SlideShare a Scribd company logo
Linear Differential Equation
By
Nofal Umair
Introduction to Differential
Equations
Differential Equations
 An equation which involves unknown function of one or several variables that
relates the values of the function itself and its derivatives of various orders.
 ordinary differential equation (ode) : not involve partial derivatives
 partial differential equation (pde) : involves partial derivatives
 order of the differential equation is the order of the highest derivatives
Examples:
 second order ordinary differential
equation
 first order partial differential equation
2
2
3 sin
d y dy
x y
dxdx
y y x t
x
t x x t
Terminologies In Differential
Equation
• Existence: Does a differential equation have a
solution?
• Uniqueness: Does a differential equation have more
than one solution? If yes, how can we find a solution
which satisfies particular conditions?
• A problem in which we are looking for the unknown
function of a differential equation where the values of
the unknown function and its derivatives at some point
are known is called an initial value problem (in short
IVP).
• If no initial conditions are given, we call the description
of all solutions to the differential equation the general
solution.
Differential Equations
Some Application of Differential Equation in Engineering
Linear Differential Equation
A differential equation is linear, if
1. dependent variable and its derivatives are of degree one,
2. coefficients of a term does not depend upon dependent
variable.
Example:
36
4
3
3
y
dx
dy
dx
yd
is non - linear because in 2nd term is not of degree one.
.0932
2
y
dx
dy
dx
ydExample:
is linear.
1.
2.
( , )y f x y
First Order Linear Equations
• A linear first order equation is an equation
that can be expressed in the form
Where P and Q are functions of x
History
YEAR PROBLEM DESCRIPTION MATHAMATICIAN
1690 Problem of the
Isochrones
Finding a curve
along which a body
will fall with uniform
vertical velocity
James Bernoulli
1728 Problem of
Reducing 2nd Order
Equations to 1st
Order
Finding an
integrating factor
Leonhard Euler
1743 Problem of
determining
integrating factor for
the general linear
equation
Concept of the ad-
Joint of a differential
equation
Joseph Lagrange
1762 Problem of Linear
Equation with
Constant
Coefficients
Conditions under
which the order of a
linear differential
equation could be
lowered
Jean d’Alembert
Methods Solving LDE
1. Separable variable
M(x)dx + N(y)dy = 0
2. Homogenous
M(x,y)dx+N(x,y)dy=0, where M & N are nth degree
3. Exact
M(x,y)dx + N(x,y)dy=0, where M/ðy=0, where ðM/ðy = ðN/ðx
Solution of Differential Equation
1st Order DE - Separable Equations
The differential equation M(x,y)dx + N(x,y)dy = 0 is separable if the equation can
be written in the form:
02211 dyygxfdxygxf
Solution :
1. Multiply the equation by integrating factor:
ygxf 12
1
2. The variable are separated :
0
1
2
2
1
dy
yg
yg
dx
xf
xf
3. Integrating to find the solution:
Cdy
yg
yg
dx
xf
xf
1
2
2
1
1st Order DE - Homogeneous Equations
Homogeneous Function
f (x,y) is called homogenous of degree n if :
y,xfy,xf n
Examples:
yxxy,xf 34  homogeneous of degree 4
yxfyxx
yxxyxf
,
,
4344
34
yxxyxf cossin, 2  non-homogeneous
yxf
yxx
yxxyxf
n
,
cossin
cossin,
22
2
1st Order DE - Homogeneous Equations
The differential equation M(x,y)dx + N(x,y)dy = 0 is homogeneous if M(x,y) and
N(x,y) are homogeneous and of the same degree
Solution :
1. Use the transformation to : dvxdxvdyvxy
2. The equation become separable equation:
0,, dvvxQdxvxP
3. Use solution method for separable equation
Cdv
vg
vg
dx
xf
xf
1
2
2
1
4. After integrating, v is replaced by y/x
1st Order DE – Exact Equation
The differential equation M(x,y)dx + N(x,y)dy = 0 is an exact equation if :
Solution :
The solutions are given by the implicit equation
x
N
y
M
CyxF ,
1. Integrate either M(x,y) with respect to x or N(x,y) to y.
Assume integrating M(x,y), then :
where : F/ x = M(x,y) and F/ y = N(x,y)
ydxyxMyxF ,,
2. Now : yxNydxyxM
yy
F
,',
or : dxyxM
y
yxNy ,,'
1st Order DE – Exact Equation
3. Integrate ’(y) to get (y) and write down the result F(x,y) = C
Examples:
1. Solve :
01332 3
dyyxdxyx
Answer:
Newton's Law of Cooling
• It is a model that describes, mathematically, the change in temperature of
an object in a given environment. The law states that the rate of change (in
time) of the temperature is proportional to the difference between the
temperature T of the object and the temperature Te of the environment
surrounding the object.
d T / d t = - k (T - Te)
Let x = T - Te
so that dx / dt = dT / dt
d x / d t = - k x
The solution to the above differential equation is given by
x = A e - k t
substitute x by T – Te
T - Te = A e - k t
Assume that at t = 0 the temperature T = To
T0 - Te = A e o
which gives A = To-Te
The final expression for T(t) is given by T(t) = Te + (To- Te) e - k t
This last expression shows how the temperature T of the object changes with time.
Growth And Decay
• The initial value problem
where N(t) denotes population at time t and k is a constant of proportionality,
serves as a model for population growth and decay of insects, animals and
human population at certain places and duration.
Integrating both sides we get
ln N(t)=kt+ln C
or
or N(t)=Cekt
C can be determined if N(t) is given at certain time.
)(
)(
tkN
dt
tdN
kdt
tN
tdN
)(
)(
Carbon dating
Let M(t) be the amount of a product that decreases withtime t and the rate of
decrease is proportional to the amount M as follows
d M / d t = - k M
where d M / d t is the first derivative of M, k > 0 and t is the time.
Solve the above first order differential equation to obtain
M(t) = Ae-kt
where A is non zero constant. It we assume that M = Mo at t = 0, then
M= Ae0
which gives A = Mo
The solution may be written as follows
M(t) = Mo e-kt
Economics and Finance
• The problems regarding supply, demand and compounding interest can be
calculated by this equation
is a separable differential equation of first-order. We can write it as
dP=k(D-S) dt.
Integrating both sides, we get
P(t)=k(D-S)t+A
where A is a constant of integration.
Similarly
S(t)=S(0) ert ,Where S(0) is the initial money in the account
)( SDk
dt
dP

More Related Content

What's hot

Differential equations
Differential equationsDifferential equations
Differential equations
Uzair Saiyed
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equationsAhmed Haider
 
DIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONSDIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONS
Urmila Bhardwaj
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
vishalgohel12195
 
Differential equations
Differential equationsDifferential equations
Differential equations
Seyid Kadher
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
Uzair Saiyed
 
Differential equations
Differential equationsDifferential equations
Differential equationsCharan Kumar
 
Introduction to differential equation
Introduction to differential equationIntroduction to differential equation
Introduction to differential equation
Islamic University, Kushtia
 
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJAPPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
Zuhair Bin Jawaid
 
Partial differential equation & its application.
Partial differential equation & its application.Partial differential equation & its application.
Partial differential equation & its application.
isratzerin6
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equations
Emdadul Haque Milon
 
Differential equations
Differential equationsDifferential equations
Differential equations
Muhammad Ali Bhalli Zada
 
Multiple ppt
Multiple pptMultiple ppt
Multiple ppt
Manish Mor
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Viraj Patel
 
Application of-differential-equation-in-real-life
Application of-differential-equation-in-real-lifeApplication of-differential-equation-in-real-life
Application of-differential-equation-in-real-life
Razwanul Ghani
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
VishalVishwakarma59
 
Odepowerpointpresentation1
Odepowerpointpresentation1 Odepowerpointpresentation1
Odepowerpointpresentation1
Pokarn Narkhede
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
aman1894
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
muhammadabullah
 

What's hot (20)

Differential equations
Differential equationsDifferential equations
Differential equations
 
Ordinary differential equations
Ordinary differential equationsOrdinary differential equations
Ordinary differential equations
 
DIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONSDIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONS
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Differential equations of first order
Differential equations of first orderDifferential equations of first order
Differential equations of first order
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Introduction to differential equation
Introduction to differential equationIntroduction to differential equation
Introduction to differential equation
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJAPPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
 
Partial differential equation & its application.
Partial differential equation & its application.Partial differential equation & its application.
Partial differential equation & its application.
 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equations
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Multiple ppt
Multiple pptMultiple ppt
Multiple ppt
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
 
Application of-differential-equation-in-real-life
Application of-differential-equation-in-real-lifeApplication of-differential-equation-in-real-life
Application of-differential-equation-in-real-life
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
 
Odepowerpointpresentation1
Odepowerpointpresentation1 Odepowerpointpresentation1
Odepowerpointpresentation1
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 

Similar to First order linear differential equation

microproject@math (1).pdf
microproject@math (1).pdfmicroproject@math (1).pdf
microproject@math (1).pdf
AthrvaKumkar
 
Applications of differential equation
Applications of differential equationApplications of differential equation
Applications of differential equation
DeekshaSrivas
 
M1 unit i-jntuworld
M1 unit i-jntuworldM1 unit i-jntuworld
M1 unit i-jntuworldmrecedu
 
19 1
19 119 1
19 1
Mayar Zo
 
Application of calculus in everyday life
Application of calculus in everyday lifeApplication of calculus in everyday life
Application of calculus in everyday lifeMohamed Ibrahim
 
Week 8 [compatibility mode]
Week 8 [compatibility mode]Week 8 [compatibility mode]
Week 8 [compatibility mode]
Hazrul156
 
19 4
19 419 4
19 4
Mayar Zo
 
Statistics Homework Help
Statistics Homework HelpStatistics Homework Help
Statistics Homework Help
Statistics Homework Helper
 
Multiple Linear Regression Homework Help
Multiple Linear Regression Homework HelpMultiple Linear Regression Homework Help
Multiple Linear Regression Homework Help
Statistics Homework Helper
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in india
Edhole.com
 
Differential equations final -mams
Differential equations final -mamsDifferential equations final -mams
Differential equations final -mams
armanimams
 
Find the explicit solution of the linear DE dyxdx=-6x^3-6x^2 y+1 u.pdf
Find the explicit solution of the linear DE dyxdx=-6x^3-6x^2 y+1 u.pdfFind the explicit solution of the linear DE dyxdx=-6x^3-6x^2 y+1 u.pdf
Find the explicit solution of the linear DE dyxdx=-6x^3-6x^2 y+1 u.pdf
sales89
 
Persamaan Differensial Biasa 2014
Persamaan Differensial Biasa 2014 Persamaan Differensial Biasa 2014
Persamaan Differensial Biasa 2014
Rani Sulvianuri
 
11.solution of a subclass of singular second order
11.solution of a subclass of singular second order11.solution of a subclass of singular second order
11.solution of a subclass of singular second orderAlexander Decker
 
Solution of a subclass of singular second order
Solution of a subclass of singular second orderSolution of a subclass of singular second order
Solution of a subclass of singular second orderAlexander Decker
 
MATLAB ODE
MATLAB ODEMATLAB ODE
MATLAB ODE
Kris014
 
Transient heat conduction
Transient heat conductionTransient heat conduction
Transient heat conduction
Ahmadreza Aminian
 
On the Numerical Fixed Point Iterative Methods of Solution for the Boundary V...
On the Numerical Fixed Point Iterative Methods of Solution for the Boundary V...On the Numerical Fixed Point Iterative Methods of Solution for the Boundary V...
On the Numerical Fixed Point Iterative Methods of Solution for the Boundary V...
BRNSS Publication Hub
 

Similar to First order linear differential equation (20)

microproject@math (1).pdf
microproject@math (1).pdfmicroproject@math (1).pdf
microproject@math (1).pdf
 
Applications of differential equation
Applications of differential equationApplications of differential equation
Applications of differential equation
 
M1 unit i-jntuworld
M1 unit i-jntuworldM1 unit i-jntuworld
M1 unit i-jntuworld
 
19 1
19 119 1
19 1
 
Application of calculus in everyday life
Application of calculus in everyday lifeApplication of calculus in everyday life
Application of calculus in everyday life
 
Week 8 [compatibility mode]
Week 8 [compatibility mode]Week 8 [compatibility mode]
Week 8 [compatibility mode]
 
19 4
19 419 4
19 4
 
Statistics Homework Help
Statistics Homework HelpStatistics Homework Help
Statistics Homework Help
 
Multiple Linear Regression Homework Help
Multiple Linear Regression Homework HelpMultiple Linear Regression Homework Help
Multiple Linear Regression Homework Help
 
Btech admission in india
Btech admission in indiaBtech admission in india
Btech admission in india
 
Differential equations final -mams
Differential equations final -mamsDifferential equations final -mams
Differential equations final -mams
 
Find the explicit solution of the linear DE dyxdx=-6x^3-6x^2 y+1 u.pdf
Find the explicit solution of the linear DE dyxdx=-6x^3-6x^2 y+1 u.pdfFind the explicit solution of the linear DE dyxdx=-6x^3-6x^2 y+1 u.pdf
Find the explicit solution of the linear DE dyxdx=-6x^3-6x^2 y+1 u.pdf
 
Persamaan Differensial Biasa 2014
Persamaan Differensial Biasa 2014 Persamaan Differensial Biasa 2014
Persamaan Differensial Biasa 2014
 
11.solution of a subclass of singular second order
11.solution of a subclass of singular second order11.solution of a subclass of singular second order
11.solution of a subclass of singular second order
 
Solution of a subclass of singular second order
Solution of a subclass of singular second orderSolution of a subclass of singular second order
Solution of a subclass of singular second order
 
MATLAB ODE
MATLAB ODEMATLAB ODE
MATLAB ODE
 
Transient heat conduction
Transient heat conductionTransient heat conduction
Transient heat conduction
 
M220w07
M220w07M220w07
M220w07
 
On the Numerical Fixed Point Iterative Methods of Solution for the Boundary V...
On the Numerical Fixed Point Iterative Methods of Solution for the Boundary V...On the Numerical Fixed Point Iterative Methods of Solution for the Boundary V...
On the Numerical Fixed Point Iterative Methods of Solution for the Boundary V...
 
04_AJMS_167_18_RA.pdf
04_AJMS_167_18_RA.pdf04_AJMS_167_18_RA.pdf
04_AJMS_167_18_RA.pdf
 

More from Nofal Umair

Catalyst & Catalysis
Catalyst & CatalysisCatalyst & Catalysis
Catalyst & Catalysis
Nofal Umair
 
Production of biodiesel from jatropha plant
Production of biodiesel from jatropha plantProduction of biodiesel from jatropha plant
Production of biodiesel from jatropha plant
Nofal Umair
 
Presentation & interview skills
Presentation & interview skillsPresentation & interview skills
Presentation & interview skills
Nofal Umair
 
Rotary & Centrifugal Filter
Rotary & Centrifugal Filter Rotary & Centrifugal Filter
Rotary & Centrifugal Filter
Nofal Umair
 
Extreme values of a function & applications of derivative
Extreme values of a function & applications of derivativeExtreme values of a function & applications of derivative
Extreme values of a function & applications of derivative
Nofal Umair
 
Nuclear chemistry
Nuclear chemistryNuclear chemistry
Nuclear chemistry
Nofal Umair
 
Fluid mechanics applications
Fluid mechanics applicationsFluid mechanics applications
Fluid mechanics applications
Nofal Umair
 
Critical analysis on semester and annual system
Critical analysis on semester and annual systemCritical analysis on semester and annual system
Critical analysis on semester and annual system
Nofal Umair
 

More from Nofal Umair (8)

Catalyst & Catalysis
Catalyst & CatalysisCatalyst & Catalysis
Catalyst & Catalysis
 
Production of biodiesel from jatropha plant
Production of biodiesel from jatropha plantProduction of biodiesel from jatropha plant
Production of biodiesel from jatropha plant
 
Presentation & interview skills
Presentation & interview skillsPresentation & interview skills
Presentation & interview skills
 
Rotary & Centrifugal Filter
Rotary & Centrifugal Filter Rotary & Centrifugal Filter
Rotary & Centrifugal Filter
 
Extreme values of a function & applications of derivative
Extreme values of a function & applications of derivativeExtreme values of a function & applications of derivative
Extreme values of a function & applications of derivative
 
Nuclear chemistry
Nuclear chemistryNuclear chemistry
Nuclear chemistry
 
Fluid mechanics applications
Fluid mechanics applicationsFluid mechanics applications
Fluid mechanics applications
 
Critical analysis on semester and annual system
Critical analysis on semester and annual systemCritical analysis on semester and annual system
Critical analysis on semester and annual system
 

Recently uploaded

678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
CarlosHernanMontoyab2
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Po-Chuan Chen
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 

Recently uploaded (20)

678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 

First order linear differential equation

  • 3. Differential Equations  An equation which involves unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders.  ordinary differential equation (ode) : not involve partial derivatives  partial differential equation (pde) : involves partial derivatives  order of the differential equation is the order of the highest derivatives Examples:  second order ordinary differential equation  first order partial differential equation 2 2 3 sin d y dy x y dxdx y y x t x t x x t
  • 4. Terminologies In Differential Equation • Existence: Does a differential equation have a solution? • Uniqueness: Does a differential equation have more than one solution? If yes, how can we find a solution which satisfies particular conditions? • A problem in which we are looking for the unknown function of a differential equation where the values of the unknown function and its derivatives at some point are known is called an initial value problem (in short IVP). • If no initial conditions are given, we call the description of all solutions to the differential equation the general solution.
  • 5. Differential Equations Some Application of Differential Equation in Engineering
  • 6. Linear Differential Equation A differential equation is linear, if 1. dependent variable and its derivatives are of degree one, 2. coefficients of a term does not depend upon dependent variable. Example: 36 4 3 3 y dx dy dx yd is non - linear because in 2nd term is not of degree one. .0932 2 y dx dy dx ydExample: is linear. 1. 2.
  • 7. ( , )y f x y
  • 8. First Order Linear Equations • A linear first order equation is an equation that can be expressed in the form Where P and Q are functions of x
  • 9. History YEAR PROBLEM DESCRIPTION MATHAMATICIAN 1690 Problem of the Isochrones Finding a curve along which a body will fall with uniform vertical velocity James Bernoulli 1728 Problem of Reducing 2nd Order Equations to 1st Order Finding an integrating factor Leonhard Euler 1743 Problem of determining integrating factor for the general linear equation Concept of the ad- Joint of a differential equation Joseph Lagrange 1762 Problem of Linear Equation with Constant Coefficients Conditions under which the order of a linear differential equation could be lowered Jean d’Alembert
  • 10. Methods Solving LDE 1. Separable variable M(x)dx + N(y)dy = 0 2. Homogenous M(x,y)dx+N(x,y)dy=0, where M & N are nth degree 3. Exact M(x,y)dx + N(x,y)dy=0, where M/ðy=0, where ðM/ðy = ðN/ðx
  • 12. 1st Order DE - Separable Equations The differential equation M(x,y)dx + N(x,y)dy = 0 is separable if the equation can be written in the form: 02211 dyygxfdxygxf Solution : 1. Multiply the equation by integrating factor: ygxf 12 1 2. The variable are separated : 0 1 2 2 1 dy yg yg dx xf xf 3. Integrating to find the solution: Cdy yg yg dx xf xf 1 2 2 1
  • 13. 1st Order DE - Homogeneous Equations Homogeneous Function f (x,y) is called homogenous of degree n if : y,xfy,xf n Examples: yxxy,xf 34  homogeneous of degree 4 yxfyxx yxxyxf , , 4344 34 yxxyxf cossin, 2  non-homogeneous yxf yxx yxxyxf n , cossin cossin, 22 2
  • 14. 1st Order DE - Homogeneous Equations The differential equation M(x,y)dx + N(x,y)dy = 0 is homogeneous if M(x,y) and N(x,y) are homogeneous and of the same degree Solution : 1. Use the transformation to : dvxdxvdyvxy 2. The equation become separable equation: 0,, dvvxQdxvxP 3. Use solution method for separable equation Cdv vg vg dx xf xf 1 2 2 1 4. After integrating, v is replaced by y/x
  • 15. 1st Order DE – Exact Equation The differential equation M(x,y)dx + N(x,y)dy = 0 is an exact equation if : Solution : The solutions are given by the implicit equation x N y M CyxF , 1. Integrate either M(x,y) with respect to x or N(x,y) to y. Assume integrating M(x,y), then : where : F/ x = M(x,y) and F/ y = N(x,y) ydxyxMyxF ,, 2. Now : yxNydxyxM yy F ,', or : dxyxM y yxNy ,,'
  • 16. 1st Order DE – Exact Equation 3. Integrate ’(y) to get (y) and write down the result F(x,y) = C Examples: 1. Solve : 01332 3 dyyxdxyx Answer:
  • 17. Newton's Law of Cooling • It is a model that describes, mathematically, the change in temperature of an object in a given environment. The law states that the rate of change (in time) of the temperature is proportional to the difference between the temperature T of the object and the temperature Te of the environment surrounding the object. d T / d t = - k (T - Te) Let x = T - Te so that dx / dt = dT / dt d x / d t = - k x The solution to the above differential equation is given by x = A e - k t substitute x by T – Te T - Te = A e - k t Assume that at t = 0 the temperature T = To
  • 18. T0 - Te = A e o which gives A = To-Te The final expression for T(t) is given by T(t) = Te + (To- Te) e - k t This last expression shows how the temperature T of the object changes with time.
  • 19. Growth And Decay • The initial value problem where N(t) denotes population at time t and k is a constant of proportionality, serves as a model for population growth and decay of insects, animals and human population at certain places and duration. Integrating both sides we get ln N(t)=kt+ln C or or N(t)=Cekt C can be determined if N(t) is given at certain time. )( )( tkN dt tdN kdt tN tdN )( )(
  • 20. Carbon dating Let M(t) be the amount of a product that decreases withtime t and the rate of decrease is proportional to the amount M as follows d M / d t = - k M where d M / d t is the first derivative of M, k > 0 and t is the time. Solve the above first order differential equation to obtain M(t) = Ae-kt where A is non zero constant. It we assume that M = Mo at t = 0, then M= Ae0 which gives A = Mo The solution may be written as follows M(t) = Mo e-kt
  • 21. Economics and Finance • The problems regarding supply, demand and compounding interest can be calculated by this equation is a separable differential equation of first-order. We can write it as dP=k(D-S) dt. Integrating both sides, we get P(t)=k(D-S)t+A where A is a constant of integration. Similarly S(t)=S(0) ert ,Where S(0) is the initial money in the account )( SDk dt dP