INTEGRATION
JEE MAINS &ADVANCED COURSE
➔ Foundation Sessions for starters
➔ Complete PYQ’s (2015-2023)
➔ NTA + Cengage CHAPTER WISE Questions
➔ My HANDWRITTEN Notes
tinyurl.com/jeewithnehamam
WE DO NOT SELL ANY COURSES
For FREE & Focused JEE MATERIAL, CLICK to Join TELEGRAM :
t.me/mathematicallyinclined
3.
CLICK HERE FORTHE FULL PLAYLIST
S. No. TOPICS
1. Logarithms
2. Inequalities - Wavy Curve
3. Trigonometry
4. Functions: Basics, Domain & Range
5. Modulus & Greatest Integer Functions
6. Complex Numbers
7. Differentiation
8. Limits
9. Quadratic Equations
10. Permutations & Combinations
S. No. TOPICS
11. Probability
12. Binomial Theorem
13. Integration
14. Sequence & Series
15. Vectors
16. 3D Geometry
17. Graphs & Transformation
18. Straight Lines & Circles
19. Sets & Relations
20. Conic Sections
21. Matrices and Determinants
4.
INTEGRATION
● What isIntegration
● Integration Notation
● Types of Integrations
● Constant of Integration
● Basic Integration Formulae
● Properties of Indefinite Integration
● Integration by Substitution
● Integration by Parts
● Some Standard Integration
● Definite Integration
● Geometrical Meaning of Integration
INTEGRATION BASIC
INTEGRATION
Integration Notation
Integration isdenoted by an integral sign ∫.
y = ∫f(x) dx+ = F(x) + c Constant of Integration
Integrand
Variable of
integration
F ’(x) also = f(x)
(First derivative)
INTEGRATION
Indefinite Integration asThe Reverse Process of Differentiation
Derivative
Integral
Sin (x) + C
Cos (x)
d
dx
{F(x)} = f(x) then, ∫ f(x) dx = F(x) + c
If
11.
INTEGRATION
e.g.
Similarly,
d
dx
(x2) = 2xso ∫ 2x dx = x2 + c
d
dx
(sin x) = cos x so ∫ cos x dx = sin x + c
Why c?
Indefinite Integration as The Reverse Process of Differentiation
12.
INTEGRATION
d
dx
(x2) = 2x
d
dx
(x2+ 1) = 2x
d
dx
(x2 + 2) = 2x
.
.
.
.
∫ 2x dx = x2 + c
c = 0
c = 1
c = 2
.
.
where,
c = constant of integration
Thus, the general value
of ∫ f(x) dx = F(x) + c
d
dx
(x2 + c) = 2x
Constant of Integration
INTEGRATION
= x +c
dx
∫xn dx =
xn+1
n + 1
+ c (n ≠ –1)
d
dx
(x) =
1. 1
d
dx
xn+1
n + 1
=
2. xn
∫
3. = x
1
x dx
1
=log x + c
d
dx
(log x )
∫
Basic Integration Formulae
INTEGRATION
d
dx
(–cos x) =sinx
∫sin x dx = – cos x + c
d
dx
(sin x) = cos x
∫ dx
cos x = sin x + c
d
dx
(tan x)
∫ dx
sec2 x = tan x + c
= sec2 x
7.
8.
6.
Basic Integration Formulae
23.
INTEGRATION
d
dx
(– cot x)= cosec2 x
∫cosec2 x dx = – cot x + c
9.
d
dx
sec x = sec x tan x
∫sec x tan x dx = sec x + c
10.
d
dx
(– cosec x) = cosec x cot x
∫
cosec x cot x dx =– cosec x + c
11.
Basic Integration Formulae
INTEGRATION
Properties of IndefiniteIntegration
∫ k f(x) dx = k ∫ f(x) dx where k is a constant
2.
1. ∫ (f1(x) + f2(x)) dx = ∫ f1(x) dx + ∫ f2(x) dx
3.
INTEGRATION
Solution:
We know (1+ tan2 x = sec2 x)
tan2x = sec2 x –1
∴
∫(sec2 x– 1)dx
∴I =
tan x – x + c
=
∫ tan2 x dx
i)
∫ cot2 x dx
ii)
We know (1 + cot2 x = cosec2 x)
cot2x = cosec2 x –1
∴
∫(cosec2 x – 1)dx
∴I =
– cot x – x + c
=
INTEGRATION
Solution:
∫ cos2x
4 –5 sin x
dx
∫ 4
cos2x
–
5 sin x
cos2x
dx
=
∫(4 sec2 x – 5 sec x tan x) dx
=
We know ∫ sec2x dx = tan x
∫
& sec x tan x dx = sec x
= 4 tan x – 5 sec x + c
42.
INTEGRATION
tan x cotx + C
tan x - cot 2x + C
tan x + cot x + C
tan x - cot x + C
Q.
A
B
D
C
A
B
D
C
D
INTEGRATION
Steps for Integrationby Substitution
1. Choose an appropriate function to substitute whose
derivative will replace the other terms of the Integral.
2. Determine the value of dx.
3. Substitute the integral
4. Integrate the resulting function.
5. Return to the initial variable.
51.
INTEGRATION
I = ×g′ (x) dx
f (g (x) )
∫
Put g (x) = t
g′ (x) dx = dt
Differentiate w.r.t. x
I = f (t) dt
∫
∴
INTEGRATION
Instead of solvingentire sum,
just remember the shortcuts
∫ f n (x) f′(x) dx
1)
Special Cases of Substitution
63.
INTEGRATION
∫ tn dt
I=
=
1
n + 1
f n+1 (x) + c
Put f (x) t
=
∫f n (x) f′(x) dx
1)
f′(x)dx dt
=
∫ f n (x) f′(x) dx =
1
n + 1
f n+ 1 (x) + c
Special Cases of Substitution
Shortcut
INTEGRATION
Put f (x)t
=
f ′(x) dx dt
=
1
t
∫ dt
I =
ln t + c
=
ln f (x) + c
=
∫
f ′(x)
f(x)
ln
dx = f (x) + c
f ′(x)
f (x)
∫ dx
2)
Special Cases of Substitution
Shortcut
INTEGRATION
= 2√t +2
= 2 f(x) + c
√
Put f (x) t
=
f ′(x) dx dt
=
1
t
∫ dt
I =
√
∫
f ′(x)
f(x)
dx
3)
√
Special Cases of Substitution
∫
f ′(x)
f(x)
dx
√
Shortcut
INTEGRATION
f(x) = x2
g(x)= cos2x
I
sin 2x
= x2
2
–∫2x ×
sin 2x
2
dx
= x2 sin 2x
2
–
x (–cos 2x )
2
–∫(–cos 2x )
2
dx
sin 2x sin 2x
= x2
2
–
–x cos 2x
2
+
4
= x2 sin 2x
2
+
x cos 2x
2
–
sin 2x
4
+ c
Solution:
89.
INTEGRATION
Some standard integrals
dx
x2+ a2
∫
1
a tan–1
x
a + c
=
dx
a2 – x2
∫
1
2a
ln
a + x
a – x
+ c
=
dx
x2 – a2
∫ =
1
2a
ln + c
x - a
x + a
•
•
•
dx
a2 – x2
∫
dx
x2 – a2
∫
= _
90.
INTEGRATION
= ln +c
x +
• ∫
dx
x2 + a2
√
•
∫
dx
a2 – x2
√
sin–1
x
a + c
=
x2 + a2
√
= ln + c
x +
• ∫
dx
x2 - a2
√
x2 - a2
√
Some standard integrals
INTEGRATION
JEE MAINS &ADVANCED COURSE
➔ Foundation Sessions for starters
➔ Complete PYQ’s (2015-2023)
➔ NTA + Cengage CHAPTER WISE Questions
➔ My HANDWRITTEN Notes
tinyurl.com/jeewithnehamam
WE DO NOT SELL ANY COURSES
For FREE & Focused JEE MATERIAL, CLICK to Join TELEGRAM :
t.me/mathematicallyinclined