SlideShare a Scribd company logo
Semantic Web and Linked Data
or how to link data
and schemas on the web
a W3C tutorial by Fabien Gandon, http://fabien.info, @fabien_gandon
WWW 2014
semantic web
mentioned by Tim BL
in 1994 at WWW
[Tim Berners-Lee 1994, http://www.w3.org/Talks/WWW94Tim/]
don’t read
the sign
you loose!
machines don’t.
we identify and interpret information,
A WEB OF LINKED DATA
IRI
HTML
HTTP
identification
address
communication
WEB
W3C®SEMANTIC WEB STANDARD STACK
W3C®SEMANTIC WEB STANDARD STACK
W3C®
A WEB OF
LINKED DATA
RDFstands for
Resource: pages, dogs, ideas...
everything that can have a URI
Description: attributes, features, and
relations of the resources
Framework: model, languages and
syntaxes for these descriptions
RDFis a triple model i.e. every
piece of knowledge is broken down into
( subject , predicate , object )
doc.html has for author Fabien
and has for theme Music
doc.html has for author Fabien
doc.html has for theme Music
( doc.html , author , Fabien )
( doc.html , theme , Music )
( subject , predicate , object )
Predicate
Subject
Object
a triplethe RDF atom
RDFis also a graph model
to link the descriptions of resources
RDFtriples can be seen as arcs
of a graph (vertex,edge,vertex)
( doc.html , author , Fabien )
( doc.html , theme , Music )
Fabien
author
doc.html
theme
Music
identify what
exists on the
web
http://my-site.fr
identify,
on the web,
what exists
http://animals.org/this-zebra
http://ns.inria.fr/fabien.gandon#me
http://inria.fr/schema#author
http://inria.fr/rr/doc.html
http://inria.fr/schema#theme
Music
open and link data in a
global giant graph
RDFin values of properties can also be
literals i.e. strings of characters
( doc.html , author , Fabien )
( doc.html , theme , "Music" )
http://ns.inria.fr/fabien.gandon#me
http://inria.fr/schema#author
http://inria.fr/rr/doc.html
http://inria.fr/schema#theme
"Music"
http://ns.inria.fr/fabien.gandon#me
http://inria.fr/schema#author
Music
http://inria.fr/rr/doc.html
http://inria.fr/rr/doc.html
http://inria.fr/schema#theme
RDF< /> has an XML syntax
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-
rdf-syntax-ns#"
xmlns:inria="http://inria.fr/schema#" >
<rdf:Description
rdf:about="http://inria.fr/rr/doc.html">
<inria:author rdf:resource=
"http://ns.inria.fr/fabien.gandon#me"/>
<inria:theme>Music</inria:theme>
</rdf:Description>
</rdf:RDF>
RDFhas other syntaxes
(Turtle, TriG, N-Triples, N-Quads, JSON, RDFa)
Turtle
@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix inria: <http://inria.fr/schema#> .
<http://inria.fr/rr/doc.html>
inria:author
<http://ns.inria.fr/fabien.gandon#me> ;
inria:theme "Music" .
N-Triples
<http://inria.fr/rr/doc.html>
<http://inria.fr/schema#author>
<http://ns.inria.fr/fabien.gandon#me> .
<http://inria.fr/rr/doc.html>
<http://inria.fr/schema#theme> "Music" .
writing rules for RDF triples
• the subject is always a resource (never a literal)
• properties are binary relations and their types are
identified by IRIs
• the value is a resource or a literal
blank nodes (bnodes)
http://bu.ch/l23.html
author
"My Life"
title
"John"
surname
"Doe"
firstname
handy anonymous nodes (existential quantification)
there exist a resource such that… {  r ; …}
<rdf:Description rdf:about="http://bu.ch/123.html ">
<author>
<rdf:Description>
<surname>Doe</surname>
<firstname>John</firstname>
</rdf:Description>
</author>
<title>My Life</title>
</rdf:Description>
<http://bu.ch/123.html>
author
[surname "Doe" ;
firstname "John" . ] ;
title "My Life" .
XML schema datatypes & literals
standard literals are xsd:string
type literals with datatypes from XML Schema
<rdf:Description rdf:about="#Fabien">
<teaching rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">
true</teaching>
<birth rdf:datatype="http://www.w3.org/2001/XMLSchema#date">
1975-07-31</birth>
</rdf:Description/>
#Fabien teaching "true"^^xsd:boolean ;
birth "1975-07-31"^^xsd:date .
#Fabien "true"^^xsd:boolean
"1975-07-31"^^xsd:date
teaching
birth
XML Schema datatypes
W3C-http://www.w3.org/TR/xmlschema-2/
langue
<Book>
<title xml:lang=‘fr’>Seigneur des anneaux</title>
<title xml:lang=‘en’>Lord of the rings</title>
</Book>
<Book> title "Seigneur des anneaux"@fr ;
title "Lord of the rings"@en .
literals with languages and without are disjoint
“Fabien”  “Fabien”@en  “Fabien”@fr
typing resources
using URIs to identify the types
<urn://~fgandon> rdf:type <http://www.inria.fr/schema#Person>
a resource can have several types
<urn://~fgandon> rdf:type <http://www.inria.fr/schema#Person>
<urn://~fgandon> rdf:type <http://www.inria.fr/schema#Researcher>
<urn://~fgandon> rdf:type <http://www.mit.edu/schema#Lecturer>
<rdf:Description rdf:about="urn://~fgandon">
<rdf:type rdf:resource="http://www.inria.fr/schema#Person" />
<name>Fabien</name>
</rdf:Description>
<in:Person rdf:about="urn://~fgandon">
<name>Fabien</name>
</in:Person>
<urn://~fgandon>
a in:Person ;
name "Fabien" .
question:
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:exs="http://example.org/schema#">
<rdf:Description rdf:about="http://example.org/doc.html">
<rdf:type rdf:resource="http://example.org/schema#Report"/>
<exs:theme rdf:resource="http://example.org#Music"/>
<exs:theme rdf:resource="http://example.org#History"/>
<exs:nbPages rdf:datatype="http://www.w3.org/2001/XMLSchema#int">23</exs:nbPages>
</rdf:Description>
</rdf:RDF>
meaning ?
question:
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:exs="http://example.org/schema#">
<rdf:Description rdf:about="http://example.org/doc.html">
<rdf:type rdf:resource="http://example.org/schema#Report"/>
<exs:theme rdf:resource="http://example.org#Music"/>
<exs:theme rdf:resource="http://example.org#History"/>
<exs:nbPages rdf:datatype="http://www.w3.org/2001/XMLSchema#int">23</exs:nbPages>
</rdf:Description>
</rdf:RDF> exs:Report
rdf:type
exs:nbPages
“23”^^xsd:int
exs:theme
http://example.org/doc.html
http://example.org#Music
http://example.org#History
exs:theme
bags = unordered groups
<rdf:Description rdf:about="#">
<author>
<rdf:Bag>
<rdf:li>Ivan Herman</rdf:li>
<rdf:li>Fabien Gandon</rdf:li>
</rdf:Bag>
</author>
</rdf:Description>
<#> author _:a
_:a rdf:_1 “Ivan Herman”
_:a rdf:_2 “Fabien Gandon”
<#> author [
a rdf:Bag ;
rdf:li "Ivan Herman" ;
rdf:li "Fabien Gandon" . ] .
sequence
ordered group of resources or literals
<rdf:Description rdf:about="#partition">
<contains>
<rdf:Seq>
<rdf:li rdf:about="#C"/>
<rdf:li rdf:about="#C"/>
<rdf:li rdf:about="#C"/>
<rdf:li rdf:about="#D"/>
<rdf:li rdf:about="#E"/>
</rdf:Seq>
</contains>
</rdf:Description>
<partition>
contains [
a rdf:Seq ;
rdf:li "C" ;
rdf:li "C" ;
rdf:li "C" ;
rdf:li "D" ;
rdf:li "E" .
] .
alternativese.g. title of a book in different languages
<rdf:Description rdf:about="#book">
<title>
<rdf:Alt>
<rdf:li xml:lang="fr">l’homme qui prenait sa femme
pour un chapeau</rdf:li>
<rdf:li xml:lang="en">the man who mistook his wife
for a hat</rdf:li>
</rdf:Alt>
</title>
</rdf:Description>
<#book>
title [
a rdf:Alt ;
rdf:li "l’homme…"@fr ;
rdf:li "the man…"@en .
] .
collectionexhaustive and ordered list
<rdf:Description rdf:about="#week">
<dividedIn rdf:parseType="Collection">
<rdf:Description rdf:about="#monday"/>
<rdf:Description rdf:about="#tuesday"/>
<rdf:Description rdf:about="#wednesday"/>
<rdf:Description rdf:about="#thursday"/>
<rdf:Description rdf:about="#friday"/>
<rdf:Description rdf:about="#saturday"/>
<rdf:Description rdf:about="#sunday"/>
</devidedIn>
</rdf:Description>
wednesday
friday
sunday
nil
monday
tuesday
thursday
saturday
firstrest
List
_:a
_:b
_:c
_:d
_:e
_:f
_:g
<#week> dividedIn
( <#monday> <#tuesday> <#wednesday>
<#thursday> <#friday> <#saturday> <#sunday>
) .
RDF(named) graphs
group triples in graphs named by IRIs
http://ns.inria.fr/fabien.gandon#me
http://inria.fr/schema#author
Music
http://inria.fr/rr/doc.html
http://inria.fr/rr/doc.html
http://inria.fr/schema#theme
http://inria.fr/people
http://inria.fr/topics
TriG
@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix inria: <http://inria.fr/schema#> .
GRAPH <http://inria.fr/people>
{ <http://inria.fr/rr/doc.html>
inria:author
<http://ns.inria.fr/fabien.gandon#me> .
}
GRAPH <http://inria.fr/topics>
{ <http://inria.fr/rr/doc.html>
inria:theme "Music" .
}
N-Quads
<http://inria.fr/rr/doc.html>
<http://inria.fr/schema#author>
<http://ns.inria.fr/fabien.gandon#me>
<http://inria.fr/people> .
<http://inria.fr/rr/doc.html>
<http://inria.fr/schema#theme> "Music"
<http://inria.fr/topics> .
rdf:about
rdf:type
ex:ingredients
rdf:label
dc:creator
ex:weight
openmodel
• extensible vocabulary based on URIs
• anyone can say anything about anything
http://my_domain.org/my_path/my_type
linkto the world
ACCESSING DATA ON THE WEB
May 2007 April 2008 September 2008
March 2009
September 2010
Linking Open Data
Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/
September 2011
0
100
200
300
400
10/10/2006 28/04/2007 14/11/2007 01/06/2008 18/12/2008 06/07/2009 22/01/2010 10/08/2010 26/02/2011 14/09/2011 01/04/2012
thematic content
Domains
Number of
datasets
Number of
Triples
% Out links %
Media 25 1 841 852 061 5,82 % 50 440 705 10,01 %
Geography 31 6145 532 484 19,43 % 35 812 328 7,11 %
Government 49 13 315 009 400 42,09 % 19 343 519 3,84 %
Publications 87 2 950 720 693 9,33 % 139 925 218 27,76 %
Inter-domain 41 4 184 635 715 13,23 % 63 183 065 12,54 %
Life Sciences 41 3 036 336 004 9,60 % 191 844 090 38,06 %
Users’ content 20 134 127 413 0,42 % 3 449 143 0,68 %
295 31 634 213 770 503 998 829
42%
20%
13%
10%
9%
6%
0%
Government
Geography
Inter-domain
Life Sciences
Publications
Media
Users' content
ratatouille.fr
datatouille.fr
linked data principles Use RDF as data format
 Use HTTP URIs as names for things so that
people can look up those names
 When someone looks up a URI, provide useful information
(RDF, HTML, etc.) using content negotiation
 Include links to other URIs so that related things can be discovered
HTTP URI
GET
HTML,RDF,…
GET
303
DNShe who controls the name
controls the access
ex. bit.ly & Libya
.fr
*
.inria
isicil
dir.w3.org
query with SPARQL
SPARQL Protocol and RDF
Query Language
SPARQL in 3 parts
part 1: query language
part 2: result format
part 3: access protocol
SPARQL query
SELECT ...
FROM ...
WHERE { ... }
examplepersons at least 18-year old
PREFIX ex: <http://inria.fr/schema#>
SELECT ?person ?name
WHERE {
?person rdf:type ex:Person .
?person ex:name ?name .
?person ex:age ?age .
FILTER (?age > 17)
}
left left
x
*
z
left(x,y)
left(y,z)
right(z,v)
right(z,u)
right(u,v)
left(x,?p) left(?p,z)

right
x
y
z
u v
right
left left
graph mapping / projection
classical three clauses:
– Select: clause to select the values to be returned
– Where: triple/graph pattern to match
– Filter: constraints expressed using test functions
(XPath 2.0 or external)
SPARQL triples
• triples and question marks for variables:
?x rdf:type ex:Person
• graph patterns to match:
SELECT ?subject ?proprerty ?value
WHERE {?subject ?proprerty ?value}
• a pattern is, by default, a conjunction of triples
SELECT ?x WHERE
{ ?x rdf:type ex:Person .
?x ex:name ?name . }
question:
• Query:
SELECT ?name WHERE {
?x name ?name .
?x email ?email .
}
• Base:
_:a name "Fabien"
_:b name "Thomas"
_:c name "Lincoln"
_:d name "Aline"
_:b email <mailto:thom@chaka.sn>
_:a email <mailto:Fabien.Gandon@inria.fr>
_:d email <mailto:avalandre@pachinko.jp>
_:a email <mailto:bafien@fabien.info>
• Results ?
x2
prefixes
to use namespaces:
PREFIX mit: <http://www.mit.edu#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?student
WHERE {
?student mit:registeredAt ?x .
?x foaf:homepage <http://www.mit.edu> .
}
Base namespace : BASE <…>
SPARQL result
failure/ success
values found
result formats
• a binding i.e. list of all the selected values
(SELECT) for each answer found;
(stable XML format ; e.g. for XSLT transformations)
• RDF sub-graphs for each answer found
(RDF/XML format ; e.g. for application integration)
• JSON (eg. ajax web applications)
• CSV/TSV (eg. export)
example of binding
results for previous query in XML
<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
<head>
<variable name="student"/>
</head>
<results ordered="false" distinct="false">
<result>
<binding name="student">
<uri>http//www.mit.edu/data.rdf#ndieng</uri></binding>
</result>
<result>
<binding name="student">
<uri>http//www.mit.edu/data.rdf#jdoe</uri></binding>
</result>
</sparql>
simplified syntax
triples with a common subject:
SELECT ?name ?fname
WHERE {
?x a Person;
name ?name ;
firstname ?fname ;
author ?y . }
list of values
?x firstname "Fabien", "Lucien" .
blank node
[firstname "Fabien"] or [] firstname "Fabien"
SELECT ?name ?fname
WHERE {
?x rdf:type Person .
?x name ?name .
?x firstname ?fname .
?x author ?y .
}
source
PREFIX mit: <http://www.mit.edu#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
FROM http//www.mit.edu/data.rdf
SELECT ?student
WHERE {
?student mit:registeredAt ?x .
?x foaf:homepage <http://www.mit.edu> .
}
optional part
PREFIX mit: <http://www.mit.edu#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?student ?name
WHERE {
?student mit:registeredAt ?x .
?x foaf:homepage <http://www.mit.edu> .
OPTIONAL {? student foaf:name ?name . }
}
possibly unbound
union
alternative graph patterns
PREFIX mit: <http://www.mit.edu#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?student ?name
WHERE {
?student mit:registeredAt ?x .
{
{
?x foaf:homepage <http://www.mit.edu> .
}
UNION
{
?x foaf:homepage <www.stanford.edu/> .
}
}
}
sort, filter and limit answers
PREFIX mit: <http://www.mit.edu#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?student ?name
WHERE {
?student mit:registeredAt ?x .
?x foaf:homepage <http://www.mit.edu> .
?student foaf:name ?name .
? student foaf:age ?age .
FILTER (?age > 22)
}
ORDER BY ?name
LIMIT 20
OFFSET 20
students older than 22 years sorted by name
results from number #21 to #40
operators
• Inside the FILTER:
– Comparators: <, >, =, <=, >=, !=
– Tests on variables : isURI(?x), isBlank(?x),
isLiteral(?x), bound(?x)
– Regular expression regex(?x, "A.*")
– Attributes and values: lang(), datatype(), str()
– Casting: xsd:integer(?x)
– External functions and extensions
– Boolean combinations: &&, ||
• In the where WHERE: @fr , ^^xsd:integer
• In the SELECT: distinct
other functions (v 1.1)
isNumeric(Val) test it is a numeric value
coalesce(val,…, val) first valid value
IRI(Str)/URI(Str) to build an iri/uri from a string
BNODE(ID) to build a blank node
RAND() random value between 0 and 1
ABS(Val) absolute value
CEIL(Val), FLOOR(Val), ROUND(Val)
NOW() today’s date
DAY(Date), HOURS(Date), MINUTES(Date),
MONTH(Date), SECONDS(Date),
TIMEZONE(Date), TZ(Date), YEAR(Date)
to access different parts of a date
MD5(Val), SHA1(Val), SHA256(Val),
SHA384(Val), SHA512(Val) hash functions
string / literal functions (v1.1)
STRDT(value, type) build a typed literal
STRLANG(value, lang) build a literal with a language
CONCAT(lit1,…,litn) concatenate a list of literal
CONTAINS(lit1,lit2), STRSTARTS(lit1,lit2),
STRENDS(lit1,lit2)
to test string inclusion
SUBSTR(lit, start [,length]) extract a sub string
ENCODE_FOR_URI (Str) encodes a string as URI
UCASE (Str), LCASE (Str) uppercase and lowercase
STRLEN (Str) length of the string
aggregates
group by + count, sum, min, max,
avg, group_concat, or sample
ex. average scores, grouped by the subject, but
only where the mean is greater than 10
SELECT (AVG(?score) AS ?average)
WHERE { ?student score ?score . }
GROUP BY ?student
HAVING(AVG(?score) > 10)
question:
PREFIX ex: <http://www.exemple.abc#>
SELECT ?person
WHERE {
?person rdf:type ?type .
FILTER(! ( ?type = ex:Man ))
}
minussubstract a pattern
PREFIX ex: <http://www.exemple.abc#>
SELECT ?person
WHERE {
{ ?x rdf:type ex:Person }
minus {?x rdf:type ex:Man}
}
not existcheck the absence of a pattern
PREFIX ex: <http://www.exemple.abc#>
SELECT ?person
WHERE {
?x ex:memberOf ?org .
filter (not exists
{?y ex:memberOf <Hell>})
}
if… then… else
prefix foaf: <http://xmlns.com/foaf/0.1/>
select * where {
?x foaf:name ?name ; foaf:age ?age .
filter (
if (langMatches( lang(?name), "FR"),
?age>=18, ?age>=21) )
}
test a value is in / not in a list
prefix foaf: <http://xmlns.com/foaf/0.1/>
select * where {
?x foaf:name ?n .
filter (?n in ("fabien", "olivier",
"catherine") )
}
valuespre-defined bindings
select ?person where {
?person name ?name .
VALUES (?name)
{ "Peter" "Pedro" "Pierre" }
}
paths
prefix foaf: <http://xmlns.com/foaf/0.1/>
select ?friends_fab where {
?x foaf:name "Fabien Gandon" ;
foaf:knows+ ?friends_fab ;
}
/ : sequence
| : alternative
+ : one or several
* : zero or several
? : optional
^ : reverse
! : negation
{min,max} : length
select expression
select ?x (year(?date) as ?year)
where {
?x birthdate ?date .
}
subquery / nested query
select ?name where {
{select (max(?age) as ?max)
where { ?person age ?age }
}
?senior age ?max
?senior name ?name
}
construct RDF as result
PREFIX mit: <http://www.mit.edu#>
PREFIX corp: <http://mycorp.com/schema#>
CONSTRUCT
{ ?student rdf:type corp:FuturExecutive . }
WHERE
{ ?student rdf:type mit:Student . }
free description
PREFIX mit: <http://www.mit.edu#>
DESCRIBE ?student
{ ?student rdf:type mit:Student . }
or
DESCRIBE <…URI…>
SPARQL protocol
exchange queries and their
results through the web
e.g. DBpedia
QAKIS
Gephi Plugin
(June 2012)
publication
process demo
• one-click setup
• import raw data
• transform to RDF
• publish on the web
• query online
Test on DBpedia
• Connect to:
http://dbpedia.org/snorql/ or
http://fr.dbpedia.org/sparql or …
http://wiki.dbpedia.org/Internationalization/Chapters
• Query:
SELECT * WHERE {
?x rdfs:label "Paris"@fr .
?x ?p ?v .
}
LIMIT 10
HTTP SPARQL
Linked Data Platform
HTTP access to LD resources & containers
get, post, put, delete resources from LD servers.
GET /people/fab HTTP/1.1
Host: data.inria.fr
PUT http://data.inria.fr/people/fab HTTP/1.1
Host: data.inria.fr
Content-Type: text/turtle
<fab> a foaf:Person ;
rdfs:label "Fabien" ;
foaf:mbox <fabien.gandon@inria.fr> .
?
!
SEMANTIC WEB
semantic web: linked data and semantics of schemas
a little semantics in a world of links
had typed links…
the original web
publish the data schemas
180°C+ = ?

+
= 
what is the last
document
you read?
documents
{ }
your answer relies on a
shared ontology
we infer from it
we all understood
Document
Book
Novel Short Story
sub
type
sub
type
#12
#21
#47 #48
"document"
"book"
"livre"
"novel"
"roman"
"short story"
"nouvelle"
#21  #12
#48  #21#47  #21
#21  #12
#48  #21#47  #21
ontological
knowledge formalized
#12
#21
#47 #48
languages
to formalize
ontologies
W3C®
PUBLISH
SEMANTICS
OF SCHEMAS
RDFS means RDF Schema
RDFS provides primitives to Write
lightweight ontologies
RDFS to define classes of resources
and organize their hierarchy
Document
Report
RDFS to define relations between
resources, their signature
and organize their hierarchy
creator
author
Document Person
FO  R  GF  GRmapping modulo an ontology
car
vehicle
car(x)vehicle(x)
GF
GRvehicle
car
O
an old schema of RDFS
W3C http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
example of RDFS schema
<rdf:RDF xml:base ="http://inria.fr/2005/humans.rdfs"
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns ="http://www.w3.org/2000/01/rdf-schema#>
<Class rdf:ID="Man">
<subClassOf rdf:resource="#Person"/>
<subClassOf rdf:resource="#Male"/>
<label xml:lang="en">man</label>
<comment xml:lang="en">an adult male person</comment>
</Class>
<Man> a Class ; subClassOf <Person>, <Male> .
example of RDFS properties
<rdf:RDF xml:base ="http://inria.fr/2005/humans.rdfs"
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns ="http://www.w3.org/2000/01/rdf-schema#>
<rdf:Property rdf:ID="hasMother">
<subPropertyOf rdf:resource="#hasParent"/>
<range rdf:resource="#Female"/>
<domain rdf:resource="#Human"/>
<label xml:lang="en">has for mother</label>
<comment xml:lang="en">to have for parent a female.
</comment>
</rdf:Property>
<hasMother> a rdf:Property ;
subPropertyOf <hasParent> ;
range <Female> ; domain <Human> .
example of RDF using this schema
<rdf:RDF xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns="http://inria.fr/2005/humans.rdfs#"
xml:base=" http://inria.fr/2005/humans.rdfs-instances" >
<rdf:Description rdf:ID="Lucas">
<rdf:type
rdf:resource="http://inria.fr/2005/humans.rdfs#Man"/>
<hasMother rdf:resource="#Laura"/>
</rdf:Description>
<Man rdf:ID="Lucas">
<hasMother rdf:resource="#Laura"/>
</Man>
<Luca> a Man; hasMother <Laura> .
rdfs:label
a resource may have one or more labels in
one or more natural language
<rdf:Property rdf:ID='name'>
<rdfs:domain rdf:resource='Person'/>
<rdfs:range rdf:resource='&rdfs;Literal'/>
<rdfs:label xml:lang='fr'>nom</rdfs:label>
<rdfs:label xml:lang='fr'>nom de famille</rdfs:label>
<rdfs:label xml:lang='en'>name</rdfs:label>
</rdf:Property>
<name> a rdf:Property ;
range rdfs:Literal ; domain <Person> ;
label "nom"@fr, "nom de famille"@fr, "name"@en .
rdfs:comment & rdfs:seeAlso
comments provide definitions and explanations in natural
language
<rdfs:Class rdf:about=‘#Woman’>
<rdfs:subClassOf rdf:resource="#Person"/>
<rdfs:comment xml:lang=‘fr’>une personne adulte du
sexe féminin</rdfs:comment>
<rdfs:comment xml:lang=‘en’>a female adult person
</rdfs:comment>
</rdfs:Class>
see also…
<rdfs:Class rdf:about=‘#Man’>
<rdfs:seeAlso rdf:resource=‘#Woman’/>
</rdfs:Class>
<Woman> a rdfs:Class ; rdfs:subClassOf <Person> ;
rdfs:comment "adult femal person"@en ;
rdfs:comment "une adulte de sexe féminin"@fr .
<Man> a rdfs:Class ; rdfs:seeAlso <Woman> .
CORESE/ KGRAM [Corby et al.]
OWLprovides additional
primitives for
heavyweight ontologies
OWLin one…
enumeration
intersection
union
complement
 disjunction
restriction!
cardinality
1..1
algebraic properties
equivalence
[>18]
disjoint union
value restrict.
disjoint properties
qualified cardinality
1..1
!
individual prop. neg
chained prop.


keys
…
enumerated class
define a class by providing all its members
<owl:Class rdf:id="EyeColor">
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:ID="Blue"/>
<owl:Thing rdf:ID="Green"/>
<owl:Thing rdf:ID="Brown"/>
<owl:Thing rdf:ID="Black"/>
</owl:oneOf>
</owl:Class>
{a,b,c,d,e}
classes defined by union
of other classes
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Person"/>
<owl:Class rdf:about="#Group"/>
</owl:unionOf>
</owl:Class>
classes defined by intersection
of other classes
<owl:Class rdf:ID="Man">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Male"/>
<owl:Class rdf:about="#Person"/>
</owl:intersectionOf>
</owl:Class>
complement and disjunction
complement class
<owl:Class rdf:ID="Male">
<owl:complementOf rdf:resource="#Female"/>
</owl:Class>
declare a disjunction
<owl:Class rdf:ID="Square">
<owl:disjointWith rdf:resource="#Round"/>
</owl:Class>

restriction on all values
<owl:Class rdf:ID="Herbivore">
<subClassOf rdf:resource="#Animal"/>
<subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#eats" />
<owl:allValuesFrom rdf:resource="#Plant" />
</owl:Restriction>
</subClassOf>
</owl:Class>
!
restriction on some values
<owl:Class rdf:ID="Sportive">
<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty rdf:resource="#hobby" />
<owl:someValuesFrom rdf:resource="#Sport" />
</owl:Restriction>
</owl:equivalentClass>
</owl:Class>
!
restriction to an exact value
<owl:Class rdf:ID="Bike">
<subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#nbWheels" />
<owl:hasValue>2</owl:hasValue>
</owl:Restriction>
</subClassOf>
</owl:Class>
!
restriction on cardinality
how many times a property is used for
a same subject but with different values
• Constraints: minimum, maximum, exact number
• Exemple
<owl:Class rdf:ID="Person">
<subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#name" />
<owl:maxCardinality>1</owl:maxCardinality>
</owl:Restriction>
</subClassOf>
</owl:Class>
1..1
types of properties
• ObjectProperty are relations between resources only
e.g. hasParent(#thomas,#stephan)
• DatatypeProperty have a literal value possibly typed
ex:hasAge(#thomas,16^^xsd:int)
• AnnotationProperty are ignored in inferences and used
for documentation and extensions
algebraic properties
• Symmetric property, xRy  yRx
<owl:SymmetricProperty rdf:ID="hasSpouse" />
• Inverse property, xR1y  yR2x
<rdf:Property rdf:ID="hasChild">
<owl:inverseOf rdf:resource="#hasParent"/>
</rdf:Property>
• Transitive property, xRy & yRz  xRz
<owl:TransitiveProperty rdf:ID="hasAncestor" />
• Functional property, xRy & xRz  y=z
<owl:FunctionalProperty rdf:ID="hasMother" />
• Inverse functional property, xRy & zRy  x=z
<owl:InverseFunctionalProperty
rdf:ID="hasSocialSecurityNumber" />
!
!
equivalencies and alignment
• equivalent classes : owl:equivalentClass
• equivalent properties: owl:equivalentProperty
• identical or different resources:
owl:sameAs, owl:differentFrom

document the schemas
description of the ontology
owl:Ontology, owl:imports, owl:versionInfo,
owl:priorVersion, owl:backwardCompatibleWith,
owl:incompatibleWith
versions of classes and properties
owl:DeprecatedClass, owl:DeprecatedProperty
OWL profiles
EL: large numbers of properties and/or classes
and polynomial time.
QL: large volumes of instance data, and
conjunctive query answering using
conventional relational database in LOGSPACE
RL: scalable reasoning without sacrificing too
much expressive power using rule-based
reasoning in polynomial time
VoCamp
camps for vocabulary hackers
semantic waste separation
the web is a garbage can,
the semantic web will be a semantic garbage can.
Discovery Hub
Rule Interchange Format (RIF)
core and extensions
e.g. infer new relations
rule: if a member of a team is interested in a topic then
the team as a whole is interested in that topic
?person interestedBy ?topic
?person member ?team

?team interestedBy ?topic
interestedByPerson
?person
Topic
?topic
member Team
?team
interestedBy
question: forward chaining
ex:Fabien ex:activity ex:Research
ex:Fabien ex:in ex:WimmicsTeam
ex:WimmicsTeam ex:in ex:INRIASophia
ex:INRIASophia ex:in ex:INRIA
ex:WimmicsTeam ex:activity ex:Research
ex:INRIASophia ex:activity ex:Research
ex:INRIA ex:activity ex:Research
IF
?x ex:activity ?y
?x ex:in ?z
THEN
?z ex:activity ?y
RIF Core
subset shared by most systems: add only
employee1 [function-> “executive”
bonus -> 10 ]
ForAll ?emp (?emp [ bonus -> 15 ] :-
?emp [ function -> “executive” ] )
employee1 [function -> “executive”
bonus -> 10
bonus -> 15 ]
RIF Core
monotonic Horn clause on frames
conclusion :- hyp1 and hyp2 and hyp3 …
• IRI as constants
• frames as triplets
• lists
• existential quantification in condition
• class membership and equality in condition
RIF BLD (Basic Logic Dialect)
still monotonic : no changes.
• conjunction in conclusion
• fonctions, predicates and named arguments f(?x)
Maganer(?e) :- Exists ?g (manage(?e ?g))
• disjunction in condition
• equality in conclusion
• sub-classes
RIF PRD (Production Rules Dialect)
full production rules in forward chaining
• add, delete, modify, run
• instantiate frames (new)
• negation as failure (ineg)
• no longer monotonic
Forall ?customer ?purchasesYTD
(If And( ?customer#ex:Customer
?customer[ex:purchasesYTD->?purchasesYTD]
External(pred:numeric-greater-than(?purchasesYTD 5000)) )
Then Do( Modify(?customer[ex:status->"Gold"]) ) )
(from PRD Rec. Doc.)
RIF, RIF, RIF,…
• DTB (Datatypes and Built-Ins) : data types with their
predicates and functions
• FLD: how to specify new dialects extending BLD
• SWC : syntax and semantics to combine RIF, RDF
graphs, RDFS and OWL (RL)
SKOS
knowledge
thesauri,
classifications,
subjects,
taxonomies,
folksonomies,
... controlled
vocabulary
168
natural language expressions to refer to concepts
169
inria:CorporateSemanticWeb
skos:prefLabel "corporate semantic web"@en;
skos:prefLabel "web sémantique d'entreprise"@fr;
skos:altLabel "corporate SW"@en;
skos:altLabel "CSW"@en;
skos:hiddenLabel "web semantique d'entreprise"@fr.
labels
between conceptsinria:CorporateSemanticWeb
skos:broader w3c:SemanticWeb;
skos:narrower inria:CorporateSemanticWiki;
skos:related inria:KnowledgeManagement.
relations
inria:CorporateSemanticWeb
skos:scopeNote "only within KM community";
skos:definition "a semantic web on an intranet";
skos:example "Nokia's internal use of RDF gateway";
skos:historyNote "semantic intranet until 2006";
skos:editorialNote "keep wikipedia def. uptodate";
skos:changeNote "acronym added by fabien".
EXTENDING TO OTHER SOURCES
toward all forms of data on the web
many databuried and dormant in web pages
R2RML
a standard transformation of a
relationnal database in RDF
schema
mapping
direct mapping
• cells of a line  triples with a shared subject
• names of columns  names of properties
• each value of a cell  one object
• links between tables
name fname age
doe john 34
did sandy 45
#s1 :name "doe"
#s1 :fname "john"
#s1 :age "34"
#s2 :name "did"
#s2 :fname "sandy"
#s2 :age "45"
#s3 …
example of mapping
ISBN Author Title Year
0006511409X id_xyz The Glass Palace 2000
ID Name Homepage
id_xyz Ghosh, Amitav http://www.amitavghosh.com
http://…isbn/000651409X
Ghosh, Amitav http://www.amitavghosh.com
The Glass Palace
2000
a:name
a:homepage
a:author
(1) transforming
table of persons
ISBN Author Title Year
0006511409X id_xyz The Glass Palace 2000
ID Name Homepage
id_xyz Ghosh, Amitav http://www.amitavghosh.com
http://…isbn/000651409X
Ghosh, Amitav http://www.amitavghosh.com
The Glass Palace
2000
a:name
a:homepage
a:author
:P_Table rdf:type rr:TriplesMap ;
rr:subjectMap [
rr:termtype "BlankNode" ;
rr:column "ID" ;
] ;
rr:predicateObjectMap [
rr:predicateMap [
rr:predicate a:name
];
rr:objectMap [
rr:column "Name"
]
] ;
rr:predicateObjectMap [
rr:predicateMap [
rr:predicate a:homepage
];
rr:objectMap [
rr:column "Homepage" ;
rr:termtype "IRI"
]
] ;
(2) transforming
table of books
ISBN Author Title Year
0006511409X id_xyz The Glass Palace 2000
ID Name Homepage
id_xyz Ghosh, Amitav http://www.amitavghosh.com
http://…isbn/000651409X
Ghosh, Amitav http://www.amitavghosh.com
The Glass Palace
2000
a:name
a:homepage
a:author
:B_Table rdf:type rr:TriplesMap ;
rr:subjectMap [
rr:template "http://...isbn/{ISBN}";
];
rr:predicateObjectMap [
rr:predicateMap [
rr:predicate a:title
];
rr:objectMap [
rr:column "Title"
]
] ;
rr:predicateObjectMap [
rr:predicateMap [
rr:predicate a:year
];
rr:objectMap [
rr:column "Year" ;
]
] ;
(3) linking tables
ISBN Author Title Year
0006511409X id_xyz The Glass Palace 2000
ID Name Homepage
id_xyz Ghosh, Amitav http://www.amitavghosh.com
http://…isbn/000651409X
Ghosh, Amitav http://www.amitavghosh.com
The Glass Palace
2000
a:name
a:homepage
a:author
:B_Table a rr:TriplesMap ;
...
rr:refPredicateObjectMap [
rr:refPredicateMap [
rr:predicate a:author
];
rr:refObjectMap [
rr:parentTriplesMap :P_Table ;
rr:joinCondition
"{child}.Author = {parent}.ID"
]
]
].
schema.org
schemas to improve index, search and display e.g:
• Creative works, Book, Movie, MusicRecording, Recipe, TVSeries ...
• Embedded non-text objects, AudioObject, ImageObject, VideoObject
• Event
• Organization
• Person
• Place, LocalBusiness, Restaurant ...
• Product, Offer, AggregateOffer
• Review, AggregateRating
= + + +
RDFa 1.1: example on schema.org
<div vocab="http://schema.org/" typeof="Product">
<img rel="image" src="dell-30in-lcd.jpg" />
<span property="name">Dell UltraSharp 30" LCD Monitor</span>
<div rel="hasAggregateRating" >
<div typeof="http://schema.org/AggregateRating">
<span property="ratingValue">87</span>
out of <span property="bestRating">100</span>
based on <span property="ratingCount">24</span> user ratings
</div>
</div>
<div rel="offers" >
<div typeof="http://schema.org/AggregateOffer">
<span property="lowPrice">$1250</span>
to <span property="highPrice">$1495</span>
from <span property="offerCount">8</span> sellers
</div>
</div>
(…)
PS: RDFa Lite = vocab + typeof + property + about + prefix.
GRDDL opens formats
by allowing us to declare RDF extraction
algorithms inside XML documents
<head profile="http://www.w3.org/2003/g/data-view">
<title>The man who mistook his wife for a hat</title>
<link rel="transformation"
href="http://www.w3.org/2000/06/ dc-extract/dc-extract.xsl" />
<meta name="DC.Subject" content="clinical tales" />
…
code inside the page
<html xmlns="http://www.w3.org/1999/xhtml" dir="ltr" lang="en-US"
xmlns:fb="https://www.facebook.com/2008/fbml">
<head prefix="og: http://ogp.me/ns# fb: http://ogp.me/ns# YOUR_NAMESPACE:
http://ogp.me/ns/apps/YOUR_NAMESPACE#">
<meta property="fb:app_id" content="YOUR_APP_ID" />
<meta property="og:type" content="YOUR_NAMESPACE:recipe" />
<meta property="og:title" content="Stuffed Cookies" />
<meta property="og:image" content="http://example.com/cookie.jpg" />
<meta property="og:description" content="The Turducken of Cookies" />
<meta property="og:url" content="http://example.com/cookie.html">
<script type="text/javascript">
function postCook()
{ FB.api('/me/YOUR_NAMESPACE:cook' +
'?recipe=http://example.com/cookie.html','post', (…) }); }
</script>
</head>
<body>
(…)
<form>
<input type="button" value="Cook" onclick="postCook()" />
</form>
</body>
</html>
VoID: describing RDF datasets/linksets
:DBpedia a void:Dataset;
void:sparqlEndpoint <http://dbpedia.org/sparql>;
void:feature :RDFXML ;
void:subset :DBpedia2Geonames ;
void:uriLookupEndpoint <http://lookup.dbpedia.org/api/search.asmx/KeywordSearch? QueryString=> ;
dcterms:modified "2008-11-17"^^xsd:date;
dcterms:title "DBPedia";
dcterms:description "RDF data extracted from Wikipedia";
dcterms:publisher :DBpedia_community;
dcterms:license <http://creativecommons.org/licenses/by-sa/3.0/>;
dcterms:source <http://dbpedia.org/resource/Wikipedia>.
:Geonames a void:Dataset;
void:sparqlEndpoint <http://geosparql.appspot.com/query>;
void:triples "107983838"^^xsd:integer ;
dcterms:subject <http://dbpedia.org/resource/Location> .
:DBpedia2Geonames a void:Linkset ;
void:linkPredicate owl:sameAs ;
void:target :DBpedia ;
void:target :Geonames .
e.g. DBpedia dataset
DCAT: describing any dataset
Data Cube: publish multi-dimensional
data (statistics)
CSV-LD & Linked CSV
• contexts to interpret and generate CSV
• conventions for CSV to be linked in RDF
SAWSDLsemantic annotation of WSDL (W3C Rec. 2007)
SAWSDL…
semantically
services annotated and searched
providerserviceclientrequester
directory
3
12
a (too) fast three-tier summary
RDFa, microdata,…
LDP, HTTP, JSON-LD, …
R2RML, SPARQL, RDF, …
presentation
logic
data
W3C®
PROVENANCE
Provenance: PROV-DM & PROV-O
describe entities and activities
involved in providing a resource
PROV-O provenance ontology
PROV-O provenance ontology
PROV-DM & PROV-O: primer example
ex:compose prov:used ex:dataSet1 ;
prov:used ex:regionList .
ex:composition prov:wasGeneratedBy ex:compose .
ex:illustrate prov:used ex:composition .
ex:chart1 prov:wasGeneratedBy ex:illustrate .
PROV primer full example
annotating multimédia elements
• semantic description of multimedia
resources [Media Annotation]
• pointing to internal elements of
multimedia resources [Media Fragment]
multimedia fragment
• part of the URL after the #
http://www.example.com/example.ogv#track=audio&t=10,20
• dimensions:
– temporal:
t=10,20 / t=npt:,0:02:01.5 / t=clock:2009-07-26T11:19:01Z
– spatial:
xywh=pixel:160,120,320,240 / xywh=percent:25,25,50,50
– track:
track=1 / track=video&track=subtitle / track=Wide
– named:
id=chapter-1
• fragment are not sent with the URL but encoded in
the HTTP request
ontologies for multimedia descriptions
ontology for Media Resources 1.0
<video.ogv> a ma:MediaResource ;
ma:hasTrack <video.ogv#track=audio>,
<video.ogv#track=subtitle>;
ma:hasSubtitling <video.ogv#track=subtitle> ;
ma:hasSigning <video.ogv#xywh=percent:70,70,90,90> .
<video.ogv#track=audio> a ma:AudioTrack ;
ma:hasLanguage [ rdfs:label "en-GB" ] ;
ma:hasFragment <video.ogv#track=audio&t=10,20> .
<video.ogv#track=audio&t=10,20> a ma:MediaFragment ;
ma:hasLanguage [ rdfs:label "fr" ] .
<video.ogv#track=subtitle> a ma:DataTrack ;
ma:hasLanguage [ rdfs:label "es" ] .
<video.ogv#xywh=percent:70,70,90,90> a ma:MediaFragment ;
ma:hasLanguage [ rdfs:label "bfi" ] .
Time line
some pointers• W3C standards
http://www.w3.org/standards/semanticweb/
• SW Tools
http://www.w3.org/2001/sw/wiki/Tools
• Linked Data Book
http://linkeddatabook.com/editions/1.0/
• W3DevCampus
http://www.w3devcampus.com/
• EUCLID material
http://www.euclid-project.eu/
http://www.w3.org/2001/sw/wiki/Tools
open standards
sources
data
doggy-bag
impossible
to predict every
usage
black boxes
avoid building
explicit
make conceptualizations
open your data
to those who could use them
#WatchDogs #WeAreData @ubisoft
66 FOAF primitives 3 475 908 348 references (2)
x 52 millions
“a small tree ruling a big graph”(1)
(1) Franck Van Harmelen, ISWC 2011
(2) Libby Miller, 2009
“semantic web”
and not
“semanticweb”
[C. Welty, ISWC 2007]
“a lightweight ontology
allows us to do
lightweight reasoning”
[J. Hendler, ISWC 2007]
data
data bases
data models
open data
linked data
closed data
enterprise data
linked enterprise data
linked open data
data schemas
semantic web of data
data structures
linked data schemas
web of data
big data
big data streams
data streams
linked data streams web of sensors, things, …
VELOCITY
big linked data
VOLUME
VARIETY
VVeb data
linked healthcare data
VICINITY
VISIBILITY
personal data
data mining
data type
web 1, 2
price convert?
person homepage?
more info?
web 1, 2, 3
identify
describe & link
query
reasoning
trace
URI
RDF
HTTP, SPARQL, LDP
RDFS & OWL
PROV-O
GOALS AND MEANS
identify
describe & link
query
reasoning
trace
http://fabien.fr#me
#me type man
select * {?r type ?t}
man subClassOf male
wasAttributedTo #me
GOALS AND MEANS
informal
formal
usage representation
one web…
data
person document
program
metadata
he who controls metadata, controls the web
and through the world-wide web many things in our world.
fabien, gandon, @fabien_gandon, http://fabien.info
WWW 2014

More Related Content

What's hot

LODAC 2017 Linked Open Data Workshop
LODAC 2017 Linked Open Data WorkshopLODAC 2017 Linked Open Data Workshop
LODAC 2017 Linked Open Data Workshop
Myungjin Lee
 
Web ontology language (owl)
Web ontology language (owl)Web ontology language (owl)
Web ontology language (owl)
Ameer Sameer
 
Introduction to Ontology Concepts and Terminology
Introduction to Ontology Concepts and TerminologyIntroduction to Ontology Concepts and Terminology
Introduction to Ontology Concepts and Terminology
Steven Miller
 
Introduction To RDF and RDFS
Introduction To RDF and RDFSIntroduction To RDF and RDFS
Introduction To RDF and RDFS
Nilesh Wagmare
 
RDF data model
RDF data modelRDF data model
RDF data model
Jose Emilio Labra Gayo
 
RDF 개념 및 구문 소개
RDF 개념 및 구문 소개RDF 개념 및 구문 소개
RDF 개념 및 구문 소개
Dongbum Kim
 
Rdf
RdfRdf
RDF/OWLの概要及びOSS実装、及び活用イメージについて
RDF/OWLの概要及びOSS実装、及び活用イメージについてRDF/OWLの概要及びOSS実装、及び活用イメージについて
RDF/OWLの概要及びOSS実装、及び活用イメージについて
Masayuki Isobe
 
Designing and developing vocabularies in RDF
Designing and developing vocabularies in RDFDesigning and developing vocabularies in RDF
Designing and developing vocabularies in RDF
Open Data Support
 
Semantic web Document
Semantic web DocumentSemantic web Document
Semantic web Document
ap
 
Introduction to the Semantic Web
Introduction to the Semantic WebIntroduction to the Semantic Web
Introduction to the Semantic Web
Marin Dimitrov
 
Introduction to the Data Web, DBpedia and the Life-cycle of Linked Data
Introduction to the Data Web, DBpedia and the Life-cycle of Linked DataIntroduction to the Data Web, DBpedia and the Life-cycle of Linked Data
Introduction to the Data Web, DBpedia and the Life-cycle of Linked Data
Sören Auer
 
Semantic web
Semantic webSemantic web
Semantic web
Abid Fakhre Alam
 
Semantic Web Technologies For Digital Libraries
Semantic Web Technologies For Digital LibrariesSemantic Web Technologies For Digital Libraries
Semantic Web Technologies For Digital Libraries
Nikesh Narayanan
 
도서관 Linked Open Data의 필요성
도서관 Linked Open Data의 필요성도서관 Linked Open Data의 필요성
도서관 Linked Open Data의 필요성
Hansung University
 
[오원석 Kswc2010]데이터의 가치를 높이는 linked data
[오원석 Kswc2010]데이터의 가치를 높이는 linked data[오원석 Kswc2010]데이터의 가치를 높이는 linked data
[오원석 Kswc2010]데이터의 가치를 높이는 linked data
LiST Inc
 
RDF and OWL
RDF and OWLRDF and OWL
RDF and OWL
Rachel Lovinger
 
The Semantic Web #1 - Overview
The Semantic Web #1 - OverviewThe Semantic Web #1 - Overview
The Semantic Web #1 - Overview
Myungjin Lee
 
Metadonnees Introduction
Metadonnees IntroductionMetadonnees Introduction
Metadonnees Introductionjbcomte
 
Linked Data의 RDF 어휘 이해하고 체험하기 - FOAF, SIOC, SKOS를 중심으로 -
Linked Data의 RDF 어휘 이해하고 체험하기 - FOAF, SIOC, SKOS를 중심으로 -Linked Data의 RDF 어휘 이해하고 체험하기 - FOAF, SIOC, SKOS를 중심으로 -
Linked Data의 RDF 어휘 이해하고 체험하기 - FOAF, SIOC, SKOS를 중심으로 -
Dongbum Kim
 

What's hot (20)

LODAC 2017 Linked Open Data Workshop
LODAC 2017 Linked Open Data WorkshopLODAC 2017 Linked Open Data Workshop
LODAC 2017 Linked Open Data Workshop
 
Web ontology language (owl)
Web ontology language (owl)Web ontology language (owl)
Web ontology language (owl)
 
Introduction to Ontology Concepts and Terminology
Introduction to Ontology Concepts and TerminologyIntroduction to Ontology Concepts and Terminology
Introduction to Ontology Concepts and Terminology
 
Introduction To RDF and RDFS
Introduction To RDF and RDFSIntroduction To RDF and RDFS
Introduction To RDF and RDFS
 
RDF data model
RDF data modelRDF data model
RDF data model
 
RDF 개념 및 구문 소개
RDF 개념 및 구문 소개RDF 개념 및 구문 소개
RDF 개념 및 구문 소개
 
Rdf
RdfRdf
Rdf
 
RDF/OWLの概要及びOSS実装、及び活用イメージについて
RDF/OWLの概要及びOSS実装、及び活用イメージについてRDF/OWLの概要及びOSS実装、及び活用イメージについて
RDF/OWLの概要及びOSS実装、及び活用イメージについて
 
Designing and developing vocabularies in RDF
Designing and developing vocabularies in RDFDesigning and developing vocabularies in RDF
Designing and developing vocabularies in RDF
 
Semantic web Document
Semantic web DocumentSemantic web Document
Semantic web Document
 
Introduction to the Semantic Web
Introduction to the Semantic WebIntroduction to the Semantic Web
Introduction to the Semantic Web
 
Introduction to the Data Web, DBpedia and the Life-cycle of Linked Data
Introduction to the Data Web, DBpedia and the Life-cycle of Linked DataIntroduction to the Data Web, DBpedia and the Life-cycle of Linked Data
Introduction to the Data Web, DBpedia and the Life-cycle of Linked Data
 
Semantic web
Semantic webSemantic web
Semantic web
 
Semantic Web Technologies For Digital Libraries
Semantic Web Technologies For Digital LibrariesSemantic Web Technologies For Digital Libraries
Semantic Web Technologies For Digital Libraries
 
도서관 Linked Open Data의 필요성
도서관 Linked Open Data의 필요성도서관 Linked Open Data의 필요성
도서관 Linked Open Data의 필요성
 
[오원석 Kswc2010]데이터의 가치를 높이는 linked data
[오원석 Kswc2010]데이터의 가치를 높이는 linked data[오원석 Kswc2010]데이터의 가치를 높이는 linked data
[오원석 Kswc2010]데이터의 가치를 높이는 linked data
 
RDF and OWL
RDF and OWLRDF and OWL
RDF and OWL
 
The Semantic Web #1 - Overview
The Semantic Web #1 - OverviewThe Semantic Web #1 - Overview
The Semantic Web #1 - Overview
 
Metadonnees Introduction
Metadonnees IntroductionMetadonnees Introduction
Metadonnees Introduction
 
Linked Data의 RDF 어휘 이해하고 체험하기 - FOAF, SIOC, SKOS를 중심으로 -
Linked Data의 RDF 어휘 이해하고 체험하기 - FOAF, SIOC, SKOS를 중심으로 -Linked Data의 RDF 어휘 이해하고 체험하기 - FOAF, SIOC, SKOS를 중심으로 -
Linked Data의 RDF 어휘 이해하고 체험하기 - FOAF, SIOC, SKOS를 중심으로 -
 

Viewers also liked

Introduction to the Semantic Web
Introduction to the Semantic WebIntroduction to the Semantic Web
Introduction to the Semantic Web
Tomek Pluskiewicz
 
Web Trends to Watch in 2014
Web Trends to Watch in 2014Web Trends to Watch in 2014
Web Trends to Watch in 2014
David King
 
Video Tools for Teachers - Digital Video
Video Tools for Teachers - Digital VideoVideo Tools for Teachers - Digital Video
Video Tools for Teachers - Digital Video
Nik Peachey
 
What I Carry: 10 Tools for Success
What I Carry: 10 Tools for SuccessWhat I Carry: 10 Tools for Success
What I Carry: 10 Tools for Success
Jonathon Colman
 
Dear NSA, let me take care of your slides.
Dear NSA, let me take care of your slides.Dear NSA, let me take care of your slides.
Dear NSA, let me take care of your slides.
Emiland
 
Deep Learning through Examples
Deep Learning through ExamplesDeep Learning through Examples
Deep Learning through Examples
Sri Ambati
 
Building a keyboard from scratch
Building a keyboard from scratchBuilding a keyboard from scratch
Building a keyboard from scratch
Jesse Vincent
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShare
SlideShare
 
Web 3.0 The Semantic Web
Web 3.0 The Semantic WebWeb 3.0 The Semantic Web
Web 3.0 The Semantic Web
Hatem Mahmoud
 
How to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & TricksHow to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & Tricks
SlideShare
 
Thermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat TransferThermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat Transfer
VJTI Production
 
Occupational Safety and Health Management in Construction Industry
Occupational Safety and Health Management in Construction IndustryOccupational Safety and Health Management in Construction Industry
Occupational Safety and Health Management in Construction Industry
Norrazman Zaiha Zainol
 
The Ultimate Guide to Creating Visually Appealing Content
The Ultimate Guide to Creating Visually Appealing ContentThe Ultimate Guide to Creating Visually Appealing Content
The Ultimate Guide to Creating Visually Appealing Content
Neil Patel
 
The Semantic Web
The Semantic WebThe Semantic Web
The Semantic Web
ostephens
 
What Makes Great Infographics
What Makes Great InfographicsWhat Makes Great Infographics
What Makes Great Infographics
SlideShare
 
What to Upload to SlideShare
What to Upload to SlideShareWhat to Upload to SlideShare
What to Upload to SlideShare
SlideShare
 
Masters of SlideShare
Masters of SlideShareMasters of SlideShare
Masters of SlideShare
Kapost
 
STOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
STOP! VIEW THIS! 10-Step Checklist When Uploading to SlideshareSTOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
STOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
Empowered Presentations
 
You Suck At PowerPoint!
You Suck At PowerPoint!You Suck At PowerPoint!
You Suck At PowerPoint!
Jesse Desjardins - @jessedee
 
10 Ways to Win at SlideShare SEO & Presentation Optimization
10 Ways to Win at SlideShare SEO & Presentation Optimization10 Ways to Win at SlideShare SEO & Presentation Optimization
10 Ways to Win at SlideShare SEO & Presentation Optimization
Oneupweb
 

Viewers also liked (20)

Introduction to the Semantic Web
Introduction to the Semantic WebIntroduction to the Semantic Web
Introduction to the Semantic Web
 
Web Trends to Watch in 2014
Web Trends to Watch in 2014Web Trends to Watch in 2014
Web Trends to Watch in 2014
 
Video Tools for Teachers - Digital Video
Video Tools for Teachers - Digital VideoVideo Tools for Teachers - Digital Video
Video Tools for Teachers - Digital Video
 
What I Carry: 10 Tools for Success
What I Carry: 10 Tools for SuccessWhat I Carry: 10 Tools for Success
What I Carry: 10 Tools for Success
 
Dear NSA, let me take care of your slides.
Dear NSA, let me take care of your slides.Dear NSA, let me take care of your slides.
Dear NSA, let me take care of your slides.
 
Deep Learning through Examples
Deep Learning through ExamplesDeep Learning through Examples
Deep Learning through Examples
 
Building a keyboard from scratch
Building a keyboard from scratchBuilding a keyboard from scratch
Building a keyboard from scratch
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShare
 
Web 3.0 The Semantic Web
Web 3.0 The Semantic WebWeb 3.0 The Semantic Web
Web 3.0 The Semantic Web
 
How to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & TricksHow to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & Tricks
 
Thermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat TransferThermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat Transfer
 
Occupational Safety and Health Management in Construction Industry
Occupational Safety and Health Management in Construction IndustryOccupational Safety and Health Management in Construction Industry
Occupational Safety and Health Management in Construction Industry
 
The Ultimate Guide to Creating Visually Appealing Content
The Ultimate Guide to Creating Visually Appealing ContentThe Ultimate Guide to Creating Visually Appealing Content
The Ultimate Guide to Creating Visually Appealing Content
 
The Semantic Web
The Semantic WebThe Semantic Web
The Semantic Web
 
What Makes Great Infographics
What Makes Great InfographicsWhat Makes Great Infographics
What Makes Great Infographics
 
What to Upload to SlideShare
What to Upload to SlideShareWhat to Upload to SlideShare
What to Upload to SlideShare
 
Masters of SlideShare
Masters of SlideShareMasters of SlideShare
Masters of SlideShare
 
STOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
STOP! VIEW THIS! 10-Step Checklist When Uploading to SlideshareSTOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
STOP! VIEW THIS! 10-Step Checklist When Uploading to Slideshare
 
You Suck At PowerPoint!
You Suck At PowerPoint!You Suck At PowerPoint!
You Suck At PowerPoint!
 
10 Ways to Win at SlideShare SEO & Presentation Optimization
10 Ways to Win at SlideShare SEO & Presentation Optimization10 Ways to Win at SlideShare SEO & Presentation Optimization
10 Ways to Win at SlideShare SEO & Presentation Optimization
 

Similar to An introduction to Semantic Web and Linked Data

An introduction to Semantic Web and Linked Data
An introduction to Semantic  Web and Linked DataAn introduction to Semantic  Web and Linked Data
An introduction to Semantic Web and Linked Data
Gabriela Agustini
 
An introduction to Semantic Web and Linked Data
An introduction to Semantic Web and Linked DataAn introduction to Semantic Web and Linked Data
An introduction to Semantic Web and Linked Data
Gabriela Agustini
 
W3C Tutorial on Semantic Web and Linked Data at WWW 2013
W3C Tutorial on Semantic Web and Linked Data at WWW 2013W3C Tutorial on Semantic Web and Linked Data at WWW 2013
W3C Tutorial on Semantic Web and Linked Data at WWW 2013
Fabien Gandon
 
Introduction to RDF
Introduction to RDFIntroduction to RDF
Introduction to RDF
Dr Sukhpal Singh Gill
 
SWT Lecture Session 2 - RDF
SWT Lecture Session 2 - RDFSWT Lecture Session 2 - RDF
SWT Lecture Session 2 - RDF
Mariano Rodriguez-Muro
 
Two graph data models : RDF and Property Graphs
Two graph data models : RDF and Property GraphsTwo graph data models : RDF and Property Graphs
Two graph data models : RDF and Property Graphs
andyseaborne
 
Creating Web APIs with JSON-LD and RDF
Creating Web APIs with JSON-LD and RDFCreating Web APIs with JSON-LD and RDF
Creating Web APIs with JSON-LD and RDF
donaldlsmithjr
 
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
Josef Petrák
 
ontology.ppt
ontology.pptontology.ppt
ontology.ppt
Prerak10
 
Understanding RDF: the Resource Description Framework in Context (1999)
Understanding RDF: the Resource Description Framework in Context  (1999)Understanding RDF: the Resource Description Framework in Context  (1999)
Understanding RDF: the Resource Description Framework in Context (1999)
Dan Brickley
 
SemanticWeb Nuts 'n Bolts
SemanticWeb Nuts 'n BoltsSemanticWeb Nuts 'n Bolts
SemanticWeb Nuts 'n Bolts
Rinke Hoekstra
 
Graph databases & data integration v2
Graph databases & data integration v2Graph databases & data integration v2
Graph databases & data integration v2
Dimitris Kontokostas
 
What’s in a structured value?
What’s in a structured value?What’s in a structured value?
What’s in a structured value?
Andy Powell
 
Semantic Web(Web 3.0) SPARQL
Semantic Web(Web 3.0) SPARQLSemantic Web(Web 3.0) SPARQL
Semantic Web(Web 3.0) SPARQL
Daniel D.J. UM
 
Webofdata
WebofdataWebofdata
Webofdata
Bill Roberts
 
Bio ontologies and semantic technologies
Bio ontologies and semantic technologiesBio ontologies and semantic technologies
Bio ontologies and semantic technologies
Prof. Wim Van Criekinge
 
Data in RDF
Data in RDFData in RDF
when the link makes sense
when the link makes sensewhen the link makes sense
when the link makes sense
Fabien Gandon
 
An Introduction to RDF and the Web of Data
An Introduction to RDF and the Web of DataAn Introduction to RDF and the Web of Data
An Introduction to RDF and the Web of Data
Olaf Hartig
 
RDFa Tutorial
RDFa TutorialRDFa Tutorial
RDFa Tutorial
Ivan Herman
 

Similar to An introduction to Semantic Web and Linked Data (20)

An introduction to Semantic Web and Linked Data
An introduction to Semantic  Web and Linked DataAn introduction to Semantic  Web and Linked Data
An introduction to Semantic Web and Linked Data
 
An introduction to Semantic Web and Linked Data
An introduction to Semantic Web and Linked DataAn introduction to Semantic Web and Linked Data
An introduction to Semantic Web and Linked Data
 
W3C Tutorial on Semantic Web and Linked Data at WWW 2013
W3C Tutorial on Semantic Web and Linked Data at WWW 2013W3C Tutorial on Semantic Web and Linked Data at WWW 2013
W3C Tutorial on Semantic Web and Linked Data at WWW 2013
 
Introduction to RDF
Introduction to RDFIntroduction to RDF
Introduction to RDF
 
SWT Lecture Session 2 - RDF
SWT Lecture Session 2 - RDFSWT Lecture Session 2 - RDF
SWT Lecture Session 2 - RDF
 
Two graph data models : RDF and Property Graphs
Two graph data models : RDF and Property GraphsTwo graph data models : RDF and Property Graphs
Two graph data models : RDF and Property Graphs
 
Creating Web APIs with JSON-LD and RDF
Creating Web APIs with JSON-LD and RDFCreating Web APIs with JSON-LD and RDF
Creating Web APIs with JSON-LD and RDF
 
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
 
ontology.ppt
ontology.pptontology.ppt
ontology.ppt
 
Understanding RDF: the Resource Description Framework in Context (1999)
Understanding RDF: the Resource Description Framework in Context  (1999)Understanding RDF: the Resource Description Framework in Context  (1999)
Understanding RDF: the Resource Description Framework in Context (1999)
 
SemanticWeb Nuts 'n Bolts
SemanticWeb Nuts 'n BoltsSemanticWeb Nuts 'n Bolts
SemanticWeb Nuts 'n Bolts
 
Graph databases & data integration v2
Graph databases & data integration v2Graph databases & data integration v2
Graph databases & data integration v2
 
What’s in a structured value?
What’s in a structured value?What’s in a structured value?
What’s in a structured value?
 
Semantic Web(Web 3.0) SPARQL
Semantic Web(Web 3.0) SPARQLSemantic Web(Web 3.0) SPARQL
Semantic Web(Web 3.0) SPARQL
 
Webofdata
WebofdataWebofdata
Webofdata
 
Bio ontologies and semantic technologies
Bio ontologies and semantic technologiesBio ontologies and semantic technologies
Bio ontologies and semantic technologies
 
Data in RDF
Data in RDFData in RDF
Data in RDF
 
when the link makes sense
when the link makes sensewhen the link makes sense
when the link makes sense
 
An Introduction to RDF and the Web of Data
An Introduction to RDF and the Web of DataAn Introduction to RDF and the Web of Data
An Introduction to RDF and the Web of Data
 
RDFa Tutorial
RDFa TutorialRDFa Tutorial
RDFa Tutorial
 

More from Fabien Gandon

Walking Our Way to the Web
Walking Our Way to the WebWalking Our Way to the Web
Walking Our Way to the Web
Fabien Gandon
 
a shift in our research focus: from knowledge acquisition to knowledge augmen...
a shift in our research focus: from knowledge acquisition to knowledge augmen...a shift in our research focus: from knowledge acquisition to knowledge augmen...
a shift in our research focus: from knowledge acquisition to knowledge augmen...
Fabien Gandon
 
Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Evaluation d’explications pour la prédiction de liens dans les graphes de con...Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Fabien Gandon
 
A Never-Ending Project for Humanity Called “the Web”
A Never-Ending Project for Humanity Called “the Web”A Never-Ending Project for Humanity Called “the Web”
A Never-Ending Project for Humanity Called “the Web”
Fabien Gandon
 
Wimmics Overview 2021
Wimmics Overview 2021Wimmics Overview 2021
Wimmics Overview 2021
Fabien Gandon
 
CovidOnTheWeb : covid19 linked data published on the Web
CovidOnTheWeb : covid19 linked data published on the WebCovidOnTheWeb : covid19 linked data published on the Web
CovidOnTheWeb : covid19 linked data published on the Web
Fabien Gandon
 
Web open standards for linked data and knowledge graphs as enablers of EU dig...
Web open standards for linked data and knowledge graphs as enablers of EU dig...Web open standards for linked data and knowledge graphs as enablers of EU dig...
Web open standards for linked data and knowledge graphs as enablers of EU dig...
Fabien Gandon
 
from linked data & knowledge graphs to linked intelligence & intelligence graphs
from linked data & knowledge graphs to linked intelligence & intelligence graphsfrom linked data & knowledge graphs to linked intelligence & intelligence graphs
from linked data & knowledge graphs to linked intelligence & intelligence graphs
Fabien Gandon
 
The Web We Mix - benevolent AIs for a resilient web
The Web We Mix - benevolent AIs for a resilient webThe Web We Mix - benevolent AIs for a resilient web
The Web We Mix - benevolent AIs for a resilient web
Fabien Gandon
 
Overview of the Research in Wimmics 2018
Overview of the Research in Wimmics 2018Overview of the Research in Wimmics 2018
Overview of the Research in Wimmics 2018
Fabien Gandon
 
Web science AI and IA
Web science AI and IAWeb science AI and IA
Web science AI and IA
Fabien Gandon
 
Normative Requirements as Linked Data
Normative Requirements as Linked DataNormative Requirements as Linked Data
Normative Requirements as Linked Data
Fabien Gandon
 
Wimmics Research Team Overview 2017
Wimmics Research Team Overview 2017Wimmics Research Team Overview 2017
Wimmics Research Team Overview 2017
Fabien Gandon
 
On the many graphs of the Web and the interest of adding their missing links.
On the many graphs of the Web and the interest of adding their missing links. On the many graphs of the Web and the interest of adding their missing links.
On the many graphs of the Web and the interest of adding their missing links.
Fabien Gandon
 
One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...
One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...
One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...
Fabien Gandon
 
How to supervise your supervisor?
How to supervise your supervisor?How to supervise your supervisor?
How to supervise your supervisor?
Fabien Gandon
 
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Fabien Gandon
 
Wimmics Research Team 2015 Activity Report
Wimmics Research Team 2015 Activity ReportWimmics Research Team 2015 Activity Report
Wimmics Research Team 2015 Activity Report
Fabien Gandon
 
Retours sur le MOOC "Web Sémantique et Web de données"
Retours sur le MOOC "Web Sémantique et Web de données"Retours sur le MOOC "Web Sémantique et Web de données"
Retours sur le MOOC "Web Sémantique et Web de données"
Fabien Gandon
 
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Fabien Gandon
 

More from Fabien Gandon (20)

Walking Our Way to the Web
Walking Our Way to the WebWalking Our Way to the Web
Walking Our Way to the Web
 
a shift in our research focus: from knowledge acquisition to knowledge augmen...
a shift in our research focus: from knowledge acquisition to knowledge augmen...a shift in our research focus: from knowledge acquisition to knowledge augmen...
a shift in our research focus: from knowledge acquisition to knowledge augmen...
 
Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Evaluation d’explications pour la prédiction de liens dans les graphes de con...Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Evaluation d’explications pour la prédiction de liens dans les graphes de con...
 
A Never-Ending Project for Humanity Called “the Web”
A Never-Ending Project for Humanity Called “the Web”A Never-Ending Project for Humanity Called “the Web”
A Never-Ending Project for Humanity Called “the Web”
 
Wimmics Overview 2021
Wimmics Overview 2021Wimmics Overview 2021
Wimmics Overview 2021
 
CovidOnTheWeb : covid19 linked data published on the Web
CovidOnTheWeb : covid19 linked data published on the WebCovidOnTheWeb : covid19 linked data published on the Web
CovidOnTheWeb : covid19 linked data published on the Web
 
Web open standards for linked data and knowledge graphs as enablers of EU dig...
Web open standards for linked data and knowledge graphs as enablers of EU dig...Web open standards for linked data and knowledge graphs as enablers of EU dig...
Web open standards for linked data and knowledge graphs as enablers of EU dig...
 
from linked data & knowledge graphs to linked intelligence & intelligence graphs
from linked data & knowledge graphs to linked intelligence & intelligence graphsfrom linked data & knowledge graphs to linked intelligence & intelligence graphs
from linked data & knowledge graphs to linked intelligence & intelligence graphs
 
The Web We Mix - benevolent AIs for a resilient web
The Web We Mix - benevolent AIs for a resilient webThe Web We Mix - benevolent AIs for a resilient web
The Web We Mix - benevolent AIs for a resilient web
 
Overview of the Research in Wimmics 2018
Overview of the Research in Wimmics 2018Overview of the Research in Wimmics 2018
Overview of the Research in Wimmics 2018
 
Web science AI and IA
Web science AI and IAWeb science AI and IA
Web science AI and IA
 
Normative Requirements as Linked Data
Normative Requirements as Linked DataNormative Requirements as Linked Data
Normative Requirements as Linked Data
 
Wimmics Research Team Overview 2017
Wimmics Research Team Overview 2017Wimmics Research Team Overview 2017
Wimmics Research Team Overview 2017
 
On the many graphs of the Web and the interest of adding their missing links.
On the many graphs of the Web and the interest of adding their missing links. On the many graphs of the Web and the interest of adding their missing links.
On the many graphs of the Web and the interest of adding their missing links.
 
One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...
One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...
One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...
 
How to supervise your supervisor?
How to supervise your supervisor?How to supervise your supervisor?
How to supervise your supervisor?
 
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
 
Wimmics Research Team 2015 Activity Report
Wimmics Research Team 2015 Activity ReportWimmics Research Team 2015 Activity Report
Wimmics Research Team 2015 Activity Report
 
Retours sur le MOOC "Web Sémantique et Web de données"
Retours sur le MOOC "Web Sémantique et Web de données"Retours sur le MOOC "Web Sémantique et Web de données"
Retours sur le MOOC "Web Sémantique et Web de données"
 
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
 

Recently uploaded

Introduction of Cybersecurity with OSS at Code Europe 2024
Introduction of Cybersecurity with OSS  at Code Europe 2024Introduction of Cybersecurity with OSS  at Code Europe 2024
Introduction of Cybersecurity with OSS at Code Europe 2024
Hiroshi SHIBATA
 
Skybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoptionSkybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoption
Tatiana Kojar
 
The Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptxThe Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptx
operationspcvita
 
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge GraphGraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
Neo4j
 
Must Know Postgres Extension for DBA and Developer during Migration
Must Know Postgres Extension for DBA and Developer during MigrationMust Know Postgres Extension for DBA and Developer during Migration
Must Know Postgres Extension for DBA and Developer during Migration
Mydbops
 
Leveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and StandardsLeveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and Standards
Neo4j
 
inQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
inQuba Webinar Mastering Customer Journey Management with Dr Graham HillinQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
inQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
LizaNolte
 
Taking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdfTaking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdf
ssuserfac0301
 
Christine's Product Research Presentation.pptx
Christine's Product Research Presentation.pptxChristine's Product Research Presentation.pptx
Christine's Product Research Presentation.pptx
christinelarrosa
 
Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving
 
Mutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented ChatbotsMutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented Chatbots
Pablo Gómez Abajo
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
MichaelKnudsen27
 
"Frontline Battles with DDoS: Best practices and Lessons Learned", Igor Ivaniuk
"Frontline Battles with DDoS: Best practices and Lessons Learned",  Igor Ivaniuk"Frontline Battles with DDoS: Best practices and Lessons Learned",  Igor Ivaniuk
"Frontline Battles with DDoS: Best practices and Lessons Learned", Igor Ivaniuk
Fwdays
 
Fueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte WebinarFueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte Webinar
Zilliz
 
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
Edge AI and Vision Alliance
 
Monitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdfMonitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdf
Tosin Akinosho
 
JavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green MasterplanJavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green Masterplan
Miro Wengner
 
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
Jason Yip
 
Apps Break Data
Apps Break DataApps Break Data
Apps Break Data
Ivo Velitchkov
 
Y-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PPY-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PP
c5vrf27qcz
 

Recently uploaded (20)

Introduction of Cybersecurity with OSS at Code Europe 2024
Introduction of Cybersecurity with OSS  at Code Europe 2024Introduction of Cybersecurity with OSS  at Code Europe 2024
Introduction of Cybersecurity with OSS at Code Europe 2024
 
Skybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoptionSkybuffer SAM4U tool for SAP license adoption
Skybuffer SAM4U tool for SAP license adoption
 
The Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptxThe Microsoft 365 Migration Tutorial For Beginner.pptx
The Microsoft 365 Migration Tutorial For Beginner.pptx
 
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge GraphGraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
 
Must Know Postgres Extension for DBA and Developer during Migration
Must Know Postgres Extension for DBA and Developer during MigrationMust Know Postgres Extension for DBA and Developer during Migration
Must Know Postgres Extension for DBA and Developer during Migration
 
Leveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and StandardsLeveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and Standards
 
inQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
inQuba Webinar Mastering Customer Journey Management with Dr Graham HillinQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
inQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
 
Taking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdfTaking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdf
 
Christine's Product Research Presentation.pptx
Christine's Product Research Presentation.pptxChristine's Product Research Presentation.pptx
Christine's Product Research Presentation.pptx
 
Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024Northern Engraving | Nameplate Manufacturing Process - 2024
Northern Engraving | Nameplate Manufacturing Process - 2024
 
Mutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented ChatbotsMutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented Chatbots
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
 
"Frontline Battles with DDoS: Best practices and Lessons Learned", Igor Ivaniuk
"Frontline Battles with DDoS: Best practices and Lessons Learned",  Igor Ivaniuk"Frontline Battles with DDoS: Best practices and Lessons Learned",  Igor Ivaniuk
"Frontline Battles with DDoS: Best practices and Lessons Learned", Igor Ivaniuk
 
Fueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte WebinarFueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte Webinar
 
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
 
Monitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdfMonitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdf
 
JavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green MasterplanJavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green Masterplan
 
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
[OReilly Superstream] Occupy the Space: A grassroots guide to engineering (an...
 
Apps Break Data
Apps Break DataApps Break Data
Apps Break Data
 
Y-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PPY-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PP
 

An introduction to Semantic Web and Linked Data

  • 1. Semantic Web and Linked Data or how to link data and schemas on the web a W3C tutorial by Fabien Gandon, http://fabien.info, @fabien_gandon WWW 2014
  • 2. semantic web mentioned by Tim BL in 1994 at WWW [Tim Berners-Lee 1994, http://www.w3.org/Talks/WWW94Tim/]
  • 5. machines don’t. we identify and interpret information,
  • 6. A WEB OF LINKED DATA
  • 11. RDFstands for Resource: pages, dogs, ideas... everything that can have a URI Description: attributes, features, and relations of the resources Framework: model, languages and syntaxes for these descriptions
  • 12. RDFis a triple model i.e. every piece of knowledge is broken down into ( subject , predicate , object )
  • 13. doc.html has for author Fabien and has for theme Music
  • 14. doc.html has for author Fabien doc.html has for theme Music
  • 15. ( doc.html , author , Fabien ) ( doc.html , theme , Music ) ( subject , predicate , object )
  • 17. RDFis also a graph model to link the descriptions of resources
  • 18. RDFtriples can be seen as arcs of a graph (vertex,edge,vertex)
  • 19. ( doc.html , author , Fabien ) ( doc.html , theme , Music )
  • 21. identify what exists on the web http://my-site.fr identify, on the web, what exists http://animals.org/this-zebra
  • 23. open and link data in a global giant graph
  • 24. RDFin values of properties can also be literals i.e. strings of characters
  • 25. ( doc.html , author , Fabien ) ( doc.html , theme , "Music" )
  • 28. RDF< /> has an XML syntax
  • 30. RDFhas other syntaxes (Turtle, TriG, N-Triples, N-Quads, JSON, RDFa)
  • 31. Turtle @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix inria: <http://inria.fr/schema#> . <http://inria.fr/rr/doc.html> inria:author <http://ns.inria.fr/fabien.gandon#me> ; inria:theme "Music" .
  • 33. writing rules for RDF triples • the subject is always a resource (never a literal) • properties are binary relations and their types are identified by IRIs • the value is a resource or a literal
  • 34. blank nodes (bnodes) http://bu.ch/l23.html author "My Life" title "John" surname "Doe" firstname handy anonymous nodes (existential quantification) there exist a resource such that… {  r ; …} <rdf:Description rdf:about="http://bu.ch/123.html "> <author> <rdf:Description> <surname>Doe</surname> <firstname>John</firstname> </rdf:Description> </author> <title>My Life</title> </rdf:Description> <http://bu.ch/123.html> author [surname "Doe" ; firstname "John" . ] ; title "My Life" .
  • 35. XML schema datatypes & literals standard literals are xsd:string type literals with datatypes from XML Schema <rdf:Description rdf:about="#Fabien"> <teaching rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"> true</teaching> <birth rdf:datatype="http://www.w3.org/2001/XMLSchema#date"> 1975-07-31</birth> </rdf:Description/> #Fabien teaching "true"^^xsd:boolean ; birth "1975-07-31"^^xsd:date . #Fabien "true"^^xsd:boolean "1975-07-31"^^xsd:date teaching birth
  • 37. langue <Book> <title xml:lang=‘fr’>Seigneur des anneaux</title> <title xml:lang=‘en’>Lord of the rings</title> </Book> <Book> title "Seigneur des anneaux"@fr ; title "Lord of the rings"@en . literals with languages and without are disjoint “Fabien”  “Fabien”@en  “Fabien”@fr
  • 38. typing resources using URIs to identify the types <urn://~fgandon> rdf:type <http://www.inria.fr/schema#Person> a resource can have several types <urn://~fgandon> rdf:type <http://www.inria.fr/schema#Person> <urn://~fgandon> rdf:type <http://www.inria.fr/schema#Researcher> <urn://~fgandon> rdf:type <http://www.mit.edu/schema#Lecturer> <rdf:Description rdf:about="urn://~fgandon"> <rdf:type rdf:resource="http://www.inria.fr/schema#Person" /> <name>Fabien</name> </rdf:Description> <in:Person rdf:about="urn://~fgandon"> <name>Fabien</name> </in:Person> <urn://~fgandon> a in:Person ; name "Fabien" .
  • 39. question: <?xml version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:exs="http://example.org/schema#"> <rdf:Description rdf:about="http://example.org/doc.html"> <rdf:type rdf:resource="http://example.org/schema#Report"/> <exs:theme rdf:resource="http://example.org#Music"/> <exs:theme rdf:resource="http://example.org#History"/> <exs:nbPages rdf:datatype="http://www.w3.org/2001/XMLSchema#int">23</exs:nbPages> </rdf:Description> </rdf:RDF> meaning ?
  • 40. question: <?xml version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:exs="http://example.org/schema#"> <rdf:Description rdf:about="http://example.org/doc.html"> <rdf:type rdf:resource="http://example.org/schema#Report"/> <exs:theme rdf:resource="http://example.org#Music"/> <exs:theme rdf:resource="http://example.org#History"/> <exs:nbPages rdf:datatype="http://www.w3.org/2001/XMLSchema#int">23</exs:nbPages> </rdf:Description> </rdf:RDF> exs:Report rdf:type exs:nbPages “23”^^xsd:int exs:theme http://example.org/doc.html http://example.org#Music http://example.org#History exs:theme
  • 41. bags = unordered groups <rdf:Description rdf:about="#"> <author> <rdf:Bag> <rdf:li>Ivan Herman</rdf:li> <rdf:li>Fabien Gandon</rdf:li> </rdf:Bag> </author> </rdf:Description> <#> author _:a _:a rdf:_1 “Ivan Herman” _:a rdf:_2 “Fabien Gandon” <#> author [ a rdf:Bag ; rdf:li "Ivan Herman" ; rdf:li "Fabien Gandon" . ] .
  • 42. sequence ordered group of resources or literals <rdf:Description rdf:about="#partition"> <contains> <rdf:Seq> <rdf:li rdf:about="#C"/> <rdf:li rdf:about="#C"/> <rdf:li rdf:about="#C"/> <rdf:li rdf:about="#D"/> <rdf:li rdf:about="#E"/> </rdf:Seq> </contains> </rdf:Description> <partition> contains [ a rdf:Seq ; rdf:li "C" ; rdf:li "C" ; rdf:li "C" ; rdf:li "D" ; rdf:li "E" . ] .
  • 43. alternativese.g. title of a book in different languages <rdf:Description rdf:about="#book"> <title> <rdf:Alt> <rdf:li xml:lang="fr">l’homme qui prenait sa femme pour un chapeau</rdf:li> <rdf:li xml:lang="en">the man who mistook his wife for a hat</rdf:li> </rdf:Alt> </title> </rdf:Description> <#book> title [ a rdf:Alt ; rdf:li "l’homme…"@fr ; rdf:li "the man…"@en . ] .
  • 44. collectionexhaustive and ordered list <rdf:Description rdf:about="#week"> <dividedIn rdf:parseType="Collection"> <rdf:Description rdf:about="#monday"/> <rdf:Description rdf:about="#tuesday"/> <rdf:Description rdf:about="#wednesday"/> <rdf:Description rdf:about="#thursday"/> <rdf:Description rdf:about="#friday"/> <rdf:Description rdf:about="#saturday"/> <rdf:Description rdf:about="#sunday"/> </devidedIn> </rdf:Description> wednesday friday sunday nil monday tuesday thursday saturday firstrest List _:a _:b _:c _:d _:e _:f _:g <#week> dividedIn ( <#monday> <#tuesday> <#wednesday> <#thursday> <#friday> <#saturday> <#sunday> ) .
  • 45. RDF(named) graphs group triples in graphs named by IRIs
  • 47. TriG @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix inria: <http://inria.fr/schema#> . GRAPH <http://inria.fr/people> { <http://inria.fr/rr/doc.html> inria:author <http://ns.inria.fr/fabien.gandon#me> . } GRAPH <http://inria.fr/topics> { <http://inria.fr/rr/doc.html> inria:theme "Music" . }
  • 50. openmodel • extensible vocabulary based on URIs • anyone can say anything about anything http://my_domain.org/my_path/my_type
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58. ACCESSING DATA ON THE WEB
  • 59. May 2007 April 2008 September 2008 March 2009 September 2010 Linking Open Data Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/ September 2011 0 100 200 300 400 10/10/2006 28/04/2007 14/11/2007 01/06/2008 18/12/2008 06/07/2009 22/01/2010 10/08/2010 26/02/2011 14/09/2011 01/04/2012
  • 60. thematic content Domains Number of datasets Number of Triples % Out links % Media 25 1 841 852 061 5,82 % 50 440 705 10,01 % Geography 31 6145 532 484 19,43 % 35 812 328 7,11 % Government 49 13 315 009 400 42,09 % 19 343 519 3,84 % Publications 87 2 950 720 693 9,33 % 139 925 218 27,76 % Inter-domain 41 4 184 635 715 13,23 % 63 183 065 12,54 % Life Sciences 41 3 036 336 004 9,60 % 191 844 090 38,06 % Users’ content 20 134 127 413 0,42 % 3 449 143 0,68 % 295 31 634 213 770 503 998 829 42% 20% 13% 10% 9% 6% 0% Government Geography Inter-domain Life Sciences Publications Media Users' content
  • 63. linked data principles Use RDF as data format  Use HTTP URIs as names for things so that people can look up those names  When someone looks up a URI, provide useful information (RDF, HTML, etc.) using content negotiation  Include links to other URIs so that related things can be discovered HTTP URI GET HTML,RDF,… GET 303
  • 64. DNShe who controls the name controls the access ex. bit.ly & Libya .fr * .inria isicil
  • 66. query with SPARQL SPARQL Protocol and RDF Query Language
  • 67. SPARQL in 3 parts part 1: query language part 2: result format part 3: access protocol
  • 68. SPARQL query SELECT ... FROM ... WHERE { ... }
  • 69. examplepersons at least 18-year old PREFIX ex: <http://inria.fr/schema#> SELECT ?person ?name WHERE { ?person rdf:type ex:Person . ?person ex:name ?name . ?person ex:age ?age . FILTER (?age > 17) }
  • 71. graph mapping / projection classical three clauses: – Select: clause to select the values to be returned – Where: triple/graph pattern to match – Filter: constraints expressed using test functions (XPath 2.0 or external)
  • 72. SPARQL triples • triples and question marks for variables: ?x rdf:type ex:Person • graph patterns to match: SELECT ?subject ?proprerty ?value WHERE {?subject ?proprerty ?value} • a pattern is, by default, a conjunction of triples SELECT ?x WHERE { ?x rdf:type ex:Person . ?x ex:name ?name . }
  • 73. question: • Query: SELECT ?name WHERE { ?x name ?name . ?x email ?email . } • Base: _:a name "Fabien" _:b name "Thomas" _:c name "Lincoln" _:d name "Aline" _:b email <mailto:thom@chaka.sn> _:a email <mailto:Fabien.Gandon@inria.fr> _:d email <mailto:avalandre@pachinko.jp> _:a email <mailto:bafien@fabien.info> • Results ? x2
  • 74. prefixes to use namespaces: PREFIX mit: <http://www.mit.edu#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> SELECT ?student WHERE { ?student mit:registeredAt ?x . ?x foaf:homepage <http://www.mit.edu> . } Base namespace : BASE <…>
  • 76. result formats • a binding i.e. list of all the selected values (SELECT) for each answer found; (stable XML format ; e.g. for XSLT transformations) • RDF sub-graphs for each answer found (RDF/XML format ; e.g. for application integration) • JSON (eg. ajax web applications) • CSV/TSV (eg. export)
  • 77. example of binding results for previous query in XML <?xml version="1.0"?> <sparql xmlns="http://www.w3.org/2005/sparql-results#"> <head> <variable name="student"/> </head> <results ordered="false" distinct="false"> <result> <binding name="student"> <uri>http//www.mit.edu/data.rdf#ndieng</uri></binding> </result> <result> <binding name="student"> <uri>http//www.mit.edu/data.rdf#jdoe</uri></binding> </result> </sparql>
  • 78. simplified syntax triples with a common subject: SELECT ?name ?fname WHERE { ?x a Person; name ?name ; firstname ?fname ; author ?y . } list of values ?x firstname "Fabien", "Lucien" . blank node [firstname "Fabien"] or [] firstname "Fabien" SELECT ?name ?fname WHERE { ?x rdf:type Person . ?x name ?name . ?x firstname ?fname . ?x author ?y . }
  • 79. source PREFIX mit: <http://www.mit.edu#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> FROM http//www.mit.edu/data.rdf SELECT ?student WHERE { ?student mit:registeredAt ?x . ?x foaf:homepage <http://www.mit.edu> . }
  • 80. optional part PREFIX mit: <http://www.mit.edu#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> SELECT ?student ?name WHERE { ?student mit:registeredAt ?x . ?x foaf:homepage <http://www.mit.edu> . OPTIONAL {? student foaf:name ?name . } } possibly unbound
  • 81. union alternative graph patterns PREFIX mit: <http://www.mit.edu#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> SELECT ?student ?name WHERE { ?student mit:registeredAt ?x . { { ?x foaf:homepage <http://www.mit.edu> . } UNION { ?x foaf:homepage <www.stanford.edu/> . } } }
  • 82. sort, filter and limit answers PREFIX mit: <http://www.mit.edu#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> SELECT ?student ?name WHERE { ?student mit:registeredAt ?x . ?x foaf:homepage <http://www.mit.edu> . ?student foaf:name ?name . ? student foaf:age ?age . FILTER (?age > 22) } ORDER BY ?name LIMIT 20 OFFSET 20 students older than 22 years sorted by name results from number #21 to #40
  • 83. operators • Inside the FILTER: – Comparators: <, >, =, <=, >=, != – Tests on variables : isURI(?x), isBlank(?x), isLiteral(?x), bound(?x) – Regular expression regex(?x, "A.*") – Attributes and values: lang(), datatype(), str() – Casting: xsd:integer(?x) – External functions and extensions – Boolean combinations: &&, || • In the where WHERE: @fr , ^^xsd:integer • In the SELECT: distinct
  • 84. other functions (v 1.1) isNumeric(Val) test it is a numeric value coalesce(val,…, val) first valid value IRI(Str)/URI(Str) to build an iri/uri from a string BNODE(ID) to build a blank node RAND() random value between 0 and 1 ABS(Val) absolute value CEIL(Val), FLOOR(Val), ROUND(Val) NOW() today’s date DAY(Date), HOURS(Date), MINUTES(Date), MONTH(Date), SECONDS(Date), TIMEZONE(Date), TZ(Date), YEAR(Date) to access different parts of a date MD5(Val), SHA1(Val), SHA256(Val), SHA384(Val), SHA512(Val) hash functions
  • 85. string / literal functions (v1.1) STRDT(value, type) build a typed literal STRLANG(value, lang) build a literal with a language CONCAT(lit1,…,litn) concatenate a list of literal CONTAINS(lit1,lit2), STRSTARTS(lit1,lit2), STRENDS(lit1,lit2) to test string inclusion SUBSTR(lit, start [,length]) extract a sub string ENCODE_FOR_URI (Str) encodes a string as URI UCASE (Str), LCASE (Str) uppercase and lowercase STRLEN (Str) length of the string
  • 86. aggregates group by + count, sum, min, max, avg, group_concat, or sample ex. average scores, grouped by the subject, but only where the mean is greater than 10 SELECT (AVG(?score) AS ?average) WHERE { ?student score ?score . } GROUP BY ?student HAVING(AVG(?score) > 10)
  • 87. question: PREFIX ex: <http://www.exemple.abc#> SELECT ?person WHERE { ?person rdf:type ?type . FILTER(! ( ?type = ex:Man )) }
  • 88. minussubstract a pattern PREFIX ex: <http://www.exemple.abc#> SELECT ?person WHERE { { ?x rdf:type ex:Person } minus {?x rdf:type ex:Man} }
  • 89. not existcheck the absence of a pattern PREFIX ex: <http://www.exemple.abc#> SELECT ?person WHERE { ?x ex:memberOf ?org . filter (not exists {?y ex:memberOf <Hell>}) }
  • 90. if… then… else prefix foaf: <http://xmlns.com/foaf/0.1/> select * where { ?x foaf:name ?name ; foaf:age ?age . filter ( if (langMatches( lang(?name), "FR"), ?age>=18, ?age>=21) ) }
  • 91. test a value is in / not in a list prefix foaf: <http://xmlns.com/foaf/0.1/> select * where { ?x foaf:name ?n . filter (?n in ("fabien", "olivier", "catherine") ) }
  • 92. valuespre-defined bindings select ?person where { ?person name ?name . VALUES (?name) { "Peter" "Pedro" "Pierre" } }
  • 93. paths prefix foaf: <http://xmlns.com/foaf/0.1/> select ?friends_fab where { ?x foaf:name "Fabien Gandon" ; foaf:knows+ ?friends_fab ; } / : sequence | : alternative + : one or several * : zero or several ? : optional ^ : reverse ! : negation {min,max} : length
  • 94. select expression select ?x (year(?date) as ?year) where { ?x birthdate ?date . }
  • 95. subquery / nested query select ?name where { {select (max(?age) as ?max) where { ?person age ?age } } ?senior age ?max ?senior name ?name }
  • 96. construct RDF as result PREFIX mit: <http://www.mit.edu#> PREFIX corp: <http://mycorp.com/schema#> CONSTRUCT { ?student rdf:type corp:FuturExecutive . } WHERE { ?student rdf:type mit:Student . }
  • 97. free description PREFIX mit: <http://www.mit.edu#> DESCRIBE ?student { ?student rdf:type mit:Student . } or DESCRIBE <…URI…>
  • 98. SPARQL protocol exchange queries and their results through the web
  • 99.
  • 101. QAKIS
  • 103.
  • 104.
  • 106. publication process demo • one-click setup • import raw data • transform to RDF • publish on the web • query online
  • 107.
  • 108. Test on DBpedia • Connect to: http://dbpedia.org/snorql/ or http://fr.dbpedia.org/sparql or … http://wiki.dbpedia.org/Internationalization/Chapters • Query: SELECT * WHERE { ?x rdfs:label "Paris"@fr . ?x ?p ?v . } LIMIT 10
  • 109.
  • 111. Linked Data Platform HTTP access to LD resources & containers get, post, put, delete resources from LD servers. GET /people/fab HTTP/1.1 Host: data.inria.fr PUT http://data.inria.fr/people/fab HTTP/1.1 Host: data.inria.fr Content-Type: text/turtle <fab> a foaf:Person ; rdfs:label "Fabien" ; foaf:mbox <fabien.gandon@inria.fr> . ? !
  • 113. semantic web: linked data and semantics of schemas a little semantics in a world of links
  • 114.
  • 115. had typed links… the original web
  • 116. publish the data schemas 180°C+ = ?  + = 
  • 117. what is the last document you read?
  • 119. your answer relies on a shared ontology we infer from it we all understood
  • 122. #21  #12 #48  #21#47  #21 ontological knowledge formalized #12 #21 #47 #48
  • 125. RDFS means RDF Schema
  • 126. RDFS provides primitives to Write lightweight ontologies
  • 127. RDFS to define classes of resources and organize their hierarchy Document Report
  • 128. RDFS to define relations between resources, their signature and organize their hierarchy creator author Document Person
  • 129. FO  R  GF  GRmapping modulo an ontology car vehicle car(x)vehicle(x) GF GRvehicle car O
  • 130. an old schema of RDFS W3C http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
  • 131. example of RDFS schema <rdf:RDF xml:base ="http://inria.fr/2005/humans.rdfs" xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns ="http://www.w3.org/2000/01/rdf-schema#> <Class rdf:ID="Man"> <subClassOf rdf:resource="#Person"/> <subClassOf rdf:resource="#Male"/> <label xml:lang="en">man</label> <comment xml:lang="en">an adult male person</comment> </Class> <Man> a Class ; subClassOf <Person>, <Male> .
  • 132. example of RDFS properties <rdf:RDF xml:base ="http://inria.fr/2005/humans.rdfs" xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns ="http://www.w3.org/2000/01/rdf-schema#> <rdf:Property rdf:ID="hasMother"> <subPropertyOf rdf:resource="#hasParent"/> <range rdf:resource="#Female"/> <domain rdf:resource="#Human"/> <label xml:lang="en">has for mother</label> <comment xml:lang="en">to have for parent a female. </comment> </rdf:Property> <hasMother> a rdf:Property ; subPropertyOf <hasParent> ; range <Female> ; domain <Human> .
  • 133. example of RDF using this schema <rdf:RDF xmlns:rdf ="http://www.w3.org/1999/02/22-rdf- syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns="http://inria.fr/2005/humans.rdfs#" xml:base=" http://inria.fr/2005/humans.rdfs-instances" > <rdf:Description rdf:ID="Lucas"> <rdf:type rdf:resource="http://inria.fr/2005/humans.rdfs#Man"/> <hasMother rdf:resource="#Laura"/> </rdf:Description> <Man rdf:ID="Lucas"> <hasMother rdf:resource="#Laura"/> </Man> <Luca> a Man; hasMother <Laura> .
  • 134. rdfs:label a resource may have one or more labels in one or more natural language <rdf:Property rdf:ID='name'> <rdfs:domain rdf:resource='Person'/> <rdfs:range rdf:resource='&rdfs;Literal'/> <rdfs:label xml:lang='fr'>nom</rdfs:label> <rdfs:label xml:lang='fr'>nom de famille</rdfs:label> <rdfs:label xml:lang='en'>name</rdfs:label> </rdf:Property> <name> a rdf:Property ; range rdfs:Literal ; domain <Person> ; label "nom"@fr, "nom de famille"@fr, "name"@en .
  • 135. rdfs:comment & rdfs:seeAlso comments provide definitions and explanations in natural language <rdfs:Class rdf:about=‘#Woman’> <rdfs:subClassOf rdf:resource="#Person"/> <rdfs:comment xml:lang=‘fr’>une personne adulte du sexe féminin</rdfs:comment> <rdfs:comment xml:lang=‘en’>a female adult person </rdfs:comment> </rdfs:Class> see also… <rdfs:Class rdf:about=‘#Man’> <rdfs:seeAlso rdf:resource=‘#Woman’/> </rdfs:Class> <Woman> a rdfs:Class ; rdfs:subClassOf <Person> ; rdfs:comment "adult femal person"@en ; rdfs:comment "une adulte de sexe féminin"@fr . <Man> a rdfs:Class ; rdfs:seeAlso <Woman> .
  • 138. OWLin one… enumeration intersection union complement  disjunction restriction! cardinality 1..1 algebraic properties equivalence [>18] disjoint union value restrict. disjoint properties qualified cardinality 1..1 ! individual prop. neg chained prop.   keys …
  • 139. enumerated class define a class by providing all its members <owl:Class rdf:id="EyeColor"> <owl:oneOf rdf:parseType="Collection"> <owl:Thing rdf:ID="Blue"/> <owl:Thing rdf:ID="Green"/> <owl:Thing rdf:ID="Brown"/> <owl:Thing rdf:ID="Black"/> </owl:oneOf> </owl:Class> {a,b,c,d,e}
  • 140. classes defined by union of other classes <owl:Class> <owl:unionOf rdf:parseType="Collection"> <owl:Class rdf:about="#Person"/> <owl:Class rdf:about="#Group"/> </owl:unionOf> </owl:Class>
  • 141. classes defined by intersection of other classes <owl:Class rdf:ID="Man"> <owl:intersectionOf rdf:parseType="Collection"> <owl:Class rdf:about="#Male"/> <owl:Class rdf:about="#Person"/> </owl:intersectionOf> </owl:Class>
  • 142. complement and disjunction complement class <owl:Class rdf:ID="Male"> <owl:complementOf rdf:resource="#Female"/> </owl:Class> declare a disjunction <owl:Class rdf:ID="Square"> <owl:disjointWith rdf:resource="#Round"/> </owl:Class> 
  • 143. restriction on all values <owl:Class rdf:ID="Herbivore"> <subClassOf rdf:resource="#Animal"/> <subClassOf> <owl:Restriction> <owl:onProperty rdf:resource="#eats" /> <owl:allValuesFrom rdf:resource="#Plant" /> </owl:Restriction> </subClassOf> </owl:Class> !
  • 144. restriction on some values <owl:Class rdf:ID="Sportive"> <owl:equivalentClass> <owl:Restriction> <owl:onProperty rdf:resource="#hobby" /> <owl:someValuesFrom rdf:resource="#Sport" /> </owl:Restriction> </owl:equivalentClass> </owl:Class> !
  • 145. restriction to an exact value <owl:Class rdf:ID="Bike"> <subClassOf> <owl:Restriction> <owl:onProperty rdf:resource="#nbWheels" /> <owl:hasValue>2</owl:hasValue> </owl:Restriction> </subClassOf> </owl:Class> !
  • 146. restriction on cardinality how many times a property is used for a same subject but with different values • Constraints: minimum, maximum, exact number • Exemple <owl:Class rdf:ID="Person"> <subClassOf> <owl:Restriction> <owl:onProperty rdf:resource="#name" /> <owl:maxCardinality>1</owl:maxCardinality> </owl:Restriction> </subClassOf> </owl:Class> 1..1
  • 147. types of properties • ObjectProperty are relations between resources only e.g. hasParent(#thomas,#stephan) • DatatypeProperty have a literal value possibly typed ex:hasAge(#thomas,16^^xsd:int) • AnnotationProperty are ignored in inferences and used for documentation and extensions
  • 148. algebraic properties • Symmetric property, xRy  yRx <owl:SymmetricProperty rdf:ID="hasSpouse" /> • Inverse property, xR1y  yR2x <rdf:Property rdf:ID="hasChild"> <owl:inverseOf rdf:resource="#hasParent"/> </rdf:Property> • Transitive property, xRy & yRz  xRz <owl:TransitiveProperty rdf:ID="hasAncestor" /> • Functional property, xRy & xRz  y=z <owl:FunctionalProperty rdf:ID="hasMother" /> • Inverse functional property, xRy & zRy  x=z <owl:InverseFunctionalProperty rdf:ID="hasSocialSecurityNumber" /> ! !
  • 149. equivalencies and alignment • equivalent classes : owl:equivalentClass • equivalent properties: owl:equivalentProperty • identical or different resources: owl:sameAs, owl:differentFrom 
  • 150. document the schemas description of the ontology owl:Ontology, owl:imports, owl:versionInfo, owl:priorVersion, owl:backwardCompatibleWith, owl:incompatibleWith versions of classes and properties owl:DeprecatedClass, owl:DeprecatedProperty
  • 151. OWL profiles EL: large numbers of properties and/or classes and polynomial time. QL: large volumes of instance data, and conjunctive query answering using conventional relational database in LOGSPACE RL: scalable reasoning without sacrificing too much expressive power using rule-based reasoning in polynomial time
  • 152.
  • 153.
  • 155. semantic waste separation the web is a garbage can, the semantic web will be a semantic garbage can.
  • 156.
  • 157.
  • 159.
  • 160. Rule Interchange Format (RIF) core and extensions
  • 161. e.g. infer new relations rule: if a member of a team is interested in a topic then the team as a whole is interested in that topic ?person interestedBy ?topic ?person member ?team  ?team interestedBy ?topic interestedByPerson ?person Topic ?topic member Team ?team interestedBy
  • 162. question: forward chaining ex:Fabien ex:activity ex:Research ex:Fabien ex:in ex:WimmicsTeam ex:WimmicsTeam ex:in ex:INRIASophia ex:INRIASophia ex:in ex:INRIA ex:WimmicsTeam ex:activity ex:Research ex:INRIASophia ex:activity ex:Research ex:INRIA ex:activity ex:Research IF ?x ex:activity ?y ?x ex:in ?z THEN ?z ex:activity ?y
  • 163. RIF Core subset shared by most systems: add only employee1 [function-> “executive” bonus -> 10 ] ForAll ?emp (?emp [ bonus -> 15 ] :- ?emp [ function -> “executive” ] ) employee1 [function -> “executive” bonus -> 10 bonus -> 15 ]
  • 164. RIF Core monotonic Horn clause on frames conclusion :- hyp1 and hyp2 and hyp3 … • IRI as constants • frames as triplets • lists • existential quantification in condition • class membership and equality in condition
  • 165. RIF BLD (Basic Logic Dialect) still monotonic : no changes. • conjunction in conclusion • fonctions, predicates and named arguments f(?x) Maganer(?e) :- Exists ?g (manage(?e ?g)) • disjunction in condition • equality in conclusion • sub-classes
  • 166. RIF PRD (Production Rules Dialect) full production rules in forward chaining • add, delete, modify, run • instantiate frames (new) • negation as failure (ineg) • no longer monotonic Forall ?customer ?purchasesYTD (If And( ?customer#ex:Customer ?customer[ex:purchasesYTD->?purchasesYTD] External(pred:numeric-greater-than(?purchasesYTD 5000)) ) Then Do( Modify(?customer[ex:status->"Gold"]) ) ) (from PRD Rec. Doc.)
  • 167. RIF, RIF, RIF,… • DTB (Datatypes and Built-Ins) : data types with their predicates and functions • FLD: how to specify new dialects extending BLD • SWC : syntax and semantics to combine RIF, RDF graphs, RDFS and OWL (RL)
  • 169. natural language expressions to refer to concepts 169 inria:CorporateSemanticWeb skos:prefLabel "corporate semantic web"@en; skos:prefLabel "web sémantique d'entreprise"@fr; skos:altLabel "corporate SW"@en; skos:altLabel "CSW"@en; skos:hiddenLabel "web semantique d'entreprise"@fr. labels
  • 170. between conceptsinria:CorporateSemanticWeb skos:broader w3c:SemanticWeb; skos:narrower inria:CorporateSemanticWiki; skos:related inria:KnowledgeManagement. relations
  • 171. inria:CorporateSemanticWeb skos:scopeNote "only within KM community"; skos:definition "a semantic web on an intranet"; skos:example "Nokia's internal use of RDF gateway"; skos:historyNote "semantic intranet until 2006"; skos:editorialNote "keep wikipedia def. uptodate"; skos:changeNote "acronym added by fabien".
  • 172. EXTENDING TO OTHER SOURCES
  • 173. toward all forms of data on the web
  • 174. many databuried and dormant in web pages
  • 175. R2RML a standard transformation of a relationnal database in RDF schema mapping
  • 176. direct mapping • cells of a line  triples with a shared subject • names of columns  names of properties • each value of a cell  one object • links between tables name fname age doe john 34 did sandy 45 #s1 :name "doe" #s1 :fname "john" #s1 :age "34" #s2 :name "did" #s2 :fname "sandy" #s2 :age "45" #s3 …
  • 177. example of mapping ISBN Author Title Year 0006511409X id_xyz The Glass Palace 2000 ID Name Homepage id_xyz Ghosh, Amitav http://www.amitavghosh.com http://…isbn/000651409X Ghosh, Amitav http://www.amitavghosh.com The Glass Palace 2000 a:name a:homepage a:author
  • 178. (1) transforming table of persons ISBN Author Title Year 0006511409X id_xyz The Glass Palace 2000 ID Name Homepage id_xyz Ghosh, Amitav http://www.amitavghosh.com http://…isbn/000651409X Ghosh, Amitav http://www.amitavghosh.com The Glass Palace 2000 a:name a:homepage a:author :P_Table rdf:type rr:TriplesMap ; rr:subjectMap [ rr:termtype "BlankNode" ; rr:column "ID" ; ] ; rr:predicateObjectMap [ rr:predicateMap [ rr:predicate a:name ]; rr:objectMap [ rr:column "Name" ] ] ; rr:predicateObjectMap [ rr:predicateMap [ rr:predicate a:homepage ]; rr:objectMap [ rr:column "Homepage" ; rr:termtype "IRI" ] ] ;
  • 179. (2) transforming table of books ISBN Author Title Year 0006511409X id_xyz The Glass Palace 2000 ID Name Homepage id_xyz Ghosh, Amitav http://www.amitavghosh.com http://…isbn/000651409X Ghosh, Amitav http://www.amitavghosh.com The Glass Palace 2000 a:name a:homepage a:author :B_Table rdf:type rr:TriplesMap ; rr:subjectMap [ rr:template "http://...isbn/{ISBN}"; ]; rr:predicateObjectMap [ rr:predicateMap [ rr:predicate a:title ]; rr:objectMap [ rr:column "Title" ] ] ; rr:predicateObjectMap [ rr:predicateMap [ rr:predicate a:year ]; rr:objectMap [ rr:column "Year" ; ] ] ;
  • 180. (3) linking tables ISBN Author Title Year 0006511409X id_xyz The Glass Palace 2000 ID Name Homepage id_xyz Ghosh, Amitav http://www.amitavghosh.com http://…isbn/000651409X Ghosh, Amitav http://www.amitavghosh.com The Glass Palace 2000 a:name a:homepage a:author :B_Table a rr:TriplesMap ; ... rr:refPredicateObjectMap [ rr:refPredicateMap [ rr:predicate a:author ]; rr:refObjectMap [ rr:parentTriplesMap :P_Table ; rr:joinCondition "{child}.Author = {parent}.ID" ] ] ].
  • 181. schema.org schemas to improve index, search and display e.g: • Creative works, Book, Movie, MusicRecording, Recipe, TVSeries ... • Embedded non-text objects, AudioObject, ImageObject, VideoObject • Event • Organization • Person • Place, LocalBusiness, Restaurant ... • Product, Offer, AggregateOffer • Review, AggregateRating = + + +
  • 182. RDFa 1.1: example on schema.org <div vocab="http://schema.org/" typeof="Product"> <img rel="image" src="dell-30in-lcd.jpg" /> <span property="name">Dell UltraSharp 30" LCD Monitor</span> <div rel="hasAggregateRating" > <div typeof="http://schema.org/AggregateRating"> <span property="ratingValue">87</span> out of <span property="bestRating">100</span> based on <span property="ratingCount">24</span> user ratings </div> </div> <div rel="offers" > <div typeof="http://schema.org/AggregateOffer"> <span property="lowPrice">$1250</span> to <span property="highPrice">$1495</span> from <span property="offerCount">8</span> sellers </div> </div> (…) PS: RDFa Lite = vocab + typeof + property + about + prefix.
  • 183. GRDDL opens formats by allowing us to declare RDF extraction algorithms inside XML documents <head profile="http://www.w3.org/2003/g/data-view"> <title>The man who mistook his wife for a hat</title> <link rel="transformation" href="http://www.w3.org/2000/06/ dc-extract/dc-extract.xsl" /> <meta name="DC.Subject" content="clinical tales" /> …
  • 184.
  • 185.
  • 186.
  • 187.
  • 188.
  • 189.
  • 190. code inside the page <html xmlns="http://www.w3.org/1999/xhtml" dir="ltr" lang="en-US" xmlns:fb="https://www.facebook.com/2008/fbml"> <head prefix="og: http://ogp.me/ns# fb: http://ogp.me/ns# YOUR_NAMESPACE: http://ogp.me/ns/apps/YOUR_NAMESPACE#"> <meta property="fb:app_id" content="YOUR_APP_ID" /> <meta property="og:type" content="YOUR_NAMESPACE:recipe" /> <meta property="og:title" content="Stuffed Cookies" /> <meta property="og:image" content="http://example.com/cookie.jpg" /> <meta property="og:description" content="The Turducken of Cookies" /> <meta property="og:url" content="http://example.com/cookie.html"> <script type="text/javascript"> function postCook() { FB.api('/me/YOUR_NAMESPACE:cook' + '?recipe=http://example.com/cookie.html','post', (…) }); } </script> </head> <body> (…) <form> <input type="button" value="Cook" onclick="postCook()" /> </form> </body> </html>
  • 191.
  • 192. VoID: describing RDF datasets/linksets
  • 193. :DBpedia a void:Dataset; void:sparqlEndpoint <http://dbpedia.org/sparql>; void:feature :RDFXML ; void:subset :DBpedia2Geonames ; void:uriLookupEndpoint <http://lookup.dbpedia.org/api/search.asmx/KeywordSearch? QueryString=> ; dcterms:modified "2008-11-17"^^xsd:date; dcterms:title "DBPedia"; dcterms:description "RDF data extracted from Wikipedia"; dcterms:publisher :DBpedia_community; dcterms:license <http://creativecommons.org/licenses/by-sa/3.0/>; dcterms:source <http://dbpedia.org/resource/Wikipedia>. :Geonames a void:Dataset; void:sparqlEndpoint <http://geosparql.appspot.com/query>; void:triples "107983838"^^xsd:integer ; dcterms:subject <http://dbpedia.org/resource/Location> . :DBpedia2Geonames a void:Linkset ; void:linkPredicate owl:sameAs ; void:target :DBpedia ; void:target :Geonames . e.g. DBpedia dataset
  • 195. Data Cube: publish multi-dimensional data (statistics)
  • 196. CSV-LD & Linked CSV • contexts to interpret and generate CSV • conventions for CSV to be linked in RDF
  • 197. SAWSDLsemantic annotation of WSDL (W3C Rec. 2007)
  • 199. semantically services annotated and searched providerserviceclientrequester directory 3 12
  • 200. a (too) fast three-tier summary RDFa, microdata,… LDP, HTTP, JSON-LD, … R2RML, SPARQL, RDF, … presentation logic data
  • 202. Provenance: PROV-DM & PROV-O describe entities and activities involved in providing a resource
  • 205. PROV-DM & PROV-O: primer example ex:compose prov:used ex:dataSet1 ; prov:used ex:regionList . ex:composition prov:wasGeneratedBy ex:compose . ex:illustrate prov:used ex:composition . ex:chart1 prov:wasGeneratedBy ex:illustrate .
  • 206. PROV primer full example
  • 207. annotating multimédia elements • semantic description of multimedia resources [Media Annotation] • pointing to internal elements of multimedia resources [Media Fragment]
  • 208. multimedia fragment • part of the URL after the # http://www.example.com/example.ogv#track=audio&t=10,20 • dimensions: – temporal: t=10,20 / t=npt:,0:02:01.5 / t=clock:2009-07-26T11:19:01Z – spatial: xywh=pixel:160,120,320,240 / xywh=percent:25,25,50,50 – track: track=1 / track=video&track=subtitle / track=Wide – named: id=chapter-1 • fragment are not sent with the URL but encoded in the HTTP request
  • 209. ontologies for multimedia descriptions ontology for Media Resources 1.0 <video.ogv> a ma:MediaResource ; ma:hasTrack <video.ogv#track=audio>, <video.ogv#track=subtitle>; ma:hasSubtitling <video.ogv#track=subtitle> ; ma:hasSigning <video.ogv#xywh=percent:70,70,90,90> . <video.ogv#track=audio> a ma:AudioTrack ; ma:hasLanguage [ rdfs:label "en-GB" ] ; ma:hasFragment <video.ogv#track=audio&t=10,20> . <video.ogv#track=audio&t=10,20> a ma:MediaFragment ; ma:hasLanguage [ rdfs:label "fr" ] . <video.ogv#track=subtitle> a ma:DataTrack ; ma:hasLanguage [ rdfs:label "es" ] . <video.ogv#xywh=percent:70,70,90,90> a ma:MediaFragment ; ma:hasLanguage [ rdfs:label "bfi" ] .
  • 211. some pointers• W3C standards http://www.w3.org/standards/semanticweb/ • SW Tools http://www.w3.org/2001/sw/wiki/Tools • Linked Data Book http://linkeddatabook.com/editions/1.0/ • W3DevCampus http://www.w3devcampus.com/ • EUCLID material http://www.euclid-project.eu/
  • 218. open your data to those who could use them
  • 220. 66 FOAF primitives 3 475 908 348 references (2) x 52 millions “a small tree ruling a big graph”(1) (1) Franck Van Harmelen, ISWC 2011 (2) Libby Miller, 2009
  • 221. “semantic web” and not “semanticweb” [C. Welty, ISWC 2007] “a lightweight ontology allows us to do lightweight reasoning” [J. Hendler, ISWC 2007]
  • 222. data data bases data models open data linked data closed data enterprise data linked enterprise data linked open data data schemas semantic web of data data structures linked data schemas web of data big data big data streams data streams linked data streams web of sensors, things, … VELOCITY big linked data VOLUME VARIETY VVeb data linked healthcare data VICINITY VISIBILITY personal data data mining data type
  • 225. identify describe & link query reasoning trace URI RDF HTTP, SPARQL, LDP RDFS & OWL PROV-O GOALS AND MEANS
  • 226. identify describe & link query reasoning trace http://fabien.fr#me #me type man select * {?r type ?t} man subClassOf male wasAttributedTo #me GOALS AND MEANS
  • 228. he who controls metadata, controls the web and through the world-wide web many things in our world. fabien, gandon, @fabien_gandon, http://fabien.info WWW 2014