.
Submitted by:
Group leader
Md.Mazharul Islam Id:171-009-041
Associates:
1.Md.Abu Sayed Id:171-035-041
2.Md.Mohidul Islam Id:171-011-041
3.Shahariar Ahamad Id:171-034-041
4.Simon shikdar Id.171-012-041
5.Md.Sarowar islam Id.171-047-o41
Submission Date: 7th August 2017
SUBMITTED TO
Definition and Application
Integration: The process of finding anti- derivatives is called integration.
Trigonometric Integrals: In mathematics, the trigonometric integrals are a family of
integrals involving trigonometric functions. A number of the basic trigonometric integrals are
discussed at the list of integrals of trigonometric functions.
Application of Integration:
1. Area between two curves. Answer is by integration.
2.Find Distance, Velocity, Acceleration using indefinite integral.
3. Average value of a curve can be calculated using integration.
4.Area under a curve and using integration.
5. Center of Mass
6. Find Kinetic energy; improper integrals
7. Probability
8. Arc Length
19. Surface Area
Special TRIGONOMETRIC INTEGRALS
Special Trigonometric Integrals
In this section, we will learn:
How to use special trigonometric identities to
integrate certain combinations of trigonometric
functions.
We start with
powers of sine and cosine.
SINE & COSINE INTEGRALS
Find ∫ sin5
x cos2
x dx
 We could convert cos2
x to 1 – sin2
x.
 However, we would be left with an expression
in terms of sin x with no extra cos x factor.
Example 1
SINE & COSINE INTEGRALS
Instead, we separate a single sine factor
and rewrite the remaining sin4
x factor in
terms of cos x.
So, we have:
5 2 2 2 2
2 2 2
sin cos (sin ) cos sin
(1 cos ) cos sin
=
= −
x x x x x
x x x
Example 1
SINE & COSINE INTEGRALS
Substituting u = cos x, we have du = sin x dx.
So,
5 2 2 2 2
2 2 2 2 2 2
3 5 7
2 4 6
3 5 71 2 1
3 5 7
sin cos (sin ) cos sin
(1 cos ) cos sin (1 ) ( )
( 2 ) 2
3 5 7
cos cos cos
=
= − = − −
 
= − − + = − − + + ÷
 
= − + − +
∫ ∫
∫ ∫
∫
x xdx x x x dx
x x x dx u u du
u u u
u u u du C
x x x C
Example 1
TANGENT & SECANT INTEGRALS
Evaluate ∫ tan6
x sec4
x dx
 If we separate one sec2
x factor, we can express
the remaining sec2
x factor in terms of tangent
using the identity sec2
x = 1 + tan2
x.
 Then, we can evaluate the integral by substituting
u = tan x so that du = sec2
x dx.
Example 2
TANGENT & SECANT INTEGRALS
We have:
6 4 6 2 2
6 2 2
6 2 6 8
7 9
7 91 1
7 9
tan sec tan sec sec
tan (1 tan )sec
(1 ) ( )
7 9
tan tan
x x dx x x x dx
x x xdx
u u du u u du
u u
C
x x C
=
= +
= + = +
= + +
= + +
∫ ∫
∫
∫ ∫
Example 2
TANGENT & SECANT INTEGRALS
Find ∫ sec x dx
First, we multiply numerator and denominator
by sec x + tan x:
2
sec tan
sec sec
sec tan
sec sec tan
sec tan
x x
xdx x dx
x x
x x x
dx
x x
+
=
+
+
=
+
∫ ∫
∫
TANGENT & SECANT INTEGRALS
If we substitute u = sec x + tan x,
then du = (sec x tan x + sec2
x).
 The integral becomes: ∫ (1/u) du = ln |u| + C
TANGENT & SECANT INTEGRALS
Thus, we have:
sec ln | sec tan |xdx x x C= + +∫
Find
Put,
z= sin x
dz= cos x dx
xdx∫
5
cos
SPECIAL TRIGONOMETRIC INTEGRALS Example 4
TRIGONOMETRIC INTEGRALS
Find ∫ sin4x cos5x dx
Use this formula-
Integral Identity
a ∫ sin m
x cos n
x dx
b ∫ sin m
x sin n
x dx
c ∫ cos m
x cos n
x dx
[ ]1
2
sin cos
sin( ) sin( )
A B
A B A B= − + +
[ ]1
2
sin sin
cos( ) cos( )
A B
A B A B= − − +
[ ]1
2
cos cos
cos( ) cos( )
A B
A B A B= − + +
TRIGONOMETRIC INTEGRALS
Evaluate ∫ sin 4x cos 5x dx
 This could be evaluated using integration by parts.
 It’s easier to use the identity in Equation 2(a):
Example 5
[ ]1
2
1
2
1 1
2 9
sin 4 cos5 sin( ) sin9
( sin sin9 )
(cos cos9 )
x x dx x x
x x dx
x x C
= − +
= − +
= − +
∫ ∫
∫
Thank you sir for supporting us .This
presentation will help us a lot . It will make
our confidence high for further presentation.
THE END

Special trigonometric integrals

  • 1.
  • 2.
    Submitted by: Group leader Md.MazharulIslam Id:171-009-041 Associates: 1.Md.Abu Sayed Id:171-035-041 2.Md.Mohidul Islam Id:171-011-041 3.Shahariar Ahamad Id:171-034-041 4.Simon shikdar Id.171-012-041 5.Md.Sarowar islam Id.171-047-o41 Submission Date: 7th August 2017
  • 3.
  • 4.
    Definition and Application Integration:The process of finding anti- derivatives is called integration. Trigonometric Integrals: In mathematics, the trigonometric integrals are a family of integrals involving trigonometric functions. A number of the basic trigonometric integrals are discussed at the list of integrals of trigonometric functions. Application of Integration: 1. Area between two curves. Answer is by integration. 2.Find Distance, Velocity, Acceleration using indefinite integral. 3. Average value of a curve can be calculated using integration. 4.Area under a curve and using integration. 5. Center of Mass 6. Find Kinetic energy; improper integrals 7. Probability 8. Arc Length 19. Surface Area
  • 5.
  • 6.
    Special Trigonometric Integrals Inthis section, we will learn: How to use special trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine.
  • 7.
    SINE & COSINEINTEGRALS Find ∫ sin5 x cos2 x dx  We could convert cos2 x to 1 – sin2 x.  However, we would be left with an expression in terms of sin x with no extra cos x factor. Example 1
  • 8.
    SINE & COSINEINTEGRALS Instead, we separate a single sine factor and rewrite the remaining sin4 x factor in terms of cos x. So, we have: 5 2 2 2 2 2 2 2 sin cos (sin ) cos sin (1 cos ) cos sin = = − x x x x x x x x Example 1
  • 9.
    SINE & COSINEINTEGRALS Substituting u = cos x, we have du = sin x dx. So, 5 2 2 2 2 2 2 2 2 2 2 3 5 7 2 4 6 3 5 71 2 1 3 5 7 sin cos (sin ) cos sin (1 cos ) cos sin (1 ) ( ) ( 2 ) 2 3 5 7 cos cos cos = = − = − −   = − − + = − − + + ÷   = − + − + ∫ ∫ ∫ ∫ ∫ x xdx x x x dx x x x dx u u du u u u u u u du C x x x C Example 1
  • 10.
    TANGENT & SECANTINTEGRALS Evaluate ∫ tan6 x sec4 x dx  If we separate one sec2 x factor, we can express the remaining sec2 x factor in terms of tangent using the identity sec2 x = 1 + tan2 x.  Then, we can evaluate the integral by substituting u = tan x so that du = sec2 x dx. Example 2
  • 11.
    TANGENT & SECANTINTEGRALS We have: 6 4 6 2 2 6 2 2 6 2 6 8 7 9 7 91 1 7 9 tan sec tan sec sec tan (1 tan )sec (1 ) ( ) 7 9 tan tan x x dx x x x dx x x xdx u u du u u du u u C x x C = = + = + = + = + + = + + ∫ ∫ ∫ ∫ ∫ Example 2
  • 12.
    TANGENT & SECANTINTEGRALS Find ∫ sec x dx First, we multiply numerator and denominator by sec x + tan x: 2 sec tan sec sec sec tan sec sec tan sec tan x x xdx x dx x x x x x dx x x + = + + = + ∫ ∫ ∫
  • 13.
    TANGENT & SECANTINTEGRALS If we substitute u = sec x + tan x, then du = (sec x tan x + sec2 x).  The integral becomes: ∫ (1/u) du = ln |u| + C
  • 14.
    TANGENT & SECANTINTEGRALS Thus, we have: sec ln | sec tan |xdx x x C= + +∫
  • 15.
    Find Put, z= sin x dz=cos x dx xdx∫ 5 cos SPECIAL TRIGONOMETRIC INTEGRALS Example 4
  • 16.
    TRIGONOMETRIC INTEGRALS Find ∫sin4x cos5x dx Use this formula- Integral Identity a ∫ sin m x cos n x dx b ∫ sin m x sin n x dx c ∫ cos m x cos n x dx [ ]1 2 sin cos sin( ) sin( ) A B A B A B= − + + [ ]1 2 sin sin cos( ) cos( ) A B A B A B= − − + [ ]1 2 cos cos cos( ) cos( ) A B A B A B= − + +
  • 17.
    TRIGONOMETRIC INTEGRALS Evaluate ∫sin 4x cos 5x dx  This could be evaluated using integration by parts.  It’s easier to use the identity in Equation 2(a): Example 5 [ ]1 2 1 2 1 1 2 9 sin 4 cos5 sin( ) sin9 ( sin sin9 ) (cos cos9 ) x x dx x x x x dx x x C = − + = − + = − + ∫ ∫ ∫
  • 18.
    Thank you sirfor supporting us .This presentation will help us a lot . It will make our confidence high for further presentation. THE END