SlideShare a Scribd company logo
SPICEを活用した電源回路シミュレーションセミナー
1. 回路方式(トポロジー)検討時のSPICE活用方法
1.1 降圧回路
1.2 昇圧回路
1.3 昇降圧回路
1.4 PFC回路
1.5 アベレージモデルの活用(降圧回路)
2. 詳細設計時のSPICE活用方法
2.1 DCDCコンバータによる昇圧回路
2.2 擬似共振電源回路(Quasi-resonant Switching Power Supply)
3. 質疑応答
2015年2月18日(水曜日)
1Copyright(C) MARUTSU ELEC 2015
2Copyright(C) MARUTSU ELEC 2015
2014年9月25日(木曜日)
3Copyright(C) MARUTSU ELEC 2015
Copyright(C) MARUTSU ELEC 2015 4
半導体メーカー及び電子部品メーカー(サプライヤ企業)
電子機器メーカー
自動車メーカー
社会インフラメーカー
(1)お客様への自社製品のSPICEモデルの提供
(2)自社製品のアプリケーション回路開発
(1)研究開発及び設計
(2)故障解析
キーワード:電源回路、インバータ回路、モーター駆動回路、LED照明回路及び電池回路
(1)研究開発及び設計
キーワード:ACモーター駆動回路、インバータ回路、LED照明回路HEV、EV、
二次電池、燃料電池及び回生回路
(1)全体システム回路設計
(2)故障解析
キーワード:太陽電池システム、スマートグリッドシステム、二次電池
対象の市場
5Copyright(C) MARUTSU ELEC 2015
【環境発電(エナジーハーベスト)分野】
発電デバイス+ハーベストIC+アプリケーション回路
【生体信号分野】
⇒人体のSPICEモデル+電子回路シミュレーション
(1)心臓
(2)脳+神経
(3)血液
【教育分野】
(1)実務向けオンサイトセミナー
⇒企業向け教育プログラムの提供及び実施
(2)教育用プログラム
⇒LTspiceで回路学習+キットで実機学習
光起電力(太陽電池)
振動発電(ピエゾ素子)
温度差発電(ペルチェ素子)
+ ハーベストIC + アプリケーション回路
対象の市場
6Copyright(C) MARUTSU ELEC 2015
回路解析シミュレータの用途は、多様化しています。
(1)研究開発
①次世代半導体のデバイスモデリング及びアプリケーション開発
②システム開発及び回路開発の回路動作現象
(2)回路設計
①アプリケーション開発
②トポロジーの開発及び選定
③回路設計及び回路動作検証
④損失計算
⑤ノイズ検証
⑥熱解析
(3)クレーム解析
①故障解析
②オープン・ショート
③想定外使用
④サージ解析
回路解析シミュレータの用途の多様化
7Copyright(C) MARUTSU ELEC 2015
回路シミュレーションのポイント
【ポイント1】
回路解析シミュレーションの解析精度=スパイスモデルの解析精度である。
■有償SPICEでも無償SPICEでも採用するSPICEモデルで解析精度が決定される。
■1個でも変な動作をするスパイスモデルがあるとNG
【ポイント2】
シミュレーションの用途に応じたSPICEモデルを採用する。
■波形動作確認であれば、簡易SPICEモデルでも問題ない。
■損失計算を行う場合、過渡現象において再現性のあるSPICEモデルを採用する。
■温度シミュレーションをしたい場合には、温度対応SPICEモデルを採用する。
■ノイズシミュレーションをしたい場合には、ノイズ対応SPICEモデルを採用する。
【ポイント3】
回路シミュレーションをする回路は正確に入力する。
■回路シミュレーションをする場合、回路知識が必要です。
■回路解析結果の正誤を判断する必要があります。
8Copyright(C) MARUTSU ELEC 2015
回路設計のワークフロー
仕様
回路方式選択
(トポロジーの選定)
詳細回路設計
回路図作成
材料表作成
基板設計
回路設計
ビー・テクノロジー製品及びサービス
コンセプトキット製品
デザインキット製品
シンプルモデル
デバイスモデリング教材
スパイス・パーク
デバイスモデリング
サービス
カスタムデザインキット
サービス
ビー・テクノロジー製品及びサービス
9Copyright(C) MARUTSU ELEC 2015
シミュレーション上の課題について
第一
の壁
第二
の壁
第三
の壁
第一の壁:SPICEの習得
第二の壁:SPICEモデルの入手
第三の壁:シミュレーション技術
10Copyright(C) MARUTSU ELEC 2015
シミュレーション解析時間
10%90%
実際のシミュレーション
解析時間
実際の解析時間は10%程度です。90%の時間をSPICEモデルの入手
に費やしています。
SPICEモデルの入手に費やしています。
●サプライヤ企業から入手する
●スパイス・パークからダウンロードする
●デバイスモデリングサービスを活用する
●自分でSPICEモデルを作成する
シミュレーション上の課題について
11Copyright(C) MARUTSU ELEC 2015
ダイオードのSPCIEモデルを作成する場合の事例
(ダイオードのSPICEモデルは3種類ある)
デバイスモデリング
の難易度
高い
低い
電流減少率モデル
⇒等価回路で-didtを再現している
IFIR法モデル
⇒等価回路でTrr(trj +trb)を再現している
パラメータモデル
⇒パラメータだけで作成できる簡易型モデル
シミュレーション上の課題について
12Copyright(C) MARUTSU ELEC 2015
①再現性問題
実機波形とシミュレーション波形が合わない
【解決方法】
○目的に合ったSPICEモデルを採用する
○目に見えない寄生素子も考慮し、回路図に反映させる
【ご提供するサービス】
○SPICEモデルをご提供する「デバイスモデリングサービス」
○シミュレーションデータをご提供する「デザインキットサービス」
②解析時間問題
早くシミュレーション結果を知りたいのにシミュレーションに多くの時間を有する
【解決方法】
○目的に合ったSPICEモデルを採用する
○タイムスケール機能を採用する
【ご提供するサービス】
○SPICEモデルをご提供する「デバイスモデリングサービス」
○シミュレーションデータをご提供する「デザインキットサービス」
③収束エラー問題
最後までシミュレーションが実行出来ず、途中で計算が止まってしまう。
【解決方法】
○SPICEの.OPTIONSのパラメータを最適化する。
○スナバ回路等を挿入して急変する過渡応答性、過渡現象を緩和する。
○回路動作に影響しないように微小抵抗を適宜挿入する。
【ご提供するサービス】
○収束エラー解決サービス
シミュレーション上の課題について
13Copyright(C) MARUTSU ELEC 2015
14
1.1 降圧回路のトポロジー
出展:TDK
Copyright(C) MARUTSU ELEC 2015
15
降圧回路
降圧回路のタイミングチャート
1.1 降圧回路のトポロジー
①VCTRL
①
②
②IL
③
③VL
④
⑤
⑥IF
⑤VDS
⑥
④ID
⑦
⑦VKA
Copyright(C) MARUTSU ELEC 2015
16
1.1 降圧回路シミュレーション
降圧回路シミュレーションの回路図
http://youtu.be/NOS2cJSH2is
Copyright(C) MARUTSU ELEC 2015
17
降圧回路シミュレーション結果
1.1 降圧回路シミュレーション
起動状態の観察
シミュレーション結果の観察のポイントは、3つあります。
突入状態の観察
定常状態の観察
Copyright(C) MARUTSU ELEC 2015
18
降圧回路シミュレーション結果(M1)
1.1 降圧回路シミュレーション
Copyright(C) MARUTSU ELEC 2015
19
降圧回路シミュレーション結果(D1)
1.1 降圧回路シミュレーション
Copyright(C) MARUTSU ELEC 2015
20
降圧回路シミュレーション結果(M1)
1.1 降圧回路シミュレーション
Copyright(C) MARUTSU ELEC 2015
21
降圧回路シミュレーション結果(D1)
1.1 降圧回路シミュレーション
Copyright(C) MARUTSU ELEC 2015
22
1.2 昇圧回路のトポロジー
出展:TDK
Copyright(C) MARUTSU ELEC 2015
23
昇圧回路
昇圧回路のタイミングチャート
1.2 昇圧回路のトポロジー
①VCTRL
①
②
②IL
③
③VL
④
⑤
⑥IF
⑤VDS
⑥
④ID
⑦VKA
⑦
Copyright(C) MARUTSU ELEC 2015
24
1.2 昇圧回路シミュレーション
昇圧回路シミュレーションの回路図
http://youtu.be/KZdb6drG408
Copyright(C) MARUTSU ELEC 2015
25
昇圧回路シミュレーション結果
1.2 昇圧回路シミュレーション
Copyright(C) MARUTSU ELEC 2015
26
1.2 昇圧回路シミュレーション
昇圧回路シミュレーション結果(M1)
Copyright(C) MARUTSU ELEC 2015
27
1.2 昇圧回路シミュレーション
昇圧回路シミュレーション結果(D1)
Copyright(C) MARUTSU ELEC 2015
28
1.2 昇圧回路シミュレーション
昇圧回路シミュレーション結果(M1)
Copyright(C) MARUTSU ELEC 2015
29
1.2 昇圧回路シミュレーション
昇圧回路シミュレーション結果(D1)
Copyright(C) MARUTSU ELEC 2015
30
1.3 昇降圧回路シミュレーション
Copyright(C) MARUTSU ELEC 2015
31
1.3 昇降圧回路シミュレーション
Copyright(C) MARUTSU ELEC 2015
32
1.3 昇降圧回路シミュレーション
Copyright(C) MARUTSU ELEC 2015
33
1.3 昇降圧回路シミュレーション
Copyright(C) MARUTSU ELEC 2015
34
1.3 昇降圧回路シミュレーション
Copyright(C) MARUTSU ELEC 2015
35
1.3 昇降圧回路シミュレーション
Copyright(C) MARUTSU ELEC 2015
V1
FREQ = 50
VAMPL = 90
VOFF = 0
AC =
D1
D25XB80
D2
D25XB80
D3
D25XB80
D4
D25XB80
L1
0.58mH
L2
0.58mH
U1
SF10LC40
U2
2SK4207
U3
2SK4207
VPULSE1
TD = 5u
TF = 1n
PW = 3u
PER = 10u
V1 = 0
TR = 1n
V2 = 12
VPULSE2
TD = 0
TF = 1n
PW = 3u
PER = 10u
V1 = 0
TR = 1n
V2 = 12
R1
15
R2
15
C1
10000u
RL
18
0
V
V
V
PFC(Interleaved CCM) IC
MOSFET1
MOSFET2
1.4 PFC回路シミュレーション
36Copyright(C) MARUTSU ELEC 2015
MOSFET2
MOSFET1
OUTPUT
Inductor Current
1.4 PFC回路シミュレーション
37Copyright(C) MARUTSU ELEC 2015
MOSFET2
MOSFET1
OUTPUT
Inductor Current
1.4 PFC回路シミュレーション
38Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
Concept Kit:
PWM Buck Converter Average Model
Power Switches Filter & LoadPWM Controller
(VoltageMode Control)
VREF
+
-
VOUT
REF
PWM
1/Vp
-
+
U?
PWM_CTRL
VP = 2.5
VREF = 1.23
D
U?
BUCK_SW
L
1 2
C
Rload
Vo
ESR
39Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
• Concept of Simulation
• Buck Converter Circuit
• Averaged Buck Switch Model
• Buck Regulator Design Workflow
1. Setting PWM Controller’s Parameters.
2. Programming Output Voltage: Rupper, Rlower
3. Inductor Selection: L
4. Capacitor Selection: C, ESR
5. Stabilizing the Converter (Example)
• Load Transient Response Simulation (Example)
Appendix
A. Type 2 Compensation Calculation using Excel
B. Feedback Loop Compensators
C. Simulation Index
40Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
Power Switches
Averaged Buck
Switch Model
Filter & Load
Parameter:
• L
• C
• ESR
• Rload
PWM Controller
(Voltage Mode Control)
Parameter:
• VP
• VREF
Models:
Block Diagram:
VREF
+
-
VOUT
D
U?
BUCK_SW
REF
PWM
1/Vp
-
+
U?
PWM_CTRL
VP = 2.5
VREF = 1.23
L
1 2
C
Rload
Vo
ESR
41Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
L
1 2
C
Rload
0
Comp
C2
R2 C1
FB
Type 2 Compensator
Rupper
Rlower
0
d
Vin
D
U2
BUCK_SW
REF
PWM
1/Vp
-
+
U3
PWM_CTRL
VP = 2.5
VREF = 1.23
Vo
ESR
Filter & Load
PWM Controller
Power Switches
42Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
• The Averaged Buck Switch Model represents relation between input and output of the
switch that is controlled by duty cycle – d (value between 0 and 1).
• Transfer function of the model is
vout = d  vin
• The current flow into the switch is
iin = d  iout
D
U2
BUCK_SW
vin
+
-
vout
+
-
D
iin iout
Averaged Buck Switch Model
43Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
Setting PWM Controller’s Parameters: VREF, VP1
Setting Output Voltage: Rupper, Rlower2
Inductor Selection: L3
Capacitor Selection: C, ESR4
Stabilizing the Converter: R2, C1, C2
• Step1: Open the loop with LoL=1kH and CoL=1kF then inject an AC signal to generate Bode plot. (always default)
• Step2: Set C1=1kF, C2=1fF, (always keep the default value) and R2= calculated value (Rupper//Rlower) as the initial values.
• Step3: Select a crossover frequency (about 10kHz or fc < fosc/4). Then complete the table.
• Step4: Read the Gain and Phase value at the crossover frequency (10kHz) from the Bode plot, Then put the values to
the table
• Step5: Select the phase margin at the fc ( > 45 ). Then change the K value until it gives the satisfied phase margin, for this
example K=6 is chosen for Phase margin = 46.
• Remark: If K-factor fail to gives the satisfied phase margin, Increase the output capacitor C then try Step1 to Step5
again.
Load Transient Response Simulation
5
6
デザインのワークフロー
44Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
1
2
3
4
5
L
1 2
C
Rload
0
Comp
C2
R2 C1
FB
Type 2 Compensator
Rupper
Rlower
0
d
Vin
D
U2
BUCK_SW
REF
PWM
1/Vp
-
+
U3
PWM_CTRL
VP = 2.5
VREF = 1.23
Vo
ESR
デザインのワークフロー
45Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
1 Setting PWM Controller’s Parameters
• VREF, feedback reference voltage, value is
given by the datasheet
• VP = (Error Amp. Gain  vFB ) / d
• vFB = vFBH – vFBL
• d = dMAX – dMIN
• Error Amp. Gain is 100 (approximated)
where
VP is the sawtooth peak voltage.
vFBH is maximum FB voltage where d = 0
vFBL is minimum FB voltage where d =1(100%)
dMAX is maximum duty cycle, e.g. d = 0(0%)
dMIN is minimum duty cycle, e.g. d =1(100%)
REF
PWM
1/Vp
-
+
U?
PWM_CTRL
VP = 2.5
VREF = 1.23
vcomp
d
Error Amp.
FB
The PWM block is used to transfer the error voltage
(between FB and REF) to be the duty cycle.
 If vFBH and vFBL are not provided, the default value, VP=2.5 could be used.
Time
V(PWM)
V(osc) V(comp)
0V
2.0V
3.0V
SEL>> VP
Duty cycle (d) is a value from 0 to 1
46Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
1 Setting PWM Controller’s Parameters (Example)
from
VP = (Error Amp. Gain  vFB )/d
•Error Amp. Gain = 100 (approximated)
•from the graph on the left, vFB = 25mV (15m
- (-10m))
•d = 1 – 0 = 1
VP ≈ ( 100  25mV )/1
≈ 2.5V
 If the VP ( sawtooth signal amplitude ) does not informed by the datasheet, It can
be approximated from the characteristics below.
LM2575: Feedback Voltage vs. Duty Cycle
vFB =
25mV
d = 1 (100%)
dMIN dMAX
vFBH
vFBL
 If vFBH and vFBL are not provided, the default value, VP=2.5 could be used.
47Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
2 Setting Output Voltage: Rupper, Rlower
• Use the following formula to select the resistor values.
• Rlower can be between 1k and 5k.
Example
Given: VOUT = 5V
VREF = 1.23
Rlower = 1k
then: Rupper = 3.065k
Comp
C2
R2 C1
Type 2 Compensator
FB
Rupper
Rlower
0
d
REF
PWM
1/Vp
-
+
U3
PWM_CTRL
VP = 2.5
VREF = 1.23
Error Amp.
Vo






lower
upper
REFOUT
R
R
VV 1
48Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
3
Inductor Value
• The output inductor value is selected to set the converter
to work in CCM (Continuous Current Mode) or DCM
(Discontinuous Current Mode).
• Calculated by
Where
• LCCM is the inductor that make the converter to work in
CCM.
• VI,max is input maximum voltage
• RL,min is load resistance at the minimum output current (
IOUT,min )
• fosc is switching frequency
L
1 2
C
Rload
Vo
ESR
 
max,
min,max,
2 Iosc
LOUTI
CCM
Vf
RVV
L



Inductor Selection: L
49Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
3 Inductor Selection: L (Example)
Inductor Value
from
Given:
• VI,max = 40V, VOUT = 5V
• IOUT,min = 0.2A
• RL,min = (VOUT / IOUT,min ) = 25
• fosc = 52kHz
Then:
• LCCM  210(uH),
• L = 330(uH) is selected
L
1 2
C
Rload
Vo
ESR
 
max,
min,max,
2 Iosc
LOUTI
CCM
Vf
RVV
L


50Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
4 Capacitor Selection: C, ESR
Capacitor Value
• The minimum allowable output capacitor value should be
determined by
Where
• VI, max is the maximum input voltage.
• L (H) is the inductance calculated from previous step ( ).
• In addition, the output ripple voltage due to the capacitor ESR must be considered as the
following equation.
L
1 2
C
Rload
Vo
ESR
 F
)H(
785,7
max,

LV
V
C
OUT
I


RIPPLEL
RIPPLEO
I
V
ESR
,
,

3
51Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
4 Capacitor Selection: C, ESR (Example)
Capacitor Value
From
and
Given:
• VI, max = 40 V
• VOUT = 5 V
• L (H) = 330
Then:
• C  188 (F)
In addition:
• ESR  100m
L
1 2
C
Rload
Vo
ESR
RIPPLEL
RIPPLEO
I
V
ESR
,
,

 F
)H(
785,7
max,

LV
V
C
OUT
I


52Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
5
• Loop gain for this configuration is
L
1 2
Rload
C
0
Comp
C2
R2 C1
Type 2 Compensator
FB
Rupper
3.066k
Rlower
1.0k
0
d
Vin
12Vdc
D
U2
BUCK_SW
REF
PWM
1/Vp
-
+
U3
PWM_CTRL
VP = 2.5
VREF = 1.23
Vo
ESR
• The purpose of the compensator G(s) is to tailor the converter loop gain (frequency
response) to make it stable when operated in closed-loop conditions.
PWMGsGsHsT  )()()(
GPWM
G(s)
H(s)
Stabilizing the Converter
53Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
5 Stabilizing the Converter (Example)
Specification:
VOUT = 5V
VIN = 7 ~ 40V
ILOAD = 0.2 ~ 1A
PWM Controller:
VREF = 1.23V
VP = 2.5V
fOSC = 52kHz
Rlower = 1k,
Rupper = 3.1k,
L = 330uH,
C = 330uF (ESR = 100m)
Task:
• to find out the element of the Type 2
compensator ( R2, C1, and C2 )
L
330uH
1 2
C
330uF
Rload
5
0
0
COL
1kF
LOL
1kH
C2
R2 C1
FB
Rupper
3.1k
Type 2 Compensator
Rlower
1.0k
0
d
V3
1Vac
0Vdc
Vin
12Vdc
D
U2
BUCK_SW
REF
PWM
1/Vp
-
+
U3
PWM_CTRL
VP = 2.5
VREF = 1.23
Vo
ESR
100m
G(s)
e.g. Given values
from National
Semiconductor Corp.
IC: LM2575
1
3
4
2
54Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
L
330uH
1 2
C
330uF
Rload
5
0
0
COL
1kF
LOL
1kH
R2
0.756k
FB
Rupper
3.1k
Type 2 Compensator
Rlower
1k
0
d
V3
1Vac
0Vdc
Vin
12Vdc
D
U2
BUCK_SW
REF
PWM
1/Vp
-
+
U3
PWM_CTRL
VP = 2.5
VREF = 1.23
Vo
ESR
100m
C2
1f
C1
1k
Step2 Set C1=1kF, C2=1fF,
and R2=calculated value
(Rupper//Rlower) as the
initial values.
Step1 Open the loop with
LoL=1kH and CoL=1kF then inject
an AC signal to generate Bode
plot.
The element of the Type 2 compensator ( R2, C1, and C2 ), that stabilize the converter, can be
extracted by using Type 2 Compensator Calculator (Excel sheet) and open-loop simulation with the
Average Switch Models (ac models).
 C1=1kF is AC shorted, and C2 1fF is AC opened (or Error-Amp
without compensator).
5 Stabilizing the Converter (Example)
55Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
5 Stabilizing the Converter (Example)
Type 2 Compensator Calculator
Switching frequency, fosc : 52.00 kHz
Cross-over frequency, fc
(<fosc/4) : 10.00 kHz
Rupper : 3.1 kOhm
Rlower : 1 kOhm
R2 (Rupper//Rlower) : 0.756 kOhm (automatically calculated)
PWM
Vref : 1.230 V
Vp (Approximate) : 2.5 V
Step3 Select a crossover frequency
(about 10kHz or fc < fosc/4 ), for
this example, 10kHz is selected.
Then complete the table.
Calculated value of
the Rupper//Rlower
values from 2
values from 1
56Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
5 Stabilizing the Converter (Example)
Parameter extracted from simulation
Set: R2=R1, C1=1k, C2=1f
Gain (PWM) at foc ( - or + ) : -44.211
Phase (PWM) at foc : 65.068
Frequency
100Hz 1.0KHz 10KHz 100KHz
P(v(d))
0d
90d
180d
SEL>>
(10.000K,65.068)
DB(v(d))
-80
-40
0
40
80
(10.000K,-44.211)
Step4 Read the Gain and Phase value
at the crossover frequency (10kHz)
from the Bode plot, Then put the values
to the table.
Tip: To bring cursor to the fc = 10kHz type “ sfxv(10k) ” in Search Command.
Cursor Search
Gain: T(s) = H(s)GPWM
Phase  at fc
57Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
5 Stabilizing the Converter (Example)
K-factor (Choose K and from the table)
K 6
 -199  (automatically calculated)
Phase margin : 46 (automatically calculated)
R2 : 122.780 kOhm (automatically calculated)
C1 : 0.778 nF (automatically calculated)
C2 : 21.600 pF (automatically calculated)
Step5 Select the phase margin at fc
(> 45 ). Then change the K value
(start from K=2) until it gives the
satisfied phase margin, for this
example K=6 is chosen for Phase
margin = 46.
As the result; R2,
C1, and C2 are
calculated.
 K Factor enable the circuit designer to choose a loop cross-over frequency and phase
margin, and then determine the necessary component values to achieve these results. A very
big K value (e.g. K > 100) acts like no compensator (C1 is shorted and C2 is opened).
Remark: If K-factor fail to gives the satisfied phase margin, Increase the output
capacitor C then try Step1 to Step5 again.
58Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
5 Stabilizing the Converter (Example)
R2
122.780k
Type 2 Compensator
C2
21.6p
C1
0.778n
L
330uH
1 2
C
330uF
Rload
5
0
0
COL
1kF
LOL
1kH
FB
Rupper
3.1k
Rlower
1k
0
d
V3
1Vac
0Vdc
Vin
12Vdc
D
U2
BUCK_SW
REF
PWM
1/Vp
-
+
U3
PWM_CTRL
VP = 2.5
VREF = 1.23
Vo
ESR
100m
The element of the Type 2 compensator ( R2, C1, and C2 ) extraction can be completed by Type 2 Compensator
Calculator (Excel sheet) with the converter average models (ac models) and open-loop simulation.
The calculated values of the
type 2 elements are,
R2=122.780k, C1=0.778nF,
and C2=21.6pF.
*Analysis directives:
.AC DEC 100 0.1 10MEG
59Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
5 Stabilizing the Converter (Example)
Frequency
100Hz 1.0KHz 10KHz 100KHz
P(v(d))
0d
90d
180d
(9.778K,45.930)
DB(v(d))
-40
0
40
80
-100
SEL>>
(9.778K,0.000)
• Phase margin = 45.930 at the cross-over frequency - fc = 9.778kHz.
Tip: To bring cursor to the cross-over point (gain = 0dB) type “ sfle(0) ” in Search Command.
Cursor Search
Gain: T(s) = H(s) G(s)GPWM
Phase  at fc
Gain and Phase responses after stabilizing
60Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
Load Transient Response Simulation (Example)
R2
122.780k
C2
21.6p
Type 2 Compensator
C1
0.778n
Load
Vo
I1
TD = 10m
TF = 25u
PW = 0.43m
PER = 1
I1 = 0
I2 = 0.8
TR = 20u
Rload
25
0
FB
Rupper
3.1k
Rlower
1k
0
d
Vin
20Vdc
D
U2
BUCK_SW
REF
PWM
1/Vp
-
+
U3
PWM_CTRL
VP = 2.5
VREF = 1.23
L
330uH
1 2
C
330uF
ESR
100m
The converter, that have been stabilized, are connected with step-load to perform load transient response
simulation.
5V/2.5 = 0.2A step
to 0.2+0.8=1.0A load
*Analysis directives:
.TRAN 0 20ms 0 1u
61Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
Load Transient Response Simulation (Example)
• Simulation • Measurement
Output Voltage Change
Load Current
• The simulation results are compared with the measurement data (National
Semiconductor Corp. IC LM2575 datasheet).
Time
9.9ms 10.1ms 10.3ms 10.5ms 10.7ms 10.9ms
1 V(vo) 2 I(load)
4.4V
4.5V
4.6V
4.7V
4.8V
4.9V
5.0V
5.1V
5.2V
1
0A
0.5A
1.0A
1.5A
2.0A
2.5A
3.0A
3.5A
4.0A
2
>>
62Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
A. Type 2 Compensation Calculation using Excel
Switching frequency, fosc : 52.00 kHz Given spec, datasheet
Cross-over frequency, fc
(<fosc/4) : 10.00 kHz Input the chosen value ( about 10kHz or < fosc/4 )
Rupper : 3.1 kOhm Given spec, datasheet, or calculated
Rlower : 1 kOhm Given spec, datasheet, or value: 1k-10k Ohm
R2 (Rupper//Rlower) : 0.756 kOhm (automatically calculated)
PWM
Vref : 1.230 V Given spec, datasheet
Vp (Approximate) : 2.5 V Given spec, or calculated, (or leave default 2.5V)
Parameter extracted from simulation
Set: R2=R2, C1=1k, C2=1f
Gain (PWM) at foc ( - or + )
: -44.211 dB Read from simulation result
Phase (PWM) at foc : 65.068  Read from simulation result
K-factor (Choos K and  from the table)
K 6 Input the chosen value (start from k=2)
 -199  (automatically calculated)
Phase margin : 46 (automatically calculated) Target value > 45
R2 : 122.780 kOhm (automatically calculated)
C1 : 0.778 nF (automatically calculated)
C2 : 21.60 pF (automatically calculated)
63Copyright(C) MARUTSU ELEC 2015
1.5 アベレージモデルの活用(降圧回路)
B. Feedback Loop Compensators
Type 1 Compensator
C1
VOUT
FB
Rupper
Rlower
0
d
REF
PWM
1/Vp
-
+
PWM_CTRL
Type1 Compensator Type2 Compensator Type2a Compensator
Type2b Compensator Type3 Compensator
Type2b Compensator
C1
VOUT
FB
Rupper
Rlower
0
d
REF
PWM
1/Vp
-
+
PWM_CTRL
R2
Type2a Compensator
C1
VOUT
FB
Rupper
Rlower
0
d
REF
PWM
1/Vp
-
+
PWM_CTRL
R2
Type3 Compensator
C1
FB
Rupper
Rlower
0
d
REF
PWM
1/Vp
-
+
PWM_CTRL
C2
R2
C3
R3
VOUT
Type2 Compensator
C1
FB
Rupper
Rlower
0
d
REF
PWM
1/Vp
-
+
PWM_CTRL
C2
R2
VOUT
64Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
Design Kit
NJM2377–Boost DC/DC Converter
65Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
1. NJM2377 – Boost DC/DC Converter Circuit
2. PWM – Boost DC/DC Converter Basic Operation and Design
2.1 Boost DC/DC Converter – VOUT
2.2 Boost DC/DC Converter – tON /tOFF
2.3 Boost DC/DC Converter – Inductor Selection
2.4 Boost DC/DC Converter – Inductor Peak Current
2.5 Boost DC/DC Converter – COUT Selection
3. NJM2377 – Application Circuit Configuration
3.1 NJM2377 – Soft Start Time Setting
3.2 NJM2377 – Oscillation Frequency Setting
3.3 Error Amp Feed Back Loop Setting
4. Performance Characteristics
4.1 Output Start-Up Voltage and Current
4.2 Output Ripple Voltage
4.3 Efficiency
4.4 Step-Load Response
5. Voltage and Current Simulation Result
6. Losses
6.1 Bipolar Junction Transistor Losses
6.2 Schottky Barrier Diode Losses
7. Waveforms
7.1 Start-Up Sequencing Waveforms
7.2 Switching Waveform at Load 50mA
7.3 Switching Waveform at Load 10mA
66Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
CLP
100pF
Rf
560k
ESR
0.103
Cin
220uF
L
150u
1 2
Rload
180
R1
9.1k
R2
150k
Q1
Q2SD2623
OUT
R3
0.8
U1
NJM2377
-IN
FB
GND
OUTV+
CS
CT
REF
Rt
24k
Ct
470pF
IC = 0
D1
HRU0302A
0
V+
5V
0
IN
Cout
220uF
Rsf
160k
CS
4.7uF
IC = 0
0
Rsr
180k
0
5V to 9V at 50mA Boost DC/DC Converter (fOSC=150kHz, Vripple=30mVp-p)
U1: New Japan Radio NJM2377 Control IC
Q1: Panasonic 2SD2623 NPN
D1: Renesas HRU0302A Schottky Barrier Diode
1. NJM2377 – Boost DC/DC Converter Circuit
67Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
2. PWM – Boost DC/DC Converter Basic Operation and Design
ESR
IN
L
1 2
Rload
OUT
R1
R2
Q1
QN_SW
V+
0
Cout
D1
PWM Control
Circuit PWM output
pulse
VOUT=9V
tON tOFF
VIN=5V L: IL
• VOUT is monitored by R1 and R2 then compared to reference voltage VB in NJM2377.
• Error voltage is pulse width modulated with sawtooth waveform.
• PWM output pulse width is proportional to the error level. This signal will control the
switch ON/OFF(tON /tOFF).
• Therefore VOUT, which is proportional to tON /tOFF, is controlled to the desired voltage.
2.1)
2.5)
2.2)
2.3),
2.4)
68Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
2.1 Boost DC/DC Converter – VOUT
• VOUT is determined by R1 and R2, without considering I(IN-) of NJM2377 VOUT is calculated as
below.
• For VOUT=9V, R1=9.1kΩ, R2=150kΩ are selected.
9.09V0.521
9.1k
150k
1
1
2













 REFOUT V
R
R
V
69Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
2.2 Boost DC/DC Converter – tON /tOFF
• If the circuit works in continuous conduction mode (CCM), output voltage (VOUT) and ON/OFF
time (tON /tOFF) follow the equation below.
then
• From VIN =5V, VOUT =9V and fOSC =150kHz, these result as tON /tOFF are tON=2.96μs, tOFF=3.71μs,
and duty=45%.
IN
OFF
OFFON
OUT V
t
tt
V 




 

OSCOUT
INOUT
ON
fV
VV
t



70Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
2.3 Boost DC/DC Converter – Inductor Selection
• LMIN value for the convertor to work in continuous conduction mode (CCM), is calculated as
below.
• From VIN =5V, VOUT =9V, IOUT =50mA and tON=2.96μs, these result as LMIN=82.2μH.
• A larger value will be used to increase the available output current, but limit it to around
twice the LMIN value. L =150μH is selected.
ON
OUTOUT
IN
MIN t
IV
V
L 


2
2
MINMIN LLL  2
71Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
2.4 Boost DC/DC Converter – Inductor Peak Current
Time
86.810ms 86.816ms 86.822ms 86.828ms
I(L)
0A
50mA
100mA
150mA
200mA
(86.818m,140.985m)
(86.821m,40.531m)
• PSpice is used to verify the circuit design.
• IL, PK=140.985mA and
IL,PK=140.985m-40.531m=100.454mA
• IL, PK is calculated as below.
• And the current ripple - IL, PK is calculated
as below
140mA2.96μ
150μ2
5
5
0.059
2









 ON
IN
IN
OUTOUT
L,PK t
L
V
V
IV
I
mA992.96μ
150μ
5

 ON
IN
L,PK t
L
V
ΔI
• Add trace I(L)
• Zoom to check the peak value.
IL, PK
72Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
2.5 Boost DC/DC Converter – COUT Selection
• PSpice is used to verify the circuit design.
• IL,PK=101.168mA, ton=3μs.
• Vripple =14.8mVp-p
• Irms
*=53.856mArms.
 Irms is larger than calculated value due to feedback loop
response ripple current.
Time
87.5484ms 87.5684ms
V(OUT)
9.06V
9.07V
9.08V
9.09V
SEL>>
(87.556m,9.0792)
(87.553m,9.0644)
I(L) rms(I(Cout))
0A
100mA
200mA
(87.556m,141.564m)
(87.553m,40.396m)
• COUT is determined from the Vripple Spec
(30mVp-p).
• If COUT >> IOUTton/Vripple
(50m2.96μ/30m=4.933μF), Vripple will
mainly caused by ESR.
• Select the capacitor that can handle the
ripple current Irms.
• COUT=220μF, ESR=103m is selected.




m103
99m
30m
)(
L
ppripple
I
V
ESR
IL, PK
13mArms
6.67μ
2.96μ
32
99m
32




t
tonI
I
L
rms
Irms
Vripple
73Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
3. NJM2377 – Application Circuit Configuration
CLP
100pF
Rf
560k
ESR
0.103
Cin
220uF
L
150u
1 2
Rload
180
R1
9.1k
R2
150k
Q1
Q2SD2623
OUT
R3
0.8
U1
NJM2377
-IN
FB
GND
OUTV+
CS
CT
REF
Rt
24k
Ct
470pF
IC = 0
D1
HRU0302A
0
V+
5V
0
IN
Cout
220uF
Rsf
160k
CS
4.7uF
IC = 0
0
Rsr
180k
0
5V to 9V at 50mA Boost DC/DC Converter (fOSC=150kHz)
U1: New Japan Radio NJM2377 Control IC
Q1: Panasonic 2SD2623 NPN
D1: Renesas HRU0302A Schottky Barrier Diode
3.1)
3.2)
3.3)
74Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
3.1 NJM2377 – Soft Start Time Setting
• First, caculate Rsr by
Rsr>VTHLA(max.)/ICHG(min.)
(1.8V/10μA=180k)
• During steady state operation,
I(CS)=IBCS=250ns. Maximum duty cycle is
determined by V(CS). Set
V(CS)=VTHCS(max.)=0.8V, Rsf is calculated by
160k ΩRsf
1.5
Rsf180k
180k
0.8
.)(max






 REFTHCS V
RsfRsr
Rsr
V
• Soft-start time or tduty(max.) is time needed
for V(CS) to reach VTHCS(max.) by charging
capacitor Cs.
• CS is charged by current Ics, calculated by:
then
NJM2377 soft-start time is determined by Rsr, CS and Rsf
4.41uA
160k180k
1.5





RsfRsr
V
I
REF
CS
109ms
30μ4.41μ
4.7μ0.8
.)(max
.)(max







CHGCS
THCS
duty
II
CsV
t
75Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
3.1 NJM2377 – Soft Start Time Setting (Simulation)
NJM2377 soft-start time is determined by Rsr, Rsf and CS
• Select Rsr, Rsf, and CS then check tduty(max.)
by simulation.
• tduty(max.)=109.170ms. for CS=4.7uF
• tduty(max.)=76.653ms for CS=3.3uF and
tduty(max.)=157.953ms for CS=6.8uF.
CS
{CS}
IC = 0
PARAMETERS:
CS = 4.7u
CLP
100pF
Rf
560k
Cin
220uF
U1
NJM2377
-IN
FB
GND
OUTV+
CS
CT
REF
Rt
10MEG
Ct
10nF
IC = 0
0 CS
V+
5V
IN
REF
0
Rsf
160k
0
Rsr
180k
0
R1
1MEG
.TRAN 0 500ms 0 Time
0s 250ms 500ms
V(CS)
0V
0.5V
1.0V
1.5V
(109.170m,800.000m)
(76.653m,800.000m)
(157.953m,800.000m)
76Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
3.2 NJM2377 – Oscillation Frequency Setting
• CT = 470pF and RT = 24kΩ to set an oscillation frequency to be 150kHz.
V
CLP
100pF
Rf
560k
Cin
220uF
U1
NJM2377
-IN
FB
GND
OUTV+
CS
CT
REF
Rt
24k
Ct
470pF
IC = 0
0
V+
5V
IN
0
Rsf
160k
CS
4.7uF
IC = 0
0
Rsr
180k
0
R1
1MEG
NJM2377 oscillation frequency fOSC is determined by CT and RT
fosc=150kHz
RT=24k
77Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
3.3 Error Amp Feed Back Loop Setting
• For F.B loop gain G > 100, Rf is calculated
as:
• CLP is suggested to use value between
100pF~1,000pF
• Inappropriate F.B loop design can cause an
oscillation. PSpice is used to verify the
ripple voltage vs. Rf and CLP values.
• Simulation result shows Vripple of the
circuit with RF=1000k  compare to the
circuit with RF=560k.
• Changing RF to be 560k  can reduce
Vripple from 34mVp-p to less than 20mVp-p.
1000kRf
177
150k//9.1k
1,000k
2//1



RR
Rf
G
Error Amp Feed Back Loop is determined by R1, R2, Rf and CLP
Time
79.00ms 79.25ms 79.50ms 79.75ms 80.00ms
V(OUT)
9.04V
9.06V
9.08V
9.10V
9.12V
RF=1000k, CLP=100pF
RF=560k, CLP=100pF
78Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
4. Performance Characteristics
CLP
100pF
Rf
560k
ESR
0.103
Cin
220uF
L
150u
1 2
Rload
180
R1
9.1k
R2
150k
Q1
Q2SD2623
OUT
R3
0.8
U1
NJM2377
-IN
FB
GND
OUTV+
CS
CT
REF
Rt
24k
Ct
470pF
IC = 0
D1
HRU0302A
0
V+
5V
0
IN
Cout
220uF
Rsf
160k
CS
4.7uF
IC = 0
0
Rsr
180k
0
• VIN=5V
• VOUT=9V
• IOUT=50mA
• Vripple(P-P)= less than 30mV
• Efficiency= 75% at IOUT=50mA
U1: New Japan Radio NJM2377 Control IC
Q1: Panasonic 2SD2623 NPN
D1: Renesas HRU0302A Schottky Barrier Diode
79Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
4.1 Output Start-Up Voltage and Current
• Simulation result shows output start-up time of the circuit. This circuit needs
55ms to reach steady state.
Time
0s 20ms 40ms 60ms 80ms 90ms
V(OUT)
4V
5V
6V
7V
8V
9V
10V
I(Rload)
20mA
30mA
40mA
50mA
SEL>>
V(OUT)
I(Rload)
80Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
4.2 Output Ripple Voltage
Time
60ms 65ms 70ms 75ms 80ms 85ms 90ms
V(OUT)
9.05V
9.06V
9.07V
9.08V
9.09V
9.10V
SEL>>
Time
89.90ms 89.91ms 89.92ms 89.93ms 89.94ms 89.95ms 89.96ms 89.97ms 89.98ms 89.99ms
V(OUT)
9.060V
9.065V
9.070V
9.075V
9.080V
• Simulation result shows output ripple voltage caused by switching(18mVP-P) and
F.B loop oscillation(25mVP-P).
V(OUT)
V(OUT)
[ZOOM] 18mVP-P
25mVP-P
81Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
4.3 Efficiency
• Efficiency of the converter at load IOUT=50mA is 75.5%.
Time
70ms 75ms 80ms 85ms 90ms
100*W(Rload)/rms(-W(V+))
0
25
50
75
100
(90.000m,75.500)
Efficiency
82Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
4.4 Step-Load Response
• Simulation result shows the transient response of the circuit, when load currents
are 50mA to 10mA to 50mA steps .
V(OUT)
I(L)
I(Load)
Time
60ms 65ms 70ms 75ms 80ms 85ms 90ms
V(OUT)
9.050V
9.075V
9.100V
9.125V
I(L)
0A
100mA
200mA
I(I1)
0A
20mA
30mA
40mA
50mA
SEL>>
83Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
5. Voltage and Current Simulation Result
• Simulation result shows voltage and current of the devices.
• Select L and Cout that can handle their Irms value.
• The absolute maximum value of Q1 and D1 are compared to simulation result for stress analysis.
Time
0s 20ms 40ms 60ms 80ms 90ms
1 V(Cout:1) 2 rms(I(Cout))
0V
5V
10V
1
0A
50mA
100mA
2
SEL>>SEL>>
1 V(D1:2)- V(D1:1) 2 I(D1) avg(I(D1))
0V
10V
20V
1
100mA
200mA
300mA
2
>>
1 V(Q1:c) 2 I(Q1:c)
0V
5V
10V
15V
20V
1
250mA
500mA
2
>>
I(L) rms(I(L))
0A
200mAI(L) peak,
rms
I(L) = 261.054mA(peak) , 94.1399mA(rms)
V(Q1:C),
I(Q1:C)
Q1 2SD2623: VCEO=20V, ICMAX=0.5A
V(D1:K,D1:A),
IF(D1)
D1 HRU0302A: VRRM=20V, IO=0.3A(avg), IFSM=3A
V(Cout),
I(Cout) rms
I(Cout) = 50.255mA(rms)
100% of Rated Value
100% of Rated Value
84Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
6.1 Bipolar Junction Transistor Losses
Time
89.964ms 89.966ms 89.968ms 89.970ms 89.972ms 89.974ms
1 V(Q1:c) 2 I(Q1:c)
0V
5V
10V
15V
20V
1
>>
0A
100mA
200mA
300mA
2
1 V(Q1:c)*I(Q1:c) 2 avg(W(Q1))
0W
200mW
400mW
600mW
1
SEL>>
0W
50mW
100mW
150mW
2
SEL>>
• Simulation result shows waveforms of IC and VCE of transistor Q1.Loss in peak and
average values are also shown.
100% of Rated Value (PC, max.=150mW)
PC, avg.=17.254mW
turn-on loss
Conduction loss
turn-off loss
V(Q1:C),
I(Q1:C)
P(Q1)
peak, avg
85Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
6.2 Schottky Barrier Diode Losses
Time
89.964ms 89.965ms 89.966ms 89.967ms 89.968ms 89.969ms 89.970ms 89.971ms 89.972ms 89.973ms
1 V(D1:1,D1:2) 2 I(D1)
-10V
-5V
0V
5V
10V
1
-200mA
-100mA
0A
100mA
200mA
2
SEL>>SEL>>
W(D1) avg(W(D1))
-100mW
-50mW
0W
50mW
100mW
• Simulation result shows waveforms of IF and VAK of diode D1.Loss in peak and
average values are also shown.
PD, avg.=18.45mW
Reverse
recovery loss
Conduction loss
V(D1:A,D1:K),
I(D1
P(D1)
peak, avg
Reverse
leakage loss
Reverse recovery
characteristic
86Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
7.1 Start-Up Sequencing Waveforms
• Simulation result shows start-up sequencing waveforms, including V(OUT) and
control signal (VRAMP, VOSC, and VFB).
V(OUT)
V(FB)
VOSC: V(CT)
VRAMP: V(CS)
Time
0s 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms
V(OUT)
5.0V
6.0V
7.0V
8.0V
9.0V
V(U1:CT) V(U1:CS) V(U1:FB)
0V
0.5V
1.0V
1.5V
2.0V
2.5V
SEL>>
87Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
7.2 Switching Waveforms at Load 50 mA (RL=180)
• Simulation result shows boost converter switching waveforms at load 50mA,
including IL, VC(Q1), IC(Q1), I(D1) and V(OUT)
I(D1)
I(L)
VC(Q1)
IC(Q1)
V(OUT)
Time
89.950ms 89.960ms 89.970ms 89.980ms89.944ms
V(OUT)
9.050V
9.075V
9.100V
SEL>>
I(D1)
-50mA
0A
50mA
100mA
150mA
1 V(Q1:c) 2 I(Q1:c)
0V
2.5V
5.0V
7.5V
10.0V
1
0A
100mA
150mA
200mA
2
>>
I(L)
0A
50mA
100mA
150mA
200mA
88Copyright(C) MARUTSU ELEC 2015
2.1 DCDCコンバータによる昇圧回路
7.3 Switching Waveforms at Load 10 mA (RL=900)
• Simulation result shows boost converter switching waveforms at load 10mA,
including IL, VC(Q1), IC(Q1), I(D1) and V(OUT)
I(D1)
I(L)
VC(Q1)
IC(Q1)
V(OUT)
Time
89.944ms 89.952ms 89.960ms 89.968ms 89.976ms 89.984ms
V(OUT)
9.075V
9.100V
9.125V
I(D1)
-25mA
25mA
50mA
75mA
SEL>>
1 V(Q1:c) 2 I(Q1:c)
-4V
4V
8V
12V
1
>>
-25mA
0A
25mA
50mA
75mA
2
I(L)
-25mA
0A
25mA
50mA
75mA
89Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
Design Kit
Quasi-Resonant Switching Power Supply using
FA5541
90Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
Contents
1. Quasi-Resonant Switching Power Supply 19V/5A
1.1 Output voltage
1.2 Output current
1.3 Output ripple voltage
1.4 Step-load response
2. Basic operation of switching power supply using FA5541
3. Start-up sequence simulation
4. Bridge diode peak current at start-up
5. Transformer
6. RCD Clamping network
7. Power MOSFET switching device
8. Schottky barrier diode D21 and D22 waveforms
9. Photocoupler
91Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
1.Quasi-Resonant Switching Power Supply 19V/5A
D1
DERA38-06
D2
DERA22-02
REF
K
A
SR1
TA76432F
D21
YG865C15R1
23
C10
0.01uF
D22
YG865C15RLs
{Nsp*Nsp*Lp}
1
2
L1
4.7uH
1 2 VO_19V
C_T1
2200pF
0
100V/50Hz
C1
220uF
IC = 139
K K1
COUPLING = 0.98
K_Linear
L1 = Ls
L2 = Lp
L3 = Lsub
Lsub
{Nsubp*Nsubp*Lp}
1
2
PC1
TLP281
IC1
FA5541
SSIC = 0
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
R8
4.7k
R14
100
RSL1
150m
C11
4700pF
C13
22pF
R3
13k
R4
15k
C8
2200pF
C9
0.01uFR5
10k
R6
10k
R7
2k
R1
7.5k
R15
200k
ESR7
50m
FB
IS
R13
100k
0
C3
33uF
IC = 10.199
FB
PARAMETERS:
Np = 57
Ns = 10
Lp = 360uH
Nsub = 8
Nsp = {Ns/Np}
Nsubp = {Nsub/Np}
IC=0/1
ZCD
Cd
220pF
19V / 0 to 5A
Lp
{Lp}
1
2
Rp_T1
0.150
C2
2200pF
R2
56k
Rsns
0.22
R10
10
R11
100
0
DBR1
D3SB80
D3
D1NL20U_S
C14
4700pF
D4
D1NL20U_S
M1
2SK3681-01S
LESL7
12nH
1
2
C7
1000uF
V1
FREQ = 50Hz
VAMPL = 141.42
C12
1000pF
RL
3.84
C4
3300uF
ESR4
40m
LESL4
15nH
1
2
C5
3300uF
ESR5
40m
LESL5
15nH
1
2
C6
3300uF
ESR6
40m
LESL6
15nH
1
2
92Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
1.1 Output voltage
• Simulation result confirming that the output voltage would be 19 Volt at 5-A load. The result
also shows that the circuit need 60ms to reach steady state.
Time
0s 20ms 40ms 60ms 80ms 100ms 120ms
V(VO_19V)
0A
5A
10A
15A
20A
93Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
1.2 Output current
• Simulation result confirming that the output current would be 5 Amp. The result also shows
that the circuit need 60ms to reach steady state.
Time
0s 20ms 40ms 60ms 80ms 100ms 120ms
I(RL)
0A
2.0A
4.0A
6.0A
94Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
• Simulation results shows the output ripple voltage at maximum current load (approximately
17.5mVP-P).
Time
107.56ms 107.58ms 107.60ms 107.62ms 107.64ms 107.66ms 107.68ms 107.70ms 107.72ms 107.74ms
V(VO_19V)
18.66V
18.67V
18.68V
18.69V
18.70V
1.3 Output ripple voltage
95Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
1.4 Step-load response
• Simulation results shows waveform of the output voltage responding to stepping current
3/5A.
Time
16ms 18ms 20ms 22ms 24ms 25ms
V(VO_19V)
19.0V
18.5V
19.5V
SEL>>
I(IL)
0A
4.0A
8.0A
96Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
2.Basic operation of switching power supply using FA5541
• Power supply using FA5541 is switching using self-excited oscillation.
• When IC turns the MOSFET ON ,drain current Id (primary current of T1) begins to rise from
zero.
• V(IS pin) is voltage-converted from the Id current.
REF
K
A
0
0
0
OUT
ZCD
IS
FB
RZCD
CZCD
RS
0
M1
Cd
D1T1
0
0
+
Vds
-
ON
Id
+
V(RS) = Id*RS
-
OFF
97Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
2.Basic operation of switching power supply using FA5541
Time
3.580ms 3.584ms 3.588ms 3.592ms 3.596ms 3.600ms 3.604ms 3.608ms 3.612ms
-I(Lp)
0A
6A
V(M1:1,M1:3)
0V
0.6KV
V(IC1:OUT)
-1V
19V
SEL>>
• When Id reaches the reference level, FA5541 will turn M1 OFF
Id
Vds
VG
Id begins rising
M1 turns ON
Id reaches
reference level
M1 turns OFF
VDS and winding voltage
have step change
98Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
REF
K
A
0
0
0
OUT
ZCD
IS
FB
RZCD
CZCD
RS
0
M1
Cd
D1T1
0
0
• When M1 turns OFF ,and the winding voltage of the transformers has step change and IF(D1)
is provided from the transformer into secondary side.
+
Vds
-
OFF
IF(D1)
ON
2.Basic operation of switching power supply using FA5541
99Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
2.Basic operation of switching power supply using FA5541
Time
16.0us 20.0us 24.0us 28.0us 32.0us 36.0us 40.0us 44.0us12.8us
V(IC1:ZCD)
0V
4.0V
V(Lsub:1)
0V
-30V
30V
SEL>>
-I(Ls)
0A
40A
• When IF(D1) gets zero, Vds drops rapidly due to resonance of transformers inductance and Cd.
At the same time Vsub also drops rapidly.
• When V(ZCD) < Vth(of valley detection) ,FA5541 turns M1 ON again
IF(D1)
Id begins rising
IF(D1) is provided from
the transformer into
secondary side
V(ZCD) < Vth,
M1 turns ON
IF(D1) gets zero
VSUB
V(ZCD)
Vsub drops
rapidly
Vth
100Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
3.Start-up sequence simulation
D1
DERA38-06
D2
DERA22-02
REF
K
A
SR1
TA76432F
C4
9900uF
D21
YG865C15R
C10
0.01uF
D22
YG865C15R
3300uFx3
Ls
{Nsp*Nsp*Lp}
1
2
RL
3.84
L1
4.7uH
1 2 VO_19V
C_T1
2200pF
0
100V/50Hz
K K1
COUPLING = 1
K_Linear
L1 = Ls
L2 = Lp
L3 = Lsub
Lsub
{Nsubp*Nsubp*Lp}
1
2
PC1
TLP281
IC1
FA5541
SSIC = 0
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
R8
4.7k
R14
100
C11
4700pF
C13
22pF
R3
13k
R4
15k
C8
2200pF
C9
0.01uFR5
10k
R6
10k
R7
2k
R1
7.5k
R15
200kFB
IS
R13
100k
0
FB
PARAMETERS:
Np = 57
Ns = 10
Lp = 360uH
Nsub = 8
Nsp = {Ns/Np}
Nsubp = {Nsub/Np}
ZCD
Cd
220pF
19V / 0 to 5A
Lp
{Lp}
1
2C2
2200pF
R2
56k
V1
FREQ = 50
VAMPL = 141.42
Rsns
0.22
R10
10
R11
100
0
DBR1
D3SB80
D3
D1NL20U_S
C14
4700pF
D4
D1NL20U_S
M1
2SK3681-01S
C7
1000u
C1
220uF
C3
33u
C12
1000pF
 No parasitic elements and no initial condition is set
CVCC
Auxiliary
winding
101Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
3.Start-up sequence simulation
Time
0s 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms
V(IC1:OUT)
0V
4V
8V
12V
16V
SEL>>
V(IC1:VCC) 10.2 12.4
0V
4V
8V
12V
16V
VSTOFF
VCCON ,VSTRST1
VCC pin stop charging current
Auxiliary supply takes over
FA5541 turn onFA5541 turn off
t1 t2 t3
Total start-up time
VCC
OUT
102Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
3.Start-up sequence simulation
FA5541 under voltage lockout (UVLO) characteristics (VCC pin)
 ON threshold voltage: VCCON = 10.2V
 Startup circuit shutdown: VSTOFF = 12.4V
 Startup circuit reset voltage: VSTRST1 = 10.2V
t1,t2: VCC < VSTOFF ,startup circuit turns on ,VCC pin charges capacitor CVCC (C2).
t2: VCC reaches VCCON ,FA5541 is turned on
t3: after VCC reaches VSTOFF ,startup circuit turns off , VCC decreases until Auxiliary supply takes over.
D2
DERA22-02
Lsub
{Nsubp*Nsubp*Lp}
1
2
IC1
FA5541
SSIC = 0
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
0
C2
33u
I(VCC)
I(Aux)
103Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
3.Start-up sequence simulation
Time
0s 100ms
V(IC1:OUT)
0V
4V
8V
12V
16V
V(IC1:VCC)
0V
4V
8V
12V
16V
SEL>>
• the simulation result shows the tradeoff between Total start-up time and Design margin,
which is the difference of V(VCC) and VSTRST1 when the auxiliary winding takes over from the
IC startup circuit.
• 33uF-CVCC is selected for higher Design margin although total start-up time is high.
CVCC=33uF
CVCC=22uF
Design margin (CVCC=22uF)
VSTRST1
Design margin (CVCC=33uF)
VCC (CVCC=22uF)
Total start-up time (CVCC=33uF)
104Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
4.Bridge diode peak current at start-up
D1
DERA38-06
D2
DERA22-02
REF
K
A
SR1
TA76432F
C4
9900uF
D21
YG865C15R
C10
0.01uF
D22
YG865C15R
3300uFx3
Ls
{Nsp*Nsp*Lp}
1
2
RL
3.84
L1
4.7uH
1 2 VO_19V
C_T1
2200pF
0
100V/50Hz
K K1
COUPLING = 1
K_Linear
L1 = Ls
L2 = Lp
L3 = Lsub
V1
FREQ = 50
VAMPL = 141.42
Lsub
{Nsubp*Nsubp*Lp}
1
2
PC1
TLP281
IC1
FA5541
SSIC = 0
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
R8
4.7k
R14
100
C11
4700pF
C13
22pF
R3
13k
R4
15k
C8
2200pF
C9
0.01uFR5
10k
R6
10k
R7
2k
R1
7.5k
R15
200kFB
IS
R13
100k
0
FB
PARAMETERS:
Np = 57
Ns = 10
Lp = 360uH
Nsub = 8
Nsp = {Ns/Np}
Nsubp = {Nsub/Np}
ZCD
Cd
220pF
19V / 0 to 5A
Lp
{Lp}
1
2C3
2200pF
R2
56k
Rsns
0.22
R10
10
R11
100
0
DBR1
D3SB80
D3
D1NL20U_S
C14
4700pF
D4
D1NL20U_S
M1
2SK3681-01S
C7
1000u
C1
220uF
C2
{Cv cc}
C12
1000pF PARAMETERS:
CVCC = 33u
 No parasitic elements and no initial condition is set
105Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
4.Bridge diode peak current at start-up
Time
0s 40ms 80ms 120ms
I(DBR1:2)
-12A
-8A
-4A
0A
4A
8A
12A
• Simulation result of the current through bridge rectifier diode DBR1 when the power supply is
plug to the wall outlet. the peak current is approximately 9.8 which is less than Absolute
maximum value IFSM from the datasheet.
I
106Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
5.Transformer
D1
DERA38-06
D2
DERA22-02
REF
K
A
SR1
TA76432F
C4
9900uF
D21
YG865C15R
C10
0.01uF
D22
YG865C15R
3300uFx3
Ls
{Nsp*Nsp*Lp}
1
2
RL
3.84
L1
4.7uH
1 2 VO_19V
C_T1
2200pF
0
100V/50Hz
K K1
COUPLING = 1
K_Linear
L1 = Ls
L2 = Lp
L3 = Lsub
V1
FREQ = 50
VAMPL = 141.42
Lsub
{Nsubp*Nsubp*Lp}
1
2
PC1
TLP281
IC1
FA5541
SSIC = 1
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
R8
4.7k
R14
100
C11
4700pF
C13
22pF
R3
13k
R4
15k
C8
2200pF
C9
0.01uFR5
10k
R6
10k
R7
2k
R1
7.5k
R15
200k
IS
FB
R13
100k
0
FB
PARAMETERS:
Np = 57
Ns = 10
Lp = 360uH
Nsub = 8
Nsp = {Ns/Np}
Nsubp = {Nsub/Np}
ZCD
Cd
220pF
19V / 0 to 5A
Lp
{Lp}
1
2C3
2200pF
R2
56k
Rsns
0.22
R10
10
R11
100
0
DBR1
D3SB80
D3
D1NL20U_S
C14
4700pF
D4
D1NL20U_S
M1
2SK3681-01S
C7
1000u
IC = 18.7
C1
220uF
IC = 139
C2
33u
IC = 10.199
C12
1000pF
IC = 4.2
V+
V-
V+
V-
V+
V-
 No parasitic elements
107Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
Time
0s 100us 200us 300us 400us 500us
V(Lsub:1,Lsub:2)
0V
-20V
20V
SEL>>
V(Ls:1,Ls:2)
0V
-40V
40V
V(Lp:2,Lp:1)
0V
-200V
200V
VP(t)
-VS(t)
-VSUB(t)
5.Transformer
108Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
5.Transformer
• Lleak = LP(1-k2)
• LS/LP = N2
N : winding ratio of the transformer
VS = VP*(NS/NP)
VSUB = VP*(NSUB/NP)
• Transformer is modeled by using SPICE primitive k ,the transformer spec is Lp=360uH and
Np:Ns:Nsub=57:10:8
109Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
6.Transformer leakage inductance
IL
5Adc
D1
DERA38-06
D2
DERA22-02
REF
K
A
SR1
TA76432F
D21
YG865C15R1
23
C10
0.01uF
D22
YG865C15RLs
{Nsp*Nsp*Lp}
1
2
L1
4.7uH
1 2 VO_19V
C_T1
2200pF
0
100V/50Hz
C1
220uF
IC = 139
K K1
COUPLING = {k}
K_Linear
L1 = Ls
L2 = Lp
L3 = Lsub
Lsub
{Nsubp*Nsubp*Lp}
1
2
PC1
TLP281
IC1
FA5541
SSIC = 1
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
R8
4.7k
R14
100
RSL1
150m
C11
4700pF
C13
22pF
R3
13k
R4
15k
C8
2200pF
C9
0.01uFR5
10k
R6
10k
R7
2k
R1
7.5k
R15
200k
ESR7
50m
IS
FB
R13
100k
0
FB
C3
33uF
IC = 10.199
PARAMETERS:
Np = 57
Ns = 10
Lp = 360uH
Nsub = 8
Nsp = {Ns/Np}
Nsubp = {Nsub/Np}
ZCD
IC=0/1
Cd
220pF
19V / 0 to 5A
Lp
{Lp}
1
2
Rp_T1
0.150
C2
{Cclp}
R2
56k
Rsns
0.22
R10
10
R11
100
0
DBR1
D3SB80
D3
D1NL20U_S
C14
4700pF
D4
D1NL20U_S
M1
2SK3681-01S
LESL7
12nH
1
2
C7
1000uF
IC = 18.8
C12
1000pF
IC = 4.2
C4
3300uF
IC = 19.60
ESR4
40m
LESL4
15nH
1
2
C5
3300uF
ESR5
40m
LESL5
15nH
1
2
C6
3300uF
ESR6
40m
LESL6
15nH
1
2
V1
FREQ = 50Hz
VAMPL = 141.42
PARAMETERS:
k = 0.98
Cclp = 2200pF
Parametric sweep
“k”
110Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
6.Transformer leakage inductance
• Transformer model using SPICE primitive k ,leakage inductance: Lleak = LP(1-k2)
• LP=360uH ,leakage inductance is14.256uH for k=0.98 and 7.164uH for k=0.99
• Check the VDS overshoot voltage versus the transformer leakage inductance.
Time
20us 40us 60us 80us 100us10us 110us
V(M1:1)
0V
200V
400V
600V
Time
15.0us 20.0us 25.0us 30.0us 35.0us 40.0us12.8us 44.8us
V(M1:1)
0V
200V
400V
600V
SEL>>
Design margin (Lleak=14.256uH)
M1: VDSS=600V
Design margin (Lleak=7.164uH)
M1: VDS(t) (Zoom)
111Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
7.RCD Clamping network
IL
5Adc
D1
DERA38-06
D2
DERA22-02
REF
K
A
SR1
TA76432F
D21
YG865C15R1
23
C10
0.01uF
D22
YG865C15RLs
{Nsp*Nsp*Lp}
1
2
L1
4.7uH
1 2 VO_19V
C_T1
2200pF
0
100V/50Hz
C1
220uF
IC = 139
K K1
COUPLING = {k}
K_Linear
L1 = Ls
L2 = Lp
L3 = Lsub
Lsub
{Nsubp*Nsubp*Lp}
1
2
PC1
TLP281
IC1
FA5541
SSIC = 1
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
R8
4.7k
R14
100
RSL1
150m
C11
4700pF
C13
22pF
R3
13k
R4
15k
C8
2200pF
C9
0.01uFR5
10k
R6
10k
R7
2k
R1
7.5k
R15
200k
ESR7
50m
IS
FB
R13
100k
0
FB
C3
33uF
IC = 10.199
PARAMETERS:
Np = 57
Ns = 10
Lp = 360uH
Nsub = 8
Nsp = {Ns/Np}
Nsubp = {Nsub/Np}
ZCD
IC=0/1
Cd
220pF
19V / 0 to 5A
Lp
{Lp}
1
2
Rp_T1
0.150
C2
{Cclp}
R2
56k
Rsns
0.22
R10
10
R11
100
0
DBR1
D3SB80
D3
D1NL20U_S
C14
4700pF
D4
D1NL20U_S
M1
2SK3681-01S
LESL7
12nH
1
2
C7
1000uF
IC = 18.8
C12
1000pF
IC = 4.2
C4
3300uF
IC = 19.60
ESR4
40m
LESL4
15nH
1
2
C5
3300uF
ESR5
40m
LESL5
15nH
1
2
C6
3300uF
ESR6
40m
LESL6
15nH
1
2
V1
FREQ = 50Hz
VAMPL = 141.42
PARAMETERS:
k = 0.98
Cclp = 2200pF
Parametric sweep
“Cclp”
112Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
7.RCD Clamping network
Time
0s 20us 40us 60us 80us 100us
V(M1:1)
0V
200V
400V
600V
Time
20.0us 25.0us 30.0us 35.0us 40.0us 45.0us15.5us
V(M1:1)
0V
200V
400V
600V
SEL>>
• Compare VDS overshoot of the circuit with CCLP(C2) = 220pF and 2200pF ,larger CCLP value get
better design margin for MOSFET VDS
• CCLP=2200uF is selected for the better M1: VDS design margin.
M1: VDS(t)
Design margin (CCLP=C2=2200pF)
M1: VDSS=600V
Design margin (CCLP=C2=220pF) M1: VDS(t) (Zoom)
113Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
8.Power MOSFET switching device
D1
DERA38-06
D2
DERA22-02
REF
K
A
SR1
TA76432F
D21
YG865C15R1
23
C10
0.01uF
D22
YG865C15RLs
{Nsp*Nsp*Lp}
1
2
L1
4.7uH
1 2 VO_19V
C_T1
2200pF
0
100V/50Hz
C1
220uF
IC = 139
K K1
COUPLING = 0.98
K_Linear
L1 = Ls
L2 = Lp
L3 = Lsub
Lsub
{Nsubp*Nsubp*Lp}
1
2
PC1
TLP281
IC1
FA5541
SSIC = 1
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
R8
4.7k
R14
100
RSL1
150m
C11
4700pF
C13
22pF
R3
13k
R4
15k
C8
2200pF
C9
0.01uFR5
10k
R6
10k
R7
2k
R1
7.5k
R15
200k
ESR7
50m
IS
FB
R13
100k
0
C3
33uF
IC = 10.199
FB
PARAMETERS:
Np = 57
Ns = 10
Lp = 360uH
Nsub = 8
Nsp = {Ns/Np}
Nsubp = {Nsub/Np}
IC=0/1
ZCD
Cd
220pF
19V / 0 to 5A
Lp
{Lp}
1
2
Rp_T1
0.150
C2
2200pF
R2
56k
Rsns
0.22
R10
10
R11
100
0
DBR1
D3SB80
D3
D1NL20U_S
C14
4700pF
D4
D1NL20U_S
M1
2SK3681-01S
LESL7
12nH
1
2
C7
1000uF
IC = 18.8
C12
1000pF
IC = 4.2
IL
5Adc
C4
3300uF
IC = 19.61
ESR4
40m
LESL4
15nH
1
2
C5
3300uF
ESR5
40m
LESL5
15nH
1
2
C6
3300uF
ESR6
40m
LESL6
15nH
1
2
V1
FREQ = 50Hz
VAMPL = 141.42
114Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
8.Power MOSFET switching device
Time
0s 20ms 40ms 60ms 80ms 100ms 120ms
1 V(M1:1) 2 I(M1:1)
0V
250V
500V
1
0A
25A
-15A
2
>>
Time
119.90ms 119.92ms 119.94ms 119.96ms 119.98ms 120.00ms
1 V(M1:1) 2 I(M1:1)
-200V
0V
200V
400V
600V
1
-2.0A
0A
2.0A
4.0A
6.0A
2
SEL>>SEL>>
• Simulation results shows the peak value of M1: VDS and ID .
10usec. / Div.
VDS(t) ID(t)
VDS(t)
ID(t)
20msec. / Div.
Peak
value
Peak
value
115Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
8.Power MOSFET switching device
Time
19.57ms 19.58ms 19.59ms 19.60ms 19.61ms 19.62ms 19.63ms 19.64ms 19.65ms 19.66ms
1 V(M1:1) 2 I(M1:1) 3 V(M1:2)
-600V
-400V
-200V
0V
200V
400V
600V
1
-6.0A
-2.0A
0A
2.0A
4.0A
6.0A
2
SEL>>
0V
50V
3
SEL>>
1 W(M1) 2 AVG(W(M1))
-0.5KW
0W
0.5KW
1.0KW
1.5KW
1
0W
2.5W
5.0W
7.5W
10.0W
2
>>
• Simulation results shows the peak value of MOSFET VDS and ID . Calculated switching power
loss and average power loss are also shown
10usec. / Div.
M1 Power Loss
M1 Power Lossavg
VDS(t) ID(t)
Peak
value
VGS(t)
116Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
9.Schottky barrier diode D21 and D22 waveforms
Time
0s 20ms 40ms 60ms 80ms 100ms 120ms
1 -I(Ls) 2 V(D22:2,D22:3)
20A
40A
-5A
1
SEL>> 0V
40V
80V
2
SEL>>
Time
119.92ms 119.93ms 119.94ms 119.95ms 119.96ms 119.97ms 119.98ms 119.99ms
1 -I(Ls) 2 V(D22:2,D22:3)
50A
-10A
1
>>
0V
50V
2
• Simulation results shows the peak value of SBD: VKA and IF .
10usec. / Div.
IF(t)
VKA(t)
IF(t)
VKA(t)
20msec. / Div.
Peak
value
Peak
valuePeak
value
117Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
9.Schottky barrier diode D21 and D22 waveforms
Time
19.57ms 19.58ms 19.59ms 19.60ms 19.61ms 19.62ms 19.63ms 19.64ms 19.65ms 19.66ms
-I(LS) V(D22:2,D22:3)
-50
-25
0
25
50
SEL>>
1 W(D21)+ W(D22) 2 AVG(W(D21)+ W(D22))
-40W
0W
40W
1
-5.0W
0W
5.0W
2
>>
• Simulation results shows the peak value of SBD VKA and IF . Calculated power loss and average
power loss are also shown
10usec. / Div.
SBD Power Loss
SBD Power Lossavg
VKA(t)IF(t)
Peak
valuePeak
value
118Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
10.Photocoupler
V
I
V-
V+
D1
DERA38-06
D2
DERA22-02
REF
K
A
SR1
TA76432F
D21
YG865C15R1
23
C10
0.01uF
D22
YG865C15RLs
{Nsp*Nsp*Lp}
1
2
L1
4.7uH
1 2 VO_19V
C_T1
2200pF
0
100V/50Hz
C1
220uF
IC = 139
K K1
COUPLING = 1
K_Linear
L1 = Ls
L2 = Lp
L3 = Lsub
Lsub
{Nsubp*Nsubp*Lp}
1
2
PC1
TLP281
IC1
FA5541
SSIC = 1
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
R8
4.7k
R14
100
RSL1
150m
C11
4700pF
C13
22pF
R3
13k
R4
15k
C8
2200pF
C9
0.01uFR5
10k
R6
10k
R7
2k
R1
7.5k
R15
200k
ESR7
50m
IS
FB
R13
100k
0
C3
33uF
IC = 10.199
FB
PARAMETERS:
Np = 57
Ns = 10
Lp = 360uH
Nsub = 8
Nsp = {Ns/Np}
Nsubp = {Nsub/Np}
IC=0/1
ZCD
Cd
220pF
19V / 0 to 5A
Lp
{Lp}
1
2
Rp_T1
0.150
C2
2200pF
R2
56k
Rsns
0.22
R10
10
R11
100
0
DBR1
D3SB80
D3
D1NL20U_S
C14
4700pF
D4
D1NL20U_S
M1
2SK3681-01S
C7
1000uF
IC = 18.9
C12
1000pF
IC = 4.2
IL
5Adc
C4
9900uF
IC = 19.665
ESR4
13.3m
3300uFx3
V1
FREQ = 50Hz
VAMPL = 141.42
 No parasitic elements: Lleak and ESL ,to aid simulation convergence
119Copyright(C) MARUTSU ELEC 2015
2.2 擬似共振電源回路
10.Photocoupler
Time
0s 2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18ms 20ms
V(VO_19V)
18V
19V
20V
V(PC1:A,PC1:K)
0V
1.0V
SEL>>
Time
2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18ms 20ms
1 I(PC1:C) 2 V(FB)
-12uA
380uA
1
>>
0V
2.5V
5.0V
2
• When power supply output reaches spec voltage (19V) ,a shunt regulator draws current
through resistor (R6) and VAK of photocoupler increases.
• When VAK turns on photocoupler, collector current Ic increases. This causes FB pin voltage to
decreases before power supply output voltage go to the stable state.
2msec. / Div.
IC (photocoupler)
V(FB pin)
VAK (photocoupler)
2msec. / Div.
VO_19V(t)
VAK turns on the
photocoupler
VO stable at 19V
120Copyright(C) MARUTSU ELEC 2015

More Related Content

What's hot

Simple model of Lithium Ion Battery (PSpice)
Simple model of Lithium Ion Battery (PSpice)Simple model of Lithium Ion Battery (PSpice)
Simple model of Lithium Ion Battery (PSpice)
Tsuyoshi Horigome
 
鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)
spicepark
 
Simple Model of DC Motor using LTspice
Simple Model of DC Motor using LTspiceSimple Model of DC Motor using LTspice
Simple Model of DC Motor using LTspice
Tsuyoshi Horigome
 
DC/AC 3-Phase Inverter (PSpice Model)
DC/AC 3-Phase Inverter (PSpice Model) DC/AC 3-Phase Inverter (PSpice Model)
DC/AC 3-Phase Inverter (PSpice Model)
Tsuyoshi Horigome
 
ニッケル水素電池のシンプルモデル(LTspice)
ニッケル水素電池のシンプルモデル(LTspice)ニッケル水素電池のシンプルモデル(LTspice)
ニッケル水素電池のシンプルモデル(LTspice)
Tsuyoshi Horigome
 
Electric Double-Layer Capacitor(EDLC) Simulink Model using MATLAB
Electric Double-Layer Capacitor(EDLC) Simulink Model using MATLABElectric Double-Layer Capacitor(EDLC) Simulink Model using MATLAB
Electric Double-Layer Capacitor(EDLC) Simulink Model using MATLAB
Tsuyoshi Horigome
 
LTspiceのDCモーターシミュレーション
LTspiceのDCモーターシミュレーションLTspiceのDCモーターシミュレーション
LTspiceのDCモーターシミュレーション
Tsuyoshi Horigome
 
Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)
Tsuyoshi Horigome
 
Lithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLABLithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLAB
Tsuyoshi Horigome
 
SPICE Model of MEC201-10P
SPICE Model of MEC201-10PSPICE Model of MEC201-10P
SPICE Model of MEC201-10P
Tsuyoshi Horigome
 
LTspice Model of MUSES8820
LTspice Model of MUSES8820LTspice Model of MUSES8820
LTspice Model of MUSES8820
Tsuyoshi Horigome
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Tsuyoshi Horigome
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Tsuyoshi Horigome
 
Concept of modeling of Lithium ion batteries (v1)
Concept of modeling of Lithium ion batteries (v1)Concept of modeling of Lithium ion batteries (v1)
Concept of modeling of Lithium ion batteries (v1)
Tsuyoshi Horigome
 
Simple model of DC Power Supply(PSpice)
Simple model of DC Power Supply(PSpice)Simple model of DC Power Supply(PSpice)
Simple model of DC Power Supply(PSpice)
Tsuyoshi Horigome
 
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
Tsuyoshi Horigome
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLAB
Tsuyoshi Horigome
 
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
Tsuyoshi Horigome
 
SPICE MODEL of TPC8119 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPC8119 (Standard+BDS Model) in SPICE PARKSPICE MODEL of TPC8119 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPC8119 (Standard+BDS Model) in SPICE PARK
Tsuyoshi Horigome
 
LTspice Model of E-501(SEMITEC)
LTspice Model of E-501(SEMITEC)LTspice Model of E-501(SEMITEC)
LTspice Model of E-501(SEMITEC)
Tsuyoshi Horigome
 

What's hot (20)

Simple model of Lithium Ion Battery (PSpice)
Simple model of Lithium Ion Battery (PSpice)Simple model of Lithium Ion Battery (PSpice)
Simple model of Lithium Ion Battery (PSpice)
 
鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)
 
Simple Model of DC Motor using LTspice
Simple Model of DC Motor using LTspiceSimple Model of DC Motor using LTspice
Simple Model of DC Motor using LTspice
 
DC/AC 3-Phase Inverter (PSpice Model)
DC/AC 3-Phase Inverter (PSpice Model) DC/AC 3-Phase Inverter (PSpice Model)
DC/AC 3-Phase Inverter (PSpice Model)
 
ニッケル水素電池のシンプルモデル(LTspice)
ニッケル水素電池のシンプルモデル(LTspice)ニッケル水素電池のシンプルモデル(LTspice)
ニッケル水素電池のシンプルモデル(LTspice)
 
Electric Double-Layer Capacitor(EDLC) Simulink Model using MATLAB
Electric Double-Layer Capacitor(EDLC) Simulink Model using MATLABElectric Double-Layer Capacitor(EDLC) Simulink Model using MATLAB
Electric Double-Layer Capacitor(EDLC) Simulink Model using MATLAB
 
LTspiceのDCモーターシミュレーション
LTspiceのDCモーターシミュレーションLTspiceのDCモーターシミュレーション
LTspiceのDCモーターシミュレーション
 
Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)
 
Lithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLABLithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLAB
 
SPICE Model of MEC201-10P
SPICE Model of MEC201-10PSPICE Model of MEC201-10P
SPICE Model of MEC201-10P
 
LTspice Model of MUSES8820
LTspice Model of MUSES8820LTspice Model of MUSES8820
LTspice Model of MUSES8820
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
 
Concept of modeling of Lithium ion batteries (v1)
Concept of modeling of Lithium ion batteries (v1)Concept of modeling of Lithium ion batteries (v1)
Concept of modeling of Lithium ion batteries (v1)
 
Simple model of DC Power Supply(PSpice)
Simple model of DC Power Supply(PSpice)Simple model of DC Power Supply(PSpice)
Simple model of DC Power Supply(PSpice)
 
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLAB
 
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
How to Design of Power Management of Hybrid Circuit(Battery and EDLC) using L...
 
SPICE MODEL of TPC8119 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPC8119 (Standard+BDS Model) in SPICE PARKSPICE MODEL of TPC8119 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPC8119 (Standard+BDS Model) in SPICE PARK
 
LTspice Model of E-501(SEMITEC)
LTspice Model of E-501(SEMITEC)LTspice Model of E-501(SEMITEC)
LTspice Model of E-501(SEMITEC)
 

Similar to Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015

「SPICEの活用方法」セミナー資料(28JAN2011) PPT
「SPICEの活用方法」セミナー資料(28JAN2011) PPT「SPICEの活用方法」セミナー資料(28JAN2011) PPT
「SPICEの活用方法」セミナー資料(28JAN2011) PPT
Tsuyoshi Horigome
 
PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション
Tsuyoshi Horigome
 
PWM Buck Converter using Average Model
PWM Buck Converter using Average ModelPWM Buck Converter using Average Model
PWM Buck Converter using Average Model
Tsuyoshi Horigome
 
PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)
Tsuyoshi Horigome
 
15 47-58
15 47-5815 47-58
15 47-58
idescitation
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
Tsuyoshi Horigome
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
spicepark
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
Tsuyoshi Horigome
 
EE452_Flyback Convert
EE452_Flyback ConvertEE452_Flyback Convert
EE452_Flyback Convert
ki hei chan
 
Correlative Study on the Modeling and Control of Boost Converter using Advanc...
Correlative Study on the Modeling and Control of Boost Converter using Advanc...Correlative Study on the Modeling and Control of Boost Converter using Advanc...
Correlative Study on the Modeling and Control of Boost Converter using Advanc...
IJSRD
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
cuashok07
 
Analog Communication Lab Manual
Analog Communication Lab ManualAnalog Communication Lab Manual
Analog Communication Lab Manual
Amairullah Khan Lodhi
 
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
VLSICS Design
 
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
VLSICS Design
 
Class G ISSCC 2012
Class G ISSCC 2012Class G ISSCC 2012
Class G ISSCC 2012
alexzio
 
Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"
Aya Mahmoud
 
Chapter two Part two.pptx
Chapter two Part two.pptxChapter two Part two.pptx
Chapter two Part two.pptx
AbdalleAidrous
 
Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)
Tsuyoshi Horigome
 
Analog Communication Engineering Lab Manual
Analog Communication Engineering Lab ManualAnalog Communication Engineering Lab Manual
Analog Communication Engineering Lab Manual
Amairullah Khan Lodhi
 
07
0707

Similar to Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015 (20)

「SPICEの活用方法」セミナー資料(28JAN2011) PPT
「SPICEの活用方法」セミナー資料(28JAN2011) PPT「SPICEの活用方法」セミナー資料(28JAN2011) PPT
「SPICEの活用方法」セミナー資料(28JAN2011) PPT
 
PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション
 
PWM Buck Converter using Average Model
PWM Buck Converter using Average ModelPWM Buck Converter using Average Model
PWM Buck Converter using Average Model
 
PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)
 
15 47-58
15 47-5815 47-58
15 47-58
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
EE452_Flyback Convert
EE452_Flyback ConvertEE452_Flyback Convert
EE452_Flyback Convert
 
Correlative Study on the Modeling and Control of Boost Converter using Advanc...
Correlative Study on the Modeling and Control of Boost Converter using Advanc...Correlative Study on the Modeling and Control of Boost Converter using Advanc...
Correlative Study on the Modeling and Control of Boost Converter using Advanc...
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
 
Analog Communication Lab Manual
Analog Communication Lab ManualAnalog Communication Lab Manual
Analog Communication Lab Manual
 
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
 
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
A 80Ms/sec 10bit PIPELINED ADC Using 1.5Bit Stages And Built-in Digital Error...
 
Class G ISSCC 2012
Class G ISSCC 2012Class G ISSCC 2012
Class G ISSCC 2012
 
Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"Ch18 "Case Study 3: DC-DC Power Converter"
Ch18 "Case Study 3: DC-DC Power Converter"
 
Chapter two Part two.pptx
Chapter two Part two.pptxChapter two Part two.pptx
Chapter two Part two.pptx
 
Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)
 
Analog Communication Engineering Lab Manual
Analog Communication Engineering Lab ManualAnalog Communication Engineering Lab Manual
Analog Communication Engineering Lab Manual
 
07
0707
07
 

More from マルツエレック株式会社 marutsuelec

LV3-PE 取扱説明書 第1.0版
LV3-PE 取扱説明書 第1.0版LV3-PE 取扱説明書 第1.0版
LV3-PE 取扱説明書 第1.0版
マルツエレック株式会社 marutsuelec
 
電通大セミナー 回路シミュレータの活用方法
電通大セミナー 回路シミュレータの活用方法電通大セミナー 回路シミュレータの活用方法
電通大セミナー 回路シミュレータの活用方法
マルツエレック株式会社 marutsuelec
 
アナログシンセサイザー製作事例
アナログシンセサイザー製作事例アナログシンセサイザー製作事例
アナログシンセサイザー製作事例
マルツエレック株式会社 marutsuelec
 
アナログシンセサイザーモジュール製品
アナログシンセサイザーモジュール製品アナログシンセサイザーモジュール製品
アナログシンセサイザーモジュール製品
マルツエレック株式会社 marutsuelec
 
アナログシンセサイザーの全体像(マルツエレック)
アナログシンセサイザーの全体像(マルツエレック)アナログシンセサイザーの全体像(マルツエレック)
アナログシンセサイザーの全体像(マルツエレック)
マルツエレック株式会社 marutsuelec
 
お薦め raspberry pi 用アクセサリ
お薦め raspberry pi 用アクセサリお薦め raspberry pi 用アクセサリ
お薦め raspberry pi 用アクセサリ
マルツエレック株式会社 marutsuelec
 
RASPBIAN JESSIE WITH PIXEL
RASPBIAN JESSIE WITH PIXELRASPBIAN JESSIE WITH PIXEL
2INPUT OR GATEの等価回路モデル
2INPUT OR GATEの等価回路モデル2INPUT OR GATEの等価回路モデル
2INPUT OR GATEの等価回路モデル
マルツエレック株式会社 marutsuelec
 
2INPUT COMPARATORの等価回路モデル
2INPUT COMPARATORの等価回路モデル2INPUT COMPARATORの等価回路モデル
2INPUT COMPARATORの等価回路モデル
マルツエレック株式会社 marutsuelec
 
Delayの等価回路モデル
Delayの等価回路モデルDelayの等価回路モデル
Delayの等価回路モデル
マルツエレック株式会社 marutsuelec
 
Output Driveの等価回路モデル
Output Driveの等価回路モデルOutput Driveの等価回路モデル
Output Driveの等価回路モデル
マルツエレック株式会社 marutsuelec
 
HYSTERESIS COMPARATORの等価回路モデル
HYSTERESIS  COMPARATORの等価回路モデルHYSTERESIS  COMPARATORの等価回路モデル
HYSTERESIS COMPARATORの等価回路モデル
マルツエレック株式会社 marutsuelec
 
SRQ Flip Flopの等価回路モデル
SRQ Flip Flopの等価回路モデルSRQ Flip Flopの等価回路モデル
SRQ Flip Flopの等価回路モデル
マルツエレック株式会社 marutsuelec
 
Rsqb flip flopの等価回路モデル
Rsqb flip flopの等価回路モデルRsqb flip flopの等価回路モデル
Rsqb flip flopの等価回路モデル
マルツエレック株式会社 marutsuelec
 
RSQB Flip Flopの等価回路モデル
RSQB Flip Flopの等価回路モデルRSQB Flip Flopの等価回路モデル
RSQB Flip Flopの等価回路モデル
マルツエレック株式会社 marutsuelec
 
Oscillatorの等価回路モデル
Oscillatorの等価回路モデルOscillatorの等価回路モデル
Oscillatorの等価回路モデル
マルツエレック株式会社 marutsuelec
 
REFERENCEの等価回路モデル
REFERENCEの等価回路モデルREFERENCEの等価回路モデル
REFERENCEの等価回路モデル
マルツエレック株式会社 marutsuelec
 
OVPの等価回路モデル
OVPの等価回路モデルOVPの等価回路モデル
LTspiceを活用したULVOの等価回路モデルの作成方法
LTspiceを活用したULVOの等価回路モデルの作成方法LTspiceを活用したULVOの等価回路モデルの作成方法
LTspiceを活用したULVOの等価回路モデルの作成方法
マルツエレック株式会社 marutsuelec
 

More from マルツエレック株式会社 marutsuelec (20)

LV3-PE 取扱説明書 第1.0版
LV3-PE 取扱説明書 第1.0版LV3-PE 取扱説明書 第1.0版
LV3-PE 取扱説明書 第1.0版
 
電通大セミナー 回路シミュレータの活用方法
電通大セミナー 回路シミュレータの活用方法電通大セミナー 回路シミュレータの活用方法
電通大セミナー 回路シミュレータの活用方法
 
アナログシンセサイザー製作事例
アナログシンセサイザー製作事例アナログシンセサイザー製作事例
アナログシンセサイザー製作事例
 
アナログシンセサイザーモジュール製品
アナログシンセサイザーモジュール製品アナログシンセサイザーモジュール製品
アナログシンセサイザーモジュール製品
 
アナログシンセサイザーの全体像(マルツエレック)
アナログシンセサイザーの全体像(マルツエレック)アナログシンセサイザーの全体像(マルツエレック)
アナログシンセサイザーの全体像(マルツエレック)
 
お薦め raspberry pi 用アクセサリ
お薦め raspberry pi 用アクセサリお薦め raspberry pi 用アクセサリ
お薦め raspberry pi 用アクセサリ
 
RASPBIAN JESSIE WITH PIXEL
RASPBIAN JESSIE WITH PIXELRASPBIAN JESSIE WITH PIXEL
RASPBIAN JESSIE WITH PIXEL
 
Maruduino UNO R3
Maruduino UNO R3Maruduino UNO R3
Maruduino UNO R3
 
2INPUT OR GATEの等価回路モデル
2INPUT OR GATEの等価回路モデル2INPUT OR GATEの等価回路モデル
2INPUT OR GATEの等価回路モデル
 
2INPUT COMPARATORの等価回路モデル
2INPUT COMPARATORの等価回路モデル2INPUT COMPARATORの等価回路モデル
2INPUT COMPARATORの等価回路モデル
 
Delayの等価回路モデル
Delayの等価回路モデルDelayの等価回路モデル
Delayの等価回路モデル
 
Output Driveの等価回路モデル
Output Driveの等価回路モデルOutput Driveの等価回路モデル
Output Driveの等価回路モデル
 
HYSTERESIS COMPARATORの等価回路モデル
HYSTERESIS  COMPARATORの等価回路モデルHYSTERESIS  COMPARATORの等価回路モデル
HYSTERESIS COMPARATORの等価回路モデル
 
SRQ Flip Flopの等価回路モデル
SRQ Flip Flopの等価回路モデルSRQ Flip Flopの等価回路モデル
SRQ Flip Flopの等価回路モデル
 
Rsqb flip flopの等価回路モデル
Rsqb flip flopの等価回路モデルRsqb flip flopの等価回路モデル
Rsqb flip flopの等価回路モデル
 
RSQB Flip Flopの等価回路モデル
RSQB Flip Flopの等価回路モデルRSQB Flip Flopの等価回路モデル
RSQB Flip Flopの等価回路モデル
 
Oscillatorの等価回路モデル
Oscillatorの等価回路モデルOscillatorの等価回路モデル
Oscillatorの等価回路モデル
 
REFERENCEの等価回路モデル
REFERENCEの等価回路モデルREFERENCEの等価回路モデル
REFERENCEの等価回路モデル
 
OVPの等価回路モデル
OVPの等価回路モデルOVPの等価回路モデル
OVPの等価回路モデル
 
LTspiceを活用したULVOの等価回路モデルの作成方法
LTspiceを活用したULVOの等価回路モデルの作成方法LTspiceを活用したULVOの等価回路モデルの作成方法
LTspiceを活用したULVOの等価回路モデルの作成方法
 

Recently uploaded

5G Radio Network Througput Problem Analysis HCIA.pdf
5G Radio Network Througput Problem Analysis HCIA.pdf5G Radio Network Througput Problem Analysis HCIA.pdf
5G Radio Network Througput Problem Analysis HCIA.pdf
AlvianRamadhani5
 
P5 Working Drawings.pdf floor plan, civil
P5 Working Drawings.pdf floor plan, civilP5 Working Drawings.pdf floor plan, civil
P5 Working Drawings.pdf floor plan, civil
AnasAhmadNoor
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
ecqow
 
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
sydezfe
 
Power Electronics- AC -AC Converters.pptx
Power Electronics- AC -AC Converters.pptxPower Electronics- AC -AC Converters.pptx
Power Electronics- AC -AC Converters.pptx
Poornima D
 
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
upoux
 
Bituminous road construction project based learning report
Bituminous road construction project based learning reportBituminous road construction project based learning report
Bituminous road construction project based learning report
CE19KaushlendraKumar
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
ijaia
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
Atif Razi
 
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
Paris Salesforce Developer Group
 
Assistant Engineer (Chemical) Interview Questions.pdf
Assistant Engineer (Chemical) Interview Questions.pdfAssistant Engineer (Chemical) Interview Questions.pdf
Assistant Engineer (Chemical) Interview Questions.pdf
Seetal Daas
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
Gino153088
 
Mechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdfMechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdf
21UME003TUSHARDEB
 
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
upoux
 
Accident detection system project report.pdf
Accident detection system project report.pdfAccident detection system project report.pdf
Accident detection system project report.pdf
Kamal Acharya
 
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Transcat
 
一比一原版(USF毕业证)旧金山大学毕业证如何办理
一比一原版(USF毕业证)旧金山大学毕业证如何办理一比一原版(USF毕业证)旧金山大学毕业证如何办理
一比一原版(USF毕业证)旧金山大学毕业证如何办理
uqyfuc
 
Impartiality as per ISO /IEC 17025:2017 Standard
Impartiality as per ISO /IEC 17025:2017 StandardImpartiality as per ISO /IEC 17025:2017 Standard
Impartiality as per ISO /IEC 17025:2017 Standard
MuhammadJazib15
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
Divyanshu
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
VANDANAMOHANGOUDA
 

Recently uploaded (20)

5G Radio Network Througput Problem Analysis HCIA.pdf
5G Radio Network Througput Problem Analysis HCIA.pdf5G Radio Network Througput Problem Analysis HCIA.pdf
5G Radio Network Througput Problem Analysis HCIA.pdf
 
P5 Working Drawings.pdf floor plan, civil
P5 Working Drawings.pdf floor plan, civilP5 Working Drawings.pdf floor plan, civil
P5 Working Drawings.pdf floor plan, civil
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
 
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
一比一原版(uoft毕业证书)加拿大多伦多大学毕业证如何办理
 
Power Electronics- AC -AC Converters.pptx
Power Electronics- AC -AC Converters.pptxPower Electronics- AC -AC Converters.pptx
Power Electronics- AC -AC Converters.pptx
 
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
一比一原版(osu毕业证书)美国俄勒冈州立大学毕业证如何办理
 
Bituminous road construction project based learning report
Bituminous road construction project based learning reportBituminous road construction project based learning report
Bituminous road construction project based learning report
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
 
Applications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdfApplications of artificial Intelligence in Mechanical Engineering.pdf
Applications of artificial Intelligence in Mechanical Engineering.pdf
 
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
AI + Data Community Tour - Build the Next Generation of Apps with the Einstei...
 
Assistant Engineer (Chemical) Interview Questions.pdf
Assistant Engineer (Chemical) Interview Questions.pdfAssistant Engineer (Chemical) Interview Questions.pdf
Assistant Engineer (Chemical) Interview Questions.pdf
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
 
Mechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdfMechanical Engineering on AAI Summer Training Report-003.pdf
Mechanical Engineering on AAI Summer Training Report-003.pdf
 
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
一比一原版(uofo毕业证书)美国俄勒冈大学毕业证如何办理
 
Accident detection system project report.pdf
Accident detection system project report.pdfAccident detection system project report.pdf
Accident detection system project report.pdf
 
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
Tools & Techniques for Commissioning and Maintaining PV Systems W-Animations ...
 
一比一原版(USF毕业证)旧金山大学毕业证如何办理
一比一原版(USF毕业证)旧金山大学毕业证如何办理一比一原版(USF毕业证)旧金山大学毕业证如何办理
一比一原版(USF毕业证)旧金山大学毕业证如何办理
 
Impartiality as per ISO /IEC 17025:2017 Standard
Impartiality as per ISO /IEC 17025:2017 StandardImpartiality as per ISO /IEC 17025:2017 Standard
Impartiality as per ISO /IEC 17025:2017 Standard
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
 

Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015