Bee Technologies
http://www.bee-tech.info/
Design Kit
Flyback Converter using PWM IC
LTspice Version
1Copyright (C) Siam Bee Technologies 2015
02JUL2015
Contents
1. 50W Off-Line Adapter Circuit (VIN=85Vac)
1.1) Input Waveform
1.2) Output Waveform
1.3) Output Power
1.4) Gate Drive Output and Oscillator Timing (IC)
2. 50W Off-Line Adapter Circuit (VIN=110Vac)
2.1) Input Waveform
2.2) Output Waveform
2.3) Output Power
2.4) Gate Drive Output and Oscillator Timing (IC)
3. 50W Off-Line Adapter Circuit (VIN=265Vac)
3.1) Input Waveform
3.2) Output Waveform
3.3) Output Power
3.4) Gate Drive Output and Oscillator Timing (IC)
4. Transformer Specification
5. Operation Waveform (VIN=110Vac, Example)
5.1) Transformer Turn Ratio
5.2) Transformer Primary Side Inductance (LP)
5.3) VCC Output Waveform
5.4) MOSFET Switching Device (UQ101)
5.5) Output Rectifier Diode (D201 - D202)
5.6) Current Sensing and Feedback Circuit
Conclusion
Simulation Details
Appendix A - Initial Condition Settings
Appendix B - Bill of Materials
Simulation Index
2Copyright (C) Siam Bee Technologies 2015
1. 50W Off-Line Adapter Circuit (VIN=85Vac)
- Simulation Circuit
3Copyright (C) Siam Bee Technologies 2015
.tran 0 50m 0 10n
.Option Gmin=75E-9
.Option Abstol=1.0E-9
.Option Vntol=1.0u
.Option Trtol=1000
.Option Method=Gear
* Engine Solver: Alternate
 Initial condition are set ,so the simulation starts near the steady state.
VIN=85Vac
V(Out) starts from 11V
by the initial condition
V(Vcc) starts from 12V
1.1) Input Waveform
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 4
Time [sec]
VDC,AVG = 104.33V
VAC = 85Vrms
VDC, MIN = 85.8V
1.2) Output Waveform
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 5
The output voltage is regulated at 12.12V
Time [sec]
The output current is 4.04A (RL=3)
V(Out) starts from 11V
by the initial condition
1.3) Output Power
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 6
Time [sec]
The simulation result shows the output power is 48.90W
1.4) Gate Drive Output and Oscillator Timing (IC)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 7
Time [sec]
VOSC
Oscillator frequency = 105kHz
PW = 3.877us
2. 50W Off-Line Adapter Circuit (VIN=110Vac)
- Simulation Circuit
8Copyright (C) Siam Bee Technologies 2015
.tran 0 50m 0 10n
.Option Gmin=75E-9
.Option Abstol=1.0E-9
.Option Vntol=1.0u
.Option Trtol=1000
.Option Method=Gear
* Engine Solver: Alternate
 Initial condition are set ,so the simulation starts near the steady state.
VIN=110Vac
V(Vcc) starts from 12V
V(Out) starts from 11V
by the initial condition
2.1) Input Waveform
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 9
Time [sec]
VDC,AVG = 142.41V
VAC = 110Vrms
VDC, MIN = 128.621V
2.2) Output Waveform
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 10
The output voltage is regulated at 12.118V
Time [sec]
The output current is 4.039A (RL=3)
V(Out) starts from 11V
by the initial condition
2.3) Output Power
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 11
Time [sec]
The simulation result shows the output power is 48.95W
2.4) Gate Drive Output and Oscillator Timing (IC)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 12
Time [sec]
PW = 3.282us
VOSC
Oscillator frequency = 105kHz
3. 50W Off-Line Adapter Circuit (VIN=265Vac)
- Simulation Circuit
13Copyright (C) Siam Bee Technologies 2015
.tran 0 50m 0 10n
.Option Gmin=75E-9
.Option Abstol=1.0E-9
.Option Vntol=1.0u
.Option Trtol=1000
.Option Method=Gear
* Engine Solver: Alternate
 Initial condition are set ,so the simulation starts near the steady state.
VIN=265Vac
V(Vcc) starts from 12V
V(Out) starts from 11V
by the initial condition
3.1) Input Waveform
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 14
Time [sec]
VDC,AVG = 367.58V
VAC = 265Vrms
VDC, MIN = 361.264V
3.2) Output Waveform
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 15
The output voltage is regulated at 12.075V
Time [sec]
The output current is 4.025A (RL=3)
V(Out) starts from 11V
by the initial condition
3.3) Output Power
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 16
Time [sec]
The simulation result shows the output power is 48.70W
3.4) Gate Drive Output and Oscillator Timing (IC)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 17
Time [sec]
PW = 1.706us
VOSC
Oscillator frequency = 105kHz
4. Transformer Specification
Copyright (C) Siam Bee Technologies 2015 18
NP NS
NSUB
Pin (S--F) Turns
NP 1 → 3 54
NS 9 → 12 10
NSUB 5 → 6 10
Winding Specification
Pin Value
Inductance 1 - 3 600uH
Leakage 1 - 3 15uH
Electrical Specification
 To model the transformer (or coupled inductors), we can use the SPICE primitive k,
which describes the coupling ratio between a primary and a secondary.
5. Operation Waveform (VIN=110Vac, Example)
- Simulation Circuit
19Copyright (C) Siam Bee Technologies 2015
+
VDS
-
ID
- +
VKA
IF
The system parameter are as follows:
- Maximum output power : 50W
- Input voltage : 110Vrms
- AC line frequency : 50Hz
- Switching frequency : 100kHz
VIN=110Vac
+
VCC
-
V(Out) starts from 11V
V(Vcc) starts from 12V
5.1) Transformer Turn Ratio
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 20
Time [sec]
VP
VS
VCC
 This figure shows the waveforms of the voltages at each side of the transformer.
 This figure shows the waveforms of ID(UQ101) and IF(D201, D202) in the CCM mode.
 The primary-side inductance (LP) of the transformer determines the converter operation mode.
5.2) Transformer Primary Side Inductance (LP)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 21
Time [sec]
ΟNΤ
Τ
IF(D201, D202)
VPWM
ID(UQ101)
5.3) VCC Output Waveform
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 22
Time [sec]
VCC = 12.367V
5.4) MOSFET Switching Device (UQ101)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 23
Time [sec]
VDS(t)
ID(t)
Switching
loss (turn-off)
Switching loss
(turn-on)
Conduction loss
(VDS x ID)
5.5) Output Rectifier Diode (D201 - D202)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 24
Time [sec]
VKA(t) IF(t)
Peak magnitude
current
Conduction loss
(VF,AK x IF)
PLOSS_(D201, 202) (t)
5.6) Current Sensing and Feedback Circuit
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 25
Time [sec]
1V Comparator
VCS
Conclusion
Copyright (C) Siam Bee Technologies 2015 26
Input voltage Output power Oscillator frequency PW
85Vac 48.95 W 105 kHz 3.877 us
110Vac 48.95 W 105 kHz 3.278 us
265Vac 48.70 W 105 kHz 1.706 us
Simulation Results
Simulation Details
Analysis directives:
.Tran 0 50m 0 10n
.Option Gmin=75E-9
.Option Abstol=1.0E-9
.Option Vntol=1.0u
.Option Trtol=1000
.Option Method=Gear
* Engine Solver: Alternate
Libraries:
.LIB 2sk4101ls.lib
.LIB an1431t.lib
.LIB pc817c.lib
.LIB d2sba60.lib
.LIB mbrf20100ct.lib
.LIB era91-02.lib
.LIB 1n5408.lib
.LIB fan7601.lib
27Copyright (C) Siam Bee Technologies 2015
Appendix A
- Initial Condition Settings
Copyright (C) Siam Bee Technologies 2015 28
Initial phase= 90
.IC V(Vdc_in)= {Vac*√2}
.IC V(Vcc)= 12V
.IC V(Out) = 11V
.IC V(Cs)= 0V
.IC V(Rt_Ct)= 0V
.IC V(Ls)= 2V
Appendix B
- Bill of Materials
Copyright (C) Siam Bee Technologies 2015 29
Designator Manufacturer Part Number Comment Designator Manufacturer Part Number Comment
R1 - 10Ω - C109 - 0.47uF -
R103 - 56kΩ - C112 - 0.1uF -
R105 - 100Ω - C201 - 1000uF -
R107 - 0.5Ω - C202 - 1000uF -
R108 - 1kΩ - C203 - 1nF -
R109 - 8kΩ - C222 - 2.2nF -
R110 - 3.9kΩ - D1 Fairchild 1N5408 Spice model
R201 - 3.3kΩ - D101 Fairchild 1N5408 Spice model
R202 - 1.2kΩ - D102 Fairchild 1N5408 Spice model
R204 - 27kΩ - D103 Fuji Electric ERA91-02 Spice model
R205 - 7kΩ - D201 ON Semi. MBRF20100CT Spice model
R206 - 10Ω - D202 ON Semi. MBRF20100CT Spice model
C1 - 1nF - U1 Shindengen D2SBA60 Spice model
C103 - 150uF - U101 Fairchild FAN7601 Spice model
C105 - 10pF - UQ101 Sanyo 2SK4101LS Spice model
C106 - 2.7nF - U201 Panasonic AN1431T Spice model
C107 - 47uF - U301 Sharp PC817C Spice model
C108 - 0.01uF -
Simulation Index
30
Simulations Folder name
1. 50W Off-Line Adapter Circuit (VIN=85Vac)................
2. 50W Off-Line Adapter Circuit (VIN=110Vac)..............
3. 50W Off-Line Adapter Circuit (VIN=85Vac)................
4. Operation Waveform (VIN=110Vac, Example)...........
../Simulation data/VIN_85VAC
../Simulation data/VIN_110VAC
../Simulation data/VIN_265VAC
../Simulation data/Operation Waveform
Copyright (C) Siam Bee Technologies 2015

Flyback Converter using PWM IC(LTspice Version)

  • 1.
    Bee Technologies http://www.bee-tech.info/ Design Kit FlybackConverter using PWM IC LTspice Version 1Copyright (C) Siam Bee Technologies 2015 02JUL2015
  • 2.
    Contents 1. 50W Off-LineAdapter Circuit (VIN=85Vac) 1.1) Input Waveform 1.2) Output Waveform 1.3) Output Power 1.4) Gate Drive Output and Oscillator Timing (IC) 2. 50W Off-Line Adapter Circuit (VIN=110Vac) 2.1) Input Waveform 2.2) Output Waveform 2.3) Output Power 2.4) Gate Drive Output and Oscillator Timing (IC) 3. 50W Off-Line Adapter Circuit (VIN=265Vac) 3.1) Input Waveform 3.2) Output Waveform 3.3) Output Power 3.4) Gate Drive Output and Oscillator Timing (IC) 4. Transformer Specification 5. Operation Waveform (VIN=110Vac, Example) 5.1) Transformer Turn Ratio 5.2) Transformer Primary Side Inductance (LP) 5.3) VCC Output Waveform 5.4) MOSFET Switching Device (UQ101) 5.5) Output Rectifier Diode (D201 - D202) 5.6) Current Sensing and Feedback Circuit Conclusion Simulation Details Appendix A - Initial Condition Settings Appendix B - Bill of Materials Simulation Index 2Copyright (C) Siam Bee Technologies 2015
  • 3.
    1. 50W Off-LineAdapter Circuit (VIN=85Vac) - Simulation Circuit 3Copyright (C) Siam Bee Technologies 2015 .tran 0 50m 0 10n .Option Gmin=75E-9 .Option Abstol=1.0E-9 .Option Vntol=1.0u .Option Trtol=1000 .Option Method=Gear * Engine Solver: Alternate  Initial condition are set ,so the simulation starts near the steady state. VIN=85Vac V(Out) starts from 11V by the initial condition V(Vcc) starts from 12V
  • 4.
    1.1) Input Waveform -Simulation Result Copyright (C) Siam Bee Technologies 2015 4 Time [sec] VDC,AVG = 104.33V VAC = 85Vrms VDC, MIN = 85.8V
  • 5.
    1.2) Output Waveform -Simulation Result Copyright (C) Siam Bee Technologies 2015 5 The output voltage is regulated at 12.12V Time [sec] The output current is 4.04A (RL=3) V(Out) starts from 11V by the initial condition
  • 6.
    1.3) Output Power -Simulation Result Copyright (C) Siam Bee Technologies 2015 6 Time [sec] The simulation result shows the output power is 48.90W
  • 7.
    1.4) Gate DriveOutput and Oscillator Timing (IC) - Simulation Result Copyright (C) Siam Bee Technologies 2015 7 Time [sec] VOSC Oscillator frequency = 105kHz PW = 3.877us
  • 8.
    2. 50W Off-LineAdapter Circuit (VIN=110Vac) - Simulation Circuit 8Copyright (C) Siam Bee Technologies 2015 .tran 0 50m 0 10n .Option Gmin=75E-9 .Option Abstol=1.0E-9 .Option Vntol=1.0u .Option Trtol=1000 .Option Method=Gear * Engine Solver: Alternate  Initial condition are set ,so the simulation starts near the steady state. VIN=110Vac V(Vcc) starts from 12V V(Out) starts from 11V by the initial condition
  • 9.
    2.1) Input Waveform -Simulation Result Copyright (C) Siam Bee Technologies 2015 9 Time [sec] VDC,AVG = 142.41V VAC = 110Vrms VDC, MIN = 128.621V
  • 10.
    2.2) Output Waveform -Simulation Result Copyright (C) Siam Bee Technologies 2015 10 The output voltage is regulated at 12.118V Time [sec] The output current is 4.039A (RL=3) V(Out) starts from 11V by the initial condition
  • 11.
    2.3) Output Power -Simulation Result Copyright (C) Siam Bee Technologies 2015 11 Time [sec] The simulation result shows the output power is 48.95W
  • 12.
    2.4) Gate DriveOutput and Oscillator Timing (IC) - Simulation Result Copyright (C) Siam Bee Technologies 2015 12 Time [sec] PW = 3.282us VOSC Oscillator frequency = 105kHz
  • 13.
    3. 50W Off-LineAdapter Circuit (VIN=265Vac) - Simulation Circuit 13Copyright (C) Siam Bee Technologies 2015 .tran 0 50m 0 10n .Option Gmin=75E-9 .Option Abstol=1.0E-9 .Option Vntol=1.0u .Option Trtol=1000 .Option Method=Gear * Engine Solver: Alternate  Initial condition are set ,so the simulation starts near the steady state. VIN=265Vac V(Vcc) starts from 12V V(Out) starts from 11V by the initial condition
  • 14.
    3.1) Input Waveform -Simulation Result Copyright (C) Siam Bee Technologies 2015 14 Time [sec] VDC,AVG = 367.58V VAC = 265Vrms VDC, MIN = 361.264V
  • 15.
    3.2) Output Waveform -Simulation Result Copyright (C) Siam Bee Technologies 2015 15 The output voltage is regulated at 12.075V Time [sec] The output current is 4.025A (RL=3) V(Out) starts from 11V by the initial condition
  • 16.
    3.3) Output Power -Simulation Result Copyright (C) Siam Bee Technologies 2015 16 Time [sec] The simulation result shows the output power is 48.70W
  • 17.
    3.4) Gate DriveOutput and Oscillator Timing (IC) - Simulation Result Copyright (C) Siam Bee Technologies 2015 17 Time [sec] PW = 1.706us VOSC Oscillator frequency = 105kHz
  • 18.
    4. Transformer Specification Copyright(C) Siam Bee Technologies 2015 18 NP NS NSUB Pin (S--F) Turns NP 1 → 3 54 NS 9 → 12 10 NSUB 5 → 6 10 Winding Specification Pin Value Inductance 1 - 3 600uH Leakage 1 - 3 15uH Electrical Specification  To model the transformer (or coupled inductors), we can use the SPICE primitive k, which describes the coupling ratio between a primary and a secondary.
  • 19.
    5. Operation Waveform(VIN=110Vac, Example) - Simulation Circuit 19Copyright (C) Siam Bee Technologies 2015 + VDS - ID - + VKA IF The system parameter are as follows: - Maximum output power : 50W - Input voltage : 110Vrms - AC line frequency : 50Hz - Switching frequency : 100kHz VIN=110Vac + VCC - V(Out) starts from 11V V(Vcc) starts from 12V
  • 20.
    5.1) Transformer TurnRatio - Simulation Result Copyright (C) Siam Bee Technologies 2015 20 Time [sec] VP VS VCC  This figure shows the waveforms of the voltages at each side of the transformer.
  • 21.
     This figureshows the waveforms of ID(UQ101) and IF(D201, D202) in the CCM mode.  The primary-side inductance (LP) of the transformer determines the converter operation mode. 5.2) Transformer Primary Side Inductance (LP) - Simulation Result Copyright (C) Siam Bee Technologies 2015 21 Time [sec] ΟNΤ Τ IF(D201, D202) VPWM ID(UQ101)
  • 22.
    5.3) VCC OutputWaveform - Simulation Result Copyright (C) Siam Bee Technologies 2015 22 Time [sec] VCC = 12.367V
  • 23.
    5.4) MOSFET SwitchingDevice (UQ101) - Simulation Result Copyright (C) Siam Bee Technologies 2015 23 Time [sec] VDS(t) ID(t) Switching loss (turn-off) Switching loss (turn-on) Conduction loss (VDS x ID)
  • 24.
    5.5) Output RectifierDiode (D201 - D202) - Simulation Result Copyright (C) Siam Bee Technologies 2015 24 Time [sec] VKA(t) IF(t) Peak magnitude current Conduction loss (VF,AK x IF) PLOSS_(D201, 202) (t)
  • 25.
    5.6) Current Sensingand Feedback Circuit - Simulation Result Copyright (C) Siam Bee Technologies 2015 25 Time [sec] 1V Comparator VCS
  • 26.
    Conclusion Copyright (C) SiamBee Technologies 2015 26 Input voltage Output power Oscillator frequency PW 85Vac 48.95 W 105 kHz 3.877 us 110Vac 48.95 W 105 kHz 3.278 us 265Vac 48.70 W 105 kHz 1.706 us Simulation Results
  • 27.
    Simulation Details Analysis directives: .Tran0 50m 0 10n .Option Gmin=75E-9 .Option Abstol=1.0E-9 .Option Vntol=1.0u .Option Trtol=1000 .Option Method=Gear * Engine Solver: Alternate Libraries: .LIB 2sk4101ls.lib .LIB an1431t.lib .LIB pc817c.lib .LIB d2sba60.lib .LIB mbrf20100ct.lib .LIB era91-02.lib .LIB 1n5408.lib .LIB fan7601.lib 27Copyright (C) Siam Bee Technologies 2015
  • 28.
    Appendix A - InitialCondition Settings Copyright (C) Siam Bee Technologies 2015 28 Initial phase= 90 .IC V(Vdc_in)= {Vac*√2} .IC V(Vcc)= 12V .IC V(Out) = 11V .IC V(Cs)= 0V .IC V(Rt_Ct)= 0V .IC V(Ls)= 2V
  • 29.
    Appendix B - Billof Materials Copyright (C) Siam Bee Technologies 2015 29 Designator Manufacturer Part Number Comment Designator Manufacturer Part Number Comment R1 - 10Ω - C109 - 0.47uF - R103 - 56kΩ - C112 - 0.1uF - R105 - 100Ω - C201 - 1000uF - R107 - 0.5Ω - C202 - 1000uF - R108 - 1kΩ - C203 - 1nF - R109 - 8kΩ - C222 - 2.2nF - R110 - 3.9kΩ - D1 Fairchild 1N5408 Spice model R201 - 3.3kΩ - D101 Fairchild 1N5408 Spice model R202 - 1.2kΩ - D102 Fairchild 1N5408 Spice model R204 - 27kΩ - D103 Fuji Electric ERA91-02 Spice model R205 - 7kΩ - D201 ON Semi. MBRF20100CT Spice model R206 - 10Ω - D202 ON Semi. MBRF20100CT Spice model C1 - 1nF - U1 Shindengen D2SBA60 Spice model C103 - 150uF - U101 Fairchild FAN7601 Spice model C105 - 10pF - UQ101 Sanyo 2SK4101LS Spice model C106 - 2.7nF - U201 Panasonic AN1431T Spice model C107 - 47uF - U301 Sharp PC817C Spice model C108 - 0.01uF -
  • 30.
    Simulation Index 30 Simulations Foldername 1. 50W Off-Line Adapter Circuit (VIN=85Vac)................ 2. 50W Off-Line Adapter Circuit (VIN=110Vac).............. 3. 50W Off-Line Adapter Circuit (VIN=85Vac)................ 4. Operation Waveform (VIN=110Vac, Example)........... ../Simulation data/VIN_85VAC ../Simulation data/VIN_110VAC ../Simulation data/VIN_265VAC ../Simulation data/Operation Waveform Copyright (C) Siam Bee Technologies 2015