This document describes LTspice simulations of a 50W flyback converter circuit using different input voltages. It includes the circuit schematic, input and output waveforms, power output, and gate drive timing for input voltages of 85Vac, 110Vac and 265Vac. It also provides more detailed waveforms and analysis for an example simulation with 110Vac input, examining the transformer operation, MOSFET switching, and feedback circuit. Specifications and simulation settings are provided in appendices.
In this document
Powered by AI
Introduction to Bee Technologies and outline of the 50W Off-Line Adapter Circuit overview.
Detailed simulation of the 50W Off-Line Adapter Circuit with VIN=85Vac, including input/output waveforms, power output, and gate drive timing.
Simulation results for the 50W Off-Line Adapter Circuit at VIN=110Vac covering input/output analysis and power specifications.
Performance analysis for the 50W Off-Line Adapter Circuit with VIN=265Vac, including waveforms and power output.
Specifications of the transformer and operational waveform characteristics including current sensing and feedback circuit details.
Summary table of simulation results for input voltages, output powers, and oscillation frequencies, along with additional simulation and material details.
Contents
1. 50W Off-LineAdapter Circuit (VIN=85Vac)
1.1) Input Waveform
1.2) Output Waveform
1.3) Output Power
1.4) Gate Drive Output and Oscillator Timing (IC)
2. 50W Off-Line Adapter Circuit (VIN=110Vac)
2.1) Input Waveform
2.2) Output Waveform
2.3) Output Power
2.4) Gate Drive Output and Oscillator Timing (IC)
3. 50W Off-Line Adapter Circuit (VIN=265Vac)
3.1) Input Waveform
3.2) Output Waveform
3.3) Output Power
3.4) Gate Drive Output and Oscillator Timing (IC)
4. Transformer Specification
5. Operation Waveform (VIN=110Vac, Example)
5.1) Transformer Turn Ratio
5.2) Transformer Primary Side Inductance (LP)
5.3) VCC Output Waveform
5.4) MOSFET Switching Device (UQ101)
5.5) Output Rectifier Diode (D201 - D202)
5.6) Current Sensing and Feedback Circuit
Conclusion
Simulation Details
Appendix A - Initial Condition Settings
Appendix B - Bill of Materials
Simulation Index
2Copyright (C) Siam Bee Technologies 2015
3.
1. 50W Off-LineAdapter Circuit (VIN=85Vac)
- Simulation Circuit
3Copyright (C) Siam Bee Technologies 2015
.tran 0 50m 0 10n
.Option Gmin=75E-9
.Option Abstol=1.0E-9
.Option Vntol=1.0u
.Option Trtol=1000
.Option Method=Gear
* Engine Solver: Alternate
Initial condition are set ,so the simulation starts near the steady state.
VIN=85Vac
V(Out) starts from 11V
by the initial condition
V(Vcc) starts from 12V
4.
1.1) Input Waveform
-Simulation Result
Copyright (C) Siam Bee Technologies 2015 4
Time [sec]
VDC,AVG = 104.33V
VAC = 85Vrms
VDC, MIN = 85.8V
5.
1.2) Output Waveform
-Simulation Result
Copyright (C) Siam Bee Technologies 2015 5
The output voltage is regulated at 12.12V
Time [sec]
The output current is 4.04A (RL=3)
V(Out) starts from 11V
by the initial condition
6.
1.3) Output Power
-Simulation Result
Copyright (C) Siam Bee Technologies 2015 6
Time [sec]
The simulation result shows the output power is 48.90W
7.
1.4) Gate DriveOutput and Oscillator Timing (IC)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 7
Time [sec]
VOSC
Oscillator frequency = 105kHz
PW = 3.877us
8.
2. 50W Off-LineAdapter Circuit (VIN=110Vac)
- Simulation Circuit
8Copyright (C) Siam Bee Technologies 2015
.tran 0 50m 0 10n
.Option Gmin=75E-9
.Option Abstol=1.0E-9
.Option Vntol=1.0u
.Option Trtol=1000
.Option Method=Gear
* Engine Solver: Alternate
Initial condition are set ,so the simulation starts near the steady state.
VIN=110Vac
V(Vcc) starts from 12V
V(Out) starts from 11V
by the initial condition
9.
2.1) Input Waveform
-Simulation Result
Copyright (C) Siam Bee Technologies 2015 9
Time [sec]
VDC,AVG = 142.41V
VAC = 110Vrms
VDC, MIN = 128.621V
10.
2.2) Output Waveform
-Simulation Result
Copyright (C) Siam Bee Technologies 2015 10
The output voltage is regulated at 12.118V
Time [sec]
The output current is 4.039A (RL=3)
V(Out) starts from 11V
by the initial condition
11.
2.3) Output Power
-Simulation Result
Copyright (C) Siam Bee Technologies 2015 11
Time [sec]
The simulation result shows the output power is 48.95W
12.
2.4) Gate DriveOutput and Oscillator Timing (IC)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 12
Time [sec]
PW = 3.282us
VOSC
Oscillator frequency = 105kHz
13.
3. 50W Off-LineAdapter Circuit (VIN=265Vac)
- Simulation Circuit
13Copyright (C) Siam Bee Technologies 2015
.tran 0 50m 0 10n
.Option Gmin=75E-9
.Option Abstol=1.0E-9
.Option Vntol=1.0u
.Option Trtol=1000
.Option Method=Gear
* Engine Solver: Alternate
Initial condition are set ,so the simulation starts near the steady state.
VIN=265Vac
V(Vcc) starts from 12V
V(Out) starts from 11V
by the initial condition
14.
3.1) Input Waveform
-Simulation Result
Copyright (C) Siam Bee Technologies 2015 14
Time [sec]
VDC,AVG = 367.58V
VAC = 265Vrms
VDC, MIN = 361.264V
15.
3.2) Output Waveform
-Simulation Result
Copyright (C) Siam Bee Technologies 2015 15
The output voltage is regulated at 12.075V
Time [sec]
The output current is 4.025A (RL=3)
V(Out) starts from 11V
by the initial condition
16.
3.3) Output Power
-Simulation Result
Copyright (C) Siam Bee Technologies 2015 16
Time [sec]
The simulation result shows the output power is 48.70W
17.
3.4) Gate DriveOutput and Oscillator Timing (IC)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 17
Time [sec]
PW = 1.706us
VOSC
Oscillator frequency = 105kHz
18.
4. Transformer Specification
Copyright(C) Siam Bee Technologies 2015 18
NP NS
NSUB
Pin (S--F) Turns
NP 1 → 3 54
NS 9 → 12 10
NSUB 5 → 6 10
Winding Specification
Pin Value
Inductance 1 - 3 600uH
Leakage 1 - 3 15uH
Electrical Specification
To model the transformer (or coupled inductors), we can use the SPICE primitive k,
which describes the coupling ratio between a primary and a secondary.
19.
5. Operation Waveform(VIN=110Vac, Example)
- Simulation Circuit
19Copyright (C) Siam Bee Technologies 2015
+
VDS
-
ID
- +
VKA
IF
The system parameter are as follows:
- Maximum output power : 50W
- Input voltage : 110Vrms
- AC line frequency : 50Hz
- Switching frequency : 100kHz
VIN=110Vac
+
VCC
-
V(Out) starts from 11V
V(Vcc) starts from 12V
20.
5.1) Transformer TurnRatio
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 20
Time [sec]
VP
VS
VCC
This figure shows the waveforms of the voltages at each side of the transformer.
21.
This figureshows the waveforms of ID(UQ101) and IF(D201, D202) in the CCM mode.
The primary-side inductance (LP) of the transformer determines the converter operation mode.
5.2) Transformer Primary Side Inductance (LP)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 21
Time [sec]
ΟNΤ
Τ
IF(D201, D202)
VPWM
ID(UQ101)
22.
5.3) VCC OutputWaveform
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 22
Time [sec]
VCC = 12.367V
23.
5.4) MOSFET SwitchingDevice (UQ101)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 23
Time [sec]
VDS(t)
ID(t)
Switching
loss (turn-off)
Switching loss
(turn-on)
Conduction loss
(VDS x ID)
24.
5.5) Output RectifierDiode (D201 - D202)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 24
Time [sec]
VKA(t) IF(t)
Peak magnitude
current
Conduction loss
(VF,AK x IF)
PLOSS_(D201, 202) (t)
25.
5.6) Current Sensingand Feedback Circuit
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 25
Time [sec]
1V Comparator
VCS
26.
Conclusion
Copyright (C) SiamBee Technologies 2015 26
Input voltage Output power Oscillator frequency PW
85Vac 48.95 W 105 kHz 3.877 us
110Vac 48.95 W 105 kHz 3.278 us
265Vac 48.70 W 105 kHz 1.706 us
Simulation Results