Question Bank Unit II Engineering Mathematics II (Section P7)
Q 1 Solve the following differential equations in series (10 marks each)
1) 2 x 2 y ′′ − xy ′ + ( x − 5) y = 0 (2007)
2) x 2 y ′′ + x( x − 1) y ′ + (1 − x) y = 0 (2008)
3) 4) xy ′′ + y ′ + x 2 y = 0 (2006)
4) ((1 − x 2 ) y ′)′ + 2 y = 0 (2008)
5) (1 − x 2 ) y ′′ − xy ′ − 4 y = 0 (using Frobenius method) (2008,2012)

Q 2 Prove the following (5 marks each)
   1
                    2                               (−1) n (2n)!
1) ∫ [ Pn ( x)] =        (2007, 2008), 2) P2 n (0) = 2 n
               2
                                                                 (2007) ,
   −1
                  2n + 1                             2 ( n !) 2
     1                            1
                             (−1) n
   ∫1    f ( x) Pn ( x)dx =           ∫ ( x − 1) f ( x)dx (2008)
                                           2    n  (n)
3)
   −                          2 n n ! −1
4) Pn′+1 ( x ) − Pn′−1 ( x ) = (2n + 1) Pn ( x ) (2008),
                              ∞
                2 −1/2
5) (1 − 2 xz − z )     = ∑ Pn ( x) z n (2008)
                              0

                      2                        ′
6) J1/2 ( x) =           sin x (2007), 7) J n ( x) = nJ n ( x) − xJ n +1 ( x) (2009)
                     πx
8) (n + 1) Pn +1) ( x) = (2n + 1) xPn ( x) − nPn −1 ( x) , (2009)
            1             1
9) 5) y ′′ +   y ′ + (8 − 2 ) y = 0 , in terms of Bessel’s functions (2012)
            x            x
10) ( x J n ( x))′ = x J n −1 ( x ) (2008,2010)
       n               n


Q 3 (10 marks each)
1) State and prove Rodrigue’s formula
2) State and prove the orthogonality property of Legendre polynomials
3) State and prove the orthogonality property of Bessel’s functions
5) State and prove generating function formula for Legendre polynomials (Bessel’s
functions)
Q 4 1) Express f ( x) = x 4 + 3 x3 − x 2 + 5 x − 2 in terms of Legendre polynomials (2012)
    2) Express J 6 ( x ) in terms of J 0 ( x) and J1 ( x) (2009)
                                          1 2 2
    3) Show that ∫ xJ 0 ( x )dx = x ( J 0 ( x ) + J1 ( x)) + c (2011)
                            2                              2

                                          2
                                    8               4
    4) Show that J 3 ( x) =  2 − 1÷J1 ( x) − J 0 ( x) (2012)
                                   x                 x
                                                  0, m ≠ n
    5) Show that ∫ (1 − x ) Pm
                                  2    ′ Pn′ dx =  2n(n + 1)
                                                  
                                                   2n + 1 , m=n
                                                  
Question bank unit ii engineering mathematics ii

Question bank unit ii engineering mathematics ii

  • 1.
    Question Bank UnitII Engineering Mathematics II (Section P7) Q 1 Solve the following differential equations in series (10 marks each) 1) 2 x 2 y ′′ − xy ′ + ( x − 5) y = 0 (2007) 2) x 2 y ′′ + x( x − 1) y ′ + (1 − x) y = 0 (2008) 3) 4) xy ′′ + y ′ + x 2 y = 0 (2006) 4) ((1 − x 2 ) y ′)′ + 2 y = 0 (2008) 5) (1 − x 2 ) y ′′ − xy ′ − 4 y = 0 (using Frobenius method) (2008,2012) Q 2 Prove the following (5 marks each) 1 2 (−1) n (2n)! 1) ∫ [ Pn ( x)] = (2007, 2008), 2) P2 n (0) = 2 n 2 (2007) , −1 2n + 1 2 ( n !) 2 1 1 (−1) n ∫1 f ( x) Pn ( x)dx = ∫ ( x − 1) f ( x)dx (2008) 2 n (n) 3) − 2 n n ! −1 4) Pn′+1 ( x ) − Pn′−1 ( x ) = (2n + 1) Pn ( x ) (2008), ∞ 2 −1/2 5) (1 − 2 xz − z ) = ∑ Pn ( x) z n (2008) 0 2 ′ 6) J1/2 ( x) = sin x (2007), 7) J n ( x) = nJ n ( x) − xJ n +1 ( x) (2009) πx 8) (n + 1) Pn +1) ( x) = (2n + 1) xPn ( x) − nPn −1 ( x) , (2009) 1 1 9) 5) y ′′ + y ′ + (8 − 2 ) y = 0 , in terms of Bessel’s functions (2012) x x 10) ( x J n ( x))′ = x J n −1 ( x ) (2008,2010) n n Q 3 (10 marks each) 1) State and prove Rodrigue’s formula 2) State and prove the orthogonality property of Legendre polynomials 3) State and prove the orthogonality property of Bessel’s functions 5) State and prove generating function formula for Legendre polynomials (Bessel’s functions) Q 4 1) Express f ( x) = x 4 + 3 x3 − x 2 + 5 x − 2 in terms of Legendre polynomials (2012) 2) Express J 6 ( x ) in terms of J 0 ( x) and J1 ( x) (2009) 1 2 2 3) Show that ∫ xJ 0 ( x )dx = x ( J 0 ( x ) + J1 ( x)) + c (2011) 2 2 2  8  4 4) Show that J 3 ( x) =  2 − 1÷J1 ( x) − J 0 ( x) (2012) x  x 0, m ≠ n 5) Show that ∫ (1 − x ) Pm 2 ′ Pn′ dx =  2n(n + 1)   2n + 1 , m=n 