Sparse Regularization
Of Inverse Problems
       Gabriel Peyré
   www.numerical-tours.com
Overview

• Inverse Problems Regularization

• Sparse Synthesis Regularization

• Examples: Sparse Wavelet Regularizations

• Iterative Soft Thresholding

• Sparse Seismic Deconvolution
Inverse Problems
Forward model:    y = K f0 + w   RP

   Observations   Operator  (Unknown)   Noise
                  : RQ   RP   Input
Inverse Problems
Forward model:       y = K f0 + w   RP

    Observations     Operator  (Unknown)   Noise
                     : RQ   RP   Input
Denoising: K = IdQ , P = Q.
Inverse Problems
Forward model:          y = K f0 + w     RP

    Observations        Operator  (Unknown)          Noise
                        : RQ   RP   Input
Denoising: K = IdQ , P = Q.
Inpainting: set    of missing pixels, P = Q   | |.
                          0 if x     ,
           (Kf )(x) =
                          f (x) if x /    .




            K
Inverse Problems
Forward model:          y = K f0 + w     RP

    Observations        Operator  (Unknown)            Noise
                        : RQ   RP   Input
Denoising: K = IdQ , P = Q.
Inpainting: set    of missing pixels, P = Q     | |.
                          0 if x     ,
           (Kf )(x) =
                          f (x) if x /    .
Super-resolution: Kf = (f     k)   , P = Q/ .


            K                                 K
Inverse Problem in Medical Imaging
           Kf = (p k )1   k K
Inverse Problem in Medical Imaging
                       Kf = (p k )1   k K




Magnetic resonance imaging (MRI):            ˆ
                                       Kf = (f ( ))
                                ˆ
                                f
Inverse Problem in Medical Imaging
                        Kf = (p k )1   k K




Magnetic resonance imaging (MRI):             ˆ
                                        Kf = (f ( ))
                                  ˆ
                                  f




Other examples: MEG, EEG, . . .
Inverse Problem Regularization

Noisy measurements: y = Kf0 + w.

Prior model: J : RQ   R assigns a score to images.
Inverse Problem Regularization

Noisy measurements: y = Kf0 + w.

Prior model: J : RQ   R assigns a score to images.

                                1
                      f   argmin ||y Kf ||2 + J(f )
                           f RQ 2
                                Data fidelity Regularity
Inverse Problem Regularization

Noisy measurements: y = Kf0 + w.

Prior model: J : RQ       R assigns a score to images.

                                    1
                      f       argmin ||y Kf ||2 + J(f )
                               f RQ 2
                                    Data fidelity Regularity

Choice of : tradeo
            Noise level               Regularity of f0
                ||w||                     J(f0 )
Inverse Problem Regularization

Noisy measurements: y = Kf0 + w.

Prior model: J : RQ         R assigns a score to images.

                                      1
                        f       argmin ||y Kf ||2 + J(f )
                                 f RQ 2
                                      Data fidelity Regularity

Choice of : tradeo
              Noise level                 Regularity of f0
                  ||w||                       J(f0 )

No noise:       0+ , minimize         f       argmin J(f )
                                             f RQ ,Kf =y
Smooth and Cartoon Priors

              J(f ) =   || f (x)||2 dx




           | f |2
Smooth and Cartoon Priors

              J(f ) =       || f (x)||2 dx

                    J(f ) =      || f (x)||dx



            J(f ) =         length(Ct )dt
                        R




           | f |2                               | f|
Inpainting Example




Input y = Kf0 + w   Sobolev   Total variation
Overview

• Inverse Problems Regularization

• Sparse Synthesis Regularization

• Examples: Sparse Wavelet Regularizations

• Iterative Soft Thresholding

• Sparse Seismic Deconvolution
Redundant Dictionaries
Dictionary   =(   m )m   RQ   N
                                  ,N       Q.




                                       Q

                                                N
Redundant Dictionaries
Dictionary    =(    m )m        RQ   N
                                         ,N       Q.
Fourier:      m   = ei   ·, m

                                frequency




                                              Q

                                                       N
Redundant Dictionaries
Dictionary    =(       m )m      RQ    N
                                           ,N       Q.
                                                         m = (j, , n)
Fourier:      m    =e   i ·, m

                                 frequency           scale         position
Wavelets:
       m    = (2   j
                       R x        n)                     orientation



                                                     =1                =2


                                                Q

                                                          N
Redundant Dictionaries
Dictionary    =(       m )m      RQ    N
                                           ,N       Q.
                                                         m = (j, , n)
Fourier:      m    =e   i ·, m

                                 frequency           scale         position
Wavelets:
       m    = (2   j
                       R x        n)                     orientation

DCT, Curvelets, bandlets, . . .

                                                     =1                =2


                                                Q

                                                          N
Redundant Dictionaries
Dictionary    =(       m )m      RQ       N
                                              ,N       Q.
                                                            m = (j, , n)
Fourier:      m    =e   i ·, m

                                 frequency              scale         position
Wavelets:
       m    = (2   j
                       R x           n)                     orientation

DCT, Curvelets, bandlets, . . .

Synthesis: f =     m    xm       m   =    x.            =1                =2


                                                   Q                       =f
                                                                      x
                                                             N
Coe cients x       Image f =              x
Sparse Priors
                                      Coe cients x
Ideal sparsity: for most m, xm = 0.
     J0 (x) = # {m  xm = 0}




                                        Image f0
Sparse Priors
                                       Coe cients x
Ideal sparsity: for most m, xm = 0.
     J0 (x) = # {m  xm = 0}
Sparse approximation: f = x where
    argmin ||f0    x||2 + T 2 J0 (x)
     x2RN




                                         Image f0
Sparse Priors
                                            Coe cients x
Ideal sparsity: for most m, xm = 0.
     J0 (x) = # {m  xm = 0}
Sparse approximation: f = x where
    argmin ||f0    x||2 + T 2 J0 (x)
     x2RN

Orthogonal   :      =      = IdN
       f0 , m if | f0 ,        m   | > T,
 xm =
      0 otherwise.                    ST      Image f0
   f=    ST   (f0 )
Sparse Priors
                                            Coe cients x
Ideal sparsity: for most m, xm = 0.
     J0 (x) = # {m  xm = 0}
Sparse approximation: f = x where
    argmin ||f0    x||2 + T 2 J0 (x)
     x2RN

Orthogonal   :      =      = IdN
       f0 , m if | f0 ,        m   | > T,
 xm =
      0 otherwise.                    ST      Image f0
   f=    ST   (f0 )

Non-orthogonal :
       NP-hard.
Convex Relaxation: L1 Prior
                       J0 (x) = # {m  xm = 0}
                        J0 (x) = 0        null image.
Image with 2 pixels:    J0 (x) = 1        sparse image.
                        J0 (x) = 2        non-sparse image.
   x2

         x1


  q=0
Convex Relaxation: L1 Prior
                             J0 (x) = # {m  xm = 0}
                               J0 (x) = 0       null image.
Image with 2 pixels:           J0 (x) = 1       sparse image.
                               J0 (x) = 2       non-sparse image.
     x2

           x1


     q=0           q = 1/2         q=1      q = 3/2       q=2
 q
     priors:        Jq (x) =       |xm |q      (convex for q    1)
                               m
Convex Relaxation: L1 Prior
                                  J0 (x) = # {m  xm = 0}
                                    J0 (x) = 0          null image.
Image with 2 pixels:                J0 (x) = 1          sparse image.
                                    J0 (x) = 2          non-sparse image.
     x2

               x1


     q=0                q = 1/2         q=1         q = 3/2       q=2
 q
     priors:             Jq (x) =       |xm |q         (convex for q    1)
                                    m



Sparse     1
               prior:      J1 (x) =         |xm |
                                        m
L1 Regularization

 x0 RN
coe cients
L1 Regularization

 x0 RN          f0 = x0 RQ
coe cients          image
L1 Regularization

 x0 RN          f0 = x0 RQ       y = Kf0 + w RP
coe cients          image           observations
                             K

                             w
L1 Regularization

 x0 RN          f0 = x0 RQ            y = Kf0 + w RP
coe cients          image                observations
                                  K

                              w


                 = K ⇥ ⇥ RP   N
L1 Regularization

 x0 RN            f0 = x0 RQ             y = Kf0 + w RP
coe cients            image                 observations
                                     K

                                  w


                  = K ⇥ ⇥ RP     N



 Sparse recovery: f =   x where x solves
            1
        min   ||y     x||2 + ||x||1
       x RN 2
               Fidelity Regularization
Noiseless Sparse Regularization
Noiseless measurements:        y = x0

              x
                      x=
                           y




 x    argmin          |xm |
        x=y       m
Noiseless Sparse Regularization
Noiseless measurements:        y = x0

              x
                                                 x
                      x=                              x=
                           y                               y




 x    argmin          |xm |        x    argmin       |xm |2
        x=y       m                       x=y    m
Noiseless Sparse Regularization
Noiseless measurements:          y = x0

                x
                                                        x
                        x=                                     x=
                             y                                      y




  x    argmin           |xm |          x      argmin          |xm |2
          x=y       m                            x=y     m


Convex linear program.
      Interior points, cf. [Chen, Donoho, Saunders] “basis pursuit”.
      Douglas-Rachford splitting, see [Combettes, Pesquet].
Noisy Sparse Regularization
Noisy measurements:      y = x0 + w

             1
 x    argmin ||y    x||2 + ||x||1
       x RQ 2
            Data fidelity Regularization
Noisy Sparse Regularization
Noisy measurements:      y = x0 + w

             1
 x    argmin ||y    x||2 + ||x||1
       x RQ 2                             Equivalence
            Data fidelity Regularization

 x     argmin ||x||1
      || x y||
                                          |
                                              x=
                                      x            y|
Noisy Sparse Regularization
Noisy measurements:               y = x0 + w

                 1
  x       argmin ||y    x||2 + ||x||1
           x RQ 2                                   Equivalence
                Data fidelity Regularization

  x       argmin ||x||1
         || x y||
                                                    |
                                                        x=
Algorithms:                                     x            y|
      Iterative soft thresholding
             Forward-backward splitting
 see [Daubechies et al], [Pesquet et al], etc
      Nesterov multi-steps schemes.
Overview

• Inverse Problems Regularization

• Sparse Synthesis Regularization

• Examples: Sparse Wavelet Regularizations

• Iterative Soft Thresholding

• Sparse Seismic Deconvolution
Image De-blurring




Original f0   y = h f0 + w
Image De-blurring




  Original f0     y = h f0 + w           Sobolev
                                       SNR=22.7dB
Sobolev regularization:   f = argmin ||f ⇥ h   y||2 + ||⇥f ||2
                                 f RN
                          ˆ
                          h(⇥)
          ˆ
          f (⇥) =                    y (⇥)
                                     ˆ
                     ˆ
                    |h(⇥)|2 + |⇥|2
Image De-blurring




  Original f0      y = h f0 + w            Sobolev            Sparsity
                                         SNR=22.7dB        SNR=24.7dB
Sobolev regularization:       f = argmin ||f ⇥ h   y||2 + ||⇥f ||2
                                     f RN
                              ˆ
                              h(⇥)
            ˆ
            f (⇥) =                    y (⇥)
                                       ˆ
                       ˆ
                      |h(⇥)|2 + |⇥|2

Sparsity regularization:          = translation invariant wavelets.
                                        1
f =     x       where     x      argmin ||h ( x) y||2 + ||x||1
                                    x   2
Comparison of Regularizations
  L2 regularization      Sobolev regularization   Sparsity regularization
SNR




                          SNR




                                                   SNR
      opt                            opt                 opt




   L2                   Sobolev         Sparsity           Invariant
SNR=21.7dB            SNR=22.7dB      SNR=23.7dB          SNR=24.7dB
Inpainting Problem


               K                         0 if x     ,
                            (Kf )(x) =
                                         f (x) if x /   .

Measures:     y = Kf0 + w
Image Separation
Model: f = f1 + f2 + w, (f1 , f2 ) components, w noise.
Image Separation
Model: f = f1 + f2 + w, (f1 , f2 ) components, w noise.
Image Separation
Model: f = f1 + f2 + w, (f1 , f2 ) components, w noise.




Union dictionary:         =[    1,     2]      RQ   (N1 +N2 )


Recovered component: fi =            i xi .
                                       1
         (x1 , x2 )      argmin          ||f        x||2 + ||x||1
                      x=(x1 ,x2 ) RN   2
Examples of Decompositions
Cartoon+Texture Separation
Overview

• Inverse Problems Regularization

• Sparse Synthesis Regularization

• Examples: Sparse Wavelet Regularizations

• Iterative Soft Thresholding

• Sparse Seismic Deconvolution
Sparse Regularization Denoising
Denoising: y = x0 + w 2 RN , K = Id.
                     ⇤                 ⇤
Orthogonal-basis:        = IdN , x =       f.
Regularization-based denoising:
                           1
              x = argmin ||x y||2 + J(x)
                ?
                     x2RN 2
                             P
Sparse regularization: J(x) = m |xm |q
       (where |a|0 = (a))
Sparse Regularization Denoising
Denoising: y = x0 + w 2 RN , K = Id.
                        ⇤                 ⇤
Orthogonal-basis:           = IdN , x =       f.
Regularization-based denoising:
                           1
              x = argmin ||x y||2 + J(x)
                ?
                     x2RN 2
                             P
Sparse regularization: J(x) = m |xm |q
       (where |a|0 = (a))

                     q
           x?
            m   =   ST (xm )
Surrogate Functionals
Sparse regularization:
            ?               1
           x 2 argmin E(x) = ||y               x||2 + ||x||1
                 x2RN       2
                                      ⇤
Surrogate functional:      ⌧ < 1/||       ||
                        1             2  1
 E(x, x) = E(x)
      ˜                   || (x   x)|| + ||x
                                  ˜                   x||2
                                                      ˜
                        2               2⌧
                                                       E(·, x)
                                                            ˜

                                               E(·)

                                                                         x
                                                             S ⌧ (u) x
                                                                     ˜
Surrogate Functionals
Sparse regularization:
            ?               1
           x 2 argmin E(x) = ||y                 x||2 + ||x||1
                 x2RN       2
                                        ⇤
Surrogate functional:       ⌧ < 1/||        ||
                        1               2    1
 E(x, x) = E(x)
      ˜                   || (x       x)|| + ||x
                                      ˜                 x||2
                                                        ˜
                        2                   2⌧
                                                         E(·, x)
                                                              ˜
   Theorem:
     argmin E(x, x) = S ⌧ (u)
                 ˜                               E(·)
          x
                            ⇤
    where u = x         ⌧       ( x    x)
                                       ˜
                                                                           x
                                                               S ⌧ (u) x
                                                                       ˜

 Proof: E(x, x) / 1 ||u
             ˜    2             x||2 + ||x||1 + cst.
Iterative Thresholding
Algorithm: x(`+1) = argmin E(x, x(`) )
                             x
     Initialize x(0) , set ` = 0.
                        ⇤
     u(`) = x(`)    ⌧       ( x(`)   ⌧ y)
                                            E(·)
     x(`+1) = S 1⌧ (u(`) )                             (2)       (1)       (0)
                                                                                 x
                                                   x         x         x
Iterative Thresholding
Algorithm: x(`+1) = argmin E(x, x(`) )
                              x
     Initialize x(0) , set ` = 0.
                         ⇤
     u(`) = x(`)     ⌧       ( x(`)   ⌧ y)
                                             E(·)
      x(`+1) = S 1⌧ (u(`) )                             (2)       (1)       (0)
                                                                                  x
                                                    x         x         x
Remark:
    x(`) 7! u(`) is a gradient descent of || x y||2 .
     1
    S`⌧ is the proximal step of associated to ||x||1 .
Iterative Thresholding
Algorithm: x(`+1) = argmin E(x, x(`) )
                              x
     Initialize x(0) , set ` = 0.
                         ⇤
     u(`) = x(`)     ⌧       ( x(`)    ⌧ y)
                                                 E(·)
      x(`+1) = S 1⌧ (u(`) )                                  (2)       (1)       (0)
                                                                                       x
                                                        x          x         x
Remark:
    x(`) 7! u(`) is a gradient descent of || x y||2 .
     1
    S`⌧ is the proximal step of associated to ||x||1 .


                                  ⇤
      Theorem: if ⌧ < 2/||            ||, then x(`) ! x? .
Overview

• Inverse Problems Regularization

• Sparse Synthesis Regularization

• Examples: Sparse Wavelet Regularizations

• Iterative Soft Thresholding

• Sparse Seismic Deconvolution
Seismic Imaging
1D Idealization
               Initial condition: “wavelet”
                      = band pass filter h

                   1D propagation convolution
                           f =h f

                                              h(x)

               f

                                              ˆ
                                              h( )



y = f0 h + w                      P
Pseudo Inverse
Pseudo-inverse:

   ˆ+ ( ) = y ( )
   f
            ˆ
                    =      f + = h+ ⇥ y = f0 + h+ ⇥ w
            h( )
                                     ˆ        ˆ
                               where h+ ( ) = h( )   1


               ˆ              ˆ
Stabilization: h+ (⇥) = 0 if |h(⇥)|

                        ˆ
                        h( )                   y = h f0 + w



                      ˆ
                    1/h( )

                                                         f+
Sparse Spikes Deconvolution




    f with small ||f ||0                 y=f        h+w
Sparsity basis: Diracs     ⇥m [x] = [x   m]
                       1
             f = argmin ||f ⇥ h    y||2 +         |f [m]|.
                  f RN 2                      m
Sparse Spikes Deconvolution




    f with small ||f ||0                     y=f        h+w
Sparsity basis: Diracs      ⇥m [x] = [x      m]
                       1
             f = argmin ||f ⇥ h        y||2 +         |f [m]|.
                  f RN 2                          m


Algorithm:         < 2/||                 ˆ
                              || = 2/max |h(⇥)|2
                   ˜
      • Inversion: f (k) = f (k)     h ⇥ (h ⇥ f (k)    y).
                                         ˜
                     f (k+1) [m] = S 1⇥ (f (k) [m])
Numerical Example

                                        f0
Choosing optimal :
 oracle, minimize ||f0   f ||

                                y=f   h+w
SNR(f0 , f )



                                       f
Convergence Study
Sparse deconvolution:f = argmin E(f ).
                            f RN
                    1
     Energy: E(f ) = ||h ⇥ f y||2 +    |f [m]|.
                    2               m
Not strictly convex      =    no convergence speed.

log10 (E(f (k) )/E(f )   1)        log10 (||f (k)   f ||/||f0 ||)




                              k                                     k
Conclusion
Conclusion
Conclusion

Signal Processing Course : Sparse Regularization of Inverse Problems

  • 1.
    Sparse Regularization Of InverseProblems Gabriel Peyré www.numerical-tours.com
  • 2.
    Overview • Inverse ProblemsRegularization • Sparse Synthesis Regularization • Examples: Sparse Wavelet Regularizations • Iterative Soft Thresholding • Sparse Seismic Deconvolution
  • 3.
    Inverse Problems Forward model: y = K f0 + w RP Observations Operator (Unknown) Noise : RQ RP Input
  • 4.
    Inverse Problems Forward model: y = K f0 + w RP Observations Operator (Unknown) Noise : RQ RP Input Denoising: K = IdQ , P = Q.
  • 5.
    Inverse Problems Forward model: y = K f0 + w RP Observations Operator (Unknown) Noise : RQ RP Input Denoising: K = IdQ , P = Q. Inpainting: set of missing pixels, P = Q | |. 0 if x , (Kf )(x) = f (x) if x / . K
  • 6.
    Inverse Problems Forward model: y = K f0 + w RP Observations Operator (Unknown) Noise : RQ RP Input Denoising: K = IdQ , P = Q. Inpainting: set of missing pixels, P = Q | |. 0 if x , (Kf )(x) = f (x) if x / . Super-resolution: Kf = (f k) , P = Q/ . K K
  • 7.
    Inverse Problem inMedical Imaging Kf = (p k )1 k K
  • 8.
    Inverse Problem inMedical Imaging Kf = (p k )1 k K Magnetic resonance imaging (MRI): ˆ Kf = (f ( )) ˆ f
  • 9.
    Inverse Problem inMedical Imaging Kf = (p k )1 k K Magnetic resonance imaging (MRI): ˆ Kf = (f ( )) ˆ f Other examples: MEG, EEG, . . .
  • 10.
    Inverse Problem Regularization Noisymeasurements: y = Kf0 + w. Prior model: J : RQ R assigns a score to images.
  • 11.
    Inverse Problem Regularization Noisymeasurements: y = Kf0 + w. Prior model: J : RQ R assigns a score to images. 1 f argmin ||y Kf ||2 + J(f ) f RQ 2 Data fidelity Regularity
  • 12.
    Inverse Problem Regularization Noisymeasurements: y = Kf0 + w. Prior model: J : RQ R assigns a score to images. 1 f argmin ||y Kf ||2 + J(f ) f RQ 2 Data fidelity Regularity Choice of : tradeo Noise level Regularity of f0 ||w|| J(f0 )
  • 13.
    Inverse Problem Regularization Noisymeasurements: y = Kf0 + w. Prior model: J : RQ R assigns a score to images. 1 f argmin ||y Kf ||2 + J(f ) f RQ 2 Data fidelity Regularity Choice of : tradeo Noise level Regularity of f0 ||w|| J(f0 ) No noise: 0+ , minimize f argmin J(f ) f RQ ,Kf =y
  • 14.
    Smooth and CartoonPriors J(f ) = || f (x)||2 dx | f |2
  • 15.
    Smooth and CartoonPriors J(f ) = || f (x)||2 dx J(f ) = || f (x)||dx J(f ) = length(Ct )dt R | f |2 | f|
  • 16.
    Inpainting Example Input y= Kf0 + w Sobolev Total variation
  • 17.
    Overview • Inverse ProblemsRegularization • Sparse Synthesis Regularization • Examples: Sparse Wavelet Regularizations • Iterative Soft Thresholding • Sparse Seismic Deconvolution
  • 18.
    Redundant Dictionaries Dictionary =( m )m RQ N ,N Q. Q N
  • 19.
    Redundant Dictionaries Dictionary =( m )m RQ N ,N Q. Fourier: m = ei ·, m frequency Q N
  • 20.
    Redundant Dictionaries Dictionary =( m )m RQ N ,N Q. m = (j, , n) Fourier: m =e i ·, m frequency scale position Wavelets: m = (2 j R x n) orientation =1 =2 Q N
  • 21.
    Redundant Dictionaries Dictionary =( m )m RQ N ,N Q. m = (j, , n) Fourier: m =e i ·, m frequency scale position Wavelets: m = (2 j R x n) orientation DCT, Curvelets, bandlets, . . . =1 =2 Q N
  • 22.
    Redundant Dictionaries Dictionary =( m )m RQ N ,N Q. m = (j, , n) Fourier: m =e i ·, m frequency scale position Wavelets: m = (2 j R x n) orientation DCT, Curvelets, bandlets, . . . Synthesis: f = m xm m = x. =1 =2 Q =f x N Coe cients x Image f = x
  • 23.
    Sparse Priors Coe cients x Ideal sparsity: for most m, xm = 0. J0 (x) = # {m xm = 0} Image f0
  • 24.
    Sparse Priors Coe cients x Ideal sparsity: for most m, xm = 0. J0 (x) = # {m xm = 0} Sparse approximation: f = x where argmin ||f0 x||2 + T 2 J0 (x) x2RN Image f0
  • 25.
    Sparse Priors Coe cients x Ideal sparsity: for most m, xm = 0. J0 (x) = # {m xm = 0} Sparse approximation: f = x where argmin ||f0 x||2 + T 2 J0 (x) x2RN Orthogonal : = = IdN f0 , m if | f0 , m | > T, xm = 0 otherwise. ST Image f0 f= ST (f0 )
  • 26.
    Sparse Priors Coe cients x Ideal sparsity: for most m, xm = 0. J0 (x) = # {m xm = 0} Sparse approximation: f = x where argmin ||f0 x||2 + T 2 J0 (x) x2RN Orthogonal : = = IdN f0 , m if | f0 , m | > T, xm = 0 otherwise. ST Image f0 f= ST (f0 ) Non-orthogonal : NP-hard.
  • 27.
    Convex Relaxation: L1Prior J0 (x) = # {m xm = 0} J0 (x) = 0 null image. Image with 2 pixels: J0 (x) = 1 sparse image. J0 (x) = 2 non-sparse image. x2 x1 q=0
  • 28.
    Convex Relaxation: L1Prior J0 (x) = # {m xm = 0} J0 (x) = 0 null image. Image with 2 pixels: J0 (x) = 1 sparse image. J0 (x) = 2 non-sparse image. x2 x1 q=0 q = 1/2 q=1 q = 3/2 q=2 q priors: Jq (x) = |xm |q (convex for q 1) m
  • 29.
    Convex Relaxation: L1Prior J0 (x) = # {m xm = 0} J0 (x) = 0 null image. Image with 2 pixels: J0 (x) = 1 sparse image. J0 (x) = 2 non-sparse image. x2 x1 q=0 q = 1/2 q=1 q = 3/2 q=2 q priors: Jq (x) = |xm |q (convex for q 1) m Sparse 1 prior: J1 (x) = |xm | m
  • 30.
    L1 Regularization x0RN coe cients
  • 31.
    L1 Regularization x0RN f0 = x0 RQ coe cients image
  • 32.
    L1 Regularization x0RN f0 = x0 RQ y = Kf0 + w RP coe cients image observations K w
  • 33.
    L1 Regularization x0RN f0 = x0 RQ y = Kf0 + w RP coe cients image observations K w = K ⇥ ⇥ RP N
  • 34.
    L1 Regularization x0RN f0 = x0 RQ y = Kf0 + w RP coe cients image observations K w = K ⇥ ⇥ RP N Sparse recovery: f = x where x solves 1 min ||y x||2 + ||x||1 x RN 2 Fidelity Regularization
  • 35.
    Noiseless Sparse Regularization Noiselessmeasurements: y = x0 x x= y x argmin |xm | x=y m
  • 36.
    Noiseless Sparse Regularization Noiselessmeasurements: y = x0 x x x= x= y y x argmin |xm | x argmin |xm |2 x=y m x=y m
  • 37.
    Noiseless Sparse Regularization Noiselessmeasurements: y = x0 x x x= x= y y x argmin |xm | x argmin |xm |2 x=y m x=y m Convex linear program. Interior points, cf. [Chen, Donoho, Saunders] “basis pursuit”. Douglas-Rachford splitting, see [Combettes, Pesquet].
  • 38.
    Noisy Sparse Regularization Noisymeasurements: y = x0 + w 1 x argmin ||y x||2 + ||x||1 x RQ 2 Data fidelity Regularization
  • 39.
    Noisy Sparse Regularization Noisymeasurements: y = x0 + w 1 x argmin ||y x||2 + ||x||1 x RQ 2 Equivalence Data fidelity Regularization x argmin ||x||1 || x y|| | x= x y|
  • 40.
    Noisy Sparse Regularization Noisymeasurements: y = x0 + w 1 x argmin ||y x||2 + ||x||1 x RQ 2 Equivalence Data fidelity Regularization x argmin ||x||1 || x y|| | x= Algorithms: x y| Iterative soft thresholding Forward-backward splitting see [Daubechies et al], [Pesquet et al], etc Nesterov multi-steps schemes.
  • 41.
    Overview • Inverse ProblemsRegularization • Sparse Synthesis Regularization • Examples: Sparse Wavelet Regularizations • Iterative Soft Thresholding • Sparse Seismic Deconvolution
  • 42.
  • 43.
    Image De-blurring Original f0 y = h f0 + w Sobolev SNR=22.7dB Sobolev regularization: f = argmin ||f ⇥ h y||2 + ||⇥f ||2 f RN ˆ h(⇥) ˆ f (⇥) = y (⇥) ˆ ˆ |h(⇥)|2 + |⇥|2
  • 44.
    Image De-blurring Original f0 y = h f0 + w Sobolev Sparsity SNR=22.7dB SNR=24.7dB Sobolev regularization: f = argmin ||f ⇥ h y||2 + ||⇥f ||2 f RN ˆ h(⇥) ˆ f (⇥) = y (⇥) ˆ ˆ |h(⇥)|2 + |⇥|2 Sparsity regularization: = translation invariant wavelets. 1 f = x where x argmin ||h ( x) y||2 + ||x||1 x 2
  • 45.
    Comparison of Regularizations L2 regularization Sobolev regularization Sparsity regularization SNR SNR SNR opt opt opt L2 Sobolev Sparsity Invariant SNR=21.7dB SNR=22.7dB SNR=23.7dB SNR=24.7dB
  • 46.
    Inpainting Problem K 0 if x , (Kf )(x) = f (x) if x / . Measures: y = Kf0 + w
  • 47.
    Image Separation Model: f= f1 + f2 + w, (f1 , f2 ) components, w noise.
  • 48.
    Image Separation Model: f= f1 + f2 + w, (f1 , f2 ) components, w noise.
  • 49.
    Image Separation Model: f= f1 + f2 + w, (f1 , f2 ) components, w noise. Union dictionary: =[ 1, 2] RQ (N1 +N2 ) Recovered component: fi = i xi . 1 (x1 , x2 ) argmin ||f x||2 + ||x||1 x=(x1 ,x2 ) RN 2
  • 50.
  • 51.
  • 52.
    Overview • Inverse ProblemsRegularization • Sparse Synthesis Regularization • Examples: Sparse Wavelet Regularizations • Iterative Soft Thresholding • Sparse Seismic Deconvolution
  • 53.
    Sparse Regularization Denoising Denoising:y = x0 + w 2 RN , K = Id. ⇤ ⇤ Orthogonal-basis: = IdN , x = f. Regularization-based denoising: 1 x = argmin ||x y||2 + J(x) ? x2RN 2 P Sparse regularization: J(x) = m |xm |q (where |a|0 = (a))
  • 54.
    Sparse Regularization Denoising Denoising:y = x0 + w 2 RN , K = Id. ⇤ ⇤ Orthogonal-basis: = IdN , x = f. Regularization-based denoising: 1 x = argmin ||x y||2 + J(x) ? x2RN 2 P Sparse regularization: J(x) = m |xm |q (where |a|0 = (a)) q x? m = ST (xm )
  • 55.
    Surrogate Functionals Sparse regularization: ? 1 x 2 argmin E(x) = ||y x||2 + ||x||1 x2RN 2 ⇤ Surrogate functional: ⌧ < 1/|| || 1 2 1 E(x, x) = E(x) ˜ || (x x)|| + ||x ˜ x||2 ˜ 2 2⌧ E(·, x) ˜ E(·) x S ⌧ (u) x ˜
  • 56.
    Surrogate Functionals Sparse regularization: ? 1 x 2 argmin E(x) = ||y x||2 + ||x||1 x2RN 2 ⇤ Surrogate functional: ⌧ < 1/|| || 1 2 1 E(x, x) = E(x) ˜ || (x x)|| + ||x ˜ x||2 ˜ 2 2⌧ E(·, x) ˜ Theorem: argmin E(x, x) = S ⌧ (u) ˜ E(·) x ⇤ where u = x ⌧ ( x x) ˜ x S ⌧ (u) x ˜ Proof: E(x, x) / 1 ||u ˜ 2 x||2 + ||x||1 + cst.
  • 57.
    Iterative Thresholding Algorithm: x(`+1)= argmin E(x, x(`) ) x Initialize x(0) , set ` = 0. ⇤ u(`) = x(`) ⌧ ( x(`) ⌧ y) E(·) x(`+1) = S 1⌧ (u(`) ) (2) (1) (0) x x x x
  • 58.
    Iterative Thresholding Algorithm: x(`+1)= argmin E(x, x(`) ) x Initialize x(0) , set ` = 0. ⇤ u(`) = x(`) ⌧ ( x(`) ⌧ y) E(·) x(`+1) = S 1⌧ (u(`) ) (2) (1) (0) x x x x Remark: x(`) 7! u(`) is a gradient descent of || x y||2 . 1 S`⌧ is the proximal step of associated to ||x||1 .
  • 59.
    Iterative Thresholding Algorithm: x(`+1)= argmin E(x, x(`) ) x Initialize x(0) , set ` = 0. ⇤ u(`) = x(`) ⌧ ( x(`) ⌧ y) E(·) x(`+1) = S 1⌧ (u(`) ) (2) (1) (0) x x x x Remark: x(`) 7! u(`) is a gradient descent of || x y||2 . 1 S`⌧ is the proximal step of associated to ||x||1 . ⇤ Theorem: if ⌧ < 2/|| ||, then x(`) ! x? .
  • 60.
    Overview • Inverse ProblemsRegularization • Sparse Synthesis Regularization • Examples: Sparse Wavelet Regularizations • Iterative Soft Thresholding • Sparse Seismic Deconvolution
  • 61.
  • 62.
    1D Idealization Initial condition: “wavelet” = band pass filter h 1D propagation convolution f =h f h(x) f ˆ h( ) y = f0 h + w P
  • 63.
    Pseudo Inverse Pseudo-inverse: ˆ+ ( ) = y ( ) f ˆ = f + = h+ ⇥ y = f0 + h+ ⇥ w h( ) ˆ ˆ where h+ ( ) = h( ) 1 ˆ ˆ Stabilization: h+ (⇥) = 0 if |h(⇥)| ˆ h( ) y = h f0 + w ˆ 1/h( ) f+
  • 64.
    Sparse Spikes Deconvolution f with small ||f ||0 y=f h+w Sparsity basis: Diracs ⇥m [x] = [x m] 1 f = argmin ||f ⇥ h y||2 + |f [m]|. f RN 2 m
  • 65.
    Sparse Spikes Deconvolution f with small ||f ||0 y=f h+w Sparsity basis: Diracs ⇥m [x] = [x m] 1 f = argmin ||f ⇥ h y||2 + |f [m]|. f RN 2 m Algorithm: < 2/|| ˆ || = 2/max |h(⇥)|2 ˜ • Inversion: f (k) = f (k) h ⇥ (h ⇥ f (k) y). ˜ f (k+1) [m] = S 1⇥ (f (k) [m])
  • 66.
    Numerical Example f0 Choosing optimal : oracle, minimize ||f0 f || y=f h+w SNR(f0 , f ) f
  • 67.
    Convergence Study Sparse deconvolution:f= argmin E(f ). f RN 1 Energy: E(f ) = ||h ⇥ f y||2 + |f [m]|. 2 m Not strictly convex = no convergence speed. log10 (E(f (k) )/E(f ) 1) log10 (||f (k) f ||/||f0 ||) k k
  • 68.
  • 69.
  • 70.