SlideShare a Scribd company logo
Inverse Problems
Regularization
www.numerical-tours.com
Gabriel Peyré
Overview
• Variational Priors
• Gradient Descent and PDE’s
• Inverse Problems Regularization
J(f) = ||f||2
W 1,2 =
Z
R2
||rf(x)||dxSobolev semi-norm:
Smooth and Cartoon Priors
| f|2
J(f) = ||f||2
W 1,2 =
Z
R2
||rf(x)||dxSobolev semi-norm:
Total variation semi-norm: J(f) = ||f||TV =
Z
R2
||rf(x)||dx
Smooth and Cartoon Priors
| f|| f|2
J(f) = ||f||2
W 1,2 =
Z
R2
||rf(x)||dxSobolev semi-norm:
Total variation semi-norm: J(f) = ||f||TV =
Z
R2
||rf(x)||dx
Smooth and Cartoon Priors
| f|| f|2
Natural Image Priors
Discrete Priors
Discrete Priors
Discrete Differential Operators
Discrete Differential Operators
Laplacian Operator
Laplacian Operator
Function: ˜f : x 2 R2
7! f(x) 2 R
˜f(x + ") = ˜f(x) + hrf(x), "iR2 + O(||"||2
R2 )
r ˜f(x) = (@1
˜f(x), @2
˜f(x)) 2 R2
Gradient: Images vs. Functionals
Function: ˜f : x 2 R2
7! f(x) 2 R
Discrete image: f 2 RN
, N = n2
f[i1, i2] = ˜f(i1/n, i2/n) rf[i] ⇡ r ˜f(i/n)
˜f(x + ") = ˜f(x) + hrf(x), "iR2 + O(||"||2
R2 )
r ˜f(x) = (@1
˜f(x), @2
˜f(x)) 2 R2
Gradient: Images vs. Functionals
Function: ˜f : x 2 R2
7! f(x) 2 R
Discrete image: f 2 RN
, N = n2
f[i1, i2] = ˜f(i1/n, i2/n)
Functional: J : f 2 RN
7! J(f) 2 R
J(f + ⌘) = J(f) + hrJ(f), ⌘iRN + O(||⌘||2
RN )
rf[i] ⇡ r ˜f(i/n)
˜f(x + ") = ˜f(x) + hrf(x), "iR2 + O(||"||2
R2 )
r ˜f(x) = (@1
˜f(x), @2
˜f(x)) 2 R2
rJ : RN
7! RN
Gradient: Images vs. Functionals
Function: ˜f : x 2 R2
7! f(x) 2 R
Discrete image: f 2 RN
, N = n2
f[i1, i2] = ˜f(i1/n, i2/n)
Functional: J : f 2 RN
7! J(f) 2 R
Sobolev:
rJ(f) = (r⇤
r)f = f
J(f) =
1
2
||rf||2
J(f + ⌘) = J(f) + hrJ(f), ⌘iRN + O(||⌘||2
RN )
rf[i] ⇡ r ˜f(i/n)
˜f(x + ") = ˜f(x) + hrf(x), "iR2 + O(||"||2
R2 )
r ˜f(x) = (@1
˜f(x), @2
˜f(x)) 2 R2
rJ : RN
7! RN
Gradient: Images vs. Functionals
rJ(f) = div
✓
rf
||rf||
◆
If 8 n, rf[n] 6= 0,
If 9n, rf[n] = 0, J not di↵erentiable at f.
Total Variation Gradient
||rf||
rJ(f)
rJ(f) = div
✓
rf
||rf||
◆
If 8 n, rf[n] 6= 0,
Sub-di↵erential:
If 9n, rf[n] = 0, J not di↵erentiable at f.
Cu = ↵ 2 R2⇥N
 (u[n] = 0) ) (↵[n] = u[n]/||u[n]||)
@J(f) = { div(↵) ; ||↵[n]|| 6 1 and ↵ 2 Crf }
Total Variation Gradient
||rf||
rJ(f)
−10 −8 −6 −4 −2 0 2 4 6 8 10
−2
0
2
4
6
8
10
12
−10 −8 −6 −4 −2 0 2 4 6 8 10
−2
0
2
4
6
8
10
12
p
x2 + "2
|x|
Regularized Total Variation
||u||" =
p
||u||2 + "2 J"(f) =
P
n ||rf[n]||"
−10 −8 −6 −4 −2 0 2 4 6 8 10
−2
0
2
4
6
8
10
12
−10 −8 −6 −4 −2 0 2 4 6 8 10
−2
0
2
4
6
8
10
12
rJ"(f) = div
✓
rf
||rf||"
◆
p
x2 + "2
|x|
rJ" ⇠ /" when " ! +1
Regularized Total Variation
||u||" =
p
||u||2 + "2 J"(f) =
P
n ||rf[n]||"
rJ"(f)
Overview
• Variational Priors
• Gradient Descent and PDE’s
• Inverse Problems Regularization
f(k+1)
= f(k)
⌧krJ(f(k)
) f(0)
is given.
Gradient Descent
and 0 < ⌧ < 2/L, then f(k) k!+1
! f?
a solution of min
f
J(f).
If f is convex, C1
, rf is L-Lipschitz,Theorem:
f(k+1)
= f(k)
⌧krJ(f(k)
) f(0)
is given.
Gradient Descent
and 0 < ⌧ < 2/L, then f(k) k!+1
! f?
a solution of min
f
J(f).
If f is convex, C1
, rf is L-Lipschitz,Theorem:
f(k+1)
= f(k)
⌧krJ(f(k)
) f(0)
is given.
Optimal step size: ⌧k = argmin
⌧2R+
J(f(k)
⌧rJ(f(k)
))
Proposition: One has
hrJ(f(k+1)
), rJ(f(k)
)i = 0
Gradient Descent
Gradient Flows and PDE’s
f(k+1)
f(k)
⌧
= rJ(f(k)
)Fixed step size ⌧k = ⌧:
Gradient Flows and PDE’s
f(k+1)
f(k)
⌧
= rJ(f(k)
)Fixed step size ⌧k = ⌧:
Denote ft = f(k)
for t = k⌧, one obtains formally as ⌧ ! 0:
8 t > 0,
@ft
@t
= rJ(ft) and f0 = f(0)
J(f) =
R
||rf(x)||dxSobolev flow:
@ft
@t
= ftHeat equation:
Explicit solution:
Gradient Flows and PDE’s
f(k+1)
f(k)
⌧
= rJ(f(k)
)Fixed step size ⌧k = ⌧:
Denote ft = f(k)
for t = k⌧, one obtains formally as ⌧ ! 0:
8 t > 0,
@ft
@t
= rJ(ft) and f0 = f(0)
Total Variation Flow
@ft
@t
= rJ(ft)
Noisy observations: y = f + w, w ⇠ N(0, IdN ).
and ft=0 = y
Application: Denoising
Optimal choice of t: minimize ||ft f||
! not accessible in practice.
SNR(ft, f) = 20 log10
✓
||f ft||
||f||
◆
Optimal Parameter Selection
t t
Overview
• Variational Priors
• Gradient Descent and PDE’s
• Inverse Problems Regularization
Inverse Problems
Inverse Problems
Inverse Problems
Inverse Problems
Inverse Problems
Inverse Problem Regularization
Inverse Problem Regularization
Inverse Problem Regularization
Sobolev prior: J(f) = 1
2 ||rf||2
f?
= argmin
f2RN
E(f) = ||y f||2
+ ||rf||2
(assuming 1 /2 ker( ))
Sobolev Regularization
Sobolev prior: J(f) = 1
2 ||rf||2
f?
= argmin
f2RN
E(f) = ||y f||2
+ ||rf||2
rE(f?
) = 0 () ( ⇤
)f?
= ⇤
yProposition:
! Large scale linear system.
(assuming 1 /2 ker( ))
Sobolev Regularization
Sobolev prior: J(f) = 1
2 ||rf||2
f?
= argmin
f2RN
E(f) = ||y f||2
+ ||rf||2
rE(f?
) = 0 () ( ⇤
)f?
= ⇤
yProposition:
! Large scale linear system.
Gradient descent:
(assuming 1 /2 ker( ))
where ||A|| = max(A)
! Slow convergence.
Sobolev Regularization
Convergence: ⇥ < 2/||⇥ ⇥ ||
Mask M, = diagi(1i2M )
Example: InpaintingFigure 3 shows iterations of the algorithm 1 to solve the inpainting problem
on a smooth image using a manifold prior with 2D linear patches, as defined in
16. This manifold together with the overlapping of the patches allow a smooth
interpolation of the missing pixels.
Measurements y Iter. #1 Iter. #3 Iter. #50
Fig. 3. Iterations of the inpainting algorithm on an uniformly regular image.
5 Manifold of Step Discontinuities
In order to introduce some non-linearity in the manifold M, one needs to go
log10(||f(k)
f( )
||/||f0||)
k k
E(f(k)
)
M
( f)[i] =
⇢
0 if i 2 M,
f[i] otherwise.
Symmetric linear system:
Conjugate Gradient
Ax = b () min
x2Rn
E(x) =
1
2
hAx, xi hx, bi
Symmetric linear system:
x(k+1)
= argmin E(x)
s.t. x x(k)
2 span(rE(x(0)
), . . . , rE(x(k)
))
Intuition:
Conjugate Gradient
Ax = b () min
x2Rn
E(x) =
1
2
hAx, xi hx, bi
Proposition: 8 ` < k, hrE(xk
), rE(x`
)i = 0
Symmetric linear system:
Initialization: x(0)
2 RN
, r(0)
= b Ax(0)
, p(0)
= r(0)
r(k)
=
hrE(x(k)
), d(k)
i
hAd(k), d(k)i
d(k)
= rE(x(k)
) +
||v(k)
||
||v(k 1)||
d(k 1)
v(k)
= rE(x(k)
) = Ax(k)
b
x(k+1)
= x(k)
r(k)
d(k)
Iterations:
x(k+1)
= argmin E(x)
s.t. x x(k)
2 span(rE(x(0)
), . . . , rE(x(k)
))
Intuition:
Conjugate Gradient
Ax = b () min
x2Rn
E(x) =
1
2
hAx, xi hx, bi
Proposition: 8 ` < k, hrE(xk
), rE(x`
)i = 0
TV" regularization: (assuming 1 /2 ker( ))
f?
= argmin
f2RN
E(f) =
1
2
|| f y|| + J"
(f)
Total Variation Regularization
||u||" =
p
||u||2 + "2 J"(f) =
P
n ||rf[n]||"
TV" regularization: (assuming 1 /2 ker( ))
f(k+1)
= f(k)
⌧krE(f(k)
)
rE(f) = ⇤
( f y) + rJ"(f)
rJ"(f) = div
✓
rf
||rf||"
◆
Convergence: requires ⌧ ⇠ ".
Gradient descent:
f?
= argmin
f2RN
E(f) =
1
2
|| f y|| + J"
(f)
Total Variation Regularization
||u||" =
p
||u||2 + "2 J"(f) =
P
n ||rf[n]||"
TV" regularization: (assuming 1 /2 ker( ))
f(k+1)
= f(k)
⌧krE(f(k)
)
rE(f) = ⇤
( f y) + rJ"(f)
rJ"(f) = div
✓
rf
||rf||"
◆
Convergence: requires ⌧ ⇠ ".
Gradient descent:
f?
= argmin
f2RN
E(f) =
1
2
|| f y|| + J"
(f)
Newton descent:
f(k+1)
= f(k)
H 1
k rE(f(k)
) where Hk = @2
E"(f(k)
)
Total Variation Regularization
||u||" =
p
||u||2 + "2 J"(f) =
P
n ||rf[n]||"
k
Large" TV vs. Sobolev ConvergeSmall"
Observations y Sobolev Total variation
Inpainting: Sobolev vs. TV
Noiseless problem: f?
2 argmin
f
J"
(f) s.t. f 2 H
Contraint: H = {f ; f = y}.
f(k+1)
= ProjH
⇣
f(k)
⌧krJ"(f(k)
)
⌘
ProjH(f) = argmin
g=y
||g f||2
= f + ⇤
( ⇤
) 1
(y f)
Inpainting: ProjH(f)[i] =
⇢
f[i] if i 2 M,
y[i] otherwise.
Projected gradient descent:
f(k) k!+1
! f?
a solution of (?).
(?)
Projected Gradient Descent
Proposition: If rJ" is L-Lipschitz and 0 < ⌧k < 2/L,
TV
Priors: Non-quadratic
better edge recovery.
=)
Conclusion
Sobolev
TV
Priors: Non-quadratic
better edge recovery.
=)
Optimization
Variational regularization:
()
– Gradient descent. – Newton.
– Projected gradient. – Conjugate gradient.
Non-smooth optimization ?
Conclusion
Sobolev

More Related Content

What's hot

Signal Processing Course : Sparse Regularization of Inverse Problems
Signal Processing Course : Sparse Regularization of Inverse ProblemsSignal Processing Course : Sparse Regularization of Inverse Problems
Signal Processing Course : Sparse Regularization of Inverse Problems
Gabriel Peyré
 
Learning Sparse Representation
Learning Sparse RepresentationLearning Sparse Representation
Learning Sparse Representation
Gabriel Peyré
 
Geodesic Method in Computer Vision and Graphics
Geodesic Method in Computer Vision and GraphicsGeodesic Method in Computer Vision and Graphics
Geodesic Method in Computer Vision and Graphics
Gabriel Peyré
 
Mesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionMesh Processing Course : Multiresolution
Mesh Processing Course : Multiresolution
Gabriel Peyré
 
Mesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh ParameterizationMesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh Parameterization
Gabriel Peyré
 
Classification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsClassification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metrics
Frank Nielsen
 
Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexity
Frank Nielsen
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropy
Frank Nielsen
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas Eberle
BigMC
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon information
Frank Nielsen
 
Lecture 2: linear SVM in the dual
Lecture 2: linear SVM in the dualLecture 2: linear SVM in the dual
Lecture 2: linear SVM in the dual
Stéphane Canu
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
VjekoslavKovac1
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference SheetDaniel Nolan
 
Tele3113 wk1wed
Tele3113 wk1wedTele3113 wk1wed
Tele3113 wk1wedVin Voro
 
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Tomoya Murata
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
SEENET-MTP
 
Adaptive Signal and Image Processing
Adaptive Signal and Image ProcessingAdaptive Signal and Image Processing
Adaptive Signal and Image Processing
Gabriel Peyré
 
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
The Statistical and Applied Mathematical Sciences Institute
 
Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)
Frank Nielsen
 

What's hot (20)

Signal Processing Course : Sparse Regularization of Inverse Problems
Signal Processing Course : Sparse Regularization of Inverse ProblemsSignal Processing Course : Sparse Regularization of Inverse Problems
Signal Processing Course : Sparse Regularization of Inverse Problems
 
Learning Sparse Representation
Learning Sparse RepresentationLearning Sparse Representation
Learning Sparse Representation
 
Geodesic Method in Computer Vision and Graphics
Geodesic Method in Computer Vision and GraphicsGeodesic Method in Computer Vision and Graphics
Geodesic Method in Computer Vision and Graphics
 
Mesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionMesh Processing Course : Multiresolution
Mesh Processing Course : Multiresolution
 
Mesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh ParameterizationMesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh Parameterization
 
Classification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsClassification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metrics
 
Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexity
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropy
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas Eberle
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon information
 
Lecture 2: linear SVM in the dual
Lecture 2: linear SVM in the dualLecture 2: linear SVM in the dual
Lecture 2: linear SVM in the dual
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference Sheet
 
Tele3113 wk1wed
Tele3113 wk1wedTele3113 wk1wed
Tele3113 wk1wed
 
Lecture5 kernel svm
Lecture5 kernel svmLecture5 kernel svm
Lecture5 kernel svm
 
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
Doubly Accelerated Stochastic Variance Reduced Gradient Methods for Regulariz...
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
 
Adaptive Signal and Image Processing
Adaptive Signal and Image ProcessingAdaptive Signal and Image Processing
Adaptive Signal and Image Processing
 
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
 
Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)
 

Similar to Signal Processing Course : Inverse Problems Regularization

Tcu12 crc multi
Tcu12 crc multiTcu12 crc multi
Tcu12 crc multi
Sahiris Seg
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structure
VjekoslavKovac1
 
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
irjes
 
A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentials
VjekoslavKovac1
 
Bregman Voronoi Diagrams (SODA 2007)
Bregman Voronoi Diagrams (SODA 2007)  Bregman Voronoi Diagrams (SODA 2007)
Bregman Voronoi Diagrams (SODA 2007)
Frank Nielsen
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
Awais Chaudhary
 
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Rene Kotze
 
Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9
Alex Pruden
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restriction
VjekoslavKovac1
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
Dr Fereidoun Dejahang
 
Functions for Grade 10
Functions for Grade 10Functions for Grade 10
Functions for Grade 10Boipelo Radebe
 
Transformations computer graphics
Transformations computer graphics Transformations computer graphics
Transformations computer graphics
Vikram Halder
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
Rizwan Kazi
 
Laplace1 8merged
Laplace1 8mergedLaplace1 8merged
Laplace1 8mergedcohtran
 
summary.pdf
summary.pdfsummary.pdf
summary.pdf
SubbuSiva1
 
1523 double integrals
1523 double integrals1523 double integrals
1523 double integrals
Dr Fereidoun Dejahang
 
cmftJYeZhuanTalk.pdf
cmftJYeZhuanTalk.pdfcmftJYeZhuanTalk.pdf
cmftJYeZhuanTalk.pdf
jyjyzr69t7
 
Adaline and Madaline.ppt
Adaline and Madaline.pptAdaline and Madaline.ppt
Adaline and Madaline.ppt
neelamsanjeevkumar
 
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Francesco Tudisco
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
VjekoslavKovac1
 

Similar to Signal Processing Course : Inverse Problems Regularization (20)

Tcu12 crc multi
Tcu12 crc multiTcu12 crc multi
Tcu12 crc multi
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structure
 
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
HARMONIC ANALYSIS ASSOCIATED WITH A GENERALIZED BESSEL-STRUVE OPERATOR ON THE...
 
A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentials
 
Bregman Voronoi Diagrams (SODA 2007)
Bregman Voronoi Diagrams (SODA 2007)  Bregman Voronoi Diagrams (SODA 2007)
Bregman Voronoi Diagrams (SODA 2007)
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
 
Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restriction
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
 
Functions for Grade 10
Functions for Grade 10Functions for Grade 10
Functions for Grade 10
 
Transformations computer graphics
Transformations computer graphics Transformations computer graphics
Transformations computer graphics
 
Fourier series Introduction
Fourier series IntroductionFourier series Introduction
Fourier series Introduction
 
Laplace1 8merged
Laplace1 8mergedLaplace1 8merged
Laplace1 8merged
 
summary.pdf
summary.pdfsummary.pdf
summary.pdf
 
1523 double integrals
1523 double integrals1523 double integrals
1523 double integrals
 
cmftJYeZhuanTalk.pdf
cmftJYeZhuanTalk.pdfcmftJYeZhuanTalk.pdf
cmftJYeZhuanTalk.pdf
 
Adaline and Madaline.ppt
Adaline and Madaline.pptAdaline and Madaline.ppt
Adaline and Madaline.ppt
 
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
Nodal Domain Theorem for the p-Laplacian on Graphs and the Related Multiway C...
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 

More from Gabriel Peyré

Mesh Processing Course : Introduction
Mesh Processing Course : IntroductionMesh Processing Course : Introduction
Mesh Processing Course : Introduction
Gabriel Peyré
 
Mesh Processing Course : Geodesics
Mesh Processing Course : GeodesicsMesh Processing Course : Geodesics
Mesh Processing Course : Geodesics
Gabriel Peyré
 
Mesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingMesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic Sampling
Gabriel Peyré
 
Mesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusMesh Processing Course : Differential Calculus
Mesh Processing Course : Differential Calculus
Gabriel Peyré
 
Signal Processing Course : Theory for Sparse Recovery
Signal Processing Course : Theory for Sparse RecoverySignal Processing Course : Theory for Sparse Recovery
Signal Processing Course : Theory for Sparse Recovery
Gabriel Peyré
 
Signal Processing Course : Presentation of the Course
Signal Processing Course : Presentation of the CourseSignal Processing Course : Presentation of the Course
Signal Processing Course : Presentation of the Course
Gabriel Peyré
 
Signal Processing Course : Orthogonal Bases
Signal Processing Course : Orthogonal BasesSignal Processing Course : Orthogonal Bases
Signal Processing Course : Orthogonal Bases
Gabriel Peyré
 
Signal Processing Course : Fourier
Signal Processing Course : FourierSignal Processing Course : Fourier
Signal Processing Course : Fourier
Gabriel Peyré
 
Signal Processing Course : Denoising
Signal Processing Course : DenoisingSignal Processing Course : Denoising
Signal Processing Course : Denoising
Gabriel Peyré
 
Signal Processing Course : Compressed Sensing
Signal Processing Course : Compressed SensingSignal Processing Course : Compressed Sensing
Signal Processing Course : Compressed Sensing
Gabriel Peyré
 
Signal Processing Course : Approximation
Signal Processing Course : ApproximationSignal Processing Course : Approximation
Signal Processing Course : Approximation
Gabriel Peyré
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : Wavelets
Gabriel Peyré
 
Sparsity and Compressed Sensing
Sparsity and Compressed SensingSparsity and Compressed Sensing
Sparsity and Compressed Sensing
Gabriel Peyré
 
Optimal Transport in Imaging Sciences
Optimal Transport in Imaging SciencesOptimal Transport in Imaging Sciences
Optimal Transport in Imaging Sciences
Gabriel Peyré
 
An Introduction to Optimal Transport
An Introduction to Optimal TransportAn Introduction to Optimal Transport
An Introduction to Optimal Transport
Gabriel Peyré
 
A Review of Proximal Methods, with a New One
A Review of Proximal Methods, with a New OneA Review of Proximal Methods, with a New One
A Review of Proximal Methods, with a New One
Gabriel Peyré
 

More from Gabriel Peyré (16)

Mesh Processing Course : Introduction
Mesh Processing Course : IntroductionMesh Processing Course : Introduction
Mesh Processing Course : Introduction
 
Mesh Processing Course : Geodesics
Mesh Processing Course : GeodesicsMesh Processing Course : Geodesics
Mesh Processing Course : Geodesics
 
Mesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingMesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic Sampling
 
Mesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusMesh Processing Course : Differential Calculus
Mesh Processing Course : Differential Calculus
 
Signal Processing Course : Theory for Sparse Recovery
Signal Processing Course : Theory for Sparse RecoverySignal Processing Course : Theory for Sparse Recovery
Signal Processing Course : Theory for Sparse Recovery
 
Signal Processing Course : Presentation of the Course
Signal Processing Course : Presentation of the CourseSignal Processing Course : Presentation of the Course
Signal Processing Course : Presentation of the Course
 
Signal Processing Course : Orthogonal Bases
Signal Processing Course : Orthogonal BasesSignal Processing Course : Orthogonal Bases
Signal Processing Course : Orthogonal Bases
 
Signal Processing Course : Fourier
Signal Processing Course : FourierSignal Processing Course : Fourier
Signal Processing Course : Fourier
 
Signal Processing Course : Denoising
Signal Processing Course : DenoisingSignal Processing Course : Denoising
Signal Processing Course : Denoising
 
Signal Processing Course : Compressed Sensing
Signal Processing Course : Compressed SensingSignal Processing Course : Compressed Sensing
Signal Processing Course : Compressed Sensing
 
Signal Processing Course : Approximation
Signal Processing Course : ApproximationSignal Processing Course : Approximation
Signal Processing Course : Approximation
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : Wavelets
 
Sparsity and Compressed Sensing
Sparsity and Compressed SensingSparsity and Compressed Sensing
Sparsity and Compressed Sensing
 
Optimal Transport in Imaging Sciences
Optimal Transport in Imaging SciencesOptimal Transport in Imaging Sciences
Optimal Transport in Imaging Sciences
 
An Introduction to Optimal Transport
An Introduction to Optimal TransportAn Introduction to Optimal Transport
An Introduction to Optimal Transport
 
A Review of Proximal Methods, with a New One
A Review of Proximal Methods, with a New OneA Review of Proximal Methods, with a New One
A Review of Proximal Methods, with a New One
 

Recently uploaded

The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
TechSoup
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 

Recently uploaded (20)

The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Introduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp NetworkIntroduction to AI for Nonprofits with Tapp Network
Introduction to AI for Nonprofits with Tapp Network
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 

Signal Processing Course : Inverse Problems Regularization

  • 2. Overview • Variational Priors • Gradient Descent and PDE’s • Inverse Problems Regularization
  • 3. J(f) = ||f||2 W 1,2 = Z R2 ||rf(x)||dxSobolev semi-norm: Smooth and Cartoon Priors | f|2
  • 4. J(f) = ||f||2 W 1,2 = Z R2 ||rf(x)||dxSobolev semi-norm: Total variation semi-norm: J(f) = ||f||TV = Z R2 ||rf(x)||dx Smooth and Cartoon Priors | f|| f|2
  • 5. J(f) = ||f||2 W 1,2 = Z R2 ||rf(x)||dxSobolev semi-norm: Total variation semi-norm: J(f) = ||f||TV = Z R2 ||rf(x)||dx Smooth and Cartoon Priors | f|| f|2
  • 13. Function: ˜f : x 2 R2 7! f(x) 2 R ˜f(x + ") = ˜f(x) + hrf(x), "iR2 + O(||"||2 R2 ) r ˜f(x) = (@1 ˜f(x), @2 ˜f(x)) 2 R2 Gradient: Images vs. Functionals
  • 14. Function: ˜f : x 2 R2 7! f(x) 2 R Discrete image: f 2 RN , N = n2 f[i1, i2] = ˜f(i1/n, i2/n) rf[i] ⇡ r ˜f(i/n) ˜f(x + ") = ˜f(x) + hrf(x), "iR2 + O(||"||2 R2 ) r ˜f(x) = (@1 ˜f(x), @2 ˜f(x)) 2 R2 Gradient: Images vs. Functionals
  • 15. Function: ˜f : x 2 R2 7! f(x) 2 R Discrete image: f 2 RN , N = n2 f[i1, i2] = ˜f(i1/n, i2/n) Functional: J : f 2 RN 7! J(f) 2 R J(f + ⌘) = J(f) + hrJ(f), ⌘iRN + O(||⌘||2 RN ) rf[i] ⇡ r ˜f(i/n) ˜f(x + ") = ˜f(x) + hrf(x), "iR2 + O(||"||2 R2 ) r ˜f(x) = (@1 ˜f(x), @2 ˜f(x)) 2 R2 rJ : RN 7! RN Gradient: Images vs. Functionals
  • 16. Function: ˜f : x 2 R2 7! f(x) 2 R Discrete image: f 2 RN , N = n2 f[i1, i2] = ˜f(i1/n, i2/n) Functional: J : f 2 RN 7! J(f) 2 R Sobolev: rJ(f) = (r⇤ r)f = f J(f) = 1 2 ||rf||2 J(f + ⌘) = J(f) + hrJ(f), ⌘iRN + O(||⌘||2 RN ) rf[i] ⇡ r ˜f(i/n) ˜f(x + ") = ˜f(x) + hrf(x), "iR2 + O(||"||2 R2 ) r ˜f(x) = (@1 ˜f(x), @2 ˜f(x)) 2 R2 rJ : RN 7! RN Gradient: Images vs. Functionals
  • 17. rJ(f) = div ✓ rf ||rf|| ◆ If 8 n, rf[n] 6= 0, If 9n, rf[n] = 0, J not di↵erentiable at f. Total Variation Gradient ||rf|| rJ(f)
  • 18. rJ(f) = div ✓ rf ||rf|| ◆ If 8 n, rf[n] 6= 0, Sub-di↵erential: If 9n, rf[n] = 0, J not di↵erentiable at f. Cu = ↵ 2 R2⇥N (u[n] = 0) ) (↵[n] = u[n]/||u[n]||) @J(f) = { div(↵) ; ||↵[n]|| 6 1 and ↵ 2 Crf } Total Variation Gradient ||rf|| rJ(f)
  • 19. −10 −8 −6 −4 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 12 −10 −8 −6 −4 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 12 p x2 + "2 |x| Regularized Total Variation ||u||" = p ||u||2 + "2 J"(f) = P n ||rf[n]||"
  • 20. −10 −8 −6 −4 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 12 −10 −8 −6 −4 −2 0 2 4 6 8 10 −2 0 2 4 6 8 10 12 rJ"(f) = div ✓ rf ||rf||" ◆ p x2 + "2 |x| rJ" ⇠ /" when " ! +1 Regularized Total Variation ||u||" = p ||u||2 + "2 J"(f) = P n ||rf[n]||" rJ"(f)
  • 21. Overview • Variational Priors • Gradient Descent and PDE’s • Inverse Problems Regularization
  • 22. f(k+1) = f(k) ⌧krJ(f(k) ) f(0) is given. Gradient Descent
  • 23. and 0 < ⌧ < 2/L, then f(k) k!+1 ! f? a solution of min f J(f). If f is convex, C1 , rf is L-Lipschitz,Theorem: f(k+1) = f(k) ⌧krJ(f(k) ) f(0) is given. Gradient Descent
  • 24. and 0 < ⌧ < 2/L, then f(k) k!+1 ! f? a solution of min f J(f). If f is convex, C1 , rf is L-Lipschitz,Theorem: f(k+1) = f(k) ⌧krJ(f(k) ) f(0) is given. Optimal step size: ⌧k = argmin ⌧2R+ J(f(k) ⌧rJ(f(k) )) Proposition: One has hrJ(f(k+1) ), rJ(f(k) )i = 0 Gradient Descent
  • 25. Gradient Flows and PDE’s f(k+1) f(k) ⌧ = rJ(f(k) )Fixed step size ⌧k = ⌧:
  • 26. Gradient Flows and PDE’s f(k+1) f(k) ⌧ = rJ(f(k) )Fixed step size ⌧k = ⌧: Denote ft = f(k) for t = k⌧, one obtains formally as ⌧ ! 0: 8 t > 0, @ft @t = rJ(ft) and f0 = f(0)
  • 27. J(f) = R ||rf(x)||dxSobolev flow: @ft @t = ftHeat equation: Explicit solution: Gradient Flows and PDE’s f(k+1) f(k) ⌧ = rJ(f(k) )Fixed step size ⌧k = ⌧: Denote ft = f(k) for t = k⌧, one obtains formally as ⌧ ! 0: 8 t > 0, @ft @t = rJ(ft) and f0 = f(0)
  • 29. @ft @t = rJ(ft) Noisy observations: y = f + w, w ⇠ N(0, IdN ). and ft=0 = y Application: Denoising
  • 30. Optimal choice of t: minimize ||ft f|| ! not accessible in practice. SNR(ft, f) = 20 log10 ✓ ||f ft|| ||f|| ◆ Optimal Parameter Selection t t
  • 31. Overview • Variational Priors • Gradient Descent and PDE’s • Inverse Problems Regularization
  • 40. Sobolev prior: J(f) = 1 2 ||rf||2 f? = argmin f2RN E(f) = ||y f||2 + ||rf||2 (assuming 1 /2 ker( )) Sobolev Regularization
  • 41. Sobolev prior: J(f) = 1 2 ||rf||2 f? = argmin f2RN E(f) = ||y f||2 + ||rf||2 rE(f? ) = 0 () ( ⇤ )f? = ⇤ yProposition: ! Large scale linear system. (assuming 1 /2 ker( )) Sobolev Regularization
  • 42. Sobolev prior: J(f) = 1 2 ||rf||2 f? = argmin f2RN E(f) = ||y f||2 + ||rf||2 rE(f? ) = 0 () ( ⇤ )f? = ⇤ yProposition: ! Large scale linear system. Gradient descent: (assuming 1 /2 ker( )) where ||A|| = max(A) ! Slow convergence. Sobolev Regularization Convergence: ⇥ < 2/||⇥ ⇥ ||
  • 43. Mask M, = diagi(1i2M ) Example: InpaintingFigure 3 shows iterations of the algorithm 1 to solve the inpainting problem on a smooth image using a manifold prior with 2D linear patches, as defined in 16. This manifold together with the overlapping of the patches allow a smooth interpolation of the missing pixels. Measurements y Iter. #1 Iter. #3 Iter. #50 Fig. 3. Iterations of the inpainting algorithm on an uniformly regular image. 5 Manifold of Step Discontinuities In order to introduce some non-linearity in the manifold M, one needs to go log10(||f(k) f( ) ||/||f0||) k k E(f(k) ) M ( f)[i] = ⇢ 0 if i 2 M, f[i] otherwise.
  • 44. Symmetric linear system: Conjugate Gradient Ax = b () min x2Rn E(x) = 1 2 hAx, xi hx, bi
  • 45. Symmetric linear system: x(k+1) = argmin E(x) s.t. x x(k) 2 span(rE(x(0) ), . . . , rE(x(k) )) Intuition: Conjugate Gradient Ax = b () min x2Rn E(x) = 1 2 hAx, xi hx, bi Proposition: 8 ` < k, hrE(xk ), rE(x` )i = 0
  • 46. Symmetric linear system: Initialization: x(0) 2 RN , r(0) = b Ax(0) , p(0) = r(0) r(k) = hrE(x(k) ), d(k) i hAd(k), d(k)i d(k) = rE(x(k) ) + ||v(k) || ||v(k 1)|| d(k 1) v(k) = rE(x(k) ) = Ax(k) b x(k+1) = x(k) r(k) d(k) Iterations: x(k+1) = argmin E(x) s.t. x x(k) 2 span(rE(x(0) ), . . . , rE(x(k) )) Intuition: Conjugate Gradient Ax = b () min x2Rn E(x) = 1 2 hAx, xi hx, bi Proposition: 8 ` < k, hrE(xk ), rE(x` )i = 0
  • 47. TV" regularization: (assuming 1 /2 ker( )) f? = argmin f2RN E(f) = 1 2 || f y|| + J" (f) Total Variation Regularization ||u||" = p ||u||2 + "2 J"(f) = P n ||rf[n]||"
  • 48. TV" regularization: (assuming 1 /2 ker( )) f(k+1) = f(k) ⌧krE(f(k) ) rE(f) = ⇤ ( f y) + rJ"(f) rJ"(f) = div ✓ rf ||rf||" ◆ Convergence: requires ⌧ ⇠ ". Gradient descent: f? = argmin f2RN E(f) = 1 2 || f y|| + J" (f) Total Variation Regularization ||u||" = p ||u||2 + "2 J"(f) = P n ||rf[n]||"
  • 49. TV" regularization: (assuming 1 /2 ker( )) f(k+1) = f(k) ⌧krE(f(k) ) rE(f) = ⇤ ( f y) + rJ"(f) rJ"(f) = div ✓ rf ||rf||" ◆ Convergence: requires ⌧ ⇠ ". Gradient descent: f? = argmin f2RN E(f) = 1 2 || f y|| + J" (f) Newton descent: f(k+1) = f(k) H 1 k rE(f(k) ) where Hk = @2 E"(f(k) ) Total Variation Regularization ||u||" = p ||u||2 + "2 J"(f) = P n ||rf[n]||"
  • 50. k Large" TV vs. Sobolev ConvergeSmall"
  • 51. Observations y Sobolev Total variation Inpainting: Sobolev vs. TV
  • 52. Noiseless problem: f? 2 argmin f J" (f) s.t. f 2 H Contraint: H = {f ; f = y}. f(k+1) = ProjH ⇣ f(k) ⌧krJ"(f(k) ) ⌘ ProjH(f) = argmin g=y ||g f||2 = f + ⇤ ( ⇤ ) 1 (y f) Inpainting: ProjH(f)[i] = ⇢ f[i] if i 2 M, y[i] otherwise. Projected gradient descent: f(k) k!+1 ! f? a solution of (?). (?) Projected Gradient Descent Proposition: If rJ" is L-Lipschitz and 0 < ⌧k < 2/L,
  • 53. TV Priors: Non-quadratic better edge recovery. =) Conclusion Sobolev
  • 54. TV Priors: Non-quadratic better edge recovery. =) Optimization Variational regularization: () – Gradient descent. – Newton. – Projected gradient. – Conjugate gradient. Non-smooth optimization ? Conclusion Sobolev