SlideShare a Scribd company logo
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 1
CMOS Digital Circuit Design
How to Make Both Ends Meet?
Susanta Sen
Institute of Radio Physics and Electronics
University of Calcutta
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 2
Review of
MOS Transistor
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 3
The MOS Transistor
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 4
MOS Transistor
Zero Bias
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 5
MOS Transistor (contd.)
VDS
ID
Channel Pinches off → Current Saturates
VG
Saturation Current increases with VG
Vt
Threshold Voltage Vt → Device Turns ON
MOS can be used as SWITCH
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 6
MOS as SWITCH
Designing Logic Circuits
Logic ‘0’ = 0V : Logic ‘1’ = VDD
n-MOS : VG ≤ Vt → OFF : VG = VDD → ON
p-MOS: Negative VGS required
Connect Source to VDD
Gate Voltage → Negative w.r.t. Channel
VG ≥ VDD– |Vt| → OFF : VG = 0 → ON
S
VDD
VG0 to VDD D
G
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 7
n-MOS SWITCH
Transferring Logic ‘1’ (VDD):
VDD
Vin = VDD Vt
VDD
Vo
t
Transistor
OFF
Source
Impedance
High
Weak ‘1’
Transistor
ON
Source
Impedance
Low
Strong ‘0’VDD
Vin = 0 V
Vo
t
VDD
Transferring Logic ‘0’ (0 V):
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 8
p – MOS Switch
Transferring Logic ‘1’ (VDD):
VDD
Vo
t
0V
VDD Strong ‘1’
Transferring Logic ‘0’ (0 V):
0V
0 V
t
Vo
VDD
Vt
Weak ‘0’
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 9
CMOS Logic
• Use n-MOS to produce Logic ‘0’ → Pull DOWN
• Use p-MOS to produce Logic ‘1’ → Pull UP
The CMOS Inverter
Equivalent
Circuit
Logic ‘1’
Output
Logic ‘0’
Output
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 10
Switching Theory
Revisited
MOS Circuit Design
Digital Logic
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 11
Review of Switching Theory
C
A B
F = C iff (A and B)
Switches in Series
A
B
C F = C iff (A or B)
Switches in Parallel
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 12
Using n-MOS Switch
Constraint : C = ‘0’
A B
Series Connection
C = ‘0’ F = ‘0’ when (A . B) is TRUE
⇒ A nand B
A
B
C = ‘0’ F = ‘0’ when (A or B) is TRUE
⇒ A nor B
Parallel Connection
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 13
Using p-MOS Switch
Constraint : C = ‘1’
A B
C = ‘1’ F = ‘1’ when ( A . B) is TRUE
⇒ A + B
Series Connection
C = ‘1’
A
B
F = ‘1’ when ( A + B) is TRUE
⇒ A . B
Parallel Connection
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 14
CMOS Logic Design
• Pull UP Network
– Build using p-MOS
– Turns ON when Function is TRUE
• Pull DOWN Network
– Build using n-MOS
– Turns ON when Function is FALSE
• Operationally Complement
• Topologically Dual
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 15
CMOS Logic (contd.)
A
A
B
BA
A
B
B
F
F
NAND GateNOR Gate
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 16
CMOS Design Example
Consider the Function
f = A . (B + C)
Design the
Pull Down
Network first
A
B C
PullUp
F
B
A
C
f = [A . (B + C)] is true
The Pull Down Network connects
‘f ’ to ground when
Connect Ground
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 17
Assignments
1. F = A.B + C
2. F = (A + B).(C + D)
3. F = A + B.C
4. F = A + B.C
5. F = A.C + B.C
6. F = A ⊕ B
Steady State
Input-Output Characteristics
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 19
V
DD
VO
Vi
(=VG)
MOS Amplifier
VDS
ID
V
DD
VG
Vi
VO
Load Line
RL
ID
VO = VDD – ID.RL
VDD
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 20
Non Linear Load
VDSVDD
ID
VDD
VO
Vi
LOAD LINEVO= VDD – Vdiode
VO
Vi
VDD
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 21
Non Linear Load (contd.)
Vi
VO
VB
VDD
VDD
VDS
ID
VDD
VO
Vi
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 22
The CMOS InverterAmplifier or Inverter ?
Vi VO
VO
Vi
Gate Bias of PMOS changes with
Input Voltage
VDD
VDD
VDS
ID
VDD
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 24
A Closer Look
In presence of Noise
VOn = f (Vi + vn)
= f (Vi) + vn(∂VO/∂Vi) + vn
2
(∂2
VO/∂Vi
2
)+…VO
Vi
noisy_output = noiseless_output +
noise x gain + higher order terms
VO= f (Vi) → Gain =
∂VO/∂Vi
ViHViL
VOL
VOH
Digital → Noise immunity Analog → High Gain
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 25
Noise Margins
VO
Vi
ViHViL
VOL
VOH
Digital → Noise immunity
NML = VIL – VOL
NMH = VOH – VIH
VOH
ViH
1 {
VOL
ViL
0 {
Undefined
Region
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 26
Vi VO
VO
Vi
VDD
VDD
VDS
ID
VDD
Tuning the Characteristics
• Make the n-MOS wider
• It conducts more current
ID = ½ µCox[VGS – Vt]2
(W/L)
•Best Noise Margin
•When Vi = Voat VDD/2
•Wp = 3.Wn
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 27
When the Signal Changes!
The CMOS Inverter
Logic ‘1’
Output
VDD
Vo
t Logic ‘0’
Output
Vo
t
VDD
Energy dissipated in
Pull Up Network
Energy dissipated in
Pull Down Network
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 30
A Second Look at Changing Signals!
The CMOS Inverter
Logic ‘1’
Output
VDD
Vo
t Logic ‘0’
Output
Vo
t
VDD
Takes Time to change → Propagation Delay
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 31
Attention to Speed
• p-MOS slower than n-MOS
– Hole mobility < Electron mobility
– Pull-UP → Higher Resistance
– Rise time longer
• Make p-MOS wider
– Resistance α W/L Ratio
– Wp = n. Wn → n = √µn /µp ≅ 2
• Widen transistors connected in Series
– Increases Input Capacitance
• Avoid Series connection of p-MOS
– Prefer NAND over NOR
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 32
∀µn / µp → 2.7
• p-MOS wider than n-MOS
– Wp/Wn = 3 → symmetric characteristics
• Best Noise Margin
• Increased Capacitive Load
– Reduced speed
• Wp/Wn = 2 → Best speed
• Design is a trade-off
– Speed & Robustness
CMOS Logic Design
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 33
LH
SO
E
k
HH
LH
SO
2 fold degenerate valence band
E
kHH
• Light hole (LH) band moves upward
→ higher probability of occupancy
• Low effective mass → higher mobility
• Tunable mobility
Promise of Strained Si
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 34
aSi=5.43A
aGe= 5.64 Å
Si
Substrate
Ge epitaxial layer
Tensile strain
%2.4
0
0
=
−
=
a
aa
ε
Si – Ge hetero-structures
aSi= 5.43 Å
Compressive strain
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 35
• Si1-xGex has a bulk relaxed lattice
constant smaller than Ge.
• Strain decreases
Strain Engineering: Si1-xGex alloy
SiGe epitaxial layer
Si Substrate Tensile strain
Compressive strain
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 36
Virtual substrate for strained-Si
• Strained layers grow up to a critical thickness
• Beyond Critical thickness → misfit dislocations appear
• As more layers grow → strain relaxes and defects reduce
Strain relaxed Si-Ge
Virtual Substrate
Tensile Strained Si epitaxial layer
HRTEM image of Strained Si
on Virtual Substrate
Strained-Si
SiGe (X % Ge) buffer cap,
0.9 µm
X % Ge
0.0%Ge
Step graded SiGe
buffer, 2.1 µm
Si buffer, 0.5 µm
n-Si (100) substrate
HRTEM
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 38
Ref: S. Takagi et al., ISSCC (2003) p. 376
Mobility enhancement with strain
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 39
Strained Si Layer Structure
• Strained-Si PMOS layer
structure
• Type-II Band Alignment
– before charge sharing
– after charge sharing at
Zero bias
– Biased to inversion
Si1-xGex
Relaxed
Strained-Si
SiO2
(a)
EC
EV
(b)
EC
EV(d)
EC
EV
(c)
Poly-Si
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 40
The Device Capacitance Model
EC
EV
EC
EV
Si1-xGex
Relaxed
SiO2
(a)
Poly-Si
Strained-Si
C1
C2
C3
STI
Channel
Strained-Si
Si1-xGex
C4Source /
Drain
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 41
Design Optimization
• NMOS → Min. size : WN = 3λ
• PMOS → WP varied from 3λ to 9λ
• Calculate
–Propagation delay
–Shift from symmetry |(VDD/2 – Logic threshold)|
• Repeat for different strains (%Ge in VS)
• Converge (for same WP)
–Min. propagation delay &
–Min. shift from symmetry
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 42
Parameter Values
(250 nm technology)
Parameter Value
Dielectric Constant (Si1 x‑
Gex
) 11.9 + 4x
Grading Coefficient (m)
Bottom → 0.48
Side Wall → 0.32
µ Cox
(Bulk)
Electron → 150 X 10-6
AV-2
Hole → 30 X 10-6
AV-2
VDD
2.5 V
|VT
|
n-MOS → 0.43 V
p-MOS → 0.40 V
Channel Length Modulation
Parameter
n-MOS → 0.06 V-1
p-MOS → 0.10 V-1
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 44
30% Ge
13.0
13.5
14.0
14.5
15.0
15.5
3 5 7 9
P-transistor width (lamda)
Propagationdelay
(nS)
0
50
100
150
200
250
300
350
400
Shiftfromsymmetry
(mV)
30% Ge composition
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 45
35% Ge
12.0
12.2
12.4
12.6
12.8
13.0
13.2
13.4
13.6
13.8
14.0
3 5 7 9
P-transistor width (lamda)
Propagationdelay
(nS)
0
50
100
150
200
250
300
350
Shiftfromsymmetry
(mV)
35% Ge composition
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 46
40% Ge
10.8
11.0
11.2
11.4
11.6
11.8
12.0
12.2
12.4
3 5 7 9
P-transistor width (lamda)
Propagationdelay
(nS)
0
50
100
150
200
250
300
Shiftfromsymmetry
(mV)
40% Ge composition
Min. shift from symmetry
Min. Propagation delay
Summary
40% Ge in VS is most optimum
Conclusion
4
5
6
7
8
0.25 0.35 0.45
Ge composition (x)
P-TransistorWidth
(lambda)
S. Sen, S. Chattopadhyay, B. Mukhopadhyay; CODEC-2012
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 48

More Related Content

What's hot

Fundamentals of CMOS VLSI Design and Mos Transistors
Fundamentals of CMOS VLSI Design and Mos TransistorsFundamentals of CMOS VLSI Design and Mos Transistors
Fundamentals of CMOS VLSI Design and Mos Transistors
srknec
 
Lecture11 combinational logic dynamics
Lecture11 combinational logic dynamicsLecture11 combinational logic dynamics
Lecture11 combinational logic dynamics
vidhya DS
 
Cmos logic
Cmos logicCmos logic
Introduction to vlsi design
Introduction to vlsi designIntroduction to vlsi design
Introduction to vlsi design
Jamia Hamdard
 
Dynamic&p t-logic
Dynamic&p t-logicDynamic&p t-logic
Dynamic&p t-logic
Sowmya Sathyabama
 
Mos transistor
Mos transistorMos transistor
Mos transistor
Murali Rai
 
Cmos
CmosCmos
Cmos
sriharia6
 
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)
MielWitwicky
 
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarDelay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarAkhil Masurkar
 
Lec17 mosfet iv
Lec17 mosfet ivLec17 mosfet iv
Lec17 mosfet iv
germinal nana
 
Combinational Logic
Combinational LogicCombinational Logic
Combinational Logic
Sirat Mahmood
 
Rc delay modelling in vlsi
Rc delay modelling in vlsiRc delay modelling in vlsi
Rc delay modelling in vlsi
Dr. Vishal Sharma
 
Ee560 mos theory_p101
Ee560 mos theory_p101Ee560 mos theory_p101
Ee560 mos theory_p101bheemsain
 
Very Large Scale Integration -VLSI
Very Large Scale Integration -VLSIVery Large Scale Integration -VLSI
Very Large Scale Integration -VLSIPRABHAHARAN429
 
Cmos design
Cmos designCmos design
Cmos designMahi
 
Dynamic logic circuits
Dynamic logic circuitsDynamic logic circuits
Dynamic logic circuits
Kalyan Kumar Kalita
 
Unit no. 5 cmos logic design
Unit no. 5 cmos logic designUnit no. 5 cmos logic design
Unit no. 5 cmos logic design
swagatkarve
 
Vlsi
VlsiVlsi

What's hot (20)

Fundamentals of CMOS VLSI Design and Mos Transistors
Fundamentals of CMOS VLSI Design and Mos TransistorsFundamentals of CMOS VLSI Design and Mos Transistors
Fundamentals of CMOS VLSI Design and Mos Transistors
 
Lecture11 combinational logic dynamics
Lecture11 combinational logic dynamicsLecture11 combinational logic dynamics
Lecture11 combinational logic dynamics
 
Cmos logic
Cmos logicCmos logic
Cmos logic
 
Lecture20
Lecture20Lecture20
Lecture20
 
Introduction to vlsi design
Introduction to vlsi designIntroduction to vlsi design
Introduction to vlsi design
 
Dynamic&p t-logic
Dynamic&p t-logicDynamic&p t-logic
Dynamic&p t-logic
 
Mos transistor
Mos transistorMos transistor
Mos transistor
 
Cmos
CmosCmos
Cmos
 
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)
 
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarDelay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
 
Lec17 mosfet iv
Lec17 mosfet ivLec17 mosfet iv
Lec17 mosfet iv
 
Combinational Logic
Combinational LogicCombinational Logic
Combinational Logic
 
Rc delay modelling in vlsi
Rc delay modelling in vlsiRc delay modelling in vlsi
Rc delay modelling in vlsi
 
Cmos VLSI Design By umakant bhaskar gohatre
Cmos VLSI Design By umakant bhaskar gohatreCmos VLSI Design By umakant bhaskar gohatre
Cmos VLSI Design By umakant bhaskar gohatre
 
Ee560 mos theory_p101
Ee560 mos theory_p101Ee560 mos theory_p101
Ee560 mos theory_p101
 
Very Large Scale Integration -VLSI
Very Large Scale Integration -VLSIVery Large Scale Integration -VLSI
Very Large Scale Integration -VLSI
 
Cmos design
Cmos designCmos design
Cmos design
 
Dynamic logic circuits
Dynamic logic circuitsDynamic logic circuits
Dynamic logic circuits
 
Unit no. 5 cmos logic design
Unit no. 5 cmos logic designUnit no. 5 cmos logic design
Unit no. 5 cmos logic design
 
Vlsi
VlsiVlsi
Vlsi
 

Viewers also liked

Stick Diagram
Stick Diagram Stick Diagram
Stick Diagram rohitladdu
 
Guardian mark vi
Guardian mark viGuardian mark vi
Guardian mark vi
Ana Fauziatul Khasanah
 
Oscar Alvarez. Presentation
Oscar Alvarez. PresentationOscar Alvarez. Presentation
Oscar Alvarez. PresentationOscar Alvarez
 
Mark VI ST Control Product Overview GEH 6127
Mark VI ST Control Product Overview GEH 6127Mark VI ST Control Product Overview GEH 6127
Mark VI ST Control Product Overview GEH 6127Mircea Tomescu
 
Memristor
MemristorMemristor
Memristor
sanjay soni
 
CMOS Topic 7 -_design_methodology
CMOS Topic 7 -_design_methodologyCMOS Topic 7 -_design_methodology
CMOS Topic 7 -_design_methodology
Ikhwan_Fakrudin
 
Gas Turbine Theory - Principle of Operation and Construction
Gas Turbine Theory  - Principle of Operation and ConstructionGas Turbine Theory  - Principle of Operation and Construction
Gas Turbine Theory - Principle of Operation and Construction
Sahyog Shishodia
 
Gas turbines working ppt
Gas turbines working pptGas turbines working ppt
Gas turbines working ppt
luckyvarsha
 
Gas Turbine PPT
Gas Turbine PPTGas Turbine PPT
Gas Turbine PPT
A M
 

Viewers also liked (12)

Stick Diagram
Stick Diagram Stick Diagram
Stick Diagram
 
Guardian mark vi
Guardian mark viGuardian mark vi
Guardian mark vi
 
Ismail Ramadan
Ismail RamadanIsmail Ramadan
Ismail Ramadan
 
Oscar Alvarez. Presentation
Oscar Alvarez. PresentationOscar Alvarez. Presentation
Oscar Alvarez. Presentation
 
Mark VI ST Control Product Overview GEH 6127
Mark VI ST Control Product Overview GEH 6127Mark VI ST Control Product Overview GEH 6127
Mark VI ST Control Product Overview GEH 6127
 
Memristor
MemristorMemristor
Memristor
 
CMOS Topic 7 -_design_methodology
CMOS Topic 7 -_design_methodologyCMOS Topic 7 -_design_methodology
CMOS Topic 7 -_design_methodology
 
Vlsi design
Vlsi designVlsi design
Vlsi design
 
Gas Turbine Theory - Principle of Operation and Construction
Gas Turbine Theory  - Principle of Operation and ConstructionGas Turbine Theory  - Principle of Operation and Construction
Gas Turbine Theory - Principle of Operation and Construction
 
Gas turbines working ppt
Gas turbines working pptGas turbines working ppt
Gas turbines working ppt
 
Gas Turbine PPT
Gas Turbine PPTGas Turbine PPT
Gas Turbine PPT
 
Gas turbine course
Gas turbine courseGas turbine course
Gas turbine course
 

Similar to Trends in cmos digital design

EV Powertrain Simulations in Saber
EV Powertrain Simulations in SaberEV Powertrain Simulations in Saber
EV Powertrain Simulations in Saber
Alan Courtay
 
Logic gates using quantum dots
Logic gates using quantum dotsLogic gates using quantum dots
Logic gates using quantum dots
Rohit Kumar Mandal
 
mos transistor
mos transistormos transistor
mos transistor
harshalprajapati78
 
VLSI- Unit II
VLSI- Unit IIVLSI- Unit II
VLSI- Unit II
MADHUMITHA154
 
Lect2 up080 (100324)
Lect2 up080 (100324)Lect2 up080 (100324)
Lect2 up080 (100324)aicdesign
 
EMT529-VLSI-Design-wk1.pdf
EMT529-VLSI-Design-wk1.pdfEMT529-VLSI-Design-wk1.pdf
EMT529-VLSI-Design-wk1.pdf
Fazrul Faiz Zakaria
 
vlsippt.pdf
vlsippt.pdfvlsippt.pdf
vlsippt.pdf
sudhakiranponnuru
 
lec23Concl.ppt
lec23Concl.pptlec23Concl.ppt
lec23Concl.ppt
BhuvanaEshwari1
 
Gate level design, switch logic, pass transistors
Gate level design, switch logic, pass transistorsGate level design, switch logic, pass transistors
Gate level design, switch logic, pass transistors
SIVA NAGI REDY KALLI
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)aicdesign
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)aicdesign
 
Switched capacitor
Switched capacitorSwitched capacitor
Switched capacitor
Gur Kan
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinationalDefri Tan
 
lpd_1_intro.ppt
lpd_1_intro.pptlpd_1_intro.ppt
lpd_1_intro.ppt
VishuRao6
 
Rec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistorRec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistor
Dr Naim R Kidwai
 
Cuk dc dc+converter
Cuk dc dc+converterCuk dc dc+converter
Cuk dc dc+converter
Air University
 
Nowka low-power-07
Nowka low-power-07Nowka low-power-07
Nowka low-power-07
Vijay Prime
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)aicdesign
 

Similar to Trends in cmos digital design (20)

EV Powertrain Simulations in Saber
EV Powertrain Simulations in SaberEV Powertrain Simulations in Saber
EV Powertrain Simulations in Saber
 
Logic gates using quantum dots
Logic gates using quantum dotsLogic gates using quantum dots
Logic gates using quantum dots
 
mos transistor
mos transistormos transistor
mos transistor
 
VLSI- Unit II
VLSI- Unit IIVLSI- Unit II
VLSI- Unit II
 
Lect2 up080 (100324)
Lect2 up080 (100324)Lect2 up080 (100324)
Lect2 up080 (100324)
 
EMT529-VLSI-Design-wk1.pdf
EMT529-VLSI-Design-wk1.pdfEMT529-VLSI-Design-wk1.pdf
EMT529-VLSI-Design-wk1.pdf
 
vlsippt.pdf
vlsippt.pdfvlsippt.pdf
vlsippt.pdf
 
Flyback Converters v4
Flyback Converters v4Flyback Converters v4
Flyback Converters v4
 
lec23Concl.ppt
lec23Concl.pptlec23Concl.ppt
lec23Concl.ppt
 
Gate level design, switch logic, pass transistors
Gate level design, switch logic, pass transistorsGate level design, switch logic, pass transistors
Gate level design, switch logic, pass transistors
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)
 
Switched capacitor
Switched capacitorSwitched capacitor
Switched capacitor
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinational
 
lpd_1_intro.ppt
lpd_1_intro.pptlpd_1_intro.ppt
lpd_1_intro.ppt
 
Rec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistorRec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistor
 
Cuk dc dc+converter
Cuk dc dc+converterCuk dc dc+converter
Cuk dc dc+converter
 
Nowka low-power-07
Nowka low-power-07Nowka low-power-07
Nowka low-power-07
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)
 
VLSI PPT _0.pdf
VLSI PPT _0.pdfVLSI PPT _0.pdf
VLSI PPT _0.pdf
 

Recently uploaded

Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
SyedAbiiAzazi1
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
heavyhaig
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
symbo111
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Basic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparelBasic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparel
top1002
 
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
ssuser7dcef0
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
gestioneergodomus
 
Unbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptxUnbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptx
ChristineTorrepenida1
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
anoopmanoharan2
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
The Role of Electrical and Electronics Engineers in IOT Technology.pdf
The Role of Electrical and Electronics Engineers in IOT Technology.pdfThe Role of Electrical and Electronics Engineers in IOT Technology.pdf
The Role of Electrical and Electronics Engineers in IOT Technology.pdf
Nettur Technical Training Foundation
 

Recently uploaded (20)

Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Basic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparelBasic Industrial Engineering terms for apparel
Basic Industrial Engineering terms for apparel
 
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
 
Unbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptxUnbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptx
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
PPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testingPPT on GRP pipes manufacturing and testing
PPT on GRP pipes manufacturing and testing
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
The Role of Electrical and Electronics Engineers in IOT Technology.pdf
The Role of Electrical and Electronics Engineers in IOT Technology.pdfThe Role of Electrical and Electronics Engineers in IOT Technology.pdf
The Role of Electrical and Electronics Engineers in IOT Technology.pdf
 

Trends in cmos digital design

  • 1. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 1 CMOS Digital Circuit Design How to Make Both Ends Meet? Susanta Sen Institute of Radio Physics and Electronics University of Calcutta
  • 2. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 2 Review of MOS Transistor
  • 3. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 3 The MOS Transistor
  • 4. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 4 MOS Transistor Zero Bias
  • 5. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 5 MOS Transistor (contd.) VDS ID Channel Pinches off → Current Saturates VG Saturation Current increases with VG Vt Threshold Voltage Vt → Device Turns ON MOS can be used as SWITCH
  • 6. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 6 MOS as SWITCH Designing Logic Circuits Logic ‘0’ = 0V : Logic ‘1’ = VDD n-MOS : VG ≤ Vt → OFF : VG = VDD → ON p-MOS: Negative VGS required Connect Source to VDD Gate Voltage → Negative w.r.t. Channel VG ≥ VDD– |Vt| → OFF : VG = 0 → ON S VDD VG0 to VDD D G
  • 7. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 7 n-MOS SWITCH Transferring Logic ‘1’ (VDD): VDD Vin = VDD Vt VDD Vo t Transistor OFF Source Impedance High Weak ‘1’ Transistor ON Source Impedance Low Strong ‘0’VDD Vin = 0 V Vo t VDD Transferring Logic ‘0’ (0 V):
  • 8. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 8 p – MOS Switch Transferring Logic ‘1’ (VDD): VDD Vo t 0V VDD Strong ‘1’ Transferring Logic ‘0’ (0 V): 0V 0 V t Vo VDD Vt Weak ‘0’
  • 9. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 9 CMOS Logic • Use n-MOS to produce Logic ‘0’ → Pull DOWN • Use p-MOS to produce Logic ‘1’ → Pull UP The CMOS Inverter Equivalent Circuit Logic ‘1’ Output Logic ‘0’ Output
  • 10. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 10 Switching Theory Revisited MOS Circuit Design Digital Logic
  • 11. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 11 Review of Switching Theory C A B F = C iff (A and B) Switches in Series A B C F = C iff (A or B) Switches in Parallel
  • 12. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 12 Using n-MOS Switch Constraint : C = ‘0’ A B Series Connection C = ‘0’ F = ‘0’ when (A . B) is TRUE ⇒ A nand B A B C = ‘0’ F = ‘0’ when (A or B) is TRUE ⇒ A nor B Parallel Connection
  • 13. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 13 Using p-MOS Switch Constraint : C = ‘1’ A B C = ‘1’ F = ‘1’ when ( A . B) is TRUE ⇒ A + B Series Connection C = ‘1’ A B F = ‘1’ when ( A + B) is TRUE ⇒ A . B Parallel Connection
  • 14. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 14 CMOS Logic Design • Pull UP Network – Build using p-MOS – Turns ON when Function is TRUE • Pull DOWN Network – Build using n-MOS – Turns ON when Function is FALSE • Operationally Complement • Topologically Dual
  • 15. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 15 CMOS Logic (contd.) A A B BA A B B F F NAND GateNOR Gate
  • 16. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 16 CMOS Design Example Consider the Function f = A . (B + C) Design the Pull Down Network first A B C PullUp F B A C f = [A . (B + C)] is true The Pull Down Network connects ‘f ’ to ground when Connect Ground
  • 17. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 17 Assignments 1. F = A.B + C 2. F = (A + B).(C + D) 3. F = A + B.C 4. F = A + B.C 5. F = A.C + B.C 6. F = A ⊕ B
  • 19. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 19 V DD VO Vi (=VG) MOS Amplifier VDS ID V DD VG Vi VO Load Line RL ID VO = VDD – ID.RL VDD
  • 20. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 20 Non Linear Load VDSVDD ID VDD VO Vi LOAD LINEVO= VDD – Vdiode VO Vi VDD
  • 21. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 21 Non Linear Load (contd.) Vi VO VB VDD VDD VDS ID VDD VO Vi
  • 22. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 22 The CMOS InverterAmplifier or Inverter ? Vi VO VO Vi Gate Bias of PMOS changes with Input Voltage VDD VDD VDS ID VDD
  • 23. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 24 A Closer Look In presence of Noise VOn = f (Vi + vn) = f (Vi) + vn(∂VO/∂Vi) + vn 2 (∂2 VO/∂Vi 2 )+…VO Vi noisy_output = noiseless_output + noise x gain + higher order terms VO= f (Vi) → Gain = ∂VO/∂Vi ViHViL VOL VOH Digital → Noise immunity Analog → High Gain
  • 24. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 25 Noise Margins VO Vi ViHViL VOL VOH Digital → Noise immunity NML = VIL – VOL NMH = VOH – VIH VOH ViH 1 { VOL ViL 0 { Undefined Region
  • 25. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 26 Vi VO VO Vi VDD VDD VDS ID VDD Tuning the Characteristics • Make the n-MOS wider • It conducts more current ID = ½ µCox[VGS – Vt]2 (W/L) •Best Noise Margin •When Vi = Voat VDD/2 •Wp = 3.Wn
  • 26. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 27 When the Signal Changes! The CMOS Inverter Logic ‘1’ Output VDD Vo t Logic ‘0’ Output Vo t VDD Energy dissipated in Pull Up Network Energy dissipated in Pull Down Network
  • 27. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 30 A Second Look at Changing Signals! The CMOS Inverter Logic ‘1’ Output VDD Vo t Logic ‘0’ Output Vo t VDD Takes Time to change → Propagation Delay
  • 28. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 31 Attention to Speed • p-MOS slower than n-MOS – Hole mobility < Electron mobility – Pull-UP → Higher Resistance – Rise time longer • Make p-MOS wider – Resistance α W/L Ratio – Wp = n. Wn → n = √µn /µp ≅ 2 • Widen transistors connected in Series – Increases Input Capacitance • Avoid Series connection of p-MOS – Prefer NAND over NOR
  • 29. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 32 ∀µn / µp → 2.7 • p-MOS wider than n-MOS – Wp/Wn = 3 → symmetric characteristics • Best Noise Margin • Increased Capacitive Load – Reduced speed • Wp/Wn = 2 → Best speed • Design is a trade-off – Speed & Robustness CMOS Logic Design
  • 30. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 33 LH SO E k HH LH SO 2 fold degenerate valence band E kHH • Light hole (LH) band moves upward → higher probability of occupancy • Low effective mass → higher mobility • Tunable mobility Promise of Strained Si
  • 31. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 34 aSi=5.43A aGe= 5.64 Å Si Substrate Ge epitaxial layer Tensile strain %2.4 0 0 = − = a aa ε Si – Ge hetero-structures aSi= 5.43 Å Compressive strain
  • 32. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 35 • Si1-xGex has a bulk relaxed lattice constant smaller than Ge. • Strain decreases Strain Engineering: Si1-xGex alloy SiGe epitaxial layer Si Substrate Tensile strain Compressive strain
  • 33. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 36 Virtual substrate for strained-Si • Strained layers grow up to a critical thickness • Beyond Critical thickness → misfit dislocations appear • As more layers grow → strain relaxes and defects reduce Strain relaxed Si-Ge Virtual Substrate Tensile Strained Si epitaxial layer
  • 34. HRTEM image of Strained Si on Virtual Substrate Strained-Si SiGe (X % Ge) buffer cap, 0.9 µm X % Ge 0.0%Ge Step graded SiGe buffer, 2.1 µm Si buffer, 0.5 µm n-Si (100) substrate HRTEM
  • 35. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 38 Ref: S. Takagi et al., ISSCC (2003) p. 376 Mobility enhancement with strain
  • 36. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 39 Strained Si Layer Structure • Strained-Si PMOS layer structure • Type-II Band Alignment – before charge sharing – after charge sharing at Zero bias – Biased to inversion Si1-xGex Relaxed Strained-Si SiO2 (a) EC EV (b) EC EV(d) EC EV (c) Poly-Si
  • 37. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 40 The Device Capacitance Model EC EV EC EV Si1-xGex Relaxed SiO2 (a) Poly-Si Strained-Si C1 C2 C3 STI Channel Strained-Si Si1-xGex C4Source / Drain
  • 38. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 41 Design Optimization • NMOS → Min. size : WN = 3λ • PMOS → WP varied from 3λ to 9λ • Calculate –Propagation delay –Shift from symmetry |(VDD/2 – Logic threshold)| • Repeat for different strains (%Ge in VS) • Converge (for same WP) –Min. propagation delay & –Min. shift from symmetry
  • 39. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 42 Parameter Values (250 nm technology) Parameter Value Dielectric Constant (Si1 x‑ Gex ) 11.9 + 4x Grading Coefficient (m) Bottom → 0.48 Side Wall → 0.32 µ Cox (Bulk) Electron → 150 X 10-6 AV-2 Hole → 30 X 10-6 AV-2 VDD 2.5 V |VT | n-MOS → 0.43 V p-MOS → 0.40 V Channel Length Modulation Parameter n-MOS → 0.06 V-1 p-MOS → 0.10 V-1
  • 40. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 44 30% Ge 13.0 13.5 14.0 14.5 15.0 15.5 3 5 7 9 P-transistor width (lamda) Propagationdelay (nS) 0 50 100 150 200 250 300 350 400 Shiftfromsymmetry (mV) 30% Ge composition
  • 41. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 45 35% Ge 12.0 12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0 3 5 7 9 P-transistor width (lamda) Propagationdelay (nS) 0 50 100 150 200 250 300 350 Shiftfromsymmetry (mV) 35% Ge composition
  • 42. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 46 40% Ge 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 3 5 7 9 P-transistor width (lamda) Propagationdelay (nS) 0 50 100 150 200 250 300 Shiftfromsymmetry (mV) 40% Ge composition
  • 43. Min. shift from symmetry Min. Propagation delay Summary 40% Ge in VS is most optimum Conclusion 4 5 6 7 8 0.25 0.35 0.45 Ge composition (x) P-TransistorWidth (lambda) S. Sen, S. Chattopadhyay, B. Mukhopadhyay; CODEC-2012
  • 44. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 48