___)

      18(3+1)                        49(1+2)                         3(17+6)


10) 24 + 40                    11) 20 + 24                    12) 49 + 63

      8(3+5)                         4(5+6)                                 7(7+9)


13) 25a + 30a                  14) 18cd + 24c                 15) 27x + 72x

      5a(5+6)                        6c(3d+4)                        9x(3+8)

16) 42x2 + 63x                 17) 4a + 8a2                   18) 2.5 + 7.5

      21x(2x+3)                      4(1+2a)                         2.5(1+3)


19) 3.3 + 21                   20)   4.5 + 9
     3(1.1+7)                        4.5(1+2)

Unit 4 lesson 6 gcf & distributive property

  • 1.
    Name _______________________________________ Date ____________________ Mrs. Labuski / Mrs. Portsmore Period ________ Unit 4 Lesson 6 GCF & Distributive OC 3-5 Essential Question: How can using properties help you to represent mathematical relationships? Objective: Students need to express a sum of two whole numbers as two factors with a common factor as a multiple of the sum of two whole numbers with no common factor by applying the Distributive Property. Example: 36 + 8 as 4(9 + 2). Step 1: Find the GCF of the numbers in the sum. GCF of 36 and 8 is 4. Step 2: Replace each number by a product of the GCF and its other factor. 36 + 8 = 4 • 9 + 4 • 2 Step 3: Replace the sum of the products by two factors with the GCF as a multiple of the sum of two whole numbers. 36 + 8 = 4 • 9 + 4 • 2 = 4(9 + 2) Write each of the following sums as two factors of their GCF and a sum: 1) 24 + 16 (GCF=_____) 2) 25 + 15 (GCF=_____) 3) 35 + 28 (GCF=_____) ______________ _______________ ________________ 4) 63 + 54 (GCF=_____) 5) 80 + 30 (GCF=_____) 6) 12 + 9 (GCF=_____) ______________ _______________ ________________ 7) 54 + 36 (GCF=_____) 8) 49 + 84 (GCF=_____) 9) 24 + 18 (GCF=_____) ______________ _______________ ________________ 10) 20 + 44 11) 4 + 12 12) 6 + 8 ______________ _______________ ________________ 13) 25x + 40x 14) 16a + 20a 15) 60b + 72b ______________ _______________ ________________ 16) 42y + 63y 17) 48y2 + 80y 18) 9ab + 30a ______________ _______________ ________________ 19) 14x + 32x2 20) 11a + 55a ______________ _______________
  • 2.
    Name _______________________________________ Date ____________________ Mrs. Labuski / Mrs. Portsmore Period ________ Unit 4 Lesson 6 GCF & Distributive OC 3-5 Essential Question: How can using properties help you to represent mathematical relationships? Objective: Students need to express a sum of two whole numbers as two factors with a common factor as a multiple of the sum of two whole numbers with no common factor by applying the Distributive Property. Example: 36 + 8 as 4(9 + 2). Step 1: Find the GCF of the numbers in the sum. GCF of 36 and 8 is 4. Step 2: Replace each number by a product of the GCF and its other factor. 36 + 8 = 4 • 9 + 4 • 2 Step 3: Replace the sum of the products by two factors with the GCF as a multiple of the sum of two whole numbers. 36 + 8 = 4 • 9 + 4 • 2 = 4(9 + 2) Write each of the following sums as two factors of their GCF and a sum: 1) 24 + 16 2) 25 + 15 3) 35 + 28 4(6+4) 5(5+3) 7(5+4) 4) 63 + 54 5) 80 + 30 6) 12 + 9 9(7+6) 10(8+3) 3(4+3) 7) 54 + 36 8) 49 + 84 9) 24 + 18 18(3+2) 7(7+12) 6(4+3) 10) 20 + 44 11) 4 + 12 12) 6 + 8 4(5+11) 4(1+3) 2(3+4) 13) 25x + 40x 14) 16a + 20a 15) 60b + 72b 5x(5+8) 4a(4+5) 12b(5+6) 16) 42y + 63y 17) 48 y2 + 80y 18) 9ab + 30a 6y(7+9) 16y(3y+5) 3a(3+10) 19) 14x + 32x2 20) 11a + 55a 2x(7+16x) 11a(1+5)
  • 3.
    Name _______________________________________ Date ____________________ Mrs. Labuski / Mrs. Portsmore Period ________ Unit 4 Lesson 6 GCF&Distributive HW OC 3-5 Write each of the following sums as two factors of their GCF and a sum: 1) 22 + 16 (GCF=_____) 2) 35 + 20 (GCF=_____) 3) 32 + 28 (GCF=_____) ______________ _______________ ________________ 4) 63 + 45 (GCF=_____) 5) 70 + 40 (GCF=_____) 6) 18 + 42 (GCF=_____) ______________ _______________ ________________ 7) 54 + 18 (GCF=_____) 8) 49 + 98 (GCF=_____) 9) 51 + 18 (GCF=_____) ______________ _______________ ________________ 10) 24 + 40 11) 20 + 24 12) 49 + 63 ______________ _______________ ________________ 13) 25a + 30a 14) 18cd + 24c 15) 27x + 72x ______________ _______________ ________________ 16) 42x2 + 63x 17) 4a + 8a2 18) 2.5 + 7.5 ______________ _______________ ________________ 19) 3.3 + 21 20) 4.5 + 9 ________________ ________________
  • 4.
    Name ____________________________________Date ____________________ Mrs.Labuski / Mrs. Rooney Period ________ Application of Distributive Property HW Write each of the following sums as two factors of their GCF and a sum: 1) 22 + 16 (GCF=__2___) 2) 35 + 20 (GCF=__5___) 3) 32 + 28 (GCF=__4___) 2(11+8) 5(7+4) 4(8+7) 4) 63 + 45 (GCF=__9___) 5) 70 + 40 (GCF=__10___) 6) 18 + 42 (GCF=__6___) 9(7+5) 10(7+4) 6(3+7) 7) 54 + 18 (GCF=_18____) 8) 49 + 98 (GCF=__7___) 9) 51 + 18 (GCF=__3___) 18(3+1) 49(1+2) 3(17+6) 10) 24 + 40 11) 20 + 24 12) 49 + 63 8(3+5) 4(5+6) 7(7+9) 13) 25a + 30a 14) 18cd + 24c 15) 27x + 72x 5a(5+6) 6c(3d+4) 9x(3+8) 16) 42x2 + 63x 17) 4a + 8a2 18) 2.5 + 7.5 21x(2x+3) 4(1+2a) 2.5(1+3) 19) 3.3 + 21 20) 4.5 + 9 3(1.1+7) 4.5(1+2)