SlideShare a Scribd company logo
1.ACモーター駆動制御シミュレーション
1.1コンセプトキットを活用した事例
1.2シンプルモデルを活用して自分の必要なSPICEモデルを作成する
2.DCモーター駆動制御シミュレーション
2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
4.モーター駆動制御関連のデバイスモデリングサービスのご案内
5.質疑応答
SPICEを活用したモーター駆動制御
シミュレーションセミナー
2013年4月19日
1Copyright (C) Bee Technologies2013
マルツエレックのサービス
様々なシチュエーションでお客様の【ものづくり】をサポート致します
回路設計の技術サポート
回路シミュレーションのアプローチで御社の回路設計をサポートいたします。
部品調達
大量調達、中止品調達お任せ下さい!
WebShopと12店舗のネットワークで、部品調達を徹底サポート致します。
基板設計・製造・実装
試作から量産まで承ります。
実装だけでなく調達もお任せ下さい。
ケース、ハーネス加工
穴あけ、切削、シルク印刷など指示書一枚で様々な加工が可能です。
2Copyright (C) Bee Technologies2013
Motenergy, Inc (ME0913)
Motor Electrical Parameters
• Operating Voltage Range..........................0 – 72 VMAX
• Rated Continuous Current........................140 Arms
• Peak Stalled Current.................................400 Arms
• Voltage Constant.......................................50 RPM/V
• Phase Resistance (L-L).............................0.0125 Ω
• Phase Inductance......................................105uH at 120Hz, 110uH at 1kHz
• Maximum Continuous Power Rating……..17KW at 102VDC Battery Voltage
14.3KW at 84VDC Battery Voltage
12KW at 72VDC Battery Voltage
Motor Mechanical Parameters
• Rated Speed.............................................3000 RPM
• Maximum Speed.......................................5000 RPM
• Rated Torque............................................288 Lb-in
• Torque Constant.......................................1.6 Lb-in/A
Copyright (C) Bee Technologies2013 3
1.ACモーター駆動制御シミュレーション
1.1コンセプトキットを活用した事例
• The Torque are defined by :
At 140Arms (Rated Continuous Current)
KT = 1.6 Lb-in/A
Tphe = 1.6  140 = 224Lb-in
Te = 224*3= 672Lb-in
• The Back-EMF are defined by :
At 5000 RPM (Maximum Speed)
Ephe ≈ VBAT (In an ideal motor, R and L are zero)
Ephe = 102V
KE = Ephe /ωm = 102 / 5000
KE ≈ 0.02V/RPM
Torque and Back-EMF
Copyright (C) Bee Technologies2013 4
wTw
vTv
uTu
IKT
IKT
IKT



mEw
mEv
mEu
KE
KE
KE






phe: u, v, w
Vphe : Phase voltage applied from inverter to
motor
VAC : Operating voltage range (Maximum
voltage)
VBAT : DC Voltage applied from battery
Iphe : Phase current
Tphe : Electric torque produced by u, v, w phase
Te : Electric torque produced by motor
Ephe : Phase Back-EMF
KE : Back-EMF constant
KT : Torque constant
ωm : Angular speed of rotor
 1 Pound Inch equals 0.11 Nm
TwTvTueT 
(1)
(2)
(3)
1.ACモーター駆動制御シミュレーション
1.1コンセプトキットを活用した事例
Copyright (C) Bee Technologies2013 5
L1
1 2
BEMF1
R1
L2
1 2
BEMF2
R2
L3
1 2
BEMF3
R3
N0
U
V
W
Phase Resistance (L-L) : 0.0125Ω
Phase Inductance : 105uH
: 110uH
Frequency Response
105uH
110uH
Fig.2 Phase-to-GroundFig. 1 Scheme of the 3-Phase Model
1.ACモーター駆動制御シミュレーション
1.1コンセプトキットを活用した事例
PARAMETERS:
KT = 1.6
KE = 0.02
LL = 105U
RLL = 0.0125
PARAMETERS:
LOAD = 140
U3
LM = {LL}
IL = {LOAD}
KT0 = {KT}
RM = {RLL*0.5}
1
2SPTQ
emf _u
0
IN+
IN-
OUT+
OUT-
EMF_V
eu
0
IN+
IN-
OUT+
OUT-
EMF_W
0
IN+
IN-
OUT+
OUT-
ELIM_V
0
lim_v
IN+
IN-
OUT+
OUT-
ESP
0
0
IN+
IN-
OUT+
OUT-
ELIM_W
lim_w
0
emf _vev
emf _u
-
+
+
-
E2
0
emf _v
emf _wew
-
+
+
-
E3
emf _w
0
n1
tu
0
tv
0
tw
N0
n2
U
n3
W
V
Vu
speedU4
AND3AMB
IN+
IN-
OUT+
OUT-
ETQ
0
mul
Vv
torque
Vw
-
+
+
-
E1
0
0
IN+
IN-
OUT+
OUT-
EMF_U
0
IN+
IN-
OUT+
OUT-
ELIM_U
0
lim_u
sp_v
sp_u
sp_u
sp_w
sp_w
sp_v
U1
LM = {LL}
IL = {LOAD}
KT0 = {KT}
RM = {RLL*0.5}
1
2SPTQ
U2
LM = {LL}
IL = {LOAD}
KT0 = {KT}
RM = {RLL*0.5}
1
2SPTQ
The 3-Phase AC Motor Equivalent Circuit
• This figure shows the equivalent circuit of AC motor model that includes the |Z|-
frequency part ,Back-EMF voltage part ,and Mechanical part.
• The Back-EMF voltage is the voltage generated across the motor's terminals as the
windings move through the motor's magnetic field.
Copyright (C) Bee Technologies2013 6
|Z| - Frequency Back-EMF Voltage
Mechanical part
Fig. 3 Three-Phase AC Motor Equivalent Circuit
1.ACモーター駆動制御シミュレーション
1.1コンセプトキットを活用した事例
Parameters Settings
Copyright (C) Bee Technologies2013 7
LOAD : Load current each phase of motor [Arms]
– e.g. LL = 125Arms, 140Arms, or 400Arms
LL : Phase inductance [H]
– e.g. LL = 10mH, 100mH, or 1H
RLL : Phase resistance (Phase-to-phase) [Ω]
– e.g. RLL = 10mΩ, 100mΩ, or 1Ω
KE : Back-EMF constant [V/RPM]
– e.g. KE= 0.01, 0.05, or 0.1
KT : Torque constant [Lb-in/A]
– e.g. KT= 0.1, 0.5, or 1
 1 Pound Inch equals 0.11 Nm
Model Parameters:
Fig. 4 Symbol of 3-Phase Induction Motor
• From the 3-Phase Induction Motor specification, the model is characterized by setting parameters
LL, RLL, KE, KT and LOAD.
M N0
U1
ME0913
LL = 105U
LOAD = 140
KT = 1.6
KE = 0.02
RLL = 0.0125
1
2
3
4
1.ACモーター駆動制御シミュレーション
1.1コンセプトキットを活用した事例
Simulation Circuit of 3-Phase AC Motor Model
Copyright (C) Bee Technologies2013 8
• Fig.5 Analysis of motor operation powered by
alternating voltage variation involves using the
model of three-phase induction motor.
N0
N0
RU
RV
RW
U2
GDRV
UD
UP
VD
VP
WD
WP
RU, RV, RW: 173.75m
UP UD VDVP WP WD
V1
102V +
-
+
-
S1 D1
DMOD_01
+
-
+
-
S2 D2
DMOD_01
UP
UD
0
0
+
-
+
-
S3
M N0
U1
ME0913
LL = 105U
LOAD = 140
KT = 1.6
KE = 0.02
RLL = 0.0125
1
2
3
4
D3
DMOD_01
+
-
+
-
S4 D4
DMOD_01
VP
VD
0
0
+
-
+
-
S5 D5
DMOD_01
+
-
+
-
S6 D6
DMOD_01
WP
WD
0
0
U
0
V
W
V2
102V
1.ACモーター駆動制御シミュレーション
1.1コンセプトキットを活用した事例
Phase Current Characteristics Under Load Variation
- Simulation Results
Copyright (C) Bee Technologies2013 9
Fig. 6 Current Characteristics under load Condition
Time
0s 500ms
I(RU)/SQRT(2)
-500A
0A
500A
Time
0s 500ms
I(RU)/SQRT(2)
-500A
0A
500A
Time
0s 500ms
I(RU)/SQRT(2)
-500A
0A
500A
Load 50Arms
Load 140Arms
Load 200Arms
 Reference of Phase U
1.ACモーター駆動制御シミュレーション
1.1コンセプトキットを活用した事例
Time
0s 500ms
V(X_U1.EU)
-200V
-100V
0V
100V
200V
Time
0s 500ms
V(X_U1.EU)
-200V
-100V
0V
100V
200V
Time
0s 500ms
V(X_U1.EU)
-200V
-100V
0V
100V
200V
Back-EMF Characteristics Under Load Condition
- Simulation Results
Copyright (C) Bee Technologies2013 10
Fig. 7 Back-EMF Characteristics under load Condition
Load 50Arms
Load 140Arms
Load 200Arms
 Reference of Phase U
1.ACモーター駆動制御シミュレーション
1.1コンセプトキットを活用した事例
Time
0s 500ms
V(X_U1.tu)
0V
0.5KV
1.0KV
(446.486m,223.728)
V(X_U1.speed)
0V
1.0KV
2.0KV
3.0KV
4.0KV
SEL>>
(464.146m,3.2311K)
Speed and Torque Characteristics At 140Arms
- Simulation Results
Copyright (C) Bee Technologies2013 11
Fig. 8 Speed and Torque Characteristics at Load=140Arms
The Load 140(Arms) is Rated Continuous Current
Tphe: Electric torque produced by each phase
RPM
Lb-in
 Reference of Phase U
1.ACモーター駆動制御シミュレーション
1.1コンセプトキットを活用した事例
Time
0.5s 1.0s
100*( (RMS(V(U,N0))*RMS(I(RU))) / (RMS(V(RU:1,N0))*RMS(I(RU))) )
0
50
100
(962.500m,81.941)
RMS(V(RU:1,N0))*RMS(I(RU))
0W
10KW
20KW
SEL>>
(960.616m,13.662K)
Power Output and Efficiency Characteristics At 140Arms
- Simulation Results
Copyright (C) Bee Technologies2013 12
Fig. 9 Power Output and Efficiency Characteristics at Load=140Arms
At Load=140Arms, Power Output ≈ 13.7 [KW]
At Load=140Arms, Efficiency ≈ 82 [%]
Watt
[%]
 Reference of Phase U
1.ACモーター駆動制御シミュレーション
1.1コンセプトキットを活用した事例
Parameter Settings If there is no measurement data, the default value will be
used:
Rm: motor winding resistance []
Lm: motor winding inductance [H]
Data is given by D.C. motor spec-sheet:
V_norm: normal voltage [V]
mNm: normal load [mNm]
kRPM_norm: speed at normal load [kr/min]
I_norm: current at normal load [A]
Load Condition:
IL: load current [A]
Copyright (C) Bee Technologies2013 13
Model Parameters:
D.C. Motor model and Parameters with Default Value
-
+
U1
SMPL_DC_MOTOR
Rm = 0.1
Lm = 100u
I_norm = 6.1
mNm = 19.6
V_norm = 7.2
kRPM_norm = 14.4
IL = 6.1
2.DCモーター駆動制御シミュレーション
2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
D.C. Motor Specification (Example)
Copyright (C) Bee Technologies2013 14
-
+
U1
SMPL_DC_MOTOR
Rm = 0.1
Lm = 100u
I_norm = 6.1
mNm = 19.6
V_norm = 7.2
kRPM_norm = 14.4
IL = 6.1 D.C. Motor Specification
Parameters are input
2.DCモーター駆動制御シミュレーション
2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
00
VM
VIM
V1
V2 = {VOUT}
T2 = 0.01m
PARAMETERS:
VOUT = 10.25
Rs = 0.5
RS
{Rs}
-
+
U1
SMPL_DC_MOTOR
Rm = 0.1
Lm = 100u
I_norm = 6.1
mNm = 19.6
V_norm = 7.2
kRPM_norm = 14.4
IL = 6.1
• *Analysis directives:
• .TRAN 0 400m 0 0.1m
• .PROBE V(*) I(*) W(alias(*)) D(alias(*)) NOISE(alias(*))
Copyright (C) Bee Technologies2013 15
Current Sensing
Simplified D.C. Motor with
RS-540SH Spec.
Input the Supply No
Load Voltage* and
Series Resistance
Simulation Circuit and Setting
*No Load Voltage is adjusted until the D.C. motor voltage (VM) equals to the normal voltage (7.2V). Load Condition IL=I_norm
Motor Start Up Simulation at Normal Load (1/3)
2.DCモーター駆動制御シミュレーション
2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
Motor Start Up Simulation at Normal Load (2/3)
Copyright (C) Bee Technologies2013 16
Select “All” for the Voltages
and Currents Data
Collection Options.
2.DCモーター駆動制御シミュレーション
2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
Motor Start Up Simulation at Normal Load (3/3)
Copyright (C) Bee Technologies2013 17
Time
0s 40ms 80ms 120ms 160ms 200ms 240ms 280ms 320ms 360ms 400ms
I(VIM)
0A
10A
20A
V(VM)
0V
5V
10V
SEL>>
I(X_U1.V_kRPM)
0A
10A
20A
V(X_U1.TRQ)
0V
40V
80V
D.C. Motor Current = 6.1A
D.C. Motor Voltage = 7.2V
D.C. Motor Speed = 14.4krpm
Torque Load= 19.6mNm
2.DCモーター駆動制御シミュレーション
2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
• *Analysis directives:
• .TRAN 0 400m 0 0.1m
• .PROBE V(*) I(*) W(alias(*)) D(alias(*)) NOISE(alias(*))
Copyright (C) Bee Technologies2013 18
Current Sensing
Simplified D.C. Motor with
RS-540SH Spec.
Input the Supply No
Load Voltage* and
Series Resistance
Simulation Circuit and Setting
*No Load Voltage is adjusted until the D.C. motor voltage (VM) equals to the normal voltage (7.2V). Load Condition IL=I_norm
Motor Start Up Simulation at Half of Normal Load (1/2)
00
VM
VIM
V1
V2 = {VOUT}
T2 = 0.01m
PARAMETERS:
VOUT = 10.25
Rs = 0.5
RS
{Rs}
-
+
U1
SMPL_DC_MOTOR
Rm = 0.1
Lm = 100u
I_norm = 6.1
mNm = 19.6
V_norm = 7.2
kRPM_norm = 14.4
IL = 3.05
2.DCモーター駆動制御シミュレーション
2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
Time
0s 40ms 80ms 120ms 160ms 200ms 240ms 280ms 320ms 360ms 400ms
I(VIM)
0A
10A
20A
V(VM)
0V
5V
10V
I(X_U1.V_kRPM)
0A
10A
20A
SEL>>
V(X_U1.TRQ)
0V
40V
80V
Motor Start Up Simulation at Half of Normal Load (2/2)
Copyright (C) Bee Technologies2013 19
D.C. Motor Current = 3.05A
D.C. Motor Voltage = 8.725V
D.C. Motor Speed = 18.4krpm
Torque Load= 9.8mNm
2.DCモーター駆動制御シミュレーション
2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
-
+
U2
SMPL_DC_MOTOR
Rm = 0.576
Lm = 165u
I_norm = 2.9
mNm = 9.8
V_norm = 7.2
kRPM_norm = 14.2
IL = 0.6
NC
NC
NCA
K
VCC
VO
GND
U1
TLP350
V1
TD = 0
TF = 10n
PW = 199.99u
PER = 400u
V1 = 0
TR = 10n
V2 = 1.8
0
R1
1u
0
Vcc
15V
0
VCC
VDD
0
RG
120
0
DGT10J321_s
D3
VCC
Vdd
15V
VDD
0
D4001
D2
U3
GT10J321
Copyright (C) Bee Technologies2013 20
Simplified D.C. Motor with RS-
380PH Spec at No load.
Simulation Circuit and Setting
No load IL=0.6
Application Example (1/3)
2.DCモーター駆動制御シミュレーション
2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
Time
-100ms 0s 100ms 300ms 500ms 700ms 900ms
1 I(U2:1) 2 V(U2:1,U2:2)
-2A
0A
2A
4A
6A
8A
10A
12A
14A
1
-60V
-50V
-40V
-30V
-20V
-10V
0V
10V
20V
2
>>
Application Example (2/3)
Copyright (C) Bee Technologies2013 21
Measurement Simulation
Motor Current (2A/Div)
Motor Voltage (10V/Div)
2.DCモーター駆動制御シミュレーション
2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
Time
898.0ms 898.4ms 898.8ms 899.2ms 899.6ms
1 I(U3:C) 2 V(U3:C) 3 V(U3:G)
-2A
0A
2A
4A
6A
8A
10A
12A
14A
1
>>
-30V
-20V
-10V
0V
10V
20V
30V
40V
50V
2
-60V
-50V
-40V
-30V
-20V
-10V
0V
10V
20V
3
Application Example (3/3)
Copyright (C) Bee Technologies2013 22
Measurement Simulation
IGBT: VGE
IGBT: VCE
IGBT: IC
IGBT: VGE (10V/Div)
IGBT: VCE (10V/Div)
IGBT: IC (2A/Div)
2.DCモーター駆動制御シミュレーション
2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
Time
898.0ms 898.4ms 898.8ms 899.2ms 899.6ms
1 I(U3:C) 2 V(U3:C) 3 V(U3:G)
-2A
0A
2A
4A
6A
8A
10A
12A
14A
1
-30V
-20V
-10V
0V
10V
20V
30V
40V
50V
2
-60V
-50V
-40V
-30V
-20V
-10V
0V
10V
20V
3
>>
Winding Characteristic Parameters: Lm
Copyright (C) Bee Technologies2013 23
-
+
U2
SMPL_DC_MOTOR
Rm = 0.576
Lm = 165u
I_norm = 2.9
mNm = 9.8
V_norm = 7.2
kRPM_norm = 14.2
IL = 0.6
Winding Characteristic: Lm
Motor Spec.
Load Condition
Lm=165u
Lm=100u
The Motor Current Waveform is changed
by the Lm values.
Lm=165u
Lm=100u
2.DCモーター駆動制御シミュレーション
2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
Winding Characteristic Parameters: Rm
Copyright (C) Bee Technologies2013 24
-
+
U2
SMPL_DC_MOTOR
Rm = 0.576
Lm = 165u
I_norm = 2.9
mNm = 9.8
V_norm = 7.2
kRPM_norm = 14.2
IL = 0.6
Winding Characteristic: Rm
Motor Spec.
Load Condition
Rm=0.576
Rm=0.1
The Motor Start-up is Current changed
by the Rm values.
2.DCモーター駆動制御シミュレーション
2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
Copyright (C) Bee Technologies2013 25
B
Bcom
A
/B
Acom
/A
U1
UNI-POLAR_STEP_MOTR
L = 2.5M
R = 4.2
U8
AND
U9
AND
R1
1k
0
FB
DIODE
D1
DIODE
D2
DIODE
D3
DIODE
D4
PARAMETERS:
I_SET = 0.5
VHYS = 0.1
B
0
PARAMETERS:
RON = 10m
0
U10
1-PHASE
PPS = 100
CLK
FA
/FA
FB
/FB
0
0
U6
AND
FA
+
-
REF
-
+
FB.
U2
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/FA
/FB
VCC
+
-
REF
-
+
FB.
U3
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
+
-
REF
-
+
FB.
U4
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/B
/A
+
-
+
-
S4
S
RON = {RON}
A
+
-
REF
-
+
FB.
U5
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
CLK
+
-
+
-
S1
S
RON = {RON}
+
-
+
-
S2
S
RON = {RON}
+
-
+
-
S3
S
RON = {RON}
VCC
VCC VCC
0
VCC
Vcc
12
VCC
VCC
U7
AND
Unipolar Stepping Motor Drive Circuit Simulation
PSpice Version
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
Contents
1. Concept of Simulation
2. Unipolar Stepping Motor Drive Circuit
3. Unipolar Stepping Motor
4. Switches
5. Signal Generator
6. Hysteresis-Based Current Controller
7. Unipolar Stepping Motor Drive Circuit (Example)
7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
8. Drive Circuit Efficiency
Copyright (C) Bee Technologies2013 26
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
Copyright (C) Bee Technologies2013 27
Driver Unit:
(e.g. Hysteresis-
Based Controller)
Parameter:
• I_SET
• HYS
Switches
(e.g. FET,
Diode)
Parameter:
• Ron
Stepping
Motor
Parameter:
• L
• R
Control Unit
(e.g. Microcontroller)
Sequence:
• One-Phase
• Two-Phase
• Half-Step
U?
1-PHASE
PPS = 100
CLK
FA
/FA
FB
/FB
U?
2-PHASE
PPS = 100
CLK
FA
/FA
FB
/FB
U?
HALF-STEP
PPS = 100
CLK
FA
/FA
FB
/FB
B
Bcom
A
/B
Acom
/A
U?
UNI-POLAR_STEP_MOTR
L = 2.5M
R = 4.2
Models:
Block Diagram:
DIODE
D1
0
+
-
+
-
S1
S
RON = 10m
VCC
Ctrl_A A
Concept of Simulation
U2
AND
+
-
REF
-
+
FB.
U1
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
Ctrl_A
FA
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
2.Unipolar Stepping Motor Drive Circuit
Copyright (C) Bee Technologies2013 28
Signal generator Hysteresis Based Current
Controller
Switches Unipolar Stepping Motor Supply Voltage
B
Bcom
A
/B
Acom
/A
U1
UNI-POLAR_STEP_MOTR
L = 2.5M
R = 4.2
U8
AND
U9
AND
R1
1k
0
FB
DIODE
D1
DIODE
D2
DIODE
D3
DIODE
D4
PARAMETERS:
I_SET = 0.5
VHYS = 0.1
B
0
PARAMETERS:
RON = 10m
0
U10
1-PHASE
PPS = 100
CLK
FA
/FA
FB
/FB
0
0
U6
AND
FA
+
-
REF
-
+
FB.
U2
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/FA
/FB
VCC
+
-
REF
-
+
FB.
U3
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
+
-
REF
-
+
FB.
U4
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/B
/A
+
-
+
-
S4
S
RON = {RON}
A
+
-
REF
-
+
FB.
U5
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
CLK
+
-
+
-
S1
S
RON = {RON}
+
-
+
-
S2
S
RON = {RON}
+
-
+
-
S3
S
RON = {RON}
VCC
VCC VCC
0
VCC
Vcc
12
VCC
VCC
U7
AND
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
Unipolar Stepping Motor
Copyright (C) Bee Technologies2013 29
• The electrical equivalent circuit of each phase consists of
an inductance of the phase winding series with resistance.
• The inductance is ideal (without saturation characteristics
and the mutual inductance between phases)
• The motor back EMF is set as zero to simplified the model
parameters extraction.
B
Bcom
A
/B
Acom
/A
U1
UNI-POLAR_STEP_MOTR
L = 2.5M
R = 4.2
Input the inductance and resistance values (parameter: L, R) of the
stepping motor, that are usually provided by the manufacturer datasheet,
to generally model the phase winding.
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
Switches
Copyright (C) Bee Technologies2013 30
• A near-ideal DIODE can be modeled by using spice
primitive model (D), which parameter: N=0.01 RS=0.
• A near-ideal MOSFET can be modeled by using PSpice
VSWITCH that is voltage controlled switch.
DIODE
D1
0
+
-
+
-
S1
S
RON = 10m
VCC
Ctrl_A A
The parameter RON represents Rds(on) characteristics of
MOSFET, that are usually provide by the manufacturer datasheet.
The value could be about 10m to 10 ohm.
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
Signal Generator
The signal generators are used as a microcontroller capable of generating step pulses and
direction signals for the driver.
There are 3 useful stepping sequences to control unipolar stepping motor
Copyright (C) Bee Technologies2013 31
One-Phase (Wave Drive)
• Consumes the least power.
• Assures the accuracy regardless of the winding imbalance.
Two-Phase (Hi-Torque)
• Energizes 2 phases at the same time.
• Offers an improved torque-speed result and greater holding torque.
U?
1-PHASE
PPS = 100
CLK
FA
/FA
FB
/FB
U?
2-PHASE
PPS = 100
CLK
FA
/FA
FB
/FB
U?
HALF-STEP
PPS = 100
CLK
FA
/FA
FB
/FB
Half-Step
• Doubles the stepping resolution of the motor.
• Reduces motor resonance which could cause a motor to stall at a resonant frequency.
• Please note that this sequence is 8 steps.
Input PPS (Pulse Per Second) as a clock pulse speed(frequency).
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
One-Phase Sequence
Copyright (C) Bee Technologies2013 32
Time
0s 40ms 80ms
V(/FB)
0V
5.0V
SEL>>
V(FB)
0V
2.5V
5.0V
V(/FA)
0V
2.5V
5.0V
V(FA)
0V
2.5V
5.0V
V(CLK)
0V
2.5V
5.0V
ON
ON
ON
ON
Clock
Phase A
Phase /A
Phase B
Phase /B
1 Sequence
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
Time
0s 40ms 80ms
V(/FB)
0V
5.0V
SEL>>
V(FB)
0V
2.5V
5.0V
V(/FA)
0V
2.5V
5.0V
V(FA)
0V
2.5V
5.0V
V(CLK)
0V
2.5V
5.0V
Two-Phase Sequence
Copyright (C) Bee Technologies2013 33
ON
ON
ON
ON
1 Sequence
Clock
Phase A
Phase /A
Phase B
Phase /B
ON
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
Time
0s 80ms 160ms
V(/FB)
0V
5.0V
SEL>>
V(FB)
0V
2.5V
5.0V
V(/FA)
0V
2.5V
5.0V
V(FA)
0V
2.5V
5.0V
V(CLK)
0V
2.0V
4.0V
Half-Step Sequence
Copyright (C) Bee Technologies2013 34
ON
ON
ON
1 Sequence
Clock
Phase A
Phase /A
Phase B
Phase /B
ON
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
6.Hysteresis-Based Current Controller
Copyright (C) Bee Technologies2013 35
• Controlled by the signal from the
microcontroller.
• Generate the switch (MOSFET) drive signal by
comparing the measured phase current with
their references.
Input the reference value at the I_SET (e.g. I_SET=0.5A)
to set the regulated current level. The hysteresis
current value is set at the VHYS (e.g. VHYS=0.1A).
U2
AND
+
-
REF
-
+
FB.
U1
HYS_I-CTRL
I_SET = 0.5
VHYS = 0.1
Ctrl_A
FA
B
Bcom
A
/B
Acom
/A
U1
UNI-POLAR_STEP_MOTR
L = 2.5M
R = 4.2
U8
AND
U9
AND
R1
1k
0
FB
DIODE
D1
DIODE
D2
DIODE
D3
DIODE
D4
PARAMETERS:
I_SET = 0.5
VHYS = 0.1
B
0
PARAMETERS:
RON = 10m
0
U10
1-PHASE
PPS = 100
CLK
FA
/FA
FB
/FB
0
0
U6
AND
FA
+
-
REF
-
+
FB.
U2
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/FA
/FB
VCC
+
-
REF
-
+
FB.
U3
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
+
-
REF
-
+
FB.
U4
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/B
/A
+
-
+
-
S4
S
RON = {RON}
A
+
-
REF
-
+
FB.
U5
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
CLK
+
-
+
-
S1
S
RON = {RON}
+
-
+
-
S2
S
RON = {RON}
+
-
+
-
S3
S
RON = {RON}
VCC
VCC VCC
0
VCC
Vcc
12
VCC
VCC
U7
AND
One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
Copyright (C) Bee Technologies2013 36
*Analysis directives:
.TRAN 0 40ms 0 10u
One-Phase Step
Sequence
Generator (100
pps)
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
Time
0s 10ms 20ms 30ms 40ms
1 V(/FB) 2 -I(U1:/B)
0V
2.5V
5.0V
1
0A
0.5A
1.0A
2
SEL>>SEL>>
1 V(FB) 2 -I(U1:B)
0V
2.5V
5.0V
1
0A
0.5A
1.0A
2
>>
1 V(/FA) 2 -I(U1:/A)
0V
2.5V
5.0V
1
0A
0.5A
1.0A
2
>>
1 V(FA) 2 -I(U1:A)
0V
2.5V
5.0V
1
0A
0.5A
1.0A
2
>>
V(CLK)
0V
2.5V
5.0V
One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
Copyright (C) Bee Technologies2013 37
Clock
Phase A Current
I_SET=0.5A
I_HYS=0.1A
Phase /A Current
Phase B Current
Phase /B Current
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
B
Bcom
A
/B
Acom
/A
U1
UNI-POLAR_STEP_MOTR
L = 2.5M
R = 4.2
U8
AND
U9
AND
R1
1k
0
FB
DIODE
D1
DIODE
D2
DIODE
D3
DIODE
D4
PARAMETERS:
I_SET = 0.5
VHYS = 0.1
B
0
PARAMETERS:
RON = 10m
0
0
0
U6
AND
FA
+
-
REF
-
+
FB.
U2
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/FA
/FB
VCC
+
-
REF
-
+
FB.
U3
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
+
-
REF
-
+
FB.
U4
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/B
/A
+
-
+
-
S4
S
RON = {RON}
A
+
-
REF
-
+
FB.
U5
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
CLK
+
-
+
-
S1
S
RON = {RON}
+
-
+
-
S2
S
RON = {RON}
+
-
+
-
S3
S
RON = {RON}
VCC
VCC VCC
0
VCC
Vcc
12
VCC
VCC
U7
AND
U10
2-PHASE
PPS = 100
CLK
FA
/FA
FB
/FB
Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
Copyright (C) Bee Technologies2013 38
*Analysis directives:
.TRAN 0 40ms 0 10u SKIPBP
.OPTIONS ITL4= 40
Two-Phase Step
Sequence
Generator (100
pps)
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
Time
0s 10ms 20ms 30ms 40ms
1 V(/FB) 2 -I(U1:/B)
0V
2.5V
5.0V
1
0A
0.5A
1.0A
2
SEL>>SEL>>
1 V(FB) 2 -I(U1:B)
0V
2.5V
5.0V
1
0A
0.5A
1.0A
2
>>
1 V(/FA) 2 -I(U1:/A)
0V
2.5V
5.0V
1
0A
0.5A
1.0A
2
>>
1 V(FA) 2 -I(U1:A)
0V
2.5V
5.0V
1
0A
0.5A
1.0A
2
>>
V(CLK)
0V
2.5V
5.0V
Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
Copyright (C) Bee Technologies2013 39
Clock
Phase A Current
I_SET=0.5A
I_HYS=0.1A
Phase /A Current
Phase B Current
Phase /B Current
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
B
Bcom
A
/B
Acom
/A
U1
UNI-POLAR_STEP_MOTR
L = 2.5M
R = 4.2
U8
AND
U9
AND
R1
1k
0
FB
DIODE
D1
DIODE
D2
DIODE
D3
DIODE
D4
PARAMETERS:
I_SET = 0.5
VHYS = 0.1
B
0
PARAMETERS:
RON = 10m
0
0
0
U6
AND
FA
+
-
REF
-
+
FB.
U2
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/FA
/FB
VCC
+
-
REF
-
+
FB.
U3
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
+
-
REF
-
+
FB.
U4
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/B
/A
+
-
+
-
S4
S
RON = {RON}
A
+
-
REF
-
+
FB.
U5
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
CLK
+
-
+
-
S1
S
RON = {RON}
+
-
+
-
S2
S
RON = {RON}
+
-
+
-
S3
S
RON = {RON}
VCC
VCC VCC
0
VCC
Vcc
12
VCC
VCC
U7
AND
U10
HALF-STEP
PPS = 100
CLK
FA
/FA
FB
/FB
Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
Copyright (C) Bee Technologies2013 40
*Analysis directives:
.TRAN 0 80ms 0 10u SKIPBP
.OPTIONS ITL4= 40
Half-Phase Step
Sequence
Generator (100
pps)
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
Time
0s 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms
1 V(/FB) 2 -I(U1:/B)
0V
2.5V
5.0V
1
0A
0.5A
1.0A
2
SEL>>SEL>>
1 V(FB) 2 -I(U1:B)
0V
2.5V
5.0V
1
0A
0.5A
1.0A
2
>>
1 V(/FA) 2 -I(U1:/A)
0V
2.5V
5.0V
1
0A
0.5A
1.0A
2
>>
1 V(FA) 2 -I(U1:A)
0V
2.5V
5.0V
1
0A
0.5A
1.0A
2
>>
V(CLK)
0V
2.5V
5.0V
Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
Copyright (C) Bee Technologies2013 41
Clock
Phase A Current
I_SET=0.5A
I_HYS=0.1A
Phase /A Current
Phase B Current
Phase /B Current
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
B
Bcom
A
/B
Acom
/A
U1
UNI-POLAR_STEP_MOTR
L = 2.5M
R = 4.2
U8
AND
U9
AND
R1
1k
0
FB
DIODE
D1
DIODE
D2
DIODE
D3
DIODE
D4
PARAMETERS:
I_SET = 0.5
VHYS = 0.1
B
0
PARAMETERS:
RON = 10m
0
U10
1-PHASE
PPS = 100
CLK
FA
/FA
FB
/FB
0
0
U6
AND
FA
+
-
REF
-
+
FB.
U2
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/FA
/FB
VCC
+
-
REF
-
+
FB.
U3
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
+
-
REF
-
+
FB.
U4
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/B
/A
+
-
+
-
S4
S
RON = {RON}
A
+
-
REF
-
+
FB.
U5
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
CLK
+
-
+
-
S1
S
RON = {RON}
+
-
+
-
S2
S
RON = {RON}
+
-
+
-
S3
S
RON = {RON}
VCC
VCC VCC
0
VCC
Vcc
12
VCC
VCC
U7
AND
W
W
Drive Circuit Efficiency (%)
Copyright (C) Bee Technologies2013 42
*Analysis directives:
.TRAN 0 40ms 0ms 10u SKIPBP
.STEP PARAM RON LIST 10m, 100m, 1
.OPTIONS ITL4= 40
Half-Phase Step
Sequence
Generator (100
pps)
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
Time
10ms 15ms 20ms 25ms 30ms 35ms 40ms
100* AVG(W(U1))/(-AVG(W(Vcc)))
94
96
98
100
Drive Circuit Efficiency (%)
Copyright (C) Bee Technologies2013 43
at switches Ron = 10m, (99.6%)
at switches Ron = 100m, (99.3%)
at switches Ron = 1, (95.9%)
Note: Add trace 100*AVG(W(U1))/(-AVG(W(Vcc))) for the Efficiency.
3.ステッピングモーター駆動制御シミュレーション
3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
Copyright (C) Bee Technologies2013 44
Bipolar Stepping Motor Drive Circuit Simulation
PSpice Version
VCC
0
Vcc
12
A
/A
B/B
U1
BI-POLAR_STEP_MOTR
L = 10m
R = 8.4
OU
I
OL
U2
GDRV
+
-
+
-
S7
S
VCC
0
DIODE
D7
/BU
+
-
+
-
S8
S
DIODE
D8
/BL
0
OU
I
OL
U3
GDRV
OU
I
OL
U5
GDRV
B
+
-
REF
-
+
FB.
U11
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/FB
+
-
REF
-
+
FB.
U7
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
FA
+
-
+
-
S5
S
VCC
0
DIODE
D5
BU
+
-
+
-
S6
S
DIODE
D6
BL
0
PARAMETERS:
RON = 10m
+
-
+
-
S1
S
VCC
PARAMETERS:
I_SET = 0.5
VHYS = 0.1
0
+
-
REF
-
+
FB.
U13
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
DIODE
D1
AU
+
-
+
-
S2
S
DIODE
D2
AL
A
0
+
-
REF
-
+
FB.
U9
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
+
-
+
-
S3
S
VCC
0
DIODE
D3
/AU
+
-
+
-
S4
S
DIODE
D4
/AL
0
U8
AND
U10
AND
U12
AND
U14
AND
/FA
R1
1k
FB
CLK
0
OU
I
OL
U4
GDRV
/A
/B
U15
1-PHASE
PPS = 100
CLK
FA
/FA
FB
/FB
3.ステッピングモーター駆動制御シミュレーション
3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
Unipolar Stepping Motor Drive Circuit
Contents
1. Concept of Simulation
2. Unipolar Stepping Motor Drive Circuit
3. Unipolar Stepping Motor
4. Switches
5. Unipolar Stepping Motor Drive Circuit (Example)
7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
6. Drive Circuit Efficiency
Copyright (C) Bee Technologies2013 45
3.ステッピングモーター駆動制御シミュレーション
3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
Copyright (C) Bee Technologies2013 46
Driver Unit:
(e.g. Hysteresis-
Based Controller)
Parameter:
• I_SET
• HYS
Switches
(e.g. FET,
Diode)
Parameter:
• Ron
Stepping
Motor
Parameter:
• L
• R
Control Unit
(e.g. Microcontroller)
Sequence:
• One-Phase
• Two-Phase
• Half-Step
U?
1-PHASE
PPS = 100
CLK
FA
/FA
FB
/FB
U?
2-PHASE
PPS = 100
CLK
FA
/FA
FB
/FB
U?
HALF-STEP
PPS = 100
CLK
FA
/FA
FB
/FB
Models:
Block Diagram:
DIODE
D1
0
+
-
+
-
S1
S
RON = 10m
VCC
Ctrl_A A
Concept of Simulation
U2
AND
+
-
REF
-
+
FB.
U1
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
Ctrl_A
FA
A
/A
B/B
U?
BI-POLAR_STEP_MOTR
L = 10m
R = 8.4
3.ステッピングモーター駆動制御シミュレーション
3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
Signal generator Hysteresis Based
Current Controller VCC
0
Vcc
12
A
/A
B/B
U1
BI-POLAR_STEP_MOTR
L = 10m
R = 8.4
OU
I
OL
U2
GDRV
+
-
+
-
S7
S
VCC
0
DIODE
D7
/BU
+
-
+
-
S8
S
DIODE
D8
/BL
0
OU
I
OL
U3
GDRV
OU
I
OL
U5
GDRV
B
+
-
REF
-
+
FB.
U11
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/FB
+
-
REF
-
+
FB.
U7
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
FA
+
-
+
-
S5
S
VCC
0
DIODE
D5
BU
+
-
+
-
S6
S
DIODE
D6
BL
0
PARAMETERS:
RON = 10m
+
-
+
-
S1
S
VCC
PARAMETERS:
I_SET = 0.5
VHYS = 0.1
0
+
-
REF
-
+
FB.
U13
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
DIODE
D1
AU
+
-
+
-
S2
S
DIODE
D2
AL
A
0
+
-
REF
-
+
FB.
U9
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
+
-
+
-
S3
S
VCC
0
DIODE
D3
/AU
+
-
+
-
S4
S
DIODE
D4
/AL
0
U8
AND
U10
AND
U12
AND
U14
AND
/FA
R1
1k
FB
CLK
0
OU
I
OL
U4
GDRV
/A
/B
U15
1-PHASE
PPS = 100
CLK
FA
/FA
FB
/FB
Bipolar Stepping Motor Drive Circuit
Copyright (C) Bee Technologies2013 47
Bipolar Stepping Motor Supply VoltageH-Bridge Switches (Driver)
3.ステッピングモーター駆動制御シミュレーション
3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
Bipolar Stepping Motor
Copyright (C) Bee Technologies2013 48
• The electrical equivalent circuit of each phase consists of an
inductance of the phase winding series with resistance.
• The inductance is ideal (without saturation characteristics
and the mutual inductance between phases)
• The motor back EMF is set as zero to simplified the model
parameters extraction.
Input the inductance and resistance values (parameter: L, R) of the
stepping motor, that are usually provided by the manufacturer datasheet,
to generally model the phase winding.
A
/A
B/B
U?
BI-POLAR_STEP_MOTR
L = 10m
R = 8.4
3.ステッピングモーター駆動制御シミュレーション
3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
Switches
Copyright (C) Bee Technologies2013 49
• A near-ideal DIODE can be modeled by using spice
primitive model (D), which parameter: N=0.01
RS=0.
• A near-ideal MOSFET can be modeled by using PSpice
VSWITCH that is voltage controlled switch.
• MOSFETs are used as a H-Bridge.
The parameter RON represents Rds(on)
characteristics of MOSFET, that are usually
provide by the manufacturer datasheet. The
value could be about 10m to 10 ohm.
OU
I
OL
U2
GDRV
OU
I
OL
U3
GDRV
+
-
+
-
S1
S
0
VCC
DIODE
D1
AU
+
-
+
-
S2
S
RON = 10m
DIODE
D2
AL
0
+
-
+
-
S3
S
VCC
0
DIODE
D3
/AU
+
-
+
-
S4
S
DIODE
D4
/AL
0
Ctrl_A
Ctrl_/A
A
/A
3.ステッピングモーター駆動制御シミュレーション
3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
VCC
0
Vcc
12
A
/A
B/B
U1
BI-POLAR_STEP_MOTR
L = 10m
R = 8.4
OU
I
OL
U2
GDRV
+
-
+
-
S7
S
VCC
0
DIODE
D7
/BU
+
-
+
-
S8
S
DIODE
D8
/BL
0
OU
I
OL
U3
GDRV
OU
I
OL
U5
GDRV
B
+
-
REF
-
+
FB.
U11
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/FB
+
-
REF
-
+
FB.
U7
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
FA
+
-
+
-
S5
S
VCC
0
DIODE
D5
BU
+
-
+
-
S6
S
DIODE
D6
0
BL
PARAMETERS:
RON = 10m
+
-
+
-
S1
S
0
VCC
PARAMETERS:
I_SET = 0.5
VHYS = 0.1
+
-
REF
-
+
FB.
U13
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
DIODE
D1
AU
+
-
+
-
S2
S
DIODE
D2
AL
0
A
+
-
REF
-
+
FB.
U9
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
+
-
+
-
S3
S
VCC
0
DIODE
D3
/AU
+
-
+
-
S4
S
DIODE
D4
/AL
0
U8
AND
U10
AND
U12
AND
U14
AND
/FA
R1
1k
CLK
0
FB
OU
I
OL
U4
GDRV
/A
/B
U15
1-PHASE
PPS = 100
CLK
FA
/FA
FB
/FB
One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
Copyright (C) Bee Technologies2013 50
*Analysis directives:
.TRAN 0 80ms 0 10u SKIPBP
.OPTIONS ITL4= 40
One-Phase Step
Sequence Generator
(100 pps)
3.ステッピングモーター駆動制御シミュレーション
3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
Time
0s 20ms 40ms 60ms 80ms
1 V(/FB) 2 I(U1:/B)
0V
2.5V
5.0V
1
0A
500mA2
SEL>>SEL>>
1 V(FB) 2 I(U1:B)
0V
2.5V
5.0V
1
0A
500mA2
>>
1 V(/FA) 2 I(U1:/A)
0V
2.5V
5.0V
1
0A
500mA2
>>
1 V(FA) 2 I(U1:A)
0V
2.5V
5.0V
1
0A
500mA2
>>
V(CLK)
0V
2.5V
5.0V
One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
Copyright (C) Bee Technologies2013 51
Clock
Phase A Current
I_SET=0.5A
I_HYS=0.1A
Phase /A Current
Phase B Current
Phase /B Current
3.ステッピングモーター駆動制御シミュレーション
3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
Copyright (C) Bee Technologies2013 52
*Analysis directives:
.TRAN 0 80ms 0 10u SKIPBP
.OPTIONS ITL4= 40
VCC
0
Vcc
12
A
/A
B/B
U1
BI-POLAR_STEP_MOTR
L = 10m
R = 8.4
OU
I
OL
U2
GDRV
+
-
+
-
S7
S
VCC
0
DIODE
D7
/BU
+
-
+
-
S8
S
DIODE
D8
/BL
0
OU
I
OL
U3
GDRV
OU
I
OL
U5
GDRV
B
+
-
REF
-
+
FB.
U11
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/FB
+
-
REF
-
+
FB.
U7
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
FA
+
-
+
-
S5
S
VCC
0
DIODE
D5
BU
+
-
+
-
S6
S
DIODE
D6
0
BL
PARAMETERS:
RON = 10m
+
-
+
-
S1
S
0
VCC
PARAMETERS:
I_SET = 0.5
VHYS = 0.1
+
-
REF
-
+
FB.
U13
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
DIODE
D1
AU
+
-
+
-
S2
S
DIODE
D2
AL
0
A
+
-
REF
-
+
FB.
U9
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
+
-
+
-
S3
S
VCC
0
DIODE
D3
/AU
+
-
+
-
S4
S
DIODE
D4
/AL
0
U8
AND
U10
AND
U12
AND
U14
AND
/FA
R1
1k
CLK
0
FB
OU
I
OL
U4
GDRV
/A
/B
U15
2-PHASE
PPS = 100
CLK
FA
/FA
FB
/FB
One-Phase Step
Sequence Generator
(100 pps)
3.ステッピングモーター駆動制御シミュレーション
3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
Time
0s 20ms 40ms 60ms 80ms
1 V(/FB) 2 I(U1:/B)
0V
2.5V
5.0V
1
0A
500mA2
SEL>>SEL>>
1 V(FB) 2 I(U1:B)
0V
2.5V
5.0V
1
0A
500mA2
>>
1 V(/FA) 2 I(U1:/A)
0V
2.5V
5.0V
1
0A
500mA2
>>
1 V(FA) 2 I(U1:A)
0V
2.5V
5.0V
1
0A
500mA2
>>
V(CLK)
0V
2.5V
5.0V
One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
Copyright (C) Bee Technologies2013 53
Clock
Phase A Current
I_SET=0.5A
I_HYS=0.1A
Phase /A Current
Phase B Current
Phase /B Current
3.ステッピングモーター駆動制御シミュレーション
3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
VCC
0
Vcc
12
A
/A
B/B
U1
BI-POLAR_STEP_MOTR
L = 10m
R = 8.4
OU
I
OL
U2
GDRV
+
-
+
-
S7
S
VCC
0
DIODE
D7
U15
HALF-STEP
PPS = 100
CLK
FA
/FA
FB
/FB
/BU
+
-
+
-
S8
S
DIODE
D8
/BL
0
OU
I
OL
U3
GDRV
OU
I
OL
U5
GDRV
B
+
-
REF
-
+
FB.
U11
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/FB
+
-
REF
-
+
FB.
U7
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
FA
+
-
+
-
S5
S
VCC
0
DIODE
D5
BU
+
-
+
-
S6
S
DIODE
D6
0
BL
PARAMETERS:
RON = 10m
+
-
+
-
S1
S
0
VCC
PARAMETERS:
I_SET = 0.5
VHYS = 0.1
+
-
REF
-
+
FB.
U13
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
DIODE
D1
AU
+
-
+
-
S2
S
DIODE
D2
AL
0
A
+
-
REF
-
+
FB.
U9
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
+
-
+
-
S3
S
VCC
0
DIODE
D3
/AU
+
-
+
-
S4
S
DIODE
D4
/AL
0
U8
AND
U10
AND
U12
AND
U14
AND
/FA
R1
1k
CLK
0
FB
OU
I
OL
U4
GDRV
/A
/B
Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
Copyright (C) Bee Technologies2013 54
*Analysis directives:
.TRAN 0 160ms 0 10u SKIPBP
.OPTIONS ITL4= 40
One-Phase Step
Sequence Generator
(100 pps)
3.ステッピングモーター駆動制御シミュレーション
3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
Time
0s 40ms 80ms 120ms 160ms
1 V(/FB) 2 I(U1:/B)
0V
2.5V
5.0V
1
0A
500mA2
SEL>>SEL>>
1 V(FB) 2 I(U1:B)
0V
2.5V
5.0V
1
0A
500mA2
>>
1 V(/FA) 2 I(U1:/A)
0V
2.5V
5.0V
1
0A
500mA2
>>
1 V(FA) 2 I(U1:A)
0V
2.5V
5.0V
1
0A
500mA2
>>
V(CLK)
0V
2.5V
5.0V
One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A
Copyright (C) Bee Technologies2013 55
Clock
Phase A Current
I_SET=0.5A
I_HYS=0.1A
Phase /A Current
Phase B Current
Phase /B Current
3.ステッピングモーター駆動制御シミュレーション
3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
VCC
0
Vcc
12
A
/A
B/B
U1
BI-POLAR_STEP_MOTR
L = 10m
R = 8.4
OU
I
OL
U2
GDRV
+
-
+
-
S7
S
VCC
0
DIODE
D7
/BU
+
-
+
-
S8
S
DIODE
D8
/BL
0
OU
I
OL
U3
GDRV
OU
I
OL
U5
GDRV
B
+
-
REF
-
+
FB.
U11
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
/FB
+
-
REF
-
+
FB.
U7
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
FA
+
-
+
-
S5
S
VCC
0
DIODE
D5
BU
+
-
+
-
S6
S
DIODE
D6
0
BL
PARAMETERS:
RON = 10m
+
-
+
-
S1
S
0
VCC
PARAMETERS:
I_SET = 0.5
VHYS = 0.1
+
-
REF
-
+
FB.
U13
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
DIODE
D1
AU
+
-
+
-
S2
S
DIODE
D2
AL
0
A
+
-
REF
-
+
FB.
U9
HYS_I-CTRL
I_SET = {I_SET}
VHYS = {VHYS}
+
-
+
-
S3
S
VCC
0
DIODE
D3
/AU
+
-
+
-
S4
S
DIODE
D4
/AL
0
U8
AND
U10
AND
U12
AND
U14
AND
/FA
R1
1k
CLK
0
FB
OU
I
OL
U4
GDRV
/A
/B
U15
2-PHASE
PPS = 100
CLK
FA
/FA
FB
/FB
Drive Circuit Efficiency (%)
Copyright (C) Bee Technologies2013 56
*Analysis directives:
.TRAN 0 80ms 0 10u SKIPBP
.STEP PARAM RON LIST 10m, 100m, 1
.OPTIONS ITL4= 40
One-Phase Step
Sequence Generator
(100 pps)
3.ステッピングモーター駆動制御シミュレーション
3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
Time
10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms
100*AVG(W(U1))/(-AVG(W(Vcc)))
85
90
95
100
Drive Circuit Efficiency (%)
Copyright (C) Bee Technologies2013 57
at switches Ron = 10m, (99.7%)
at switches Ron = 100m, (99.8%)
at switches Ron = 1, (86%)
Note: Add trace 100*AVG(W(U1))/(-AVG(W(Vcc))) for the Efficiency.
3.ステッピングモーター駆動制御シミュレーション
3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
Copyright (C) Bee Technologies2013 58
4.モーター駆動制御関連のデバイスモデリングサービスのご案内
http://ow.ly/kbfi2
http://ow.ly/kbftS
http://ow.ly/kbfCy
Copyright (C) Bee Technologies2013 59
質疑応答

More Related Content

What's hot

第6回 KAIM 金沢人工知能勉強会 人工知能を知るために脳を知る
第6回 KAIM 金沢人工知能勉強会 人工知能を知るために脳を知る第6回 KAIM 金沢人工知能勉強会 人工知能を知るために脳を知る
第6回 KAIM 金沢人工知能勉強会 人工知能を知るために脳を知る
tomitomi3 tomitomi3
 
医療機関へのサイバー攻撃の現状と危機管理対応、将来構想(提言)
医療機関へのサイバー攻撃の現状と危機管理対応、将来構想(提言)医療機関へのサイバー攻撃の現状と危機管理対応、将来構想(提言)
医療機関へのサイバー攻撃の現状と危機管理対応、将来構想(提言)
HealthcareBitStation
 
Polycopié Electronique de puissance avec Matlab Simulink.pdf
Polycopié Electronique de puissance avec Matlab Simulink.pdfPolycopié Electronique de puissance avec Matlab Simulink.pdf
Polycopié Electronique de puissance avec Matlab Simulink.pdf
YoussefOumhella
 
金融理論における深層学習の活用について
金融理論における深層学習の活用について金融理論における深層学習の活用について
金融理論における深層学習の活用について
Kodai Ito
 
Flyway使いたい
Flyway使いたいFlyway使いたい
Flyway使いたい
fourside
 
POLYNEUROPATHY.pptx
POLYNEUROPATHY.pptxPOLYNEUROPATHY.pptx
POLYNEUROPATHY.pptx
Nerusu sai priyanka
 
統計的因果推論からCausalMLまで走り抜けるスライド
統計的因果推論からCausalMLまで走り抜けるスライド統計的因果推論からCausalMLまで走り抜けるスライド
統計的因果推論からCausalMLまで走り抜けるスライド
fusha
 
PostgreSQL10を導入!大規模データ分析事例からみるDWHとしてのPostgreSQL活用のポイント
PostgreSQL10を導入!大規模データ分析事例からみるDWHとしてのPostgreSQL活用のポイントPostgreSQL10を導入!大規模データ分析事例からみるDWHとしてのPostgreSQL活用のポイント
PostgreSQL10を導入!大規模データ分析事例からみるDWHとしてのPostgreSQL活用のポイント
NTT DATA OSS Professional Services
 
How to use in R model-agnostic data explanation with DALEX & iml
How to use in R model-agnostic data explanation with DALEX & imlHow to use in R model-agnostic data explanation with DALEX & iml
How to use in R model-agnostic data explanation with DALEX & iml
Satoshi Kato
 
Amplification Bipolaire
Amplification BipolaireAmplification Bipolaire
Amplification Bipolaireinali123
 
Variants of AIDP & CIDP.pptx
Variants of AIDP & CIDP.pptxVariants of AIDP & CIDP.pptx
Variants of AIDP & CIDP.pptx
NeurologyKota
 
Fstm deust mip-e141_cee_chap_v_les filtres passifs
Fstm deust mip-e141_cee_chap_v_les filtres passifsFstm deust mip-e141_cee_chap_v_les filtres passifs
Fstm deust mip-e141_cee_chap_v_les filtres passifs
abdennaceur_baghdad
 
データサイエンス概論第一 6 異常検出
データサイエンス概論第一 6 異常検出データサイエンス概論第一 6 異常検出
データサイエンス概論第一 6 異常検出
Seiichi Uchida
 
第10章後半「ブースティングと加法的木」
第10章後半「ブースティングと加法的木」第10章後半「ブースティングと加法的木」
第10章後半「ブースティングと加法的木」
T T
 
DB2の使い方 管理ツール編
DB2の使い方 管理ツール編DB2の使い方 管理ツール編
DB2の使い方 管理ツール編
Akira Shimosako
 
アクセスプラン(実行計画)の読み方入門
アクセスプラン(実行計画)の読み方入門アクセスプラン(実行計画)の読み方入門
アクセスプラン(実行計画)の読み方入門
Akira Shimosako
 
Neuromuscular disorders in icu
Neuromuscular disorders in icuNeuromuscular disorders in icu
Neuromuscular disorders in icu
kaladhar s sheshala
 
Bioconductorも便利ですよ ~ConsensusClusterPlus(CCP)の紹介~
Bioconductorも便利ですよ ~ConsensusClusterPlus(CCP)の紹介~Bioconductorも便利ですよ ~ConsensusClusterPlus(CCP)の紹介~
Bioconductorも便利ですよ ~ConsensusClusterPlus(CCP)の紹介~
Satoshi Fujii
 
並列データベースシステムの概念と原理
並列データベースシステムの概念と原理並列データベースシステムの概念と原理
並列データベースシステムの概念と原理
Makoto Yui
 
大量のデータ処理や分析に使えるOSS Apache Sparkのご紹介(Open Source Conference 2020 Online/Kyoto ...
大量のデータ処理や分析に使えるOSS Apache Sparkのご紹介(Open Source Conference 2020 Online/Kyoto ...大量のデータ処理や分析に使えるOSS Apache Sparkのご紹介(Open Source Conference 2020 Online/Kyoto ...
大量のデータ処理や分析に使えるOSS Apache Sparkのご紹介(Open Source Conference 2020 Online/Kyoto ...
NTT DATA Technology & Innovation
 

What's hot (20)

第6回 KAIM 金沢人工知能勉強会 人工知能を知るために脳を知る
第6回 KAIM 金沢人工知能勉強会 人工知能を知るために脳を知る第6回 KAIM 金沢人工知能勉強会 人工知能を知るために脳を知る
第6回 KAIM 金沢人工知能勉強会 人工知能を知るために脳を知る
 
医療機関へのサイバー攻撃の現状と危機管理対応、将来構想(提言)
医療機関へのサイバー攻撃の現状と危機管理対応、将来構想(提言)医療機関へのサイバー攻撃の現状と危機管理対応、将来構想(提言)
医療機関へのサイバー攻撃の現状と危機管理対応、将来構想(提言)
 
Polycopié Electronique de puissance avec Matlab Simulink.pdf
Polycopié Electronique de puissance avec Matlab Simulink.pdfPolycopié Electronique de puissance avec Matlab Simulink.pdf
Polycopié Electronique de puissance avec Matlab Simulink.pdf
 
金融理論における深層学習の活用について
金融理論における深層学習の活用について金融理論における深層学習の活用について
金融理論における深層学習の活用について
 
Flyway使いたい
Flyway使いたいFlyway使いたい
Flyway使いたい
 
POLYNEUROPATHY.pptx
POLYNEUROPATHY.pptxPOLYNEUROPATHY.pptx
POLYNEUROPATHY.pptx
 
統計的因果推論からCausalMLまで走り抜けるスライド
統計的因果推論からCausalMLまで走り抜けるスライド統計的因果推論からCausalMLまで走り抜けるスライド
統計的因果推論からCausalMLまで走り抜けるスライド
 
PostgreSQL10を導入!大規模データ分析事例からみるDWHとしてのPostgreSQL活用のポイント
PostgreSQL10を導入!大規模データ分析事例からみるDWHとしてのPostgreSQL活用のポイントPostgreSQL10を導入!大規模データ分析事例からみるDWHとしてのPostgreSQL活用のポイント
PostgreSQL10を導入!大規模データ分析事例からみるDWHとしてのPostgreSQL活用のポイント
 
How to use in R model-agnostic data explanation with DALEX & iml
How to use in R model-agnostic data explanation with DALEX & imlHow to use in R model-agnostic data explanation with DALEX & iml
How to use in R model-agnostic data explanation with DALEX & iml
 
Amplification Bipolaire
Amplification BipolaireAmplification Bipolaire
Amplification Bipolaire
 
Variants of AIDP & CIDP.pptx
Variants of AIDP & CIDP.pptxVariants of AIDP & CIDP.pptx
Variants of AIDP & CIDP.pptx
 
Fstm deust mip-e141_cee_chap_v_les filtres passifs
Fstm deust mip-e141_cee_chap_v_les filtres passifsFstm deust mip-e141_cee_chap_v_les filtres passifs
Fstm deust mip-e141_cee_chap_v_les filtres passifs
 
データサイエンス概論第一 6 異常検出
データサイエンス概論第一 6 異常検出データサイエンス概論第一 6 異常検出
データサイエンス概論第一 6 異常検出
 
第10章後半「ブースティングと加法的木」
第10章後半「ブースティングと加法的木」第10章後半「ブースティングと加法的木」
第10章後半「ブースティングと加法的木」
 
DB2の使い方 管理ツール編
DB2の使い方 管理ツール編DB2の使い方 管理ツール編
DB2の使い方 管理ツール編
 
アクセスプラン(実行計画)の読み方入門
アクセスプラン(実行計画)の読み方入門アクセスプラン(実行計画)の読み方入門
アクセスプラン(実行計画)の読み方入門
 
Neuromuscular disorders in icu
Neuromuscular disorders in icuNeuromuscular disorders in icu
Neuromuscular disorders in icu
 
Bioconductorも便利ですよ ~ConsensusClusterPlus(CCP)の紹介~
Bioconductorも便利ですよ ~ConsensusClusterPlus(CCP)の紹介~Bioconductorも便利ですよ ~ConsensusClusterPlus(CCP)の紹介~
Bioconductorも便利ですよ ~ConsensusClusterPlus(CCP)の紹介~
 
並列データベースシステムの概念と原理
並列データベースシステムの概念と原理並列データベースシステムの概念と原理
並列データベースシステムの概念と原理
 
大量のデータ処理や分析に使えるOSS Apache Sparkのご紹介(Open Source Conference 2020 Online/Kyoto ...
大量のデータ処理や分析に使えるOSS Apache Sparkのご紹介(Open Source Conference 2020 Online/Kyoto ...大量のデータ処理や分析に使えるOSS Apache Sparkのご紹介(Open Source Conference 2020 Online/Kyoto ...
大量のデータ処理や分析に使えるOSS Apache Sparkのご紹介(Open Source Conference 2020 Online/Kyoto ...
 

Viewers also liked

3相ACモーターのスパイスモデル作成に必要な情報
3相ACモーターのスパイスモデル作成に必要な情報3相ACモーターのスパイスモデル作成に必要な情報
3相ACモーターのスパイスモデル作成に必要な情報
Tsuyoshi Horigome
 
デバイスモデリングの観点から見たACモーターの区分
デバイスモデリングの観点から見たACモーターの区分デバイスモデリングの観点から見たACモーターの区分
デバイスモデリングの観点から見たACモーターの区分
Tsuyoshi Horigome
 
トルク及び回転数の表示方法について(PSpice)
トルク及び回転数の表示方法について(PSpice)トルク及び回転数の表示方法について(PSpice)
トルク及び回転数の表示方法について(PSpice)
Tsuyoshi Horigome
 
3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要
Tsuyoshi Horigome
 
LTspiceを活用した3相ACモータドライブ回路シミュレーション
LTspiceを活用した3相ACモータドライブ回路シミュレーションLTspiceを活用した3相ACモータドライブ回路シミュレーション
LTspiceを活用した3相ACモータドライブ回路シミュレーション
Tsuyoshi Horigome
 
モーター駆動制御回路シミュレーション導入のソリューション(ビー・テクノロジー)
モーター駆動制御回路シミュレーション導入のソリューション(ビー・テクノロジー)モーター駆動制御回路シミュレーション導入のソリューション(ビー・テクノロジー)
モーター駆動制御回路シミュレーション導入のソリューション(ビー・テクノロジー)
Tsuyoshi Horigome
 
SPICE Model of TA7291P
SPICE Model of TA7291PSPICE Model of TA7291P
SPICE Model of TA7291P
Tsuyoshi Horigome
 
モーターのアプリケーション回路 シミュレーション 株式会社ビー・テクノロジー
モーターのアプリケーション回路 シミュレーション 株式会社ビー・テクノロジーモーターのアプリケーション回路 シミュレーション 株式会社ビー・テクノロジー
モーターのアプリケーション回路 シミュレーション 株式会社ビー・テクノロジーTsuyoshi Horigome
 
超音波モーターのSPICEモデル
超音波モーターのSPICEモデル超音波モーターのSPICEモデル
超音波モーターのSPICEモデル
Tsuyoshi Horigome
 
RS-540の特性図
RS-540の特性図RS-540の特性図
RS-540の特性図
Tsuyoshi Horigome
 
新製品情報 シンプルモデル(モーターのスパイスモデル関連)
新製品情報 シンプルモデル(モーターのスパイスモデル関連)新製品情報 シンプルモデル(モーターのスパイスモデル関連)
新製品情報 シンプルモデル(モーターのスパイスモデル関連)
Tsuyoshi Horigome
 
サーボモーターの性能指標
サーボモーターの性能指標サーボモーターの性能指標
サーボモーターの性能指標
Tsuyoshi Horigome
 
モーターのアプリケーション回路シミュレーションのソリューション
モーターのアプリケーション回路シミュレーションのソリューションモーターのアプリケーション回路シミュレーションのソリューション
モーターのアプリケーション回路シミュレーションのソリューション
Tsuyoshi Horigome
 
DCモーターの等価回路内部のノードを参照する方法
DCモーターの等価回路内部のノードを参照する方法DCモーターの等価回路内部のノードを参照する方法
DCモーターの等価回路内部のノードを参照する方法
Tsuyoshi Horigome
 
TB62206FGのアプリケーションのシミュレーション
TB62206FGのアプリケーションのシミュレーションTB62206FGのアプリケーションのシミュレーション
TB62206FGのアプリケーションのシミュレーション
Tsuyoshi Horigome
 
DCモータのデバイスモデリングに必要な情報
DCモータのデバイスモデリングに必要な情報DCモータのデバイスモデリングに必要な情報
DCモータのデバイスモデリングに必要な情報
Tsuyoshi Horigome
 
DCモーターのスパイスモデルの比較検証
DCモーターのスパイスモデルの比較検証DCモーターのスパイスモデルの比較検証
DCモーターのスパイスモデルの比較検証
Tsuyoshi Horigome
 
3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要
Tsuyoshi Horigome
 
PMS Motor of Simple Model using LTspice
PMS Motor of Simple Model using LTspicePMS Motor of Simple Model using LTspice
PMS Motor of Simple Model using LTspice
Tsuyoshi Horigome
 
PMS Motor of Simple Model using PSpice
PMS Motor of Simple Model using PSpicePMS Motor of Simple Model using PSpice
PMS Motor of Simple Model using PSpice
Tsuyoshi Horigome
 

Viewers also liked (20)

3相ACモーターのスパイスモデル作成に必要な情報
3相ACモーターのスパイスモデル作成に必要な情報3相ACモーターのスパイスモデル作成に必要な情報
3相ACモーターのスパイスモデル作成に必要な情報
 
デバイスモデリングの観点から見たACモーターの区分
デバイスモデリングの観点から見たACモーターの区分デバイスモデリングの観点から見たACモーターの区分
デバイスモデリングの観点から見たACモーターの区分
 
トルク及び回転数の表示方法について(PSpice)
トルク及び回転数の表示方法について(PSpice)トルク及び回転数の表示方法について(PSpice)
トルク及び回転数の表示方法について(PSpice)
 
3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要
 
LTspiceを活用した3相ACモータドライブ回路シミュレーション
LTspiceを活用した3相ACモータドライブ回路シミュレーションLTspiceを活用した3相ACモータドライブ回路シミュレーション
LTspiceを活用した3相ACモータドライブ回路シミュレーション
 
モーター駆動制御回路シミュレーション導入のソリューション(ビー・テクノロジー)
モーター駆動制御回路シミュレーション導入のソリューション(ビー・テクノロジー)モーター駆動制御回路シミュレーション導入のソリューション(ビー・テクノロジー)
モーター駆動制御回路シミュレーション導入のソリューション(ビー・テクノロジー)
 
SPICE Model of TA7291P
SPICE Model of TA7291PSPICE Model of TA7291P
SPICE Model of TA7291P
 
モーターのアプリケーション回路 シミュレーション 株式会社ビー・テクノロジー
モーターのアプリケーション回路 シミュレーション 株式会社ビー・テクノロジーモーターのアプリケーション回路 シミュレーション 株式会社ビー・テクノロジー
モーターのアプリケーション回路 シミュレーション 株式会社ビー・テクノロジー
 
超音波モーターのSPICEモデル
超音波モーターのSPICEモデル超音波モーターのSPICEモデル
超音波モーターのSPICEモデル
 
RS-540の特性図
RS-540の特性図RS-540の特性図
RS-540の特性図
 
新製品情報 シンプルモデル(モーターのスパイスモデル関連)
新製品情報 シンプルモデル(モーターのスパイスモデル関連)新製品情報 シンプルモデル(モーターのスパイスモデル関連)
新製品情報 シンプルモデル(モーターのスパイスモデル関連)
 
サーボモーターの性能指標
サーボモーターの性能指標サーボモーターの性能指標
サーボモーターの性能指標
 
モーターのアプリケーション回路シミュレーションのソリューション
モーターのアプリケーション回路シミュレーションのソリューションモーターのアプリケーション回路シミュレーションのソリューション
モーターのアプリケーション回路シミュレーションのソリューション
 
DCモーターの等価回路内部のノードを参照する方法
DCモーターの等価回路内部のノードを参照する方法DCモーターの等価回路内部のノードを参照する方法
DCモーターの等価回路内部のノードを参照する方法
 
TB62206FGのアプリケーションのシミュレーション
TB62206FGのアプリケーションのシミュレーションTB62206FGのアプリケーションのシミュレーション
TB62206FGのアプリケーションのシミュレーション
 
DCモータのデバイスモデリングに必要な情報
DCモータのデバイスモデリングに必要な情報DCモータのデバイスモデリングに必要な情報
DCモータのデバイスモデリングに必要な情報
 
DCモーターのスパイスモデルの比較検証
DCモーターのスパイスモデルの比較検証DCモーターのスパイスモデルの比較検証
DCモーターのスパイスモデルの比較検証
 
3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要
 
PMS Motor of Simple Model using LTspice
PMS Motor of Simple Model using LTspicePMS Motor of Simple Model using LTspice
PMS Motor of Simple Model using LTspice
 
PMS Motor of Simple Model using PSpice
PMS Motor of Simple Model using PSpicePMS Motor of Simple Model using PSpice
PMS Motor of Simple Model using PSpice
 

Similar to Spiceを活用したモーター駆動制御シミュレーションセミナー資料

Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
Tsuyoshi Horigome
 
Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)
Tsuyoshi Horigome
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
spicepark
 
Cataloge ge 3.control and_automation-27_vat300_e_c7_rev_c
Cataloge ge 3.control and_automation-27_vat300_e_c7_rev_cCataloge ge 3.control and_automation-27_vat300_e_c7_rev_c
Cataloge ge 3.control and_automation-27_vat300_e_c7_rev_c
Thuan Kieu
 
Device Modeling of Stepping Motor using SPICE
Device Modeling of Stepping Motor using SPICEDevice Modeling of Stepping Motor using SPICE
Device Modeling of Stepping Motor using SPICE
Tsuyoshi Horigome
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
Tsuyoshi Horigome
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Tsuyoshi Horigome
 
Original DARLING TRANSISTOR ARRAY IC ULQ2003A 2003A 2003 SOP-16 New Texas Ins...
Original DARLING TRANSISTOR ARRAY IC ULQ2003A 2003A 2003 SOP-16 New Texas Ins...Original DARLING TRANSISTOR ARRAY IC ULQ2003A 2003A 2003 SOP-16 New Texas Ins...
Original DARLING TRANSISTOR ARRAY IC ULQ2003A 2003A 2003 SOP-16 New Texas Ins...
authelectroniccom
 
DCモーターのシンプルモデルの解説書(PSpice)
DCモーターのシンプルモデルの解説書(PSpice)DCモーターのシンプルモデルの解説書(PSpice)
DCモーターのシンプルモデルの解説書(PSpice)
spicepark
 
20. PSD
20. PSD20. PSD
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
spicepark
 
SCS110AG (LTspice Model)
SCS110AG (LTspice Model)SCS110AG (LTspice Model)
SCS110AG (LTspice Model)
Tsuyoshi Horigome
 
SCS110AG Professional Model LTspice Model (Free SPICE Model)
SCS110AG Professional Model LTspice Model (Free SPICE Model)SCS110AG Professional Model LTspice Model (Free SPICE Model)
SCS110AG Professional Model LTspice Model (Free SPICE Model)
Tsuyoshi Horigome
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Tsuyoshi Horigome
 
INTELLIGENT POWER MODULE Model No : PEC16DSMO1
INTELLIGENT POWER MODULE Model No : PEC16DSMO1 INTELLIGENT POWER MODULE Model No : PEC16DSMO1
INTELLIGENT POWER MODULE Model No : PEC16DSMO1
MayankSunhare
 
The Simulation of DC Motor Control Circuit
The Simulation of DC Motor Control CircuitThe Simulation of DC Motor Control Circuit
The Simulation of DC Motor Control Circuit
Tsuyoshi Horigome
 
RN1418 PSpice Model (Free SPICE Model)
RN1418 PSpice Model  (Free SPICE Model)RN1418 PSpice Model  (Free SPICE Model)
RN1418 PSpice Model (Free SPICE Model)
Tsuyoshi Horigome
 
RN1418 LTspice Model (Free SPICE Model)
RN1418 LTspice Model (Free SPICE Model)RN1418 LTspice Model (Free SPICE Model)
RN1418 LTspice Model (Free SPICE Model)
Tsuyoshi Horigome
 
LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例
Tsuyoshi Horigome
 
DC Motor Model
DC Motor ModelDC Motor Model
DC Motor Model
Tsuyoshi Horigome
 

Similar to Spiceを活用したモーター駆動制御シミュレーションセミナー資料 (20)

Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
 
Cataloge ge 3.control and_automation-27_vat300_e_c7_rev_c
Cataloge ge 3.control and_automation-27_vat300_e_c7_rev_cCataloge ge 3.control and_automation-27_vat300_e_c7_rev_c
Cataloge ge 3.control and_automation-27_vat300_e_c7_rev_c
 
Device Modeling of Stepping Motor using SPICE
Device Modeling of Stepping Motor using SPICEDevice Modeling of Stepping Motor using SPICE
Device Modeling of Stepping Motor using SPICE
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
 
Original DARLING TRANSISTOR ARRAY IC ULQ2003A 2003A 2003 SOP-16 New Texas Ins...
Original DARLING TRANSISTOR ARRAY IC ULQ2003A 2003A 2003 SOP-16 New Texas Ins...Original DARLING TRANSISTOR ARRAY IC ULQ2003A 2003A 2003 SOP-16 New Texas Ins...
Original DARLING TRANSISTOR ARRAY IC ULQ2003A 2003A 2003 SOP-16 New Texas Ins...
 
DCモーターのシンプルモデルの解説書(PSpice)
DCモーターのシンプルモデルの解説書(PSpice)DCモーターのシンプルモデルの解説書(PSpice)
DCモーターのシンプルモデルの解説書(PSpice)
 
20. PSD
20. PSD20. PSD
20. PSD
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
 
SCS110AG (LTspice Model)
SCS110AG (LTspice Model)SCS110AG (LTspice Model)
SCS110AG (LTspice Model)
 
SCS110AG Professional Model LTspice Model (Free SPICE Model)
SCS110AG Professional Model LTspice Model (Free SPICE Model)SCS110AG Professional Model LTspice Model (Free SPICE Model)
SCS110AG Professional Model LTspice Model (Free SPICE Model)
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
 
INTELLIGENT POWER MODULE Model No : PEC16DSMO1
INTELLIGENT POWER MODULE Model No : PEC16DSMO1 INTELLIGENT POWER MODULE Model No : PEC16DSMO1
INTELLIGENT POWER MODULE Model No : PEC16DSMO1
 
The Simulation of DC Motor Control Circuit
The Simulation of DC Motor Control CircuitThe Simulation of DC Motor Control Circuit
The Simulation of DC Motor Control Circuit
 
RN1418 PSpice Model (Free SPICE Model)
RN1418 PSpice Model  (Free SPICE Model)RN1418 PSpice Model  (Free SPICE Model)
RN1418 PSpice Model (Free SPICE Model)
 
RN1418 LTspice Model (Free SPICE Model)
RN1418 LTspice Model (Free SPICE Model)RN1418 LTspice Model (Free SPICE Model)
RN1418 LTspice Model (Free SPICE Model)
 
LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例LTspiceのDCモーターシミュレーション事例
LTspiceのDCモーターシミュレーション事例
 
DC Motor Model
DC Motor ModelDC Motor Model
DC Motor Model
 

More from spicepark

夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)
spicepark
 
株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)
spicepark
 
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
spicepark
 
スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)
spicepark
 
スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)
spicepark
 
スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)
spicepark
 
スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)
spicepark
 
マルツエレックのサービス
マルツエレックのサービスマルツエレックのサービス
マルツエレックのサービスspicepark
 
SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料
spicepark
 
SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料spicepark
 
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
spicepark
 
電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎
spicepark
 
電気系パワートレインの構成図
電気系パワートレインの構成図電気系パワートレインの構成図
電気系パワートレインの構成図
spicepark
 
スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)
spicepark
 
スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)
spicepark
 
スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)
spicepark
 
スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)
spicepark
 
ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)
spicepark
 
ビー・テクノロジーの取引先リスト(31MAR2012)
ビー・テクノロジーの取引先リスト(31MAR2012)ビー・テクノロジーの取引先リスト(31MAR2012)
ビー・テクノロジーの取引先リスト(31MAR2012)
spicepark
 
アイパターンの表示方法
アイパターンの表示方法アイパターンの表示方法
アイパターンの表示方法
spicepark
 

More from spicepark (20)

夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)夏季休業のお知らせ(2013)
夏季休業のお知らせ(2013)
 
株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)株式会社ビー・テクノロジー製品のラインナップ(19版)
株式会社ビー・テクノロジー製品のラインナップ(19版)
 
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
株式会社ビー・テクノロジー製品のラインナップ(19版):総代理店:マルツエレック株式会社
 
スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)スパイス・パークのアップデートリスト(2013年8月度)
スパイス・パークのアップデートリスト(2013年8月度)
 
スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)スパイス・パークの全リスト(2013年8月度)
スパイス・パークの全リスト(2013年8月度)
 
スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)スパイス・パークのアップデートリスト(2013年7月度)
スパイス・パークのアップデートリスト(2013年7月度)
 
スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)スパイス・パークの全リスト(2013年7月度)
スパイス・パークの全リスト(2013年7月度)
 
マルツエレックのサービス
マルツエレックのサービスマルツエレックのサービス
マルツエレックのサービス
 
SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料SPICEを活用したD級アンプ回路シミュレーション配布資料
SPICEを活用したD級アンプ回路シミュレーション配布資料
 
SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料SPICEを活用したD級アンプ回路シミュレーション資料
SPICEを活用したD級アンプ回路シミュレーション資料
 
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
電流臨界モード方式 PFC 制御回路の基礎(パワーポイント)
 
電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎電流臨界モード方式 PFC 制御回路の基礎
電流臨界モード方式 PFC 制御回路の基礎
 
電気系パワートレインの構成図
電気系パワートレインの構成図電気系パワートレインの構成図
電気系パワートレインの構成図
 
スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)スパイス・パークの全リスト(2013年6月度)
スパイス・パークの全リスト(2013年6月度)
 
スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)スパイス・パークのアップデートリスト(2013年6月度)
スパイス・パークのアップデートリスト(2013年6月度)
 
スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)スパイス・パークのアップデートリスト(2013年5月度)
スパイス・パークのアップデートリスト(2013年5月度)
 
スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)スパイス・パークの全リスト(2013年5月度)
スパイス・パークの全リスト(2013年5月度)
 
ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)ビー・テクノロジーのお取引先リスト(31MAR2012)
ビー・テクノロジーのお取引先リスト(31MAR2012)
 
ビー・テクノロジーの取引先リスト(31MAR2012)
ビー・テクノロジーの取引先リスト(31MAR2012)ビー・テクノロジーの取引先リスト(31MAR2012)
ビー・テクノロジーの取引先リスト(31MAR2012)
 
アイパターンの表示方法
アイパターンの表示方法アイパターンの表示方法
アイパターンの表示方法
 

Spiceを活用したモーター駆動制御シミュレーションセミナー資料

  • 1. 1.ACモーター駆動制御シミュレーション 1.1コンセプトキットを活用した事例 1.2シンプルモデルを活用して自分の必要なSPICEモデルを作成する 2.DCモーター駆動制御シミュレーション 2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路 3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路 4.モーター駆動制御関連のデバイスモデリングサービスのご案内 5.質疑応答 SPICEを活用したモーター駆動制御 シミュレーションセミナー 2013年4月19日 1Copyright (C) Bee Technologies2013
  • 3. Motenergy, Inc (ME0913) Motor Electrical Parameters • Operating Voltage Range..........................0 – 72 VMAX • Rated Continuous Current........................140 Arms • Peak Stalled Current.................................400 Arms • Voltage Constant.......................................50 RPM/V • Phase Resistance (L-L).............................0.0125 Ω • Phase Inductance......................................105uH at 120Hz, 110uH at 1kHz • Maximum Continuous Power Rating……..17KW at 102VDC Battery Voltage 14.3KW at 84VDC Battery Voltage 12KW at 72VDC Battery Voltage Motor Mechanical Parameters • Rated Speed.............................................3000 RPM • Maximum Speed.......................................5000 RPM • Rated Torque............................................288 Lb-in • Torque Constant.......................................1.6 Lb-in/A Copyright (C) Bee Technologies2013 3 1.ACモーター駆動制御シミュレーション 1.1コンセプトキットを活用した事例
  • 4. • The Torque are defined by : At 140Arms (Rated Continuous Current) KT = 1.6 Lb-in/A Tphe = 1.6  140 = 224Lb-in Te = 224*3= 672Lb-in • The Back-EMF are defined by : At 5000 RPM (Maximum Speed) Ephe ≈ VBAT (In an ideal motor, R and L are zero) Ephe = 102V KE = Ephe /ωm = 102 / 5000 KE ≈ 0.02V/RPM Torque and Back-EMF Copyright (C) Bee Technologies2013 4 wTw vTv uTu IKT IKT IKT    mEw mEv mEu KE KE KE       phe: u, v, w Vphe : Phase voltage applied from inverter to motor VAC : Operating voltage range (Maximum voltage) VBAT : DC Voltage applied from battery Iphe : Phase current Tphe : Electric torque produced by u, v, w phase Te : Electric torque produced by motor Ephe : Phase Back-EMF KE : Back-EMF constant KT : Torque constant ωm : Angular speed of rotor  1 Pound Inch equals 0.11 Nm TwTvTueT  (1) (2) (3) 1.ACモーター駆動制御シミュレーション 1.1コンセプトキットを活用した事例
  • 5. Copyright (C) Bee Technologies2013 5 L1 1 2 BEMF1 R1 L2 1 2 BEMF2 R2 L3 1 2 BEMF3 R3 N0 U V W Phase Resistance (L-L) : 0.0125Ω Phase Inductance : 105uH : 110uH Frequency Response 105uH 110uH Fig.2 Phase-to-GroundFig. 1 Scheme of the 3-Phase Model 1.ACモーター駆動制御シミュレーション 1.1コンセプトキットを活用した事例
  • 6. PARAMETERS: KT = 1.6 KE = 0.02 LL = 105U RLL = 0.0125 PARAMETERS: LOAD = 140 U3 LM = {LL} IL = {LOAD} KT0 = {KT} RM = {RLL*0.5} 1 2SPTQ emf _u 0 IN+ IN- OUT+ OUT- EMF_V eu 0 IN+ IN- OUT+ OUT- EMF_W 0 IN+ IN- OUT+ OUT- ELIM_V 0 lim_v IN+ IN- OUT+ OUT- ESP 0 0 IN+ IN- OUT+ OUT- ELIM_W lim_w 0 emf _vev emf _u - + + - E2 0 emf _v emf _wew - + + - E3 emf _w 0 n1 tu 0 tv 0 tw N0 n2 U n3 W V Vu speedU4 AND3AMB IN+ IN- OUT+ OUT- ETQ 0 mul Vv torque Vw - + + - E1 0 0 IN+ IN- OUT+ OUT- EMF_U 0 IN+ IN- OUT+ OUT- ELIM_U 0 lim_u sp_v sp_u sp_u sp_w sp_w sp_v U1 LM = {LL} IL = {LOAD} KT0 = {KT} RM = {RLL*0.5} 1 2SPTQ U2 LM = {LL} IL = {LOAD} KT0 = {KT} RM = {RLL*0.5} 1 2SPTQ The 3-Phase AC Motor Equivalent Circuit • This figure shows the equivalent circuit of AC motor model that includes the |Z|- frequency part ,Back-EMF voltage part ,and Mechanical part. • The Back-EMF voltage is the voltage generated across the motor's terminals as the windings move through the motor's magnetic field. Copyright (C) Bee Technologies2013 6 |Z| - Frequency Back-EMF Voltage Mechanical part Fig. 3 Three-Phase AC Motor Equivalent Circuit 1.ACモーター駆動制御シミュレーション 1.1コンセプトキットを活用した事例
  • 7. Parameters Settings Copyright (C) Bee Technologies2013 7 LOAD : Load current each phase of motor [Arms] – e.g. LL = 125Arms, 140Arms, or 400Arms LL : Phase inductance [H] – e.g. LL = 10mH, 100mH, or 1H RLL : Phase resistance (Phase-to-phase) [Ω] – e.g. RLL = 10mΩ, 100mΩ, or 1Ω KE : Back-EMF constant [V/RPM] – e.g. KE= 0.01, 0.05, or 0.1 KT : Torque constant [Lb-in/A] – e.g. KT= 0.1, 0.5, or 1  1 Pound Inch equals 0.11 Nm Model Parameters: Fig. 4 Symbol of 3-Phase Induction Motor • From the 3-Phase Induction Motor specification, the model is characterized by setting parameters LL, RLL, KE, KT and LOAD. M N0 U1 ME0913 LL = 105U LOAD = 140 KT = 1.6 KE = 0.02 RLL = 0.0125 1 2 3 4 1.ACモーター駆動制御シミュレーション 1.1コンセプトキットを活用した事例
  • 8. Simulation Circuit of 3-Phase AC Motor Model Copyright (C) Bee Technologies2013 8 • Fig.5 Analysis of motor operation powered by alternating voltage variation involves using the model of three-phase induction motor. N0 N0 RU RV RW U2 GDRV UD UP VD VP WD WP RU, RV, RW: 173.75m UP UD VDVP WP WD V1 102V + - + - S1 D1 DMOD_01 + - + - S2 D2 DMOD_01 UP UD 0 0 + - + - S3 M N0 U1 ME0913 LL = 105U LOAD = 140 KT = 1.6 KE = 0.02 RLL = 0.0125 1 2 3 4 D3 DMOD_01 + - + - S4 D4 DMOD_01 VP VD 0 0 + - + - S5 D5 DMOD_01 + - + - S6 D6 DMOD_01 WP WD 0 0 U 0 V W V2 102V 1.ACモーター駆動制御シミュレーション 1.1コンセプトキットを活用した事例
  • 9. Phase Current Characteristics Under Load Variation - Simulation Results Copyright (C) Bee Technologies2013 9 Fig. 6 Current Characteristics under load Condition Time 0s 500ms I(RU)/SQRT(2) -500A 0A 500A Time 0s 500ms I(RU)/SQRT(2) -500A 0A 500A Time 0s 500ms I(RU)/SQRT(2) -500A 0A 500A Load 50Arms Load 140Arms Load 200Arms  Reference of Phase U 1.ACモーター駆動制御シミュレーション 1.1コンセプトキットを活用した事例
  • 10. Time 0s 500ms V(X_U1.EU) -200V -100V 0V 100V 200V Time 0s 500ms V(X_U1.EU) -200V -100V 0V 100V 200V Time 0s 500ms V(X_U1.EU) -200V -100V 0V 100V 200V Back-EMF Characteristics Under Load Condition - Simulation Results Copyright (C) Bee Technologies2013 10 Fig. 7 Back-EMF Characteristics under load Condition Load 50Arms Load 140Arms Load 200Arms  Reference of Phase U 1.ACモーター駆動制御シミュレーション 1.1コンセプトキットを活用した事例
  • 11. Time 0s 500ms V(X_U1.tu) 0V 0.5KV 1.0KV (446.486m,223.728) V(X_U1.speed) 0V 1.0KV 2.0KV 3.0KV 4.0KV SEL>> (464.146m,3.2311K) Speed and Torque Characteristics At 140Arms - Simulation Results Copyright (C) Bee Technologies2013 11 Fig. 8 Speed and Torque Characteristics at Load=140Arms The Load 140(Arms) is Rated Continuous Current Tphe: Electric torque produced by each phase RPM Lb-in  Reference of Phase U 1.ACモーター駆動制御シミュレーション 1.1コンセプトキットを活用した事例
  • 12. Time 0.5s 1.0s 100*( (RMS(V(U,N0))*RMS(I(RU))) / (RMS(V(RU:1,N0))*RMS(I(RU))) ) 0 50 100 (962.500m,81.941) RMS(V(RU:1,N0))*RMS(I(RU)) 0W 10KW 20KW SEL>> (960.616m,13.662K) Power Output and Efficiency Characteristics At 140Arms - Simulation Results Copyright (C) Bee Technologies2013 12 Fig. 9 Power Output and Efficiency Characteristics at Load=140Arms At Load=140Arms, Power Output ≈ 13.7 [KW] At Load=140Arms, Efficiency ≈ 82 [%] Watt [%]  Reference of Phase U 1.ACモーター駆動制御シミュレーション 1.1コンセプトキットを活用した事例
  • 13. Parameter Settings If there is no measurement data, the default value will be used: Rm: motor winding resistance [] Lm: motor winding inductance [H] Data is given by D.C. motor spec-sheet: V_norm: normal voltage [V] mNm: normal load [mNm] kRPM_norm: speed at normal load [kr/min] I_norm: current at normal load [A] Load Condition: IL: load current [A] Copyright (C) Bee Technologies2013 13 Model Parameters: D.C. Motor model and Parameters with Default Value - + U1 SMPL_DC_MOTOR Rm = 0.1 Lm = 100u I_norm = 6.1 mNm = 19.6 V_norm = 7.2 kRPM_norm = 14.4 IL = 6.1 2.DCモーター駆動制御シミュレーション 2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  • 14. D.C. Motor Specification (Example) Copyright (C) Bee Technologies2013 14 - + U1 SMPL_DC_MOTOR Rm = 0.1 Lm = 100u I_norm = 6.1 mNm = 19.6 V_norm = 7.2 kRPM_norm = 14.4 IL = 6.1 D.C. Motor Specification Parameters are input 2.DCモーター駆動制御シミュレーション 2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  • 15. 00 VM VIM V1 V2 = {VOUT} T2 = 0.01m PARAMETERS: VOUT = 10.25 Rs = 0.5 RS {Rs} - + U1 SMPL_DC_MOTOR Rm = 0.1 Lm = 100u I_norm = 6.1 mNm = 19.6 V_norm = 7.2 kRPM_norm = 14.4 IL = 6.1 • *Analysis directives: • .TRAN 0 400m 0 0.1m • .PROBE V(*) I(*) W(alias(*)) D(alias(*)) NOISE(alias(*)) Copyright (C) Bee Technologies2013 15 Current Sensing Simplified D.C. Motor with RS-540SH Spec. Input the Supply No Load Voltage* and Series Resistance Simulation Circuit and Setting *No Load Voltage is adjusted until the D.C. motor voltage (VM) equals to the normal voltage (7.2V). Load Condition IL=I_norm Motor Start Up Simulation at Normal Load (1/3) 2.DCモーター駆動制御シミュレーション 2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  • 16. Motor Start Up Simulation at Normal Load (2/3) Copyright (C) Bee Technologies2013 16 Select “All” for the Voltages and Currents Data Collection Options. 2.DCモーター駆動制御シミュレーション 2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  • 17. Motor Start Up Simulation at Normal Load (3/3) Copyright (C) Bee Technologies2013 17 Time 0s 40ms 80ms 120ms 160ms 200ms 240ms 280ms 320ms 360ms 400ms I(VIM) 0A 10A 20A V(VM) 0V 5V 10V SEL>> I(X_U1.V_kRPM) 0A 10A 20A V(X_U1.TRQ) 0V 40V 80V D.C. Motor Current = 6.1A D.C. Motor Voltage = 7.2V D.C. Motor Speed = 14.4krpm Torque Load= 19.6mNm 2.DCモーター駆動制御シミュレーション 2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  • 18. • *Analysis directives: • .TRAN 0 400m 0 0.1m • .PROBE V(*) I(*) W(alias(*)) D(alias(*)) NOISE(alias(*)) Copyright (C) Bee Technologies2013 18 Current Sensing Simplified D.C. Motor with RS-540SH Spec. Input the Supply No Load Voltage* and Series Resistance Simulation Circuit and Setting *No Load Voltage is adjusted until the D.C. motor voltage (VM) equals to the normal voltage (7.2V). Load Condition IL=I_norm Motor Start Up Simulation at Half of Normal Load (1/2) 00 VM VIM V1 V2 = {VOUT} T2 = 0.01m PARAMETERS: VOUT = 10.25 Rs = 0.5 RS {Rs} - + U1 SMPL_DC_MOTOR Rm = 0.1 Lm = 100u I_norm = 6.1 mNm = 19.6 V_norm = 7.2 kRPM_norm = 14.4 IL = 3.05 2.DCモーター駆動制御シミュレーション 2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  • 19. Time 0s 40ms 80ms 120ms 160ms 200ms 240ms 280ms 320ms 360ms 400ms I(VIM) 0A 10A 20A V(VM) 0V 5V 10V I(X_U1.V_kRPM) 0A 10A 20A SEL>> V(X_U1.TRQ) 0V 40V 80V Motor Start Up Simulation at Half of Normal Load (2/2) Copyright (C) Bee Technologies2013 19 D.C. Motor Current = 3.05A D.C. Motor Voltage = 8.725V D.C. Motor Speed = 18.4krpm Torque Load= 9.8mNm 2.DCモーター駆動制御シミュレーション 2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  • 20. - + U2 SMPL_DC_MOTOR Rm = 0.576 Lm = 165u I_norm = 2.9 mNm = 9.8 V_norm = 7.2 kRPM_norm = 14.2 IL = 0.6 NC NC NCA K VCC VO GND U1 TLP350 V1 TD = 0 TF = 10n PW = 199.99u PER = 400u V1 = 0 TR = 10n V2 = 1.8 0 R1 1u 0 Vcc 15V 0 VCC VDD 0 RG 120 0 DGT10J321_s D3 VCC Vdd 15V VDD 0 D4001 D2 U3 GT10J321 Copyright (C) Bee Technologies2013 20 Simplified D.C. Motor with RS- 380PH Spec at No load. Simulation Circuit and Setting No load IL=0.6 Application Example (1/3) 2.DCモーター駆動制御シミュレーション 2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  • 21. Time -100ms 0s 100ms 300ms 500ms 700ms 900ms 1 I(U2:1) 2 V(U2:1,U2:2) -2A 0A 2A 4A 6A 8A 10A 12A 14A 1 -60V -50V -40V -30V -20V -10V 0V 10V 20V 2 >> Application Example (2/3) Copyright (C) Bee Technologies2013 21 Measurement Simulation Motor Current (2A/Div) Motor Voltage (10V/Div) 2.DCモーター駆動制御シミュレーション 2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  • 22. Time 898.0ms 898.4ms 898.8ms 899.2ms 899.6ms 1 I(U3:C) 2 V(U3:C) 3 V(U3:G) -2A 0A 2A 4A 6A 8A 10A 12A 14A 1 >> -30V -20V -10V 0V 10V 20V 30V 40V 50V 2 -60V -50V -40V -30V -20V -10V 0V 10V 20V 3 Application Example (3/3) Copyright (C) Bee Technologies2013 22 Measurement Simulation IGBT: VGE IGBT: VCE IGBT: IC IGBT: VGE (10V/Div) IGBT: VCE (10V/Div) IGBT: IC (2A/Div) 2.DCモーター駆動制御シミュレーション 2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  • 23. Time 898.0ms 898.4ms 898.8ms 899.2ms 899.6ms 1 I(U3:C) 2 V(U3:C) 3 V(U3:G) -2A 0A 2A 4A 6A 8A 10A 12A 14A 1 -30V -20V -10V 0V 10V 20V 30V 40V 50V 2 -60V -50V -40V -30V -20V -10V 0V 10V 20V 3 >> Winding Characteristic Parameters: Lm Copyright (C) Bee Technologies2013 23 - + U2 SMPL_DC_MOTOR Rm = 0.576 Lm = 165u I_norm = 2.9 mNm = 9.8 V_norm = 7.2 kRPM_norm = 14.2 IL = 0.6 Winding Characteristic: Lm Motor Spec. Load Condition Lm=165u Lm=100u The Motor Current Waveform is changed by the Lm values. Lm=165u Lm=100u 2.DCモーター駆動制御シミュレーション 2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  • 24. Winding Characteristic Parameters: Rm Copyright (C) Bee Technologies2013 24 - + U2 SMPL_DC_MOTOR Rm = 0.576 Lm = 165u I_norm = 2.9 mNm = 9.8 V_norm = 7.2 kRPM_norm = 14.2 IL = 0.6 Winding Characteristic: Rm Motor Spec. Load Condition Rm=0.576 Rm=0.1 The Motor Start-up is Current changed by the Rm values. 2.DCモーター駆動制御シミュレーション 2.1シンプルモデルを活用して自分の必要なSPICEモデルを作成する
  • 25. Copyright (C) Bee Technologies2013 25 B Bcom A /B Acom /A U1 UNI-POLAR_STEP_MOTR L = 2.5M R = 4.2 U8 AND U9 AND R1 1k 0 FB DIODE D1 DIODE D2 DIODE D3 DIODE D4 PARAMETERS: I_SET = 0.5 VHYS = 0.1 B 0 PARAMETERS: RON = 10m 0 U10 1-PHASE PPS = 100 CLK FA /FA FB /FB 0 0 U6 AND FA + - REF - + FB. U2 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /FA /FB VCC + - REF - + FB. U3 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} + - REF - + FB. U4 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /B /A + - + - S4 S RON = {RON} A + - REF - + FB. U5 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} CLK + - + - S1 S RON = {RON} + - + - S2 S RON = {RON} + - + - S3 S RON = {RON} VCC VCC VCC 0 VCC Vcc 12 VCC VCC U7 AND Unipolar Stepping Motor Drive Circuit Simulation PSpice Version 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 26. Contents 1. Concept of Simulation 2. Unipolar Stepping Motor Drive Circuit 3. Unipolar Stepping Motor 4. Switches 5. Signal Generator 6. Hysteresis-Based Current Controller 7. Unipolar Stepping Motor Drive Circuit (Example) 7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A 7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A 7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A 8. Drive Circuit Efficiency Copyright (C) Bee Technologies2013 26 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 27. Copyright (C) Bee Technologies2013 27 Driver Unit: (e.g. Hysteresis- Based Controller) Parameter: • I_SET • HYS Switches (e.g. FET, Diode) Parameter: • Ron Stepping Motor Parameter: • L • R Control Unit (e.g. Microcontroller) Sequence: • One-Phase • Two-Phase • Half-Step U? 1-PHASE PPS = 100 CLK FA /FA FB /FB U? 2-PHASE PPS = 100 CLK FA /FA FB /FB U? HALF-STEP PPS = 100 CLK FA /FA FB /FB B Bcom A /B Acom /A U? UNI-POLAR_STEP_MOTR L = 2.5M R = 4.2 Models: Block Diagram: DIODE D1 0 + - + - S1 S RON = 10m VCC Ctrl_A A Concept of Simulation U2 AND + - REF - + FB. U1 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} Ctrl_A FA 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 28. 2.Unipolar Stepping Motor Drive Circuit Copyright (C) Bee Technologies2013 28 Signal generator Hysteresis Based Current Controller Switches Unipolar Stepping Motor Supply Voltage B Bcom A /B Acom /A U1 UNI-POLAR_STEP_MOTR L = 2.5M R = 4.2 U8 AND U9 AND R1 1k 0 FB DIODE D1 DIODE D2 DIODE D3 DIODE D4 PARAMETERS: I_SET = 0.5 VHYS = 0.1 B 0 PARAMETERS: RON = 10m 0 U10 1-PHASE PPS = 100 CLK FA /FA FB /FB 0 0 U6 AND FA + - REF - + FB. U2 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /FA /FB VCC + - REF - + FB. U3 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} + - REF - + FB. U4 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /B /A + - + - S4 S RON = {RON} A + - REF - + FB. U5 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} CLK + - + - S1 S RON = {RON} + - + - S2 S RON = {RON} + - + - S3 S RON = {RON} VCC VCC VCC 0 VCC Vcc 12 VCC VCC U7 AND 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 29. Unipolar Stepping Motor Copyright (C) Bee Technologies2013 29 • The electrical equivalent circuit of each phase consists of an inductance of the phase winding series with resistance. • The inductance is ideal (without saturation characteristics and the mutual inductance between phases) • The motor back EMF is set as zero to simplified the model parameters extraction. B Bcom A /B Acom /A U1 UNI-POLAR_STEP_MOTR L = 2.5M R = 4.2 Input the inductance and resistance values (parameter: L, R) of the stepping motor, that are usually provided by the manufacturer datasheet, to generally model the phase winding. 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 30. Switches Copyright (C) Bee Technologies2013 30 • A near-ideal DIODE can be modeled by using spice primitive model (D), which parameter: N=0.01 RS=0. • A near-ideal MOSFET can be modeled by using PSpice VSWITCH that is voltage controlled switch. DIODE D1 0 + - + - S1 S RON = 10m VCC Ctrl_A A The parameter RON represents Rds(on) characteristics of MOSFET, that are usually provide by the manufacturer datasheet. The value could be about 10m to 10 ohm. 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 31. Signal Generator The signal generators are used as a microcontroller capable of generating step pulses and direction signals for the driver. There are 3 useful stepping sequences to control unipolar stepping motor Copyright (C) Bee Technologies2013 31 One-Phase (Wave Drive) • Consumes the least power. • Assures the accuracy regardless of the winding imbalance. Two-Phase (Hi-Torque) • Energizes 2 phases at the same time. • Offers an improved torque-speed result and greater holding torque. U? 1-PHASE PPS = 100 CLK FA /FA FB /FB U? 2-PHASE PPS = 100 CLK FA /FA FB /FB U? HALF-STEP PPS = 100 CLK FA /FA FB /FB Half-Step • Doubles the stepping resolution of the motor. • Reduces motor resonance which could cause a motor to stall at a resonant frequency. • Please note that this sequence is 8 steps. Input PPS (Pulse Per Second) as a clock pulse speed(frequency). 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 32. One-Phase Sequence Copyright (C) Bee Technologies2013 32 Time 0s 40ms 80ms V(/FB) 0V 5.0V SEL>> V(FB) 0V 2.5V 5.0V V(/FA) 0V 2.5V 5.0V V(FA) 0V 2.5V 5.0V V(CLK) 0V 2.5V 5.0V ON ON ON ON Clock Phase A Phase /A Phase B Phase /B 1 Sequence 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 33. Time 0s 40ms 80ms V(/FB) 0V 5.0V SEL>> V(FB) 0V 2.5V 5.0V V(/FA) 0V 2.5V 5.0V V(FA) 0V 2.5V 5.0V V(CLK) 0V 2.5V 5.0V Two-Phase Sequence Copyright (C) Bee Technologies2013 33 ON ON ON ON 1 Sequence Clock Phase A Phase /A Phase B Phase /B ON 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 34. Time 0s 80ms 160ms V(/FB) 0V 5.0V SEL>> V(FB) 0V 2.5V 5.0V V(/FA) 0V 2.5V 5.0V V(FA) 0V 2.5V 5.0V V(CLK) 0V 2.0V 4.0V Half-Step Sequence Copyright (C) Bee Technologies2013 34 ON ON ON 1 Sequence Clock Phase A Phase /A Phase B Phase /B ON 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 35. 6.Hysteresis-Based Current Controller Copyright (C) Bee Technologies2013 35 • Controlled by the signal from the microcontroller. • Generate the switch (MOSFET) drive signal by comparing the measured phase current with their references. Input the reference value at the I_SET (e.g. I_SET=0.5A) to set the regulated current level. The hysteresis current value is set at the VHYS (e.g. VHYS=0.1A). U2 AND + - REF - + FB. U1 HYS_I-CTRL I_SET = 0.5 VHYS = 0.1 Ctrl_A FA
  • 36. B Bcom A /B Acom /A U1 UNI-POLAR_STEP_MOTR L = 2.5M R = 4.2 U8 AND U9 AND R1 1k 0 FB DIODE D1 DIODE D2 DIODE D3 DIODE D4 PARAMETERS: I_SET = 0.5 VHYS = 0.1 B 0 PARAMETERS: RON = 10m 0 U10 1-PHASE PPS = 100 CLK FA /FA FB /FB 0 0 U6 AND FA + - REF - + FB. U2 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /FA /FB VCC + - REF - + FB. U3 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} + - REF - + FB. U4 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /B /A + - + - S4 S RON = {RON} A + - REF - + FB. U5 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} CLK + - + - S1 S RON = {RON} + - + - S2 S RON = {RON} + - + - S3 S RON = {RON} VCC VCC VCC 0 VCC Vcc 12 VCC VCC U7 AND One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies2013 36 *Analysis directives: .TRAN 0 40ms 0 10u One-Phase Step Sequence Generator (100 pps) 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 37. Time 0s 10ms 20ms 30ms 40ms 1 V(/FB) 2 -I(U1:/B) 0V 2.5V 5.0V 1 0A 0.5A 1.0A 2 SEL>>SEL>> 1 V(FB) 2 -I(U1:B) 0V 2.5V 5.0V 1 0A 0.5A 1.0A 2 >> 1 V(/FA) 2 -I(U1:/A) 0V 2.5V 5.0V 1 0A 0.5A 1.0A 2 >> 1 V(FA) 2 -I(U1:A) 0V 2.5V 5.0V 1 0A 0.5A 1.0A 2 >> V(CLK) 0V 2.5V 5.0V One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies2013 37 Clock Phase A Current I_SET=0.5A I_HYS=0.1A Phase /A Current Phase B Current Phase /B Current 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 38. B Bcom A /B Acom /A U1 UNI-POLAR_STEP_MOTR L = 2.5M R = 4.2 U8 AND U9 AND R1 1k 0 FB DIODE D1 DIODE D2 DIODE D3 DIODE D4 PARAMETERS: I_SET = 0.5 VHYS = 0.1 B 0 PARAMETERS: RON = 10m 0 0 0 U6 AND FA + - REF - + FB. U2 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /FA /FB VCC + - REF - + FB. U3 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} + - REF - + FB. U4 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /B /A + - + - S4 S RON = {RON} A + - REF - + FB. U5 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} CLK + - + - S1 S RON = {RON} + - + - S2 S RON = {RON} + - + - S3 S RON = {RON} VCC VCC VCC 0 VCC Vcc 12 VCC VCC U7 AND U10 2-PHASE PPS = 100 CLK FA /FA FB /FB Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies2013 38 *Analysis directives: .TRAN 0 40ms 0 10u SKIPBP .OPTIONS ITL4= 40 Two-Phase Step Sequence Generator (100 pps) 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 39. Time 0s 10ms 20ms 30ms 40ms 1 V(/FB) 2 -I(U1:/B) 0V 2.5V 5.0V 1 0A 0.5A 1.0A 2 SEL>>SEL>> 1 V(FB) 2 -I(U1:B) 0V 2.5V 5.0V 1 0A 0.5A 1.0A 2 >> 1 V(/FA) 2 -I(U1:/A) 0V 2.5V 5.0V 1 0A 0.5A 1.0A 2 >> 1 V(FA) 2 -I(U1:A) 0V 2.5V 5.0V 1 0A 0.5A 1.0A 2 >> V(CLK) 0V 2.5V 5.0V Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies2013 39 Clock Phase A Current I_SET=0.5A I_HYS=0.1A Phase /A Current Phase B Current Phase /B Current 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 40. B Bcom A /B Acom /A U1 UNI-POLAR_STEP_MOTR L = 2.5M R = 4.2 U8 AND U9 AND R1 1k 0 FB DIODE D1 DIODE D2 DIODE D3 DIODE D4 PARAMETERS: I_SET = 0.5 VHYS = 0.1 B 0 PARAMETERS: RON = 10m 0 0 0 U6 AND FA + - REF - + FB. U2 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /FA /FB VCC + - REF - + FB. U3 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} + - REF - + FB. U4 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /B /A + - + - S4 S RON = {RON} A + - REF - + FB. U5 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} CLK + - + - S1 S RON = {RON} + - + - S2 S RON = {RON} + - + - S3 S RON = {RON} VCC VCC VCC 0 VCC Vcc 12 VCC VCC U7 AND U10 HALF-STEP PPS = 100 CLK FA /FA FB /FB Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies2013 40 *Analysis directives: .TRAN 0 80ms 0 10u SKIPBP .OPTIONS ITL4= 40 Half-Phase Step Sequence Generator (100 pps) 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 41. Time 0s 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 1 V(/FB) 2 -I(U1:/B) 0V 2.5V 5.0V 1 0A 0.5A 1.0A 2 SEL>>SEL>> 1 V(FB) 2 -I(U1:B) 0V 2.5V 5.0V 1 0A 0.5A 1.0A 2 >> 1 V(/FA) 2 -I(U1:/A) 0V 2.5V 5.0V 1 0A 0.5A 1.0A 2 >> 1 V(FA) 2 -I(U1:A) 0V 2.5V 5.0V 1 0A 0.5A 1.0A 2 >> V(CLK) 0V 2.5V 5.0V Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies2013 41 Clock Phase A Current I_SET=0.5A I_HYS=0.1A Phase /A Current Phase B Current Phase /B Current 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 42. B Bcom A /B Acom /A U1 UNI-POLAR_STEP_MOTR L = 2.5M R = 4.2 U8 AND U9 AND R1 1k 0 FB DIODE D1 DIODE D2 DIODE D3 DIODE D4 PARAMETERS: I_SET = 0.5 VHYS = 0.1 B 0 PARAMETERS: RON = 10m 0 U10 1-PHASE PPS = 100 CLK FA /FA FB /FB 0 0 U6 AND FA + - REF - + FB. U2 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /FA /FB VCC + - REF - + FB. U3 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} + - REF - + FB. U4 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /B /A + - + - S4 S RON = {RON} A + - REF - + FB. U5 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} CLK + - + - S1 S RON = {RON} + - + - S2 S RON = {RON} + - + - S3 S RON = {RON} VCC VCC VCC 0 VCC Vcc 12 VCC VCC U7 AND W W Drive Circuit Efficiency (%) Copyright (C) Bee Technologies2013 42 *Analysis directives: .TRAN 0 40ms 0ms 10u SKIPBP .STEP PARAM RON LIST 10m, 100m, 1 .OPTIONS ITL4= 40 Half-Phase Step Sequence Generator (100 pps) 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 43. Time 10ms 15ms 20ms 25ms 30ms 35ms 40ms 100* AVG(W(U1))/(-AVG(W(Vcc))) 94 96 98 100 Drive Circuit Efficiency (%) Copyright (C) Bee Technologies2013 43 at switches Ron = 10m, (99.6%) at switches Ron = 100m, (99.3%) at switches Ron = 1, (95.9%) Note: Add trace 100*AVG(W(U1))/(-AVG(W(Vcc))) for the Efficiency. 3.ステッピングモーター駆動制御シミュレーション 3.1コンセプトキットを活用したユニポーラ・ステッピングモーター制御回路
  • 44. Copyright (C) Bee Technologies2013 44 Bipolar Stepping Motor Drive Circuit Simulation PSpice Version VCC 0 Vcc 12 A /A B/B U1 BI-POLAR_STEP_MOTR L = 10m R = 8.4 OU I OL U2 GDRV + - + - S7 S VCC 0 DIODE D7 /BU + - + - S8 S DIODE D8 /BL 0 OU I OL U3 GDRV OU I OL U5 GDRV B + - REF - + FB. U11 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /FB + - REF - + FB. U7 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} FA + - + - S5 S VCC 0 DIODE D5 BU + - + - S6 S DIODE D6 BL 0 PARAMETERS: RON = 10m + - + - S1 S VCC PARAMETERS: I_SET = 0.5 VHYS = 0.1 0 + - REF - + FB. U13 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} DIODE D1 AU + - + - S2 S DIODE D2 AL A 0 + - REF - + FB. U9 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} + - + - S3 S VCC 0 DIODE D3 /AU + - + - S4 S DIODE D4 /AL 0 U8 AND U10 AND U12 AND U14 AND /FA R1 1k FB CLK 0 OU I OL U4 GDRV /A /B U15 1-PHASE PPS = 100 CLK FA /FA FB /FB 3.ステッピングモーター駆動制御シミュレーション 3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  • 45. Unipolar Stepping Motor Drive Circuit Contents 1. Concept of Simulation 2. Unipolar Stepping Motor Drive Circuit 3. Unipolar Stepping Motor 4. Switches 5. Unipolar Stepping Motor Drive Circuit (Example) 7.1 One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A 7.2 Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A 7.3 Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A 6. Drive Circuit Efficiency Copyright (C) Bee Technologies2013 45 3.ステッピングモーター駆動制御シミュレーション 3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  • 46. Copyright (C) Bee Technologies2013 46 Driver Unit: (e.g. Hysteresis- Based Controller) Parameter: • I_SET • HYS Switches (e.g. FET, Diode) Parameter: • Ron Stepping Motor Parameter: • L • R Control Unit (e.g. Microcontroller) Sequence: • One-Phase • Two-Phase • Half-Step U? 1-PHASE PPS = 100 CLK FA /FA FB /FB U? 2-PHASE PPS = 100 CLK FA /FA FB /FB U? HALF-STEP PPS = 100 CLK FA /FA FB /FB Models: Block Diagram: DIODE D1 0 + - + - S1 S RON = 10m VCC Ctrl_A A Concept of Simulation U2 AND + - REF - + FB. U1 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} Ctrl_A FA A /A B/B U? BI-POLAR_STEP_MOTR L = 10m R = 8.4 3.ステッピングモーター駆動制御シミュレーション 3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  • 47. Signal generator Hysteresis Based Current Controller VCC 0 Vcc 12 A /A B/B U1 BI-POLAR_STEP_MOTR L = 10m R = 8.4 OU I OL U2 GDRV + - + - S7 S VCC 0 DIODE D7 /BU + - + - S8 S DIODE D8 /BL 0 OU I OL U3 GDRV OU I OL U5 GDRV B + - REF - + FB. U11 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /FB + - REF - + FB. U7 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} FA + - + - S5 S VCC 0 DIODE D5 BU + - + - S6 S DIODE D6 BL 0 PARAMETERS: RON = 10m + - + - S1 S VCC PARAMETERS: I_SET = 0.5 VHYS = 0.1 0 + - REF - + FB. U13 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} DIODE D1 AU + - + - S2 S DIODE D2 AL A 0 + - REF - + FB. U9 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} + - + - S3 S VCC 0 DIODE D3 /AU + - + - S4 S DIODE D4 /AL 0 U8 AND U10 AND U12 AND U14 AND /FA R1 1k FB CLK 0 OU I OL U4 GDRV /A /B U15 1-PHASE PPS = 100 CLK FA /FA FB /FB Bipolar Stepping Motor Drive Circuit Copyright (C) Bee Technologies2013 47 Bipolar Stepping Motor Supply VoltageH-Bridge Switches (Driver) 3.ステッピングモーター駆動制御シミュレーション 3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  • 48. Bipolar Stepping Motor Copyright (C) Bee Technologies2013 48 • The electrical equivalent circuit of each phase consists of an inductance of the phase winding series with resistance. • The inductance is ideal (without saturation characteristics and the mutual inductance between phases) • The motor back EMF is set as zero to simplified the model parameters extraction. Input the inductance and resistance values (parameter: L, R) of the stepping motor, that are usually provided by the manufacturer datasheet, to generally model the phase winding. A /A B/B U? BI-POLAR_STEP_MOTR L = 10m R = 8.4 3.ステッピングモーター駆動制御シミュレーション 3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  • 49. Switches Copyright (C) Bee Technologies2013 49 • A near-ideal DIODE can be modeled by using spice primitive model (D), which parameter: N=0.01 RS=0. • A near-ideal MOSFET can be modeled by using PSpice VSWITCH that is voltage controlled switch. • MOSFETs are used as a H-Bridge. The parameter RON represents Rds(on) characteristics of MOSFET, that are usually provide by the manufacturer datasheet. The value could be about 10m to 10 ohm. OU I OL U2 GDRV OU I OL U3 GDRV + - + - S1 S 0 VCC DIODE D1 AU + - + - S2 S RON = 10m DIODE D2 AL 0 + - + - S3 S VCC 0 DIODE D3 /AU + - + - S4 S DIODE D4 /AL 0 Ctrl_A Ctrl_/A A /A 3.ステッピングモーター駆動制御シミュレーション 3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  • 50. VCC 0 Vcc 12 A /A B/B U1 BI-POLAR_STEP_MOTR L = 10m R = 8.4 OU I OL U2 GDRV + - + - S7 S VCC 0 DIODE D7 /BU + - + - S8 S DIODE D8 /BL 0 OU I OL U3 GDRV OU I OL U5 GDRV B + - REF - + FB. U11 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /FB + - REF - + FB. U7 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} FA + - + - S5 S VCC 0 DIODE D5 BU + - + - S6 S DIODE D6 0 BL PARAMETERS: RON = 10m + - + - S1 S 0 VCC PARAMETERS: I_SET = 0.5 VHYS = 0.1 + - REF - + FB. U13 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} DIODE D1 AU + - + - S2 S DIODE D2 AL 0 A + - REF - + FB. U9 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} + - + - S3 S VCC 0 DIODE D3 /AU + - + - S4 S DIODE D4 /AL 0 U8 AND U10 AND U12 AND U14 AND /FA R1 1k CLK 0 FB OU I OL U4 GDRV /A /B U15 1-PHASE PPS = 100 CLK FA /FA FB /FB One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies2013 50 *Analysis directives: .TRAN 0 80ms 0 10u SKIPBP .OPTIONS ITL4= 40 One-Phase Step Sequence Generator (100 pps) 3.ステッピングモーター駆動制御シミュレーション 3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  • 51. Time 0s 20ms 40ms 60ms 80ms 1 V(/FB) 2 I(U1:/B) 0V 2.5V 5.0V 1 0A 500mA2 SEL>>SEL>> 1 V(FB) 2 I(U1:B) 0V 2.5V 5.0V 1 0A 500mA2 >> 1 V(/FA) 2 I(U1:/A) 0V 2.5V 5.0V 1 0A 500mA2 >> 1 V(FA) 2 I(U1:A) 0V 2.5V 5.0V 1 0A 500mA2 >> V(CLK) 0V 2.5V 5.0V One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies2013 51 Clock Phase A Current I_SET=0.5A I_HYS=0.1A Phase /A Current Phase B Current Phase /B Current 3.ステッピングモーター駆動制御シミュレーション 3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  • 52. Two-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies2013 52 *Analysis directives: .TRAN 0 80ms 0 10u SKIPBP .OPTIONS ITL4= 40 VCC 0 Vcc 12 A /A B/B U1 BI-POLAR_STEP_MOTR L = 10m R = 8.4 OU I OL U2 GDRV + - + - S7 S VCC 0 DIODE D7 /BU + - + - S8 S DIODE D8 /BL 0 OU I OL U3 GDRV OU I OL U5 GDRV B + - REF - + FB. U11 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /FB + - REF - + FB. U7 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} FA + - + - S5 S VCC 0 DIODE D5 BU + - + - S6 S DIODE D6 0 BL PARAMETERS: RON = 10m + - + - S1 S 0 VCC PARAMETERS: I_SET = 0.5 VHYS = 0.1 + - REF - + FB. U13 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} DIODE D1 AU + - + - S2 S DIODE D2 AL 0 A + - REF - + FB. U9 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} + - + - S3 S VCC 0 DIODE D3 /AU + - + - S4 S DIODE D4 /AL 0 U8 AND U10 AND U12 AND U14 AND /FA R1 1k CLK 0 FB OU I OL U4 GDRV /A /B U15 2-PHASE PPS = 100 CLK FA /FA FB /FB One-Phase Step Sequence Generator (100 pps) 3.ステッピングモーター駆動制御シミュレーション 3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  • 53. Time 0s 20ms 40ms 60ms 80ms 1 V(/FB) 2 I(U1:/B) 0V 2.5V 5.0V 1 0A 500mA2 SEL>>SEL>> 1 V(FB) 2 I(U1:B) 0V 2.5V 5.0V 1 0A 500mA2 >> 1 V(/FA) 2 I(U1:/A) 0V 2.5V 5.0V 1 0A 500mA2 >> 1 V(FA) 2 I(U1:A) 0V 2.5V 5.0V 1 0A 500mA2 >> V(CLK) 0V 2.5V 5.0V One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies2013 53 Clock Phase A Current I_SET=0.5A I_HYS=0.1A Phase /A Current Phase B Current Phase /B Current 3.ステッピングモーター駆動制御シミュレーション 3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  • 54. VCC 0 Vcc 12 A /A B/B U1 BI-POLAR_STEP_MOTR L = 10m R = 8.4 OU I OL U2 GDRV + - + - S7 S VCC 0 DIODE D7 U15 HALF-STEP PPS = 100 CLK FA /FA FB /FB /BU + - + - S8 S DIODE D8 /BL 0 OU I OL U3 GDRV OU I OL U5 GDRV B + - REF - + FB. U11 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /FB + - REF - + FB. U7 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} FA + - + - S5 S VCC 0 DIODE D5 BU + - + - S6 S DIODE D6 0 BL PARAMETERS: RON = 10m + - + - S1 S 0 VCC PARAMETERS: I_SET = 0.5 VHYS = 0.1 + - REF - + FB. U13 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} DIODE D1 AU + - + - S2 S DIODE D2 AL 0 A + - REF - + FB. U9 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} + - + - S3 S VCC 0 DIODE D3 /AU + - + - S4 S DIODE D4 /AL 0 U8 AND U10 AND U12 AND U14 AND /FA R1 1k CLK 0 FB OU I OL U4 GDRV /A /B Half-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies2013 54 *Analysis directives: .TRAN 0 160ms 0 10u SKIPBP .OPTIONS ITL4= 40 One-Phase Step Sequence Generator (100 pps) 3.ステッピングモーター駆動制御シミュレーション 3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  • 55. Time 0s 40ms 80ms 120ms 160ms 1 V(/FB) 2 I(U1:/B) 0V 2.5V 5.0V 1 0A 500mA2 SEL>>SEL>> 1 V(FB) 2 I(U1:B) 0V 2.5V 5.0V 1 0A 500mA2 >> 1 V(/FA) 2 I(U1:/A) 0V 2.5V 5.0V 1 0A 500mA2 >> 1 V(FA) 2 I(U1:A) 0V 2.5V 5.0V 1 0A 500mA2 >> V(CLK) 0V 2.5V 5.0V One-Phase Sequence Drive, IPHASE=0.5A, IRIPPLE=0.1A Copyright (C) Bee Technologies2013 55 Clock Phase A Current I_SET=0.5A I_HYS=0.1A Phase /A Current Phase B Current Phase /B Current 3.ステッピングモーター駆動制御シミュレーション 3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  • 56. VCC 0 Vcc 12 A /A B/B U1 BI-POLAR_STEP_MOTR L = 10m R = 8.4 OU I OL U2 GDRV + - + - S7 S VCC 0 DIODE D7 /BU + - + - S8 S DIODE D8 /BL 0 OU I OL U3 GDRV OU I OL U5 GDRV B + - REF - + FB. U11 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} /FB + - REF - + FB. U7 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} FA + - + - S5 S VCC 0 DIODE D5 BU + - + - S6 S DIODE D6 0 BL PARAMETERS: RON = 10m + - + - S1 S 0 VCC PARAMETERS: I_SET = 0.5 VHYS = 0.1 + - REF - + FB. U13 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} DIODE D1 AU + - + - S2 S DIODE D2 AL 0 A + - REF - + FB. U9 HYS_I-CTRL I_SET = {I_SET} VHYS = {VHYS} + - + - S3 S VCC 0 DIODE D3 /AU + - + - S4 S DIODE D4 /AL 0 U8 AND U10 AND U12 AND U14 AND /FA R1 1k CLK 0 FB OU I OL U4 GDRV /A /B U15 2-PHASE PPS = 100 CLK FA /FA FB /FB Drive Circuit Efficiency (%) Copyright (C) Bee Technologies2013 56 *Analysis directives: .TRAN 0 80ms 0 10u SKIPBP .STEP PARAM RON LIST 10m, 100m, 1 .OPTIONS ITL4= 40 One-Phase Step Sequence Generator (100 pps) 3.ステッピングモーター駆動制御シミュレーション 3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  • 57. Time 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 100*AVG(W(U1))/(-AVG(W(Vcc))) 85 90 95 100 Drive Circuit Efficiency (%) Copyright (C) Bee Technologies2013 57 at switches Ron = 10m, (99.7%) at switches Ron = 100m, (99.8%) at switches Ron = 1, (86%) Note: Add trace 100*AVG(W(U1))/(-AVG(W(Vcc))) for the Efficiency. 3.ステッピングモーター駆動制御シミュレーション 3.2コンセプトキットを活用したバイポーラ・ステッピングモーター制御回路
  • 58. Copyright (C) Bee Technologies2013 58 4.モーター駆動制御関連のデバイスモデリングサービスのご案内 http://ow.ly/kbfi2 http://ow.ly/kbftS http://ow.ly/kbfCy
  • 59. Copyright (C) Bee Technologies2013 59 質疑応答