SlideShare a Scribd company logo
 
 
EE 452 Power Electronics Design 
Final Project  
Flyback Converter 
 
Section AB 
Nasir Elmi   1468579 
Daniel Park  1271113 
Ki Hei Chan 1368010 
 
December 18, 2015 
 
 
 
 
 
 
Abstract 
We have constructed a DC/DC Flyback Converter, which is able to perform buck                         
and boost behavior from 10V input to 5­15V output in a open loop circuit.                           
Additionally, the converter is able to output a 15 V DC in close loop circuit with                               
varying load magnitude or input voltage magnitude. This document explains the                     
design process, and compares the capabilities of the final product to the original                         
specifications. 
 
 
 
 
 
 
 
 
 
 
1 
Table of Contents: 
1. Introduction 
1.1. Initial Design Specifications………………………………………….3 
2. Pre­Simulation Parameter Calculations 
2.1. Open­Loop Design Calculations……………………………………...4 
2.2. Average Model………………………………………………………..6 
2.3. Type 2K Factor Calculations………………………………………....7 
2.4. Closed Feedback Simulation Test…………………………………...10 
3. Changes to Specifications 
4. Hardware and Circuit Designs 
4.1. Flyback Closed­Loop Circuit Schematic…………………………....12 
4.2. HPH6­0158L Transformer…………………………………………..13 
4.3. SG3425 Controller chip……………………………………………..13 
4.4. MOSFET Driver……………………………………………...……..14 
4.5. Optocoupler NTE3220……………………………………………....14 
5. Open­Loop Hardware Tests 
5.1. High Load…………………………………………………………...15 
5.2. Low Load…………………………………………………………....16 
6. Closed­Loop Hardware Tests 
6.1. Varying Load (No Dynamic Changes) ……………………………..17 
6.2. Dynamic Load……………………………………………………….19 
6.3. Dynamic Input Voltage and Transient Analysis…………………….20 
6.4. Improving Transient Analysis……………………………………….21 
7. Required Parts 
7.1. Cost………………………………………………………………….24 
7.2. Engineering Standards………………………...………………..…...25 
7.3. Flyback converter Manufacturing…………………………………...25 
8. Conclusion and Encountered Problems 
 
 
 
 
2 
1 Introduction 
The purpose of this final project is to use the theory of the flyback (buck­boost) converter to                                 
build one. This lab report will focus on the preliminary design, which includes calculations and                             
measurements to extract values and parts necessary for the open­loop and closed­loop design.                         
With all simulation information intact, the hardware open­loop will be tested and then finally the                             
hardware closed­loop design will be tested. The goal overall is to simulate a working open and                               
closed­loop version of the converter and have all the information to build a sufficient closed­loop                             
version of the flyback converter that meets the specifications. 
1.1 Initial Design Specifications 
The following are the design specifications/rules that are going to be followed in order to                             
complete the project. Some specifications might be tweaked to meet the requirements: 
Input voltage magnitude:  10 V DC  
Adjustable Output voltage magnitude:  5V – 15V DC  
Power Rating:  
Minimum load: 5 W  
Maximum load: 10 W  
Maximum output ripple:  ± 5% 
Efficiency: > 60 % at Maximum load  
Converter Frequency:  100 kHz  
Output spiking:  Less than 25% of Output voltage  
Steady state regulation:  Less than 3%  
Overshoot: Less than 15% of output voltage  
Settling time: Less than than 0.3 seconds  
Startup transient magnitude:  Less than 25% of output voltage  
Startup transient duration:  Less than 0.4​ ​seconds 
 
 
 
 
3 
2 Pre­Simulation Parameter Calculations 
2.1 Open­Loop Design Calculations 
 
Figure 1. Open­Loop Flyback Converter Design 
 
For our initial calculations, the inductor value was set first based off of the wattage and the                                 
current of the output. With this, the inductor value that is necessary to be sufficient and operate                                 
at DCM mode was found, which came out to be 12.5 uH. For the capacitance value, this value                                   
was found using the inductor value. From this, C = 2 uF, but for this design we will use a higher                                         
capacitor in order to account for the ripple; thus C = 100 uF was used for the design. 
 
 
Figure 2. Transient Output Voltage in Buck Settings/Mode 
4 
Figure 2 above shows the buck mode of the converter when the switching voltage is on for 37%                                   
of the time. This 5 DC V shows that for a given range of appropriate resistance values, the                                   
converter will still act like a buck converter. Note: this is not dynamic load varying test; just tests                                   
if the converter can take different loads and output the same voltage.  
 
Figure 3. Transient Output Voltage in Boost Setting/Mode 
 
Figure 3 above shows the boost mode of the converter when the switching voltage is on for 55%                                   
of the time. This 15 constant DC V shows that for a given range of appropriate resistance values,                                   
the converter will still act like boost converter. Note that the zener diode is used to make sure                                   
that the voltage doesn’t exceed 15 V at low loads during boost mode.  
 
 
 
 
 
 
 
 
 
5 
2.2 Average Model 
 
Figure 4. Average Model of the Open­Loop Flyback Converter 
 
In order to obtain values for the controls, the bode plot of the average model from Figure 4 was                                     
used. Figures 5 and 6 shows the magnitude and the phase of the bode plot with cursor at the cross                                       
frequency that will be used in the 2K control calculations in later part of the report.  
 
Figure 5. Magnitude of the Bode Plot of the Average Model at average settings 
 
6 
 
Figure 6. Phase of the Bode Plot of the Average Model at average settings 
 
2.3 Type 2K Factor Calculations 
For the 2K Factor Method, we used the following given values from the specifications and                             
chosen values from the bode plots to calculate the transfer function of the controller circuit. Note                               
that for every results that follows for each equation is based off of the chosen/given parameters: 
Desired Phase Margin: 40 degrees 
Cross Frequency: 2990 Hz 
Power Stage Gain: 34.114 dB 
k Feedback: 1/6 
Because the PWM duty cycle is dependent on the voltage at pin 9 of the SG3524 and its pin 9                                       
voltage ranges from specifications are from 1.0 V to 3.5 V, the transfer is as the following: 
.4GPWM = 1
3.5−1 = 0  
Using these values from the bode plots, the following equation was used to find the phase boost                                 
and the K factor: 
PM 80 0ϕboost =   − 1 − ϕcross + 9  
  tan( 5)K =   2
ϕcross
+ 4  
With the K factor, we are then able to find the pole and zero frequency using the following                                   
equations:  
2πf /KwZero =   cr  
2πfwPole =   cr * K  
7 
Then using the feedback constant, the PWM gain, and the power stage gain, the desired                             
compensator gain at crossover frequency was found using the following equation (note all of                           
these terms are linear magnitude gains): 
Gcr = 1
k G Gfb PWM PS
 
Additionally, the controller gain was found using the zero frequency and the desired        kc                  
compensator gain in following equation: 
G wkc =   cr Zero  
Using the calculated parameter values, the transfer function for a 2K was used in the following                               
equation format: 
Gc =   s
kc (1+s/wz)
(1+s/wp)  
With all the values needed, the two capacitance values and the resistance value of the controller                               
(shown on Figure x) using the following equations: 
 
C1 = k wc P
g wm Z
 
C2 = kc
gm
− C1  
R  = 1
w CZ 2
 
 
Figure 7. 2K Factor Controller 
With everything calculated and compiled together, the 2K controller is ready to be built into the                               
closed­loop boost converter design. The following table are the resulting values from the                         
equation: 
 
 
 
8 
Table 1: Parameter Values from 2K Controller Calculations 
Parameter  Values 
Phase Boost  68 degrees 
 wZero   3651 rad/s 
 wZero   96649 rad/s 
Desired   Gcr  0.2954 (linear gain) 
 kc   1078 
 C1  70.1 nF 
 C1  1.78 uF 
 R    153.49 Ω 
 
Note: ​DISREGARD ​any of the controller circuit element values in the future figures as they are                               
just there as placeholders to know where the circuit elements are inserted. Most of the results                               
were taken using values near the calculated values from small tweaks and trial­and­error. 
 
 
 
 
 
 
 
 
 
9 
2.4 Closed Feedback Simulation Test 
 
Figure 8. Closed­Loop Average Model of the Flyback Converter 
 
With the controller values computed and obtained, the average model for the closed loop was                             
built in the simulation and tested. Figures 9 shows the transient response of the closed­loop in                               
boost mode, which shows that the voltage is constant at 15V for a sufficient amount of time,                                 
proving that the control design is stable. 
 
Additionally, Figure 10 shows the transient response of the closed­loop in buck mode. This also                             
shows that after a sufficient time, the voltage stays stable at around 5 V, which also proves that                                   
the control design is sufficient.  
10 
 
Figure 9. Transient of the Closed­Loop Average Model in Boost Mode 
 
 
 
 
 
Figure 10. Transient of the Closed­Loop Average Model in Buck Mode. 
 
  
 
 
 
11 
3 Changes to Specifications 
With numerous testing, there were some issues that followed and some changes to the design had                               
to be made. The following changes are on the table below: 
Table 2: Changes of some of the specifications 
Specification  Initial  Final 
Input Voltage (DC)  10 V   10 V ­ 15 V 
Output Voltage (DC)  5 V ­ 15 V  15 V 
Converter Frequency  100 kHz  54 kHz 
 
Instead of a range of output voltages, only one output voltage was chosen for the converter to 
handle and regulate in closed­loop. Additionally, the converter is made to handle multiple input 
voltages to convert to one output voltage with a range of output loads. Finally, the frequency had 
to be decreased in order for the MOSFET driver and the opto­isolator to handle the switching. 
 
4 Hardware and Circuit Designs 
With all of the simulation data compiled and the necessary information of the converter studied,                             
the next phase of the project will begin, which is the hardware testing. Below, we will talk about                                   
the schematic of the closed­loop design and then discuss some of the important parts of the                               
design. 
 
4.1 Flyback Closed­Loop Circuit Schematic 
 
Figure 11: Circuit Schematic of Hardware Implementation 
12 
 
Figure 11 shows the baseline of the closed­loop flyback converter. Note that the parts and                             
element values are subject to change and if so, will be discussed further on in the report. 
 
4.2 HPH6­0158L​ ​Transformer 
The calculated transformer inductance that was needed for this project was 12.5 ​µ​H with                           
turn ratio of 1:1. However, we ordered a transformer with higher inductance of 14.7 µ​H                           
with 15% leakage inductance. With this leakage, the measured inductance would turn out                         
to be close to the desired value. During our research for an ideal transformer to our                               
circuit, there were multiple transformers that would meet inductance specifications, but                     
they did not meet the other specifications which included current rating and output                         
voltage range. Thus, we used this transformer in our simulation and test in order to satisfy                               
our design. 
 
 
       Figure 12.​ ​HPH6­0158 Transformer Design.[1] 
 
 
4.3 SG3425 Controller chip 
Based on our calculation of the average model simulation bode plot, as mentioned earlier,                           
we needed a type 2 K­factor controller because the phase boost was within 90 degrees.                             
Then, we agreed to implement the SG3425 controller chip that we used in lab 3 since we                                 
are familiar with the chip functionality with a type 2 K­factor controller. With our design                             
parameters, the controller is able to adjust the duty ratio to whatever switching frequency                           
that the circuit needed. This enables our circuit to regulate its output voltage with                           
differing loads and input voltages.  
13 
     
Figure 13. Functional Block Diagram for SG3425 PWM chip 
 
 
4.4 MOSFET Driver 
The PWM output then feeds the MOSFET driver circuit. The driver turns ON and OFF                             
the MOSFET by applying a high voltage with a relatively low current to the gate                             
depending on the duty cycle. We tried two different MOSFET driver: the MC34151 and                           
the UC2710. The MC34151 lacked the ability to switch quickly, which resulted in the                           
MOSFET on all the time. Thus we went with the UC2710, which was able to take in                                 
higher switching cycles and operate much better than the MC34151 with the circuit as a                             
whole. 
 
4.5​ ​Optocoupler NTE3220 
The purpose of the optocoupler circuit is to provide feedback from the output to the                             
reference pins of the SG3524. The optocoupler reflect voltage from the secondary to the                           
primary winding of the transformer while isolating the two sides. This separates the                         
grounds between the two sides. Thus this devices protects the low side components from                           
having high power that might transfer from the high side. Thus, we used the NTE3220                             
optocoupler to control the feedback of our closed loop controller circuit. 
 
 
                  Figure 14. Functional Block Diagram for Optocoupler NTE3220 
14 
 
5 Open­Loop Hardware Tests 
With all the important parts discussed, we then will discuss the open­loop hardware testing. 
 
5.1 High Load 
The following oscilloscope waveforms were obtained from testing our circuit and show                       
how the final product performs. With the first version of the circuit, we were able to meet                                 
many of our desired specifications. The first specification we checked was whether the                         
flyback could output 15V with 10V input and a 10 W load. 
 
Figure 15. 15V output, 10V input, 22.4Ω load with ripple voltage=0.2 V 
 
 
Figure 16. 5V output, 10V input, 22.4Ω load with ripple voltage=0.2 V 
 
The test was performed with Vin=10 V, Iin= 1.68 A (Boost), Iin= 0.1751 A (Buck) and 10W                                 
high load (22.4 Ω) 
Table 3: High Load Output & Specifications 
Output Voltage(V)  Power Output(W)  Ripple Voltage (%)  Efficiency(%) 
15 
5 .01  1.12  1.42  64 
15.20  10.04  1.30  61.5 
 
5.2 Low Load 
The following oscilloscope waveforms were obtained from testing our circuit and show how the                           
final product performs. With the first version of the circuit we were able to meet many of our                                   
desired specifications. The first specification we checked was whether the flyback could output                         
15V and 5V with 10V input for a 5W load. 
 
 
Figure 17. 15.1V output, 10V input, 44.98Ω load with ripple voltage=0.2 V 
 
 
Figure 18: 5V output, 10V input, 44.98Ω load with ripple voltage=0.2 V 
 
 
 
 
16 
The following test was performed with Vin=10 V, Iin= 0.7947 A (Boost), Iin= 0.0858 A (Buck)                               
and 5W high load (44.98 Ω) to find the resulting measurements and calculations from Table 4. 
Table 4: Low Load Output & Specifications 
Output Voltage(V)  Power Output(W)  Ripple Voltage (%)  Efficiency(%) 
5 .00  0.56  1.45  64.8 
15.10  5.07  1.52  63.8 
 
We met all the initial specification for our open loop circuit as you can see from the above two                                     
tables. Also, we can see that the switching frequency is 54.30 kHz, which is close to the                                 
specified frequency 54 kHz. 
 
6 Closed­Loop Hardware Tests 
The following oscilloscope traces were obtained from actual circuit, and show how the final                           
product performed compared to its specifications. We were able to meet some of the                           
specifications, yet some of them still need some time to fix it​. 
 
6.1 Varying Load (No Dynamic Changes)  
 
Figure 19: 15.8V output, 10V input, 45.1Ω load with ripple voltage=0.35 V 
17 
 
Figure 20: 15.3V output, 10V input, 31.4Ω load with ripple voltage=0.28 V 
 
 
 
 
 
Figure 21: 14.9V output, 10V input, 22.7Ω load with ripple voltage=0.20 V 
 
The following measurements and calculations of the efficiencies was taken when Vin=10 V 
 
Table 5: Different Load Efficiency 
Input Current(A)  Load (Ω)  Output 
Voltage(V) 
Power 
Output(W) 
Efficiency(%) 
1.55  22.7   14.9  9.78  63.1 
1.24  31.4  15.1  7.45  58.6 
18 
1.04  45.1  15.3  10.04  50.0 
 
As we can see from the above table, our efficiency was low for one of the results because of the                                       
snubber circuits and the capacitors to deal with the spikes. It is still good comparing to our first                                   
trial where we had our efficiency below 30%. We believed that this low in efficiency was due to                                   
slight error values from the snubber circuit. 
 
6.2 Dynamic Load 
We met the dynamic load specification especially when we are changing from high load                           
to low load quickly. 
 
 
Figure 22. Voltage regulation with rapid load variation from 10W to 5W 
 
From Figure 22, The rapid load change was from a ​10W ​load ​to a 5W ​load. The output                                   
voltage remained around 15V throughout, with an overshoot of about 1.75V,                     
approximately ​11.7% which meets our specifications. The settling time was ​39 ms​, of                         
this rapid change,​ ​which also met our goal. 
 
 
 
 
 
 
 
19 
6.3 Dynamic Input Voltage and Transient Analysis 
 
 
Figure 23. Rapid change from 10V to 15V input voltage 
 
Figure 23 shows the dynamic change in input voltage from 10V to 15V. From the                             
waveforms, the output voltage changed from 15.1 V to 15.0 V, which shows that our                             
design is able to regulate output well with respect to dynamic changes in the input                             
voltage. 
 
The first hardware result from the closed loop shows steady state at 15V output, 5W and                               
an ​12V​ input voltage as shown in Figure 24 
 
 
Figure 24. 15V output Voltage steady state regulation, 12V input, 5W load 
20 
 
As we can see in Figure 24, the output voltage is still 15V even with the different input 
voltage value, which demonstrates good steady state voltage regulation. 
 
The second hardware result from the closed loop shows steady state at 15V output, 5W                             
and an ​13V​ input voltage (Figure 25). 
 
 
Figure 25. 15V output Voltage steady state regulation, 13V input, 5W load 
 
The third hardware result from the closed loop shows steady state at 15V output, 5W and                               
an ​15V​ input voltage (Figure 26). 
 
 
Figure 26. 15V output Voltage steady state regulation, 15V input, 5W load 
 
21 
The following measurements and calculations were taken when test was performed with                       
load=44.9 Ω. 
Table 6: Dynamic Input voltage Efficiency 
Input 
Voltage(V) 
Input 
Current(A) 
Load (Ω)  Output 
Voltage(V) 
Power 
Output(W) 
Efficiency(%
) 
12.0  0.72  44.9   15.0  5.01  58.0 
13.0  0.74  44.9  15.0  5.01  52.1 
15.0  0.80  44.9  15.1  5.1  42.5 
 
As we can see from the above data, our efficiency was low because of the snubber circuits. We                                   
did a lot of improvements to increase our efficiency, which is now close to 60% after using some                                   
of suggestions from the industry reviewers after the presentation. 
 
6.4 Improving Transient Analysis 
The next specification we met was the startup transient time after we did our demo. We                               
tried to improve our start up transient by implementing the industrial and professor                         
recommendation of getting better snubber values. This process involved getting proper                     
values from the snubbers. We realized that we needed to match the RC time constant                             
from the snubbers with the oscillation period of the ringing across the MOSFET and the                             
diode. Figure 24 below is the original signal. Blue waveform is the voltage across the                             
MOSFET gate and the yellow waveform is the output voltage. 
 
 
Figure 27. Output and gate voltage of the circuit at 10W operation (without snubbers) 
 
22 
Because there are major oscillations for every switching cycle, there are significant                       
spikes at the output, of the circuit, which can spike up to additional 10V from the 15V                                 
output. With the snubbers implemented, the resulting waveforms are shown Figure 25                       
(zoomed in more than the one in Figure 24) 
 
 
Figure 28. Output and gate voltage of the circuit at 10W operation (with snubbers) 
 
With the help of the snubbers, the oscillations during the transition between the on and                             
off cycle of the circuit has decreased. As a result, the spiking has reduced immensely                             
from the maximum of 10V peak from the output DC to approximately to 2.5 V peak from                                 
the output DC. This would help meeting the transient requirements, which will be                         
discussed further on.  
 
 
Figure 29. 10W Load start up transient time with 15V output and 10 V input voltages 
23 
We can see from Figure 29 that the startup transient time was only 12ms, which was                               
much faster than anticipated in the specifications (500ms). Additionally, there is barely                       
any overshoot in the transient, which definitely meets our specifications.  
7. Required Parts 
 
7.1 Cost 
With all the data compiled, the following table will list out the parts and their cost that will be 
needed for the design: 
Table 7. Cost for each component of the Flyback Converter Design 
Element Type  Part Number/Value  Unit Price  Quantity  Total Price 
PWM Controller  LM3524  1.60  1  1.60 
Power Diode  MUR420  0.80  1  0.80 
Power MOSFET  MTP3055VL  1.00  1  1.00 
Transformer  Coilcraft O4343­BL  4.71  1  4.71 
Opto­Isolator  PS25001­2  1.70  1  1.70 
1/4W 5% Resistors  Varying Values  0.10  8  0.80 
1/2W 5% Resistors  Varying Values  0.10  4   0.40  
1 W 1% Resistors  10Ω  0.10  1  0.10 
5W Resistors  100Ω  0.50  2  1.00 
Potentiometers  T34­100k 
T34­10k 
1.00 
1.00 
1 
1 
1.00 
1.00 
Electrolytic 
Capacitor 
1000μF 
470μF 
100μF 
22μF 
10μF 
33μF 
0.20 
0.20 
0.20 
0.20 
0.20 
0.20 
1 
1 
1 
1 
1 
1  
0.20 
0.20 
0.20 
0.20 
0.20 
0.20  
Ceramic Disk 
Capacitor 
100nF 
0.00122μF 
0.1μF 
0.20 
0.20 
0.10 
1 
1 
1 
0.20 
0.20 
0.10 
24 
From Table 4, the total cost of the design comes out to be $ ​15.81​. The market price is around 30                                         
to 60 dollars for a typical flyback converter integrated chip, which would make our design much                               
cheaper. However, these market designs have better specifications. Thus, our design output and                         
specifications fairly reflect the price of creating our design.  
 
 
7.2 Engineering Standards 
Our group met many Engineering and IEEE standards like: 
● Citing resource wherever we used to maintain circuit design integrity. 
● Having two isolated DC circuits using opto­coupler. 
● Temperature Limits in the Rating of Electronics Equipment and for the Evaluation of 
Electrical Insulation.  In our hardware implementation the MTP3055l Power Mosfet 
would get hot.   
7.3 Flyback converter Manufacturing 
First, the most expensive and important component of the flyback converter is the transformer.                           
We think that the cost of our flyback converter can be decreased by looking and finding more                                 
different transformers designs. Also, we could find a local distributor for the transformer, which                           
will decrease the cost of the shipping especially at this time of the year. 
 
Second, our flyback converter will function better if we were able to find a faster MOSFET gate                                 
driver that will work better with higher frequency. On the other hand, we found this problem                               
after we ordered our parts. This meant that it will take more time to prepare the manufacturing,                                 
which was not in our favor since we had limited time to get the project ready. 
 
Our flyback converter cost is reasonable comparing with the market values. After reducing the                           
cost as much as possible, we will then find a way to design and manufacturing. We found this                                   
online tool called PCB 123 construction software, which is designed to smooth transition from                           
design and manufacturing. With this, with sufficient design, we will be able to make the                             
manufactured design. 
8. Conclusion and Encountered Problems: 
At the end, our team met many of our initial design specifications, but fell short on some of the                                     
most significant ones. We learned from the process of buying our HPH6­0158L transformer the                           
importance of looking at datasheet before buying components. We also learned how difficult it                           
can be to deal with shipping time especially at this time of the year. Despite all of the difficulties                                     
however, we are confident that given one more week, our flyback will meet most of the                               
25 
specifications. One of the problems that we had was how to integrate the optoisolator in our                               
circuit to get the closed­loop working. Finding a new optocoupler, implement it into the circuit,                             
and ordering will take more than one week because of the holiday season. 
If we had a little more time, our circuit would meet the specifications and also be safer. Finally,                                   
this project has taught us all a lot about actual engineering lessons by being more precise with                                 
our specifications, examining all ratings for devices, and presenting us with valuable life                         
experience that could be applied real world projects.  
Overall, we felt that we had success at the beginning by getting our open loop working.                               
However, our closed­loop only worked for a little bit and overheated to the point where the                               
circuit stopped working. We then had to replace the MOSFET and add snubber circuit. Even                             
then, we had high current throughout, resulting in a little bit of overheating and efficiency loss.                               
Then, we decided to recalculate our snubber circuit values by using different design circuit by                             
adding diode. We spent hours and days troubleshooting our circuit, finding different parts and                           
resolving issues with the functionality of our design. Although we had our closed­loop working,                           
some of the specifications were not met.  
 
 
26 

More Related Content

What's hot

Emc510 s emec_lect_notes_sem-1_2016_lecture-2
Emc510 s emec_lect_notes_sem-1_2016_lecture-2Emc510 s emec_lect_notes_sem-1_2016_lecture-2
Emc510 s emec_lect_notes_sem-1_2016_lecture-2Timoteus Ikaku
 
Power Electronics Chopper (dc – dc converter)
Power Electronics   Chopper (dc – dc converter)Power Electronics   Chopper (dc – dc converter)
Power Electronics Chopper (dc – dc converter)Burdwan University
 
Single phase ac voltage controller
Single phase ac voltage controllerSingle phase ac voltage controller
Single phase ac voltage controllerSwati Tiwari
 
Directional over current relay
Directional over current relayDirectional over current relay
Directional over current relayCS V
 
Single phase transformer
Single phase transformerSingle phase transformer
Single phase transformerMahendra Rajput
 
Power systems symmetrical components
Power systems symmetrical componentsPower systems symmetrical components
Power systems symmetrical componentsanoopeluvathingal
 
Slip test on Synchronous Machine
Slip test on Synchronous MachineSlip test on Synchronous Machine
Slip test on Synchronous MachineVishal Thakur
 
Unit-5 AC-AC Cycloconverter
Unit-5 AC-AC CycloconverterUnit-5 AC-AC Cycloconverter
Unit-5 AC-AC Cycloconverterjohny renoald
 
Unit 2 Questions_Nagrath kothari
Unit 2 Questions_Nagrath kothariUnit 2 Questions_Nagrath kothari
Unit 2 Questions_Nagrath kothariAbha Tripathi
 
Dot convention in coupled circuits
Dot convention in coupled circuitsDot convention in coupled circuits
Dot convention in coupled circuitsmrunalinithanaraj
 
Three phase voltage source inverter
Three phase voltage source inverterThree phase voltage source inverter
Three phase voltage source invertertamilnesaner
 

What's hot (20)

Unit v
Unit vUnit v
Unit v
 
dc ac inverters
  dc ac inverters  dc ac inverters
dc ac inverters
 
DC DC Converter
DC DC ConverterDC DC Converter
DC DC Converter
 
Emc510 s emec_lect_notes_sem-1_2016_lecture-2
Emc510 s emec_lect_notes_sem-1_2016_lecture-2Emc510 s emec_lect_notes_sem-1_2016_lecture-2
Emc510 s emec_lect_notes_sem-1_2016_lecture-2
 
Power Electronics Chopper (dc – dc converter)
Power Electronics   Chopper (dc – dc converter)Power Electronics   Chopper (dc – dc converter)
Power Electronics Chopper (dc – dc converter)
 
dc Generator Ppt
dc Generator Pptdc Generator Ppt
dc Generator Ppt
 
Single phase ac voltage controller
Single phase ac voltage controllerSingle phase ac voltage controller
Single phase ac voltage controller
 
Per unit analysis
Per unit analysisPer unit analysis
Per unit analysis
 
Directional over current relay
Directional over current relayDirectional over current relay
Directional over current relay
 
Facts
FactsFacts
Facts
 
Single phase transformer
Single phase transformerSingle phase transformer
Single phase transformer
 
Single Phase Converter
Single Phase ConverterSingle Phase Converter
Single Phase Converter
 
Power systems symmetrical components
Power systems symmetrical componentsPower systems symmetrical components
Power systems symmetrical components
 
CSI Manual
CSI ManualCSI Manual
CSI Manual
 
Slip test on Synchronous Machine
Slip test on Synchronous MachineSlip test on Synchronous Machine
Slip test on Synchronous Machine
 
Unit-5 AC-AC Cycloconverter
Unit-5 AC-AC CycloconverterUnit-5 AC-AC Cycloconverter
Unit-5 AC-AC Cycloconverter
 
Unit 2 Questions_Nagrath kothari
Unit 2 Questions_Nagrath kothariUnit 2 Questions_Nagrath kothari
Unit 2 Questions_Nagrath kothari
 
Dot convention in coupled circuits
Dot convention in coupled circuitsDot convention in coupled circuits
Dot convention in coupled circuits
 
Three phase voltage source inverter
Three phase voltage source inverterThree phase voltage source inverter
Three phase voltage source inverter
 
Unit 2
Unit 2Unit 2
Unit 2
 

Viewers also liked

Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Tsuyoshi Horigome
 
Forward convertor
Forward convertorForward convertor
Forward convertorzeshana
 
An interleaved high power flyback inverter for photovoltaic applications
An interleaved high power flyback inverter for photovoltaic applicationsAn interleaved high power flyback inverter for photovoltaic applications
An interleaved high power flyback inverter for photovoltaic applicationsI3E Technologies
 
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016Alan Courtay
 
Switch mode power supply
Switch mode power supplySwitch mode power supply
Switch mode power supplyAnish Das
 
Synchronous flyback converter with synchronous buck post regulator
Synchronous flyback converter with synchronous buck post regulatorSynchronous flyback converter with synchronous buck post regulator
Synchronous flyback converter with synchronous buck post regulatoreSAT Publishing House
 
E book proteus library
E book   proteus libraryE book   proteus library
E book proteus libraryDaniel Sanchez
 
Overhead Circuit Design
Overhead Circuit DesignOverhead Circuit Design
Overhead Circuit Designki hei chan
 
2013 IEEE M.tech eee matlab
2013 IEEE M.tech eee matlab2013 IEEE M.tech eee matlab
2013 IEEE M.tech eee matlabVision Solutions
 
EE452_Open Loop Buck Converter
EE452_Open Loop Buck ConverterEE452_Open Loop Buck Converter
EE452_Open Loop Buck Converterki hei chan
 
DESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROL
DESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROLDESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROL
DESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROLIAEME Publication
 
Two-Phase Interleaved CCM PFC Controller
Two-Phase Interleaved CCM PFC ControllerTwo-Phase Interleaved CCM PFC Controller
Two-Phase Interleaved CCM PFC ControllerPremier Farnell
 
ISOLOOP MAGNETIC COUPLERS REPLACED OPTOCOUPLERS
ISOLOOP MAGNETIC COUPLERS REPLACED OPTOCOUPLERSISOLOOP MAGNETIC COUPLERS REPLACED OPTOCOUPLERS
ISOLOOP MAGNETIC COUPLERS REPLACED OPTOCOUPLERSSalman Lulat
 
Power Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_MappusPower Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_MappusSteve Mappus
 
Vinit buck bost ppt
Vinit buck bost pptVinit buck bost ppt
Vinit buck bost pptVinit Rajput
 
Power factor correction in bridgeless luo converter-fed bldc motor drive
Power factor correction in bridgeless luo converter-fed bldc motor drivePower factor correction in bridgeless luo converter-fed bldc motor drive
Power factor correction in bridgeless luo converter-fed bldc motor driveI3E Technologies
 
Cyclo converters
Cyclo convertersCyclo converters
Cyclo convertersJaya Shree
 
Modified dc dc converter for high input voltage applications
Modified dc dc converter for high input voltage applicationsModified dc dc converter for high input voltage applications
Modified dc dc converter for high input voltage applicationseSAT Journals
 

Viewers also liked (20)

Flyback Converters v4
Flyback Converters v4Flyback Converters v4
Flyback Converters v4
 
Bi-directional Flyback DC-DC Converter
Bi-directional Flyback DC-DC Converter Bi-directional Flyback DC-DC Converter
Bi-directional Flyback DC-DC Converter
 
Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)
 
Forward convertor
Forward convertorForward convertor
Forward convertor
 
An interleaved high power flyback inverter for photovoltaic applications
An interleaved high power flyback inverter for photovoltaic applicationsAn interleaved high power flyback inverter for photovoltaic applications
An interleaved high power flyback inverter for photovoltaic applications
 
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016
 
Switch mode power supply
Switch mode power supplySwitch mode power supply
Switch mode power supply
 
Synchronous flyback converter with synchronous buck post regulator
Synchronous flyback converter with synchronous buck post regulatorSynchronous flyback converter with synchronous buck post regulator
Synchronous flyback converter with synchronous buck post regulator
 
E book proteus library
E book   proteus libraryE book   proteus library
E book proteus library
 
Overhead Circuit Design
Overhead Circuit DesignOverhead Circuit Design
Overhead Circuit Design
 
2013 IEEE M.tech eee matlab
2013 IEEE M.tech eee matlab2013 IEEE M.tech eee matlab
2013 IEEE M.tech eee matlab
 
EE452_Open Loop Buck Converter
EE452_Open Loop Buck ConverterEE452_Open Loop Buck Converter
EE452_Open Loop Buck Converter
 
DESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROL
DESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROLDESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROL
DESIGN OF A MULTIFUNCTIONAL FLYBACK DC-DC CONVERTER WITH CURRENT CONTROL
 
Two-Phase Interleaved CCM PFC Controller
Two-Phase Interleaved CCM PFC ControllerTwo-Phase Interleaved CCM PFC Controller
Two-Phase Interleaved CCM PFC Controller
 
ISOLOOP MAGNETIC COUPLERS REPLACED OPTOCOUPLERS
ISOLOOP MAGNETIC COUPLERS REPLACED OPTOCOUPLERSISOLOOP MAGNETIC COUPLERS REPLACED OPTOCOUPLERS
ISOLOOP MAGNETIC COUPLERS REPLACED OPTOCOUPLERS
 
Power Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_MappusPower Topologies_Full Deck_04251964_Mappus
Power Topologies_Full Deck_04251964_Mappus
 
Vinit buck bost ppt
Vinit buck bost pptVinit buck bost ppt
Vinit buck bost ppt
 
Power factor correction in bridgeless luo converter-fed bldc motor drive
Power factor correction in bridgeless luo converter-fed bldc motor drivePower factor correction in bridgeless luo converter-fed bldc motor drive
Power factor correction in bridgeless luo converter-fed bldc motor drive
 
Cyclo converters
Cyclo convertersCyclo converters
Cyclo converters
 
Modified dc dc converter for high input voltage applications
Modified dc dc converter for high input voltage applicationsModified dc dc converter for high input voltage applications
Modified dc dc converter for high input voltage applications
 

Similar to EE452_Flyback Convert

PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)Tsuyoshi Horigome
 
Small signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converterSmall signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converterRamaraochowdary Kantipudi
 
Fuzzy Control Based Quadrupler Boost Converter
Fuzzy Control Based Quadrupler Boost ConverterFuzzy Control Based Quadrupler Boost Converter
Fuzzy Control Based Quadrupler Boost ConverterIJSRD
 
Voltage Mode Control of Buck Converter
Voltage Mode Control of Buck ConverterVoltage Mode Control of Buck Converter
Voltage Mode Control of Buck ConverterManish Kumar
 
Improvement In Pre-Regulation For Power Factor Using CUK Converter
Improvement In Pre-Regulation For Power Factor Using CUK ConverterImprovement In Pre-Regulation For Power Factor Using CUK Converter
Improvement In Pre-Regulation For Power Factor Using CUK ConverterIJRES Journal
 
A Low Cost Single-Switch Bridgeless Boost PFC Converter
A Low Cost Single-Switch Bridgeless Boost PFC ConverterA Low Cost Single-Switch Bridgeless Boost PFC Converter
A Low Cost Single-Switch Bridgeless Boost PFC ConverterIJPEDS-IAES
 
Comparison of PI and PID Controlled Bidirectional DC-DC Converter Systems
Comparison of PI and PID Controlled Bidirectional DC-DC Converter SystemsComparison of PI and PID Controlled Bidirectional DC-DC Converter Systems
Comparison of PI and PID Controlled Bidirectional DC-DC Converter SystemsIJPEDS-IAES
 
PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...
PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...
PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...IJRES Journal
 
PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション Tsuyoshi Horigome
 
Design and Control of HESS based PEV
Design and Control of  HESS based PEVDesign and Control of  HESS based PEV
Design and Control of HESS based PEVMalyala Varun
 
A Novel Approach of Position Estimation and Power Factor Corrector Converter ...
A Novel Approach of Position Estimation and Power Factor Corrector Converter ...A Novel Approach of Position Estimation and Power Factor Corrector Converter ...
A Novel Approach of Position Estimation and Power Factor Corrector Converter ...IJPEDS-IAES
 
Closed Loop Analysis of Bridgeless SEPIC Converter for Drive Application
Closed Loop Analysis of Bridgeless SEPIC Converter for Drive ApplicationClosed Loop Analysis of Bridgeless SEPIC Converter for Drive Application
Closed Loop Analysis of Bridgeless SEPIC Converter for Drive ApplicationIJPEDS-IAES
 
Vaila ruthvik ece_510_project
Vaila ruthvik ece_510_projectVaila ruthvik ece_510_project
Vaila ruthvik ece_510_projectRuthvik Vaila
 
Digital Voltage Control of DC-DC Boost Converter
Digital Voltage Control of DC-DC Boost ConverterDigital Voltage Control of DC-DC Boost Converter
Digital Voltage Control of DC-DC Boost ConverterIJERA Editor
 
Closed Loop Simulation and Implementation of Digital Integral Control of Sy...
Closed Loop Simulation and Implementation of  Digital Integral  Control of Sy...Closed Loop Simulation and Implementation of  Digital Integral  Control of Sy...
Closed Loop Simulation and Implementation of Digital Integral Control of Sy...IRJET Journal
 
H2PToday1201_design_IR
H2PToday1201_design_IRH2PToday1201_design_IR
H2PToday1201_design_IRParviz Parto
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Implementation of Linear Controller for a DC-DC Forward Converter
Implementation of Linear Controller for a DC-DC Forward ConverterImplementation of Linear Controller for a DC-DC Forward Converter
Implementation of Linear Controller for a DC-DC Forward Converterijceronline
 

Similar to EE452_Flyback Convert (20)

PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)
 
Small signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converterSmall signal analysis based closed loop control of buck converter
Small signal analysis based closed loop control of buck converter
 
506 267-276
506 267-276506 267-276
506 267-276
 
Fuzzy Control Based Quadrupler Boost Converter
Fuzzy Control Based Quadrupler Boost ConverterFuzzy Control Based Quadrupler Boost Converter
Fuzzy Control Based Quadrupler Boost Converter
 
Voltage Mode Control of Buck Converter
Voltage Mode Control of Buck ConverterVoltage Mode Control of Buck Converter
Voltage Mode Control of Buck Converter
 
Improvement In Pre-Regulation For Power Factor Using CUK Converter
Improvement In Pre-Regulation For Power Factor Using CUK ConverterImprovement In Pre-Regulation For Power Factor Using CUK Converter
Improvement In Pre-Regulation For Power Factor Using CUK Converter
 
15 47-58
15 47-5815 47-58
15 47-58
 
A Low Cost Single-Switch Bridgeless Boost PFC Converter
A Low Cost Single-Switch Bridgeless Boost PFC ConverterA Low Cost Single-Switch Bridgeless Boost PFC Converter
A Low Cost Single-Switch Bridgeless Boost PFC Converter
 
Comparison of PI and PID Controlled Bidirectional DC-DC Converter Systems
Comparison of PI and PID Controlled Bidirectional DC-DC Converter SystemsComparison of PI and PID Controlled Bidirectional DC-DC Converter Systems
Comparison of PI and PID Controlled Bidirectional DC-DC Converter Systems
 
PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...
PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...
PID Compensator Control Scheme of Synchronous Buck DC-DC Converter with ZVS L...
 
PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション
 
Design and Control of HESS based PEV
Design and Control of  HESS based PEVDesign and Control of  HESS based PEV
Design and Control of HESS based PEV
 
A Novel Approach of Position Estimation and Power Factor Corrector Converter ...
A Novel Approach of Position Estimation and Power Factor Corrector Converter ...A Novel Approach of Position Estimation and Power Factor Corrector Converter ...
A Novel Approach of Position Estimation and Power Factor Corrector Converter ...
 
Closed Loop Analysis of Bridgeless SEPIC Converter for Drive Application
Closed Loop Analysis of Bridgeless SEPIC Converter for Drive ApplicationClosed Loop Analysis of Bridgeless SEPIC Converter for Drive Application
Closed Loop Analysis of Bridgeless SEPIC Converter for Drive Application
 
Vaila ruthvik ece_510_project
Vaila ruthvik ece_510_projectVaila ruthvik ece_510_project
Vaila ruthvik ece_510_project
 
Digital Voltage Control of DC-DC Boost Converter
Digital Voltage Control of DC-DC Boost ConverterDigital Voltage Control of DC-DC Boost Converter
Digital Voltage Control of DC-DC Boost Converter
 
Closed Loop Simulation and Implementation of Digital Integral Control of Sy...
Closed Loop Simulation and Implementation of  Digital Integral  Control of Sy...Closed Loop Simulation and Implementation of  Digital Integral  Control of Sy...
Closed Loop Simulation and Implementation of Digital Integral Control of Sy...
 
H2PToday1201_design_IR
H2PToday1201_design_IRH2PToday1201_design_IR
H2PToday1201_design_IR
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Implementation of Linear Controller for a DC-DC Forward Converter
Implementation of Linear Controller for a DC-DC Forward ConverterImplementation of Linear Controller for a DC-DC Forward Converter
Implementation of Linear Controller for a DC-DC Forward Converter
 

EE452_Flyback Convert

  • 2. Abstract  We have constructed a DC/DC Flyback Converter, which is able to perform buck                          and boost behavior from 10V input to 5­15V output in a open loop circuit.                            Additionally, the converter is able to output a 15 V DC in close loop circuit with                                varying load magnitude or input voltage magnitude. This document explains the                      design process, and compares the capabilities of the final product to the original                          specifications.                      1 
  • 3. Table of Contents:  1. Introduction  1.1. Initial Design Specifications………………………………………….3  2. Pre­Simulation Parameter Calculations  2.1. Open­Loop Design Calculations……………………………………...4  2.2. Average Model………………………………………………………..6  2.3. Type 2K Factor Calculations………………………………………....7  2.4. Closed Feedback Simulation Test…………………………………...10  3. Changes to Specifications  4. Hardware and Circuit Designs  4.1. Flyback Closed­Loop Circuit Schematic…………………………....12  4.2. HPH6­0158L Transformer…………………………………………..13  4.3. SG3425 Controller chip……………………………………………..13  4.4. MOSFET Driver……………………………………………...……..14  4.5. Optocoupler NTE3220……………………………………………....14  5. Open­Loop Hardware Tests  5.1. High Load…………………………………………………………...15  5.2. Low Load…………………………………………………………....16  6. Closed­Loop Hardware Tests  6.1. Varying Load (No Dynamic Changes) ……………………………..17  6.2. Dynamic Load……………………………………………………….19  6.3. Dynamic Input Voltage and Transient Analysis…………………….20  6.4. Improving Transient Analysis……………………………………….21  7. Required Parts  7.1. Cost………………………………………………………………….24  7.2. Engineering Standards………………………...………………..…...25  7.3. Flyback converter Manufacturing…………………………………...25  8. Conclusion and Encountered Problems          2 
  • 4. 1 Introduction  The purpose of this final project is to use the theory of the flyback (buck­boost) converter to                                  build one. This lab report will focus on the preliminary design, which includes calculations and                              measurements to extract values and parts necessary for the open­loop and closed­loop design.                          With all simulation information intact, the hardware open­loop will be tested and then finally the                              hardware closed­loop design will be tested. The goal overall is to simulate a working open and                                closed­loop version of the converter and have all the information to build a sufficient closed­loop                              version of the flyback converter that meets the specifications.  1.1 Initial Design Specifications  The following are the design specifications/rules that are going to be followed in order to                              complete the project. Some specifications might be tweaked to meet the requirements:  Input voltage magnitude:  10 V DC   Adjustable Output voltage magnitude:  5V – 15V DC   Power Rating:   Minimum load: 5 W   Maximum load: 10 W   Maximum output ripple:  ± 5%  Efficiency: > 60 % at Maximum load   Converter Frequency:  100 kHz   Output spiking:  Less than 25% of Output voltage   Steady state regulation:  Less than 3%   Overshoot: Less than 15% of output voltage   Settling time: Less than than 0.3 seconds   Startup transient magnitude:  Less than 25% of output voltage   Startup transient duration:  Less than 0.4​ ​seconds          3 
  • 5. 2 Pre­Simulation Parameter Calculations  2.1 Open­Loop Design Calculations    Figure 1. Open­Loop Flyback Converter Design    For our initial calculations, the inductor value was set first based off of the wattage and the                                  current of the output. With this, the inductor value that is necessary to be sufficient and operate                                  at DCM mode was found, which came out to be 12.5 uH. For the capacitance value, this value                                    was found using the inductor value. From this, C = 2 uF, but for this design we will use a higher                                          capacitor in order to account for the ripple; thus C = 100 uF was used for the design.      Figure 2. Transient Output Voltage in Buck Settings/Mode  4 
  • 6. Figure 2 above shows the buck mode of the converter when the switching voltage is on for 37%                                    of the time. This 5 DC V shows that for a given range of appropriate resistance values, the                                    converter will still act like a buck converter. Note: this is not dynamic load varying test; just tests                                    if the converter can take different loads and output the same voltage.     Figure 3. Transient Output Voltage in Boost Setting/Mode    Figure 3 above shows the boost mode of the converter when the switching voltage is on for 55%                                    of the time. This 15 constant DC V shows that for a given range of appropriate resistance values,                                    the converter will still act like boost converter. Note that the zener diode is used to make sure                                    that the voltage doesn’t exceed 15 V at low loads during boost mode.                     5 
  • 7. 2.2 Average Model    Figure 4. Average Model of the Open­Loop Flyback Converter    In order to obtain values for the controls, the bode plot of the average model from Figure 4 was                                      used. Figures 5 and 6 shows the magnitude and the phase of the bode plot with cursor at the cross                                        frequency that will be used in the 2K control calculations in later part of the report.     Figure 5. Magnitude of the Bode Plot of the Average Model at average settings    6 
  • 8.   Figure 6. Phase of the Bode Plot of the Average Model at average settings    2.3 Type 2K Factor Calculations  For the 2K Factor Method, we used the following given values from the specifications and                              chosen values from the bode plots to calculate the transfer function of the controller circuit. Note                                that for every results that follows for each equation is based off of the chosen/given parameters:  Desired Phase Margin: 40 degrees  Cross Frequency: 2990 Hz  Power Stage Gain: 34.114 dB  k Feedback: 1/6  Because the PWM duty cycle is dependent on the voltage at pin 9 of the SG3524 and its pin 9                                        voltage ranges from specifications are from 1.0 V to 3.5 V, the transfer is as the following:  .4GPWM = 1 3.5−1 = 0   Using these values from the bode plots, the following equation was used to find the phase boost                                  and the K factor:  PM 80 0ϕboost =   − 1 − ϕcross + 9     tan( 5)K =   2 ϕcross + 4   With the K factor, we are then able to find the pole and zero frequency using the following                                    equations:   2πf /KwZero =   cr   2πfwPole =   cr * K   7 
  • 9. Then using the feedback constant, the PWM gain, and the power stage gain, the desired                              compensator gain at crossover frequency was found using the following equation (note all of                            these terms are linear magnitude gains):  Gcr = 1 k G Gfb PWM PS   Additionally, the controller gain was found using the zero frequency and the desired        kc                   compensator gain in following equation:  G wkc =   cr Zero   Using the calculated parameter values, the transfer function for a 2K was used in the following                                equation format:  Gc =   s kc (1+s/wz) (1+s/wp)   With all the values needed, the two capacitance values and the resistance value of the controller                                (shown on Figure x) using the following equations:    C1 = k wc P g wm Z   C2 = kc gm − C1   R  = 1 w CZ 2     Figure 7. 2K Factor Controller  With everything calculated and compiled together, the 2K controller is ready to be built into the                                closed­loop boost converter design. The following table are the resulting values from the                          equation:        8 
  • 10. Table 1: Parameter Values from 2K Controller Calculations  Parameter  Values  Phase Boost  68 degrees   wZero   3651 rad/s   wZero   96649 rad/s  Desired   Gcr  0.2954 (linear gain)   kc   1078   C1  70.1 nF   C1  1.78 uF   R    153.49 Ω    Note: ​DISREGARD ​any of the controller circuit element values in the future figures as they are                                just there as placeholders to know where the circuit elements are inserted. Most of the results                                were taken using values near the calculated values from small tweaks and trial­and­error.                    9 
  • 11. 2.4 Closed Feedback Simulation Test    Figure 8. Closed­Loop Average Model of the Flyback Converter    With the controller values computed and obtained, the average model for the closed loop was                              built in the simulation and tested. Figures 9 shows the transient response of the closed­loop in                                boost mode, which shows that the voltage is constant at 15V for a sufficient amount of time,                                  proving that the control design is stable.    Additionally, Figure 10 shows the transient response of the closed­loop in buck mode. This also                              shows that after a sufficient time, the voltage stays stable at around 5 V, which also proves that                                    the control design is sufficient.   10 
  • 13. 3 Changes to Specifications  With numerous testing, there were some issues that followed and some changes to the design had                                to be made. The following changes are on the table below:  Table 2: Changes of some of the specifications  Specification  Initial  Final  Input Voltage (DC)  10 V   10 V ­ 15 V  Output Voltage (DC)  5 V ­ 15 V  15 V  Converter Frequency  100 kHz  54 kHz    Instead of a range of output voltages, only one output voltage was chosen for the converter to  handle and regulate in closed­loop. Additionally, the converter is made to handle multiple input  voltages to convert to one output voltage with a range of output loads. Finally, the frequency had  to be decreased in order for the MOSFET driver and the opto­isolator to handle the switching.    4 Hardware and Circuit Designs  With all of the simulation data compiled and the necessary information of the converter studied,                              the next phase of the project will begin, which is the hardware testing. Below, we will talk about                                    the schematic of the closed­loop design and then discuss some of the important parts of the                                design.    4.1 Flyback Closed­Loop Circuit Schematic    Figure 11: Circuit Schematic of Hardware Implementation  12 
  • 14.   Figure 11 shows the baseline of the closed­loop flyback converter. Note that the parts and                              element values are subject to change and if so, will be discussed further on in the report.    4.2 HPH6­0158L​ ​Transformer  The calculated transformer inductance that was needed for this project was 12.5 ​µ​H with                            turn ratio of 1:1. However, we ordered a transformer with higher inductance of 14.7 µ​H                            with 15% leakage inductance. With this leakage, the measured inductance would turn out                          to be close to the desired value. During our research for an ideal transformer to our                                circuit, there were multiple transformers that would meet inductance specifications, but                      they did not meet the other specifications which included current rating and output                          voltage range. Thus, we used this transformer in our simulation and test in order to satisfy                                our design.             Figure 12.​ ​HPH6­0158 Transformer Design.[1]      4.3 SG3425 Controller chip  Based on our calculation of the average model simulation bode plot, as mentioned earlier,                            we needed a type 2 K­factor controller because the phase boost was within 90 degrees.                              Then, we agreed to implement the SG3425 controller chip that we used in lab 3 since we                                  are familiar with the chip functionality with a type 2 K­factor controller. With our design                              parameters, the controller is able to adjust the duty ratio to whatever switching frequency                            that the circuit needed. This enables our circuit to regulate its output voltage with                            differing loads and input voltages.   13 
  • 15.       Figure 13. Functional Block Diagram for SG3425 PWM chip      4.4 MOSFET Driver  The PWM output then feeds the MOSFET driver circuit. The driver turns ON and OFF                              the MOSFET by applying a high voltage with a relatively low current to the gate                              depending on the duty cycle. We tried two different MOSFET driver: the MC34151 and                            the UC2710. The MC34151 lacked the ability to switch quickly, which resulted in the                            MOSFET on all the time. Thus we went with the UC2710, which was able to take in                                  higher switching cycles and operate much better than the MC34151 with the circuit as a                              whole.    4.5​ ​Optocoupler NTE3220  The purpose of the optocoupler circuit is to provide feedback from the output to the                              reference pins of the SG3524. The optocoupler reflect voltage from the secondary to the                            primary winding of the transformer while isolating the two sides. This separates the                          grounds between the two sides. Thus this devices protects the low side components from                            having high power that might transfer from the high side. Thus, we used the NTE3220                              optocoupler to control the feedback of our closed loop controller circuit.                        Figure 14. Functional Block Diagram for Optocoupler NTE3220  14 
  • 16.   5 Open­Loop Hardware Tests  With all the important parts discussed, we then will discuss the open­loop hardware testing.    5.1 High Load  The following oscilloscope waveforms were obtained from testing our circuit and show                        how the final product performs. With the first version of the circuit, we were able to meet                                  many of our desired specifications. The first specification we checked was whether the                          flyback could output 15V with 10V input and a 10 W load.    Figure 15. 15V output, 10V input, 22.4Ω load with ripple voltage=0.2 V      Figure 16. 5V output, 10V input, 22.4Ω load with ripple voltage=0.2 V    The test was performed with Vin=10 V, Iin= 1.68 A (Boost), Iin= 0.1751 A (Buck) and 10W                                  high load (22.4 Ω)  Table 3: High Load Output & Specifications  Output Voltage(V)  Power Output(W)  Ripple Voltage (%)  Efficiency(%)  15 
  • 17. 5 .01  1.12  1.42  64  15.20  10.04  1.30  61.5    5.2 Low Load  The following oscilloscope waveforms were obtained from testing our circuit and show how the                            final product performs. With the first version of the circuit we were able to meet many of our                                    desired specifications. The first specification we checked was whether the flyback could output                          15V and 5V with 10V input for a 5W load.      Figure 17. 15.1V output, 10V input, 44.98Ω load with ripple voltage=0.2 V      Figure 18: 5V output, 10V input, 44.98Ω load with ripple voltage=0.2 V          16 
  • 18. The following test was performed with Vin=10 V, Iin= 0.7947 A (Boost), Iin= 0.0858 A (Buck)                                and 5W high load (44.98 Ω) to find the resulting measurements and calculations from Table 4.  Table 4: Low Load Output & Specifications  Output Voltage(V)  Power Output(W)  Ripple Voltage (%)  Efficiency(%)  5 .00  0.56  1.45  64.8  15.10  5.07  1.52  63.8    We met all the initial specification for our open loop circuit as you can see from the above two                                      tables. Also, we can see that the switching frequency is 54.30 kHz, which is close to the                                  specified frequency 54 kHz.    6 Closed­Loop Hardware Tests  The following oscilloscope traces were obtained from actual circuit, and show how the final                            product performed compared to its specifications. We were able to meet some of the                            specifications, yet some of them still need some time to fix it​.    6.1 Varying Load (No Dynamic Changes)     Figure 19: 15.8V output, 10V input, 45.1Ω load with ripple voltage=0.35 V  17 
  • 20. 1.04  45.1  15.3  10.04  50.0    As we can see from the above table, our efficiency was low for one of the results because of the                                        snubber circuits and the capacitors to deal with the spikes. It is still good comparing to our first                                    trial where we had our efficiency below 30%. We believed that this low in efficiency was due to                                    slight error values from the snubber circuit.    6.2 Dynamic Load  We met the dynamic load specification especially when we are changing from high load                            to low load quickly.      Figure 22. Voltage regulation with rapid load variation from 10W to 5W    From Figure 22, The rapid load change was from a ​10W ​load ​to a 5W ​load. The output                                    voltage remained around 15V throughout, with an overshoot of about 1.75V,                      approximately ​11.7% which meets our specifications. The settling time was ​39 ms​, of                          this rapid change,​ ​which also met our goal.                19 
  • 21. 6.3 Dynamic Input Voltage and Transient Analysis      Figure 23. Rapid change from 10V to 15V input voltage    Figure 23 shows the dynamic change in input voltage from 10V to 15V. From the                              waveforms, the output voltage changed from 15.1 V to 15.0 V, which shows that our                              design is able to regulate output well with respect to dynamic changes in the input                              voltage.    The first hardware result from the closed loop shows steady state at 15V output, 5W and                                an ​12V​ input voltage as shown in Figure 24      Figure 24. 15V output Voltage steady state regulation, 12V input, 5W load  20 
  • 22.   As we can see in Figure 24, the output voltage is still 15V even with the different input  voltage value, which demonstrates good steady state voltage regulation.    The second hardware result from the closed loop shows steady state at 15V output, 5W                              and an ​13V​ input voltage (Figure 25).      Figure 25. 15V output Voltage steady state regulation, 13V input, 5W load    The third hardware result from the closed loop shows steady state at 15V output, 5W and                                an ​15V​ input voltage (Figure 26).      Figure 26. 15V output Voltage steady state regulation, 15V input, 5W load    21 
  • 23. The following measurements and calculations were taken when test was performed with                        load=44.9 Ω.  Table 6: Dynamic Input voltage Efficiency  Input  Voltage(V)  Input  Current(A)  Load (Ω)  Output  Voltage(V)  Power  Output(W)  Efficiency(% )  12.0  0.72  44.9   15.0  5.01  58.0  13.0  0.74  44.9  15.0  5.01  52.1  15.0  0.80  44.9  15.1  5.1  42.5    As we can see from the above data, our efficiency was low because of the snubber circuits. We                                    did a lot of improvements to increase our efficiency, which is now close to 60% after using some                                    of suggestions from the industry reviewers after the presentation.    6.4 Improving Transient Analysis  The next specification we met was the startup transient time after we did our demo. We                                tried to improve our start up transient by implementing the industrial and professor                          recommendation of getting better snubber values. This process involved getting proper                      values from the snubbers. We realized that we needed to match the RC time constant                              from the snubbers with the oscillation period of the ringing across the MOSFET and the                              diode. Figure 24 below is the original signal. Blue waveform is the voltage across the                              MOSFET gate and the yellow waveform is the output voltage.      Figure 27. Output and gate voltage of the circuit at 10W operation (without snubbers)    22 
  • 24. Because there are major oscillations for every switching cycle, there are significant                        spikes at the output, of the circuit, which can spike up to additional 10V from the 15V                                  output. With the snubbers implemented, the resulting waveforms are shown Figure 25                        (zoomed in more than the one in Figure 24)      Figure 28. Output and gate voltage of the circuit at 10W operation (with snubbers)    With the help of the snubbers, the oscillations during the transition between the on and                              off cycle of the circuit has decreased. As a result, the spiking has reduced immensely                              from the maximum of 10V peak from the output DC to approximately to 2.5 V peak from                                  the output DC. This would help meeting the transient requirements, which will be                          discussed further on.       Figure 29. 10W Load start up transient time with 15V output and 10 V input voltages  23 
  • 25. We can see from Figure 29 that the startup transient time was only 12ms, which was                                much faster than anticipated in the specifications (500ms). Additionally, there is barely                        any overshoot in the transient, which definitely meets our specifications.   7. Required Parts    7.1 Cost  With all the data compiled, the following table will list out the parts and their cost that will be  needed for the design:  Table 7. Cost for each component of the Flyback Converter Design  Element Type  Part Number/Value  Unit Price  Quantity  Total Price  PWM Controller  LM3524  1.60  1  1.60  Power Diode  MUR420  0.80  1  0.80  Power MOSFET  MTP3055VL  1.00  1  1.00  Transformer  Coilcraft O4343­BL  4.71  1  4.71  Opto­Isolator  PS25001­2  1.70  1  1.70  1/4W 5% Resistors  Varying Values  0.10  8  0.80  1/2W 5% Resistors  Varying Values  0.10  4   0.40   1 W 1% Resistors  10Ω  0.10  1  0.10  5W Resistors  100Ω  0.50  2  1.00  Potentiometers  T34­100k  T34­10k  1.00  1.00  1  1  1.00  1.00  Electrolytic  Capacitor  1000μF  470μF  100μF  22μF  10μF  33μF  0.20  0.20  0.20  0.20  0.20  0.20  1  1  1  1  1  1   0.20  0.20  0.20  0.20  0.20  0.20   Ceramic Disk  Capacitor  100nF  0.00122μF  0.1μF  0.20  0.20  0.10  1  1  1  0.20  0.20  0.10  24 
  • 26. From Table 4, the total cost of the design comes out to be $ ​15.81​. The market price is around 30                                          to 60 dollars for a typical flyback converter integrated chip, which would make our design much                                cheaper. However, these market designs have better specifications. Thus, our design output and                          specifications fairly reflect the price of creating our design.       7.2 Engineering Standards  Our group met many Engineering and IEEE standards like:  ● Citing resource wherever we used to maintain circuit design integrity.  ● Having two isolated DC circuits using opto­coupler.  ● Temperature Limits in the Rating of Electronics Equipment and for the Evaluation of  Electrical Insulation.  In our hardware implementation the MTP3055l Power Mosfet  would get hot.    7.3 Flyback converter Manufacturing  First, the most expensive and important component of the flyback converter is the transformer.                            We think that the cost of our flyback converter can be decreased by looking and finding more                                  different transformers designs. Also, we could find a local distributor for the transformer, which                            will decrease the cost of the shipping especially at this time of the year.    Second, our flyback converter will function better if we were able to find a faster MOSFET gate                                  driver that will work better with higher frequency. On the other hand, we found this problem                                after we ordered our parts. This meant that it will take more time to prepare the manufacturing,                                  which was not in our favor since we had limited time to get the project ready.    Our flyback converter cost is reasonable comparing with the market values. After reducing the                            cost as much as possible, we will then find a way to design and manufacturing. We found this                                    online tool called PCB 123 construction software, which is designed to smooth transition from                            design and manufacturing. With this, with sufficient design, we will be able to make the                              manufactured design.  8. Conclusion and Encountered Problems:  At the end, our team met many of our initial design specifications, but fell short on some of the                                      most significant ones. We learned from the process of buying our HPH6­0158L transformer the                            importance of looking at datasheet before buying components. We also learned how difficult it                            can be to deal with shipping time especially at this time of the year. Despite all of the difficulties                                      however, we are confident that given one more week, our flyback will meet most of the                                25 
  • 27. specifications. One of the problems that we had was how to integrate the optoisolator in our                                circuit to get the closed­loop working. Finding a new optocoupler, implement it into the circuit,                              and ordering will take more than one week because of the holiday season.  If we had a little more time, our circuit would meet the specifications and also be safer. Finally,                                    this project has taught us all a lot about actual engineering lessons by being more precise with                                  our specifications, examining all ratings for devices, and presenting us with valuable life                          experience that could be applied real world projects.   Overall, we felt that we had success at the beginning by getting our open loop working.                                However, our closed­loop only worked for a little bit and overheated to the point where the                                circuit stopped working. We then had to replace the MOSFET and add snubber circuit. Even                              then, we had high current throughout, resulting in a little bit of overheating and efficiency loss.                                Then, we decided to recalculate our snubber circuit values by using different design circuit by                              adding diode. We spent hours and days troubleshooting our circuit, finding different parts and                            resolving issues with the functionality of our design. Although we had our closed­loop working,                            some of the specifications were not met.       26