SlideShare a Scribd company logo
1 of 46
Download to read offline
A Review of Proximal
     Splitting Methods
      with a new one
Hugo Raguet
Gabriel Peyré            Jalal Fadili


         www.numerical-tours.com
Overview



• Inverse Problems Regularization



• Proximal Splitting



• Generalized Forward-Backward
Inverse Problems
Forward model:    y = K f0 + w   RP

   Observations   Operator  (Unknown)   Noise
                  : RQ   RP   Input
Inverse Problems
Forward model:       y = K f0 + w   RP

    Observations     Operator  (Unknown)   Noise
                     : RQ   RP   Input
Denoising: K = IdQ , P = Q.
Inverse Problems
Forward model:          y = K f0 + w     RP

    Observations        Operator  (Unknown)          Noise
                        : RQ   RP   Input
Denoising: K = IdQ , P = Q.
Inpainting: set    of missing pixels, P = Q   | |.
                          0 if x     ,
           (Kf )(x) =
                          f (x) if x /    .




            K
Inverse Problems
Forward model:          y = K f0 + w     RP

    Observations        Operator  (Unknown)            Noise
                        : RQ   RP   Input
Denoising: K = IdQ , P = Q.
Inpainting: set    of missing pixels, P = Q     | |.
                          0 if x     ,
           (Kf )(x) =
                          f (x) if x /    .
Super-resolution: Kf = (f     k)   , P = Q/ .


            K                                 K
Inverse Problem Regularization

Noisy measurements: y = Kf0 + w.

Prior model: J : RQ   R assigns a score to images.
Inverse Problem Regularization

Noisy measurements: y = Kf0 + w.

Prior model: J : RQ   R assigns a score to images.

                                1
                      f   argmin ||y Kf ||2 + J(f )
                           f RQ 2
                                Data fidelity Regularity
Inverse Problem Regularization

Noisy measurements: y = Kf0 + w.

Prior model: J : RQ       R assigns a score to images.

                                    1
                      f       argmin ||y Kf ||2 + J(f )
                               f RQ 2
                                    Data fidelity Regularity

Choice of : tradeo
            Noise level               Regularity of f0
                ||w||                     J(f0 )
Inverse Problem Regularization

Noisy measurements: y = Kf0 + w.

Prior model: J : RQ         R assigns a score to images.

                                      1
                        f       argmin ||y Kf ||2 + J(f )
                                 f RQ 2
                                      Data fidelity Regularity

Choice of : tradeo
              Noise level                 Regularity of f0
                  ||w||                       J(f0 )

No noise:       0+ , minimize         f       argmin J(f )
                                             f RQ ,Kf =y
L1 Regularization

 x0 RN
coe cients
L1 Regularization

 x0 RN          f0 = x0 RQ
coe cients          image
L1 Regularization

 x0 RN          f0 = x0 RQ       y = Kf0 + w RP
coe cients          image           observations
                             K

                             w
L1 Regularization

 x0 RN          f0 = x0 RQ            y = Kf0 + w RP
coe cients          image                observations
                                  K

                              w


                 = K ⇥ ⇥ RP   N
L1 Regularization

 x0 RN            f0 = x0 RQ             y = Kf0 + w RP
coe cients            image                 observations
                                     K

                                  w


                  = K ⇥ ⇥ RP     N



 Sparse recovery: f =   x where x solves
            1
        min   ||y     x||2 + ||x||1
       x RN 2
               Fidelity Regularization
Inpainting Problem


               K                         0 if x     ,
                            (Kf )(x) =
                                         f (x) if x /   .

Measures:     y = Kf0 + w
Overview



• Inverse Problems Regularization



• Proximal Splitting



• Generalized Forward-Backward
Proximal Operators
Proximal operator of G:
                         1
      Prox G (x) = argmin ||x   z||2 + G(z)
                      z  2
Proximal Operators
Proximal operator of G:
                         1
      Prox G (x) = argmin ||x        z||2 + G(z)
                      z  2
                                               12                     log(1 + x2 )
G(x) = ||x||1 =          |xi |                 10
                                                                       |x| ||x||0
                                                8

                     i
     Prox   G (x)i   = max 0, 1
                                                6


                                          xi    4


                                  |xi |         2


                                                0


                                               −2
                                                                                                       G(x)
                                               −10     −8        −6        −4        −2    0   2   4       6       8        10

                                                10


                                                 8


                                                 6


                                                 4


                                                 2


                                                 0


                                               −2


                                               −4


                                               −6


                                               −8
                                                                                           ProxG (x)
                                               −10
                                                     −10    −8        −6        −4    −2   0   2   4   6       8       10
Proximal Operators
Proximal operator of G:
                         1
      Prox G (x) = argmin ||x           z||2 + G(z)
                      z  2
                                                   12                     log(1 + x2 )
G(x) = ||x||1 =          |xi |                     10
                                                                           |x| ||x||0
                                                    8

                     i
     Prox   G (x)i   = max 0, 1
                                                    6


                                             xi     4


                                     |xi |          2


                                                    0




G(x) = ||x||0 = | {i  xi = 0} |                   −2



                                                   −10     −8        −6        −4        −2    0   2   4
                                                                                                           G(x)
                                                                                                               6       8        10




                             xi if |xi |     2 ,
                                                    10




     Prox   G (x)i   =
                                                     8




                             0 otherwise.
                                                     6


                                                     4


                                                     2


                                                     0


                                                   −2


                                                   −4


                                                   −6


                                                   −8
                                                                                               ProxG (x)
                                                   −10
                                                         −10    −8        −6        −4    −2   0   2   4   6       8       10
Proximal Operators
Proximal operator of G:
                         1
      Prox G (x) = argmin ||x             z||2 + G(z)
                      z  2
                                                     12                     log(1 + x2 )
G(x) = ||x||1 =            |xi |                     10
                                                                             |x| ||x||0
                                                      8

                       i
     Prox     G (x)i   = max 0, 1
                                                      6


                                               xi     4


                                       |xi |          2


                                                      0




G(x) = ||x||0 = | {i  xi = 0} |                     −2



                                                     −10     −8        −6        −4        −2    0   2   4
                                                                                                             G(x)
                                                                                                                 6       8        10




                               xi if |xi |     2 ,
                                                      10




     Prox     G (x)i   =
                                                       8




                               0 otherwise.
                                                       6


                                                       4


                                                       2


                                                       0




G(x) =         log(1 + |xi |2 )                      −2


                                                     −4



          i                                          −6




            3rd order polynomial root.
                                                     −8
                                                                                                 ProxG (x)
                                                     −10
                                                           −10    −8        −6        −4    −2   0   2   4   6       8       10
Proximal Splitting Methods
           Solve     min E(x)
                     x H
Problem:      Prox   E   is not available.
Proximal Splitting Methods
           Solve     min E(x)
                     x H
Problem:      Prox   E   is not available.
Splitting:    E(x) = F (x) +            Gi (x)
                                    i
                         Smooth         Simple
Proximal Splitting Methods
           Solve     min E(x)
                     x H
Problem:      Prox   E   is not available.
Splitting:    E(x) = F (x) +            Gi (x)
                                    i
                         Smooth         Simple
                                         F (x)
Iterative algorithms using:
                                        Prox Gi (x)
                               solves
   Forward-Backward:                         F + G
   Douglas-Rachford:                                  Gi
   Primal-Dual:                                  G i Ai
   Generalized FB:                           F+       Gi
Forward-Backward

   min F (x) + G(x)     ( )
   x   RN
        Smooth Simple
Forward-Backward

             min F (x) + G(x)            ( )
            x   RN
                 Smooth Simple

Forward-backward:    x(   +1)
                                = Prox   G   x(   )
                                                      F (x( ) )
Forward-Backward

              min F (x) + G(x)             ( )
              x   RN
                   Smooth Simple

Forward-backward:      x(   +1)
                                  = Prox   G   x(   )
                                                        F (x( ) )

Projected gradient descent:         G=     C
Forward-Backward

               min F (x) + G(x)              ( )
               x   RN
                    Smooth Simple

Forward-backward:       x(    +1)
                                    = Prox   G   x(   )
                                                          F (x( ) )

Projected gradient descent:             G=   C



      Theorem:          Let      F be L-Lipschitz.
       If    < 2/L,     x(   )
                                    x   a solution of ( )
Forward-Backward

               min F (x) + G(x)              ( )
               x   RN
                    Smooth Simple

Forward-backward:       x(    +1)
                                    = Prox   G   x(   )
                                                          F (x( ) )

Projected gradient descent:             G=   C



      Theorem:          Let      F be L-Lipschitz.
       If    < 2/L,     x(   )
                                    x   a solution of ( )

     Multi-step accelerations (Nesterov, Beck-Teboule).
Example: L1 Regularization
    1
 min || x    y||2 + ||x||1             min F (x) + G(x)
  x 2                                    x


            1
     F (x) = || x      y||2
            2
             F (x) =        ( x   y)                 L = ||   ||

     G(x) = ||x||1
                                               ⇥
            Prox   G (x)i   = max 0, 1                 xi
                                             |xi |


Forward-backward                  Iterative soft thresholding
Douglas Rachford Scheme

   min G1 (x) + G2 (x)    ( )
    x
        Simple   Simple
Douglas Rachford Scheme

                   min G1 (x) + G2 (x)            ( )
                    x
                 Simple Simple
Douglas-Rachford iterations:

  z(   +1)
             = 1             z( ) +    RProx     G2     RProx   G1 (z ( ) )
                        2        2
  x(   +1)
             = Prox G2 (z ( +1) )

Reflexive prox:
          RProx             G (x)   = 2Prox   G (x)   x
Douglas Rachford Scheme

                   min G1 (x) + G2 (x)             ( )
                    x
                 Simple Simple
Douglas-Rachford iterations:

  z(   +1)
             = 1                 z( ) +   RProx   G2     RProx   G1 (z ( ) )
                        2        2
  x(   +1)
             = Prox G2 (z ( +1) )

Reflexive prox:
          RProx              G (x)   = 2Prox   G (x)   x

         Theorem:             If 0 <      < 2 and ⇥ > 0,
                        x(   )
                                     x       a solution of ( )
Example: Constrainted L1
           min ||x||1                  min G1 (x) + G2 (x)
            x=y                         x

G1 (x) = iC (x),        C = {x  x = y}
   Prox   G1 (x) = ProjC (x) = x +
                                            ⇥
                                                (   ⇥
                                                        )   1
                                                                (y      x)

G2 (x) = ||x||1    Prox   G2 (x)   =   max 0, 1                         xi
                                                                |xi |        i
          e⇥cient if       easy to invert.
Example: Constrainted L1
           min ||x||1                    min G1 (x) + G2 (x)
              x=y                         x

G1 (x) = iC (x),        C = {x  x = y}
   Prox   G1 (x) = ProjC (x) = x +
                                              ⇥
                                                  (       ⇥
                                                              )     1
                                                                        (y            x)

G2 (x) = ||x||1      Prox   G2 (x)   =   max 0, 1                                     xi
                                                                        |xi |                i
          e⇥cient if         easy to invert.                      log10 (||x( ) ||1          ||x ||1 )
                                                      1

Example: compressed sensing                       −1
                                                      0



       R100    400
                     Gaussian matrix              −2
                                                  −3      = 0.01
  y = x0               ||x0 ||0 = 17              −4      =1
                                                  −5
                                                          = 10
                                                              50        100     150        200   250
Overview



• Inverse Problems Regularization



• Proximal Splitting



• Generalized Forward-Backward
GFB Splitting
                   n
     min F (x) +         Gi (x)   ( )
    x   RN
                   i=1
         Smooth     Simple
GFB Splitting
                                            n
                     min F (x) +                  Gi (x)   ( )
                    x   RN
                                            i=1
                           Smooth            Simple
i = 1, . . . , n,
   ( +1)    ( )                                    ( )
  zi     = zi +         Proxn      Gi (2x
                                        ( )
                                                  zi       F (x( ) )) x(   )

                n
            1              ( +1)
 x ( +1)
           =              zi
               n    i=1
GFB Splitting
                                                 n
                     min F (x) +                       Gi (x)   ( )
                    x   RN
                                                 i=1
                           Smooth                 Simple
i = 1, . . . , n,
   ( +1)    ( )                                         ( )
  zi     = zi +         Proxn           Gi (2x
                                               ( )
                                                       zi       F (x( ) )) x(   )

                n
            1              ( +1)
 x ( +1)
           =              zi
               n    i=1

       Theorem:                 Let         F be L-Lipschitz.
      If    < 2/L,             x(   )
                                           x      a solution of ( )

                n=1                     Forward-backward.
                F =0                    Douglas-Rachford.
Block Regularization
        1       2
                     block sparsity: G(x) =                 ||x[b] ||,          ||x[b] ||2 =         x2
                                                                                                      m
                                                      b B                                      m b

iments                            Towards More Complex Penalization
            (2)                 Bk
2
    +       ` 1 `2
                      4
                      k=1   x   1,2

                                                                                          b B1       i b xi
                                 ⇥ x⇥⇥1 =   i ⇥xi ⇥         b B          i   b xi2               +
                                                                                                     i b xi
              N: 256
                                                                                          b B2

                                            b     B




    Image f =            x Coe cients x.
Block Regularization
     1        2
                  block sparsity: G(x) =                    ||x[b] ||,      ||x[b] ||2 =          x2
                                                                                                   m
                                                      b B                                  m b

iments Towards More Complex Penalization
 Non-overlapping decomposition: B = B ... B
                  Towards More Complex Penalization
                Towards More Complex Penalization
                       n
                                                                     1               n

2     G(x) =4 x iBk
      (2)
    + ` ` k=1 G 1,2
                 (x)                        Gi (x) =           ||x[b] ||,
         1    2       i=1                              b Bi

                                                                                  b b 1b1 B1 i b xiixb xi
                                                                                                    22
                                                                                    BB
                            ⇥ x⇥x⇥x⇥⇥1 =i ⇥x⇥x⇥xi ⇥
                                  ⇥=                                                     ++ +
                                                                                               i b i
                               ⇥ ⇥1 ⇥1 = i i ⇥i i ⇥    bb B B i
                                                        Bb           xii2bi2xi2
                                                                   bbx
                                                                   i
             N: 256
                                                                                  b b 2b2 B2 i
                                                                                    BB             xi2 b2xi
                                                                                                 b b xi
                                                                                                 i

                                           b      B




    Image f =              x Coe cients x.             Blocks B1                    B1       B2
Block Regularization
     1        2
                  block sparsity: G(x) =             ||x[b] ||,      ||x[b] ||2 =           x2
                                                                                             m
                                               b B                                  m b

iments Towards More Complex Penalization
 Non-overlapping decomposition: B = B ... B
                  Towards More Complex Penalization
                Towards More Complex Penalization
                       n
                                                              1               n

2     G(x) =4 x iBk
      (2)
    + ` ` k=1 G 1,2
                 (x)                 Gi (x) =           ||x[b] ||,
         1    2       i=1                        b Bi
    Each Gi is simple:                                                    b b 1b1 B1 i b xiixb xi
                                                                            BB
                                                                                            22

                   ⇥ x⇥x⇥x⇥⇥1 =i ⇥xG ⇥xi ⇥ m = b B B i b xii2bi2xi2
                        ⇥ ⇥1 = i ⇥i i                                                x +
                                                                                       i b i
     ⇤ m ⇥ b ⇥ Bi , ⇥ ⇥1Prox i ⇥xi ⇥(x) b max i0, 1
                           =                   Bb        bx                         ++m
             N: 256                                                    ||x[b]b||B            xi2 b2xi
                                                                              2 2 B2
                                                                          b B b        i   b b xi
                                                                                           i

                                    b    B




    Image f =              x Coe cients x.       Blocks B1                   B1        B2
Deconv. + Inpaint. 2min+CP Y ⇥ P K x CP Y + P 1 K2
             Deconv. x 2Inpaint. min 2 ⇥ ` `
                                      x                                                                                      x
                                                                                                                           k=1    x+1,2`          k=1
 log10(E−E
    2                                                                                                                                    1   `2
                                  Numerical Illustration



                                            log10(E−
                    1                                         1

                    0
                  tmin
                         1 t : 298s; t :: 283s; t : 298s; t : 368s
                                  0

               −1 EFB      ||y −1 ⇥x||368s PR
                     : 283s; PR     tEFB 2 +
                                      CP                GCP(x)
                                                            i                                                          = TI wavelets
                    x 102
                    3
                               20     30   10 40
                                           EFB
                                       iteration 3
                                                 #
                                                  20
                                                     i
                                                           30    40
                                                                               Numerical Experiments
                                                                               iteration #         EFB
    log10(E−Emin)




                                              log10(E−Emin)
                                                                         PR
                                                                              2 (2)
                                                                                                   PR

                                    Deconvolution minx 2 Y ⇥
                        = convolution                           1.30e−03; 2 +λl1/l2: 1.30e−03; x
                                           = inpainting+convolution `1 `2 4                       1CP 2
                                                                         CP
                    2               2
                                                          l1/l2
                                                               :K      x                             λ
                                                                                          k=1
                    1                          noise: 0.025; convol.: it. #50; SNR: 22.49dB #50; SNR: 22.49dB
                           noise: 0.025; convol.: 2
                                          1
                                                                       2                  it.
                                                         
                    0                                     0
                                                         

                                                         
                                                         tEFB: 161s; tPR: 173s; tCP:          190s                               N: 256
                                10          20                30  10 40 20         30                40
                                                         
                                       iteration #                             iteration #
                                                                                                  EFB
                                             log10(E−Emin)




                                                              3                                    PR 4
                                                                                                    λ :
                                                                                                   CP l1/l2
                                                                                                               1.00e−03;      λ4 : 1.00e−03;
                                                                                                                              l1/l2
                                                              2
               noise: 0.025;
                    
                             degrad.: 0.4; 0.025; degrad.: 0.4; convol.: 2
                                  noise:
                                       
                                           convol.: 2            it. #50; SNR: 21.80dB #50; SNR: 21.80dB
                                                                                     it.
                                                              1
                                                         
                                                        0
                                                         
                                                        
                                                          −1
                                                                       10       20
                                                                               iteration #
                                                                                             30           40                           x0


                                                                                                                                λ2 : 1.30e−03;
                                                                                                                                  l1/l2


    log10 (E(x )
                          
                                 ( )
                                       
                                             E(x ))
                                                    y = x0 + w
                                                                   noise: 0.025; convol.: 2
                                                                                                               x            it. #50; SNR: 22.49dB
Conclusion
Inverse problems in imaging:
      Large scale, N 106 .
     Non-smooth (sparsity, TV, . . . )
     (Sometimes) convex.
     Highly structured (separability,    p
                                             norms, . . . ).
Conclusion
Inverse problems in imaging:
      Large scale, N 106 .
                 Towards More Complex Penalization
     Non-smooth (sparsity, TV, . . . )
     (Sometimes) convex.                                  b B1       i b xi
                                                                           2

                ⇥ x⇥⇥1 =   i ⇥xi ⇥    b B
                                                 2
                                            i p xi               +
     Highly structured (separability,          b
                                                norms, . . . ).
                                                          b B2       i   b xi2
Proximal splitting:
     Unravel the structure of problems.
     Parallelizable.


                               Decomposition G =     k   Gk
Conclusion
Inverse problems in imaging:
      Large scale, N 106 .
                 Towards More Complex Penalization
     Non-smooth (sparsity, TV, . . . )
     (Sometimes) convex.                               b B1       i b xi
                                                                        2

                ⇥ x⇥⇥1 =   i ⇥xi ⇥   b B
                                                2
                                           i p xi             +
     Highly structured (separability,         b
                                               norms, . . . ).
                                                       b B2       i   b xi2
Proximal splitting:
     Unravel the structure of problems.
     Parallelizable.
Open problems:
                        Decomposition G = k Gk
     Less structured problems without smoothness.
     Non-convex optimization.

More Related Content

What's hot

統計的学習の基礎6章前半 #カステラ本
統計的学習の基礎6章前半 #カステラ本統計的学習の基礎6章前半 #カステラ本
統計的学習の基礎6章前半 #カステラ本Akifumi Eguchi
 
Evaluating machine learning models and their diagnostic value
Evaluating machine learning models and their diagnostic valueEvaluating machine learning models and their diagnostic value
Evaluating machine learning models and their diagnostic valueGael Varoquaux
 
Smooth entropies a tutorial
Smooth entropies a tutorialSmooth entropies a tutorial
Smooth entropies a tutorialwtyru1989
 
PRML輪読#6
PRML輪読#6PRML輪読#6
PRML輪読#6matsuolab
 
Cheat sheet régression linéaire simple Sous R
Cheat sheet régression linéaire simple Sous RCheat sheet régression linéaire simple Sous R
Cheat sheet régression linéaire simple Sous RMohamed Ali KHOUAJA
 
220206 transformer interpretability beyond attention visualization
220206 transformer interpretability beyond attention visualization220206 transformer interpretability beyond attention visualization
220206 transformer interpretability beyond attention visualizationtaeseon ryu
 
Prml3.5 エビデンス近似〜
Prml3.5 エビデンス近似〜Prml3.5 エビデンス近似〜
Prml3.5 エビデンス近似〜Yuki Matsubara
 
「診断精度研究のメタ分析」の入門
「診断精度研究のメタ分析」の入門「診断精度研究のメタ分析」の入門
「診断精度研究のメタ分析」の入門yokomitsuken5
 
13.2 隠れマルコフモデル
13.2 隠れマルコフモデル13.2 隠れマルコフモデル
13.2 隠れマルコフモデルshow you
 
Bayesian Deep Learning
Bayesian Deep LearningBayesian Deep Learning
Bayesian Deep LearningRayKim51
 
Causal discovery and prediction mechanisms
Causal discovery and prediction mechanismsCausal discovery and prediction mechanisms
Causal discovery and prediction mechanismsShiga University, RIKEN
 
Math school-books-3rd-preparatory-2nd-term-khawagah-2019
Math school-books-3rd-preparatory-2nd-term-khawagah-2019Math school-books-3rd-preparatory-2nd-term-khawagah-2019
Math school-books-3rd-preparatory-2nd-term-khawagah-2019khawagah
 
PRML復々習レーン#9 前回までのあらすじ
PRML復々習レーン#9 前回までのあらすじPRML復々習レーン#9 前回までのあらすじ
PRML復々習レーン#9 前回までのあらすじsleepy_yoshi
 
hands on machine learning Chapter 6&7 decision tree, ensemble and random forest
hands on machine learning Chapter 6&7 decision tree, ensemble and random foresthands on machine learning Chapter 6&7 decision tree, ensemble and random forest
hands on machine learning Chapter 6&7 decision tree, ensemble and random forestJaey Jeong
 
Fractional Calculus
Fractional CalculusFractional Calculus
Fractional CalculusVRRITC
 
Introduction to Grad-CAM (complete version)
Introduction to Grad-CAM (complete version)Introduction to Grad-CAM (complete version)
Introduction to Grad-CAM (complete version)Hsing-chuan Hsieh
 
Depth Fusion from RGB and Depth Sensors by Deep Learning
Depth Fusion from RGB and Depth Sensors by Deep LearningDepth Fusion from RGB and Depth Sensors by Deep Learning
Depth Fusion from RGB and Depth Sensors by Deep LearningYu Huang
 

What's hot (20)

統計的学習の基礎6章前半 #カステラ本
統計的学習の基礎6章前半 #カステラ本統計的学習の基礎6章前半 #カステラ本
統計的学習の基礎6章前半 #カステラ本
 
Evaluating machine learning models and their diagnostic value
Evaluating machine learning models and their diagnostic valueEvaluating machine learning models and their diagnostic value
Evaluating machine learning models and their diagnostic value
 
Smooth entropies a tutorial
Smooth entropies a tutorialSmooth entropies a tutorial
Smooth entropies a tutorial
 
W8PRML5.1-5.3
W8PRML5.1-5.3W8PRML5.1-5.3
W8PRML5.1-5.3
 
PRML輪読#6
PRML輪読#6PRML輪読#6
PRML輪読#6
 
Cheat sheet régression linéaire simple Sous R
Cheat sheet régression linéaire simple Sous RCheat sheet régression linéaire simple Sous R
Cheat sheet régression linéaire simple Sous R
 
220206 transformer interpretability beyond attention visualization
220206 transformer interpretability beyond attention visualization220206 transformer interpretability beyond attention visualization
220206 transformer interpretability beyond attention visualization
 
Prml3.5 エビデンス近似〜
Prml3.5 エビデンス近似〜Prml3.5 エビデンス近似〜
Prml3.5 エビデンス近似〜
 
「診断精度研究のメタ分析」の入門
「診断精度研究のメタ分析」の入門「診断精度研究のメタ分析」の入門
「診断精度研究のメタ分析」の入門
 
13.2 隠れマルコフモデル
13.2 隠れマルコフモデル13.2 隠れマルコフモデル
13.2 隠れマルコフモデル
 
Bayesian Deep Learning
Bayesian Deep LearningBayesian Deep Learning
Bayesian Deep Learning
 
Causal discovery and prediction mechanisms
Causal discovery and prediction mechanismsCausal discovery and prediction mechanisms
Causal discovery and prediction mechanisms
 
Math school-books-3rd-preparatory-2nd-term-khawagah-2019
Math school-books-3rd-preparatory-2nd-term-khawagah-2019Math school-books-3rd-preparatory-2nd-term-khawagah-2019
Math school-books-3rd-preparatory-2nd-term-khawagah-2019
 
Introduction of VAE
Introduction of VAEIntroduction of VAE
Introduction of VAE
 
PRML復々習レーン#9 前回までのあらすじ
PRML復々習レーン#9 前回までのあらすじPRML復々習レーン#9 前回までのあらすじ
PRML復々習レーン#9 前回までのあらすじ
 
PRML4.3.3
PRML4.3.3PRML4.3.3
PRML4.3.3
 
hands on machine learning Chapter 6&7 decision tree, ensemble and random forest
hands on machine learning Chapter 6&7 decision tree, ensemble and random foresthands on machine learning Chapter 6&7 decision tree, ensemble and random forest
hands on machine learning Chapter 6&7 decision tree, ensemble and random forest
 
Fractional Calculus
Fractional CalculusFractional Calculus
Fractional Calculus
 
Introduction to Grad-CAM (complete version)
Introduction to Grad-CAM (complete version)Introduction to Grad-CAM (complete version)
Introduction to Grad-CAM (complete version)
 
Depth Fusion from RGB and Depth Sensors by Deep Learning
Depth Fusion from RGB and Depth Sensors by Deep LearningDepth Fusion from RGB and Depth Sensors by Deep Learning
Depth Fusion from RGB and Depth Sensors by Deep Learning
 

Similar to A Review of Proximal Methods, with a New One

Sparsity and Compressed Sensing
Sparsity and Compressed SensingSparsity and Compressed Sensing
Sparsity and Compressed SensingGabriel Peyré
 
Cosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical SimulationsCosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical SimulationsIan Huston
 
Signal Processing Course : Convex Optimization
Signal Processing Course : Convex OptimizationSignal Processing Course : Convex Optimization
Signal Processing Course : Convex OptimizationGabriel Peyré
 
Signal Processing Course : Sparse Regularization of Inverse Problems
Signal Processing Course : Sparse Regularization of Inverse ProblemsSignal Processing Course : Sparse Regularization of Inverse Problems
Signal Processing Course : Sparse Regularization of Inverse ProblemsGabriel Peyré
 
Signal Processing Course : Inverse Problems Regularization
Signal Processing Course : Inverse Problems RegularizationSignal Processing Course : Inverse Problems Regularization
Signal Processing Course : Inverse Problems RegularizationGabriel Peyré
 
Low Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Low Complexity Regularization of Inverse Problems - Course #1 Inverse ProblemsLow Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Low Complexity Regularization of Inverse Problems - Course #1 Inverse ProblemsGabriel Peyré
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553Destiny Nooppynuchy
 
Compressed Sensing and Tomography
Compressed Sensing and TomographyCompressed Sensing and Tomography
Compressed Sensing and TomographyGabriel Peyré
 
Numerical Linear Algebra for Data and Link Analysis.
Numerical Linear Algebra for Data and Link Analysis.Numerical Linear Algebra for Data and Link Analysis.
Numerical Linear Algebra for Data and Link Analysis.Leonid Zhukov
 
Lect4 ellipse
Lect4 ellipseLect4 ellipse
Lect4 ellipseBCET
 
A family of implicit higher order methods for the numerical integration of se...
A family of implicit higher order methods for the numerical integration of se...A family of implicit higher order methods for the numerical integration of se...
A family of implicit higher order methods for the numerical integration of se...Alexander Decker
 
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...Gabriel Peyré
 
CVPR2010: Advanced ITinCVPR in a Nutshell: part 7: Future Trend
CVPR2010: Advanced ITinCVPR in a Nutshell: part 7: Future TrendCVPR2010: Advanced ITinCVPR in a Nutshell: part 7: Future Trend
CVPR2010: Advanced ITinCVPR in a Nutshell: part 7: Future Trendzukun
 
Convex Optimization Modelling with CVXOPT
Convex Optimization Modelling with CVXOPTConvex Optimization Modelling with CVXOPT
Convex Optimization Modelling with CVXOPTandrewmart11
 

Similar to A Review of Proximal Methods, with a New One (20)

Sparsity and Compressed Sensing
Sparsity and Compressed SensingSparsity and Compressed Sensing
Sparsity and Compressed Sensing
 
Cosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical SimulationsCosmological Perturbations and Numerical Simulations
Cosmological Perturbations and Numerical Simulations
 
Signal Processing Course : Convex Optimization
Signal Processing Course : Convex OptimizationSignal Processing Course : Convex Optimization
Signal Processing Course : Convex Optimization
 
Signal Processing Course : Sparse Regularization of Inverse Problems
Signal Processing Course : Sparse Regularization of Inverse ProblemsSignal Processing Course : Sparse Regularization of Inverse Problems
Signal Processing Course : Sparse Regularization of Inverse Problems
 
Signal Processing Course : Inverse Problems Regularization
Signal Processing Course : Inverse Problems RegularizationSignal Processing Course : Inverse Problems Regularization
Signal Processing Course : Inverse Problems Regularization
 
Low Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Low Complexity Regularization of Inverse Problems - Course #1 Inverse ProblemsLow Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Low Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
 
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
 
Compressed Sensing and Tomography
Compressed Sensing and TomographyCompressed Sensing and Tomography
Compressed Sensing and Tomography
 
Numerical Linear Algebra for Data and Link Analysis.
Numerical Linear Algebra for Data and Link Analysis.Numerical Linear Algebra for Data and Link Analysis.
Numerical Linear Algebra for Data and Link Analysis.
 
YSC 2013
YSC 2013YSC 2013
YSC 2013
 
Lect4 ellipse
Lect4 ellipseLect4 ellipse
Lect4 ellipse
 
A family of implicit higher order methods for the numerical integration of se...
A family of implicit higher order methods for the numerical integration of se...A family of implicit higher order methods for the numerical integration of se...
A family of implicit higher order methods for the numerical integration of se...
 
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
 
0203 ch 2 day 3
0203 ch 2 day 30203 ch 2 day 3
0203 ch 2 day 3
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
Lista exercintegrais
Lista exercintegraisLista exercintegrais
Lista exercintegrais
 
CVPR2010: Advanced ITinCVPR in a Nutshell: part 7: Future Trend
CVPR2010: Advanced ITinCVPR in a Nutshell: part 7: Future TrendCVPR2010: Advanced ITinCVPR in a Nutshell: part 7: Future Trend
CVPR2010: Advanced ITinCVPR in a Nutshell: part 7: Future Trend
 
Lect3cg2011
Lect3cg2011Lect3cg2011
Lect3cg2011
 
Convex Optimization Modelling with CVXOPT
Convex Optimization Modelling with CVXOPTConvex Optimization Modelling with CVXOPT
Convex Optimization Modelling with CVXOPT
 

More from Gabriel Peyré

Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Gabriel Peyré
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsGabriel Peyré
 
Model Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesModel Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesGabriel Peyré
 
Proximal Splitting and Optimal Transport
Proximal Splitting and Optimal TransportProximal Splitting and Optimal Transport
Proximal Splitting and Optimal TransportGabriel Peyré
 
Geodesic Method in Computer Vision and Graphics
Geodesic Method in Computer Vision and GraphicsGeodesic Method in Computer Vision and Graphics
Geodesic Method in Computer Vision and GraphicsGabriel Peyré
 
Learning Sparse Representation
Learning Sparse RepresentationLearning Sparse Representation
Learning Sparse RepresentationGabriel Peyré
 
Adaptive Signal and Image Processing
Adaptive Signal and Image ProcessingAdaptive Signal and Image Processing
Adaptive Signal and Image ProcessingGabriel Peyré
 
Mesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh ParameterizationMesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh ParameterizationGabriel Peyré
 
Mesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionMesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionGabriel Peyré
 
Mesh Processing Course : Introduction
Mesh Processing Course : IntroductionMesh Processing Course : Introduction
Mesh Processing Course : IntroductionGabriel Peyré
 
Mesh Processing Course : Geodesics
Mesh Processing Course : GeodesicsMesh Processing Course : Geodesics
Mesh Processing Course : GeodesicsGabriel Peyré
 
Mesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingMesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingGabriel Peyré
 
Mesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusMesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusGabriel Peyré
 
Mesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursMesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursGabriel Peyré
 
Signal Processing Course : Theory for Sparse Recovery
Signal Processing Course : Theory for Sparse RecoverySignal Processing Course : Theory for Sparse Recovery
Signal Processing Course : Theory for Sparse RecoveryGabriel Peyré
 
Signal Processing Course : Presentation of the Course
Signal Processing Course : Presentation of the CourseSignal Processing Course : Presentation of the Course
Signal Processing Course : Presentation of the CourseGabriel Peyré
 
Signal Processing Course : Orthogonal Bases
Signal Processing Course : Orthogonal BasesSignal Processing Course : Orthogonal Bases
Signal Processing Course : Orthogonal BasesGabriel Peyré
 
Signal Processing Course : Fourier
Signal Processing Course : FourierSignal Processing Course : Fourier
Signal Processing Course : FourierGabriel Peyré
 
Signal Processing Course : Denoising
Signal Processing Course : DenoisingSignal Processing Course : Denoising
Signal Processing Course : DenoisingGabriel Peyré
 
Signal Processing Course : Compressed Sensing
Signal Processing Course : Compressed SensingSignal Processing Course : Compressed Sensing
Signal Processing Course : Compressed SensingGabriel Peyré
 

More from Gabriel Peyré (20)

Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse Problems
 
Model Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesModel Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular Gauges
 
Proximal Splitting and Optimal Transport
Proximal Splitting and Optimal TransportProximal Splitting and Optimal Transport
Proximal Splitting and Optimal Transport
 
Geodesic Method in Computer Vision and Graphics
Geodesic Method in Computer Vision and GraphicsGeodesic Method in Computer Vision and Graphics
Geodesic Method in Computer Vision and Graphics
 
Learning Sparse Representation
Learning Sparse RepresentationLearning Sparse Representation
Learning Sparse Representation
 
Adaptive Signal and Image Processing
Adaptive Signal and Image ProcessingAdaptive Signal and Image Processing
Adaptive Signal and Image Processing
 
Mesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh ParameterizationMesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh Parameterization
 
Mesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionMesh Processing Course : Multiresolution
Mesh Processing Course : Multiresolution
 
Mesh Processing Course : Introduction
Mesh Processing Course : IntroductionMesh Processing Course : Introduction
Mesh Processing Course : Introduction
 
Mesh Processing Course : Geodesics
Mesh Processing Course : GeodesicsMesh Processing Course : Geodesics
Mesh Processing Course : Geodesics
 
Mesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingMesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic Sampling
 
Mesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusMesh Processing Course : Differential Calculus
Mesh Processing Course : Differential Calculus
 
Mesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursMesh Processing Course : Active Contours
Mesh Processing Course : Active Contours
 
Signal Processing Course : Theory for Sparse Recovery
Signal Processing Course : Theory for Sparse RecoverySignal Processing Course : Theory for Sparse Recovery
Signal Processing Course : Theory for Sparse Recovery
 
Signal Processing Course : Presentation of the Course
Signal Processing Course : Presentation of the CourseSignal Processing Course : Presentation of the Course
Signal Processing Course : Presentation of the Course
 
Signal Processing Course : Orthogonal Bases
Signal Processing Course : Orthogonal BasesSignal Processing Course : Orthogonal Bases
Signal Processing Course : Orthogonal Bases
 
Signal Processing Course : Fourier
Signal Processing Course : FourierSignal Processing Course : Fourier
Signal Processing Course : Fourier
 
Signal Processing Course : Denoising
Signal Processing Course : DenoisingSignal Processing Course : Denoising
Signal Processing Course : Denoising
 
Signal Processing Course : Compressed Sensing
Signal Processing Course : Compressed SensingSignal Processing Course : Compressed Sensing
Signal Processing Course : Compressed Sensing
 

A Review of Proximal Methods, with a New One

  • 1. A Review of Proximal Splitting Methods with a new one Hugo Raguet Gabriel Peyré Jalal Fadili www.numerical-tours.com
  • 2. Overview • Inverse Problems Regularization • Proximal Splitting • Generalized Forward-Backward
  • 3. Inverse Problems Forward model: y = K f0 + w RP Observations Operator (Unknown) Noise : RQ RP Input
  • 4. Inverse Problems Forward model: y = K f0 + w RP Observations Operator (Unknown) Noise : RQ RP Input Denoising: K = IdQ , P = Q.
  • 5. Inverse Problems Forward model: y = K f0 + w RP Observations Operator (Unknown) Noise : RQ RP Input Denoising: K = IdQ , P = Q. Inpainting: set of missing pixels, P = Q | |. 0 if x , (Kf )(x) = f (x) if x / . K
  • 6. Inverse Problems Forward model: y = K f0 + w RP Observations Operator (Unknown) Noise : RQ RP Input Denoising: K = IdQ , P = Q. Inpainting: set of missing pixels, P = Q | |. 0 if x , (Kf )(x) = f (x) if x / . Super-resolution: Kf = (f k) , P = Q/ . K K
  • 7. Inverse Problem Regularization Noisy measurements: y = Kf0 + w. Prior model: J : RQ R assigns a score to images.
  • 8. Inverse Problem Regularization Noisy measurements: y = Kf0 + w. Prior model: J : RQ R assigns a score to images. 1 f argmin ||y Kf ||2 + J(f ) f RQ 2 Data fidelity Regularity
  • 9. Inverse Problem Regularization Noisy measurements: y = Kf0 + w. Prior model: J : RQ R assigns a score to images. 1 f argmin ||y Kf ||2 + J(f ) f RQ 2 Data fidelity Regularity Choice of : tradeo Noise level Regularity of f0 ||w|| J(f0 )
  • 10. Inverse Problem Regularization Noisy measurements: y = Kf0 + w. Prior model: J : RQ R assigns a score to images. 1 f argmin ||y Kf ||2 + J(f ) f RQ 2 Data fidelity Regularity Choice of : tradeo Noise level Regularity of f0 ||w|| J(f0 ) No noise: 0+ , minimize f argmin J(f ) f RQ ,Kf =y
  • 11. L1 Regularization x0 RN coe cients
  • 12. L1 Regularization x0 RN f0 = x0 RQ coe cients image
  • 13. L1 Regularization x0 RN f0 = x0 RQ y = Kf0 + w RP coe cients image observations K w
  • 14. L1 Regularization x0 RN f0 = x0 RQ y = Kf0 + w RP coe cients image observations K w = K ⇥ ⇥ RP N
  • 15. L1 Regularization x0 RN f0 = x0 RQ y = Kf0 + w RP coe cients image observations K w = K ⇥ ⇥ RP N Sparse recovery: f = x where x solves 1 min ||y x||2 + ||x||1 x RN 2 Fidelity Regularization
  • 16. Inpainting Problem K 0 if x , (Kf )(x) = f (x) if x / . Measures: y = Kf0 + w
  • 17. Overview • Inverse Problems Regularization • Proximal Splitting • Generalized Forward-Backward
  • 18. Proximal Operators Proximal operator of G: 1 Prox G (x) = argmin ||x z||2 + G(z) z 2
  • 19. Proximal Operators Proximal operator of G: 1 Prox G (x) = argmin ||x z||2 + G(z) z 2 12 log(1 + x2 ) G(x) = ||x||1 = |xi | 10 |x| ||x||0 8 i Prox G (x)i = max 0, 1 6 xi 4 |xi | 2 0 −2 G(x) −10 −8 −6 −4 −2 0 2 4 6 8 10 10 8 6 4 2 0 −2 −4 −6 −8 ProxG (x) −10 −10 −8 −6 −4 −2 0 2 4 6 8 10
  • 20. Proximal Operators Proximal operator of G: 1 Prox G (x) = argmin ||x z||2 + G(z) z 2 12 log(1 + x2 ) G(x) = ||x||1 = |xi | 10 |x| ||x||0 8 i Prox G (x)i = max 0, 1 6 xi 4 |xi | 2 0 G(x) = ||x||0 = | {i xi = 0} | −2 −10 −8 −6 −4 −2 0 2 4 G(x) 6 8 10 xi if |xi | 2 , 10 Prox G (x)i = 8 0 otherwise. 6 4 2 0 −2 −4 −6 −8 ProxG (x) −10 −10 −8 −6 −4 −2 0 2 4 6 8 10
  • 21. Proximal Operators Proximal operator of G: 1 Prox G (x) = argmin ||x z||2 + G(z) z 2 12 log(1 + x2 ) G(x) = ||x||1 = |xi | 10 |x| ||x||0 8 i Prox G (x)i = max 0, 1 6 xi 4 |xi | 2 0 G(x) = ||x||0 = | {i xi = 0} | −2 −10 −8 −6 −4 −2 0 2 4 G(x) 6 8 10 xi if |xi | 2 , 10 Prox G (x)i = 8 0 otherwise. 6 4 2 0 G(x) = log(1 + |xi |2 ) −2 −4 i −6 3rd order polynomial root. −8 ProxG (x) −10 −10 −8 −6 −4 −2 0 2 4 6 8 10
  • 22. Proximal Splitting Methods Solve min E(x) x H Problem: Prox E is not available.
  • 23. Proximal Splitting Methods Solve min E(x) x H Problem: Prox E is not available. Splitting: E(x) = F (x) + Gi (x) i Smooth Simple
  • 24. Proximal Splitting Methods Solve min E(x) x H Problem: Prox E is not available. Splitting: E(x) = F (x) + Gi (x) i Smooth Simple F (x) Iterative algorithms using: Prox Gi (x) solves Forward-Backward: F + G Douglas-Rachford: Gi Primal-Dual: G i Ai Generalized FB: F+ Gi
  • 25. Forward-Backward min F (x) + G(x) ( ) x RN Smooth Simple
  • 26. Forward-Backward min F (x) + G(x) ( ) x RN Smooth Simple Forward-backward: x( +1) = Prox G x( ) F (x( ) )
  • 27. Forward-Backward min F (x) + G(x) ( ) x RN Smooth Simple Forward-backward: x( +1) = Prox G x( ) F (x( ) ) Projected gradient descent: G= C
  • 28. Forward-Backward min F (x) + G(x) ( ) x RN Smooth Simple Forward-backward: x( +1) = Prox G x( ) F (x( ) ) Projected gradient descent: G= C Theorem: Let F be L-Lipschitz. If < 2/L, x( ) x a solution of ( )
  • 29. Forward-Backward min F (x) + G(x) ( ) x RN Smooth Simple Forward-backward: x( +1) = Prox G x( ) F (x( ) ) Projected gradient descent: G= C Theorem: Let F be L-Lipschitz. If < 2/L, x( ) x a solution of ( ) Multi-step accelerations (Nesterov, Beck-Teboule).
  • 30. Example: L1 Regularization 1 min || x y||2 + ||x||1 min F (x) + G(x) x 2 x 1 F (x) = || x y||2 2 F (x) = ( x y) L = || || G(x) = ||x||1 ⇥ Prox G (x)i = max 0, 1 xi |xi | Forward-backward Iterative soft thresholding
  • 31. Douglas Rachford Scheme min G1 (x) + G2 (x) ( ) x Simple Simple
  • 32. Douglas Rachford Scheme min G1 (x) + G2 (x) ( ) x Simple Simple Douglas-Rachford iterations: z( +1) = 1 z( ) + RProx G2 RProx G1 (z ( ) ) 2 2 x( +1) = Prox G2 (z ( +1) ) Reflexive prox: RProx G (x) = 2Prox G (x) x
  • 33. Douglas Rachford Scheme min G1 (x) + G2 (x) ( ) x Simple Simple Douglas-Rachford iterations: z( +1) = 1 z( ) + RProx G2 RProx G1 (z ( ) ) 2 2 x( +1) = Prox G2 (z ( +1) ) Reflexive prox: RProx G (x) = 2Prox G (x) x Theorem: If 0 < < 2 and ⇥ > 0, x( ) x a solution of ( )
  • 34. Example: Constrainted L1 min ||x||1 min G1 (x) + G2 (x) x=y x G1 (x) = iC (x), C = {x x = y} Prox G1 (x) = ProjC (x) = x + ⇥ ( ⇥ ) 1 (y x) G2 (x) = ||x||1 Prox G2 (x) = max 0, 1 xi |xi | i e⇥cient if easy to invert.
  • 35. Example: Constrainted L1 min ||x||1 min G1 (x) + G2 (x) x=y x G1 (x) = iC (x), C = {x x = y} Prox G1 (x) = ProjC (x) = x + ⇥ ( ⇥ ) 1 (y x) G2 (x) = ||x||1 Prox G2 (x) = max 0, 1 xi |xi | i e⇥cient if easy to invert. log10 (||x( ) ||1 ||x ||1 ) 1 Example: compressed sensing −1 0 R100 400 Gaussian matrix −2 −3 = 0.01 y = x0 ||x0 ||0 = 17 −4 =1 −5 = 10 50 100 150 200 250
  • 36. Overview • Inverse Problems Regularization • Proximal Splitting • Generalized Forward-Backward
  • 37. GFB Splitting n min F (x) + Gi (x) ( ) x RN i=1 Smooth Simple
  • 38. GFB Splitting n min F (x) + Gi (x) ( ) x RN i=1 Smooth Simple i = 1, . . . , n, ( +1) ( ) ( ) zi = zi + Proxn Gi (2x ( ) zi F (x( ) )) x( ) n 1 ( +1) x ( +1) = zi n i=1
  • 39. GFB Splitting n min F (x) + Gi (x) ( ) x RN i=1 Smooth Simple i = 1, . . . , n, ( +1) ( ) ( ) zi = zi + Proxn Gi (2x ( ) zi F (x( ) )) x( ) n 1 ( +1) x ( +1) = zi n i=1 Theorem: Let F be L-Lipschitz. If < 2/L, x( ) x a solution of ( ) n=1 Forward-backward. F =0 Douglas-Rachford.
  • 40. Block Regularization 1 2 block sparsity: G(x) = ||x[b] ||, ||x[b] ||2 = x2 m b B m b iments Towards More Complex Penalization (2) Bk 2 + ` 1 `2 4 k=1 x 1,2 b B1 i b xi ⇥ x⇥⇥1 = i ⇥xi ⇥ b B i b xi2 + i b xi N: 256 b B2 b B Image f = x Coe cients x.
  • 41. Block Regularization 1 2 block sparsity: G(x) = ||x[b] ||, ||x[b] ||2 = x2 m b B m b iments Towards More Complex Penalization Non-overlapping decomposition: B = B ... B Towards More Complex Penalization Towards More Complex Penalization n 1 n 2 G(x) =4 x iBk (2) + ` ` k=1 G 1,2 (x) Gi (x) = ||x[b] ||, 1 2 i=1 b Bi b b 1b1 B1 i b xiixb xi 22 BB ⇥ x⇥x⇥x⇥⇥1 =i ⇥x⇥x⇥xi ⇥ ⇥= ++ + i b i ⇥ ⇥1 ⇥1 = i i ⇥i i ⇥ bb B B i Bb xii2bi2xi2 bbx i N: 256 b b 2b2 B2 i BB xi2 b2xi b b xi i b B Image f = x Coe cients x. Blocks B1 B1 B2
  • 42. Block Regularization 1 2 block sparsity: G(x) = ||x[b] ||, ||x[b] ||2 = x2 m b B m b iments Towards More Complex Penalization Non-overlapping decomposition: B = B ... B Towards More Complex Penalization Towards More Complex Penalization n 1 n 2 G(x) =4 x iBk (2) + ` ` k=1 G 1,2 (x) Gi (x) = ||x[b] ||, 1 2 i=1 b Bi Each Gi is simple: b b 1b1 B1 i b xiixb xi BB 22 ⇥ x⇥x⇥x⇥⇥1 =i ⇥xG ⇥xi ⇥ m = b B B i b xii2bi2xi2 ⇥ ⇥1 = i ⇥i i x + i b i ⇤ m ⇥ b ⇥ Bi , ⇥ ⇥1Prox i ⇥xi ⇥(x) b max i0, 1 = Bb bx ++m N: 256 ||x[b]b||B xi2 b2xi 2 2 B2 b B b i b b xi i b B Image f = x Coe cients x. Blocks B1 B1 B2
  • 43. Deconv. + Inpaint. 2min+CP Y ⇥ P K x CP Y + P 1 K2 Deconv. x 2Inpaint. min 2 ⇥ ` ` x x k=1 x+1,2` k=1 log10(E−E 2 1 `2 Numerical Illustration log10(E− 1 1 0 tmin 1 t : 298s; t :: 283s; t : 298s; t : 368s 0 −1 EFB ||y −1 ⇥x||368s PR : 283s; PR tEFB 2 + CP GCP(x) i = TI wavelets x 102 3 20 30 10 40 EFB iteration 3 # 20 i 30 40 Numerical Experiments iteration # EFB log10(E−Emin) log10(E−Emin) PR 2 (2) PR Deconvolution minx 2 Y ⇥ = convolution 1.30e−03; 2 +λl1/l2: 1.30e−03; x = inpainting+convolution `1 `2 4 1CP 2 CP 2 2 l1/l2 :K x λ k=1 1 noise: 0.025; convol.: it. #50; SNR: 22.49dB #50; SNR: 22.49dB noise: 0.025; convol.: 2 1 2 it.  0 0    tEFB: 161s; tPR: 173s; tCP: 190s N: 256  10 20 30 10 40 20 30 40  iteration # iteration #  EFB log10(E−Emin) 3 PR 4 λ : CP l1/l2 1.00e−03; λ4 : 1.00e−03;  l1/l2 2 noise: 0.025;   degrad.: 0.4; 0.025; degrad.: 0.4; convol.: 2  noise:  convol.: 2 it. #50; SNR: 21.80dB #50; SNR: 21.80dB it. 1   0    −1  10 20 iteration # 30 40 x0   λ2 : 1.30e−03; l1/l2 log10 (E(x )   ( )  E(x )) y = x0 + w   noise: 0.025; convol.: 2 x it. #50; SNR: 22.49dB
  • 44. Conclusion Inverse problems in imaging: Large scale, N 106 . Non-smooth (sparsity, TV, . . . ) (Sometimes) convex. Highly structured (separability, p norms, . . . ).
  • 45. Conclusion Inverse problems in imaging: Large scale, N 106 . Towards More Complex Penalization Non-smooth (sparsity, TV, . . . ) (Sometimes) convex. b B1 i b xi 2 ⇥ x⇥⇥1 = i ⇥xi ⇥ b B 2 i p xi + Highly structured (separability, b norms, . . . ). b B2 i b xi2 Proximal splitting: Unravel the structure of problems. Parallelizable. Decomposition G = k Gk
  • 46. Conclusion Inverse problems in imaging: Large scale, N 106 . Towards More Complex Penalization Non-smooth (sparsity, TV, . . . ) (Sometimes) convex. b B1 i b xi 2 ⇥ x⇥⇥1 = i ⇥xi ⇥ b B 2 i p xi + Highly structured (separability, b norms, . . . ). b B2 i b xi2 Proximal splitting: Unravel the structure of problems. Parallelizable. Open problems: Decomposition G = k Gk Less structured problems without smoothness. Non-convex optimization.