SlideShare a Scribd company logo
NORMATIVE REQUIREMENTS
AS LINKED DATA
Fabien GANDON
Guido GOVERNATORI
Serena VILLATA
MIREL
MIning and REasoning with
Legal texts
http://www.mirelproject.eu/
MIREL
MIning and REasoning with
Legal texts
http://www.mirelproject.eu/
 International and inter-sectorial network to define a formal
framework and to develop tools
 European Union's 2020 research and innovation programme
Marie Skłodowska-Curie grant agreement No 690974.
 Conceptual challenges e.g. legal interpretation in mining and
reasoning
 Computational challenges e.g. handling of big legal data, and
the complexity of regulatory compliance
MIREL
MIning and REasoning with
Legal texts
http://www.mirelproject.eu/
 International and inter-sectorial network to define a formal
framework and to develop tools
 European Union's 2020 research and innovation programme
Marie Skłodowska-Curie grant agreement No 690974.
 Conceptual challenges e.g. legal interpretation in mining and
reasoning
 Computational challenges e.g. handling of big legal data, and
the complexity of regulatory compliance
 Bridge: legal ontologies and NLP parsers  reasoning methods
and formal logic
 promotes mobility and staff exchange, here:
 bridge normative requirements and linked data
RESEARCH IN
7
HTTP
URI
reference address
communication
WEB
RDF
the giant global graph of data
HTTP
URI
HTML
reference address
communication
WEB
8
"Music"
RDFis a model for directed labeled multigraphs
http://inria.fr/rr/doc.html
http://ns.inria.fr/fabien.gandon#me
http://inria.fr/schema#author
http://inria.fr/schema#topic
http://inria.fr/rr/doc.html
http://inria.fr/schema#keyword
9
linked open data(sets) cloud on the Web
0
200
400
600
800
1000
1200
1400
01/05/2007 08/10/2007 07/11/2007 10/11/2007 28/02/2008 31/03/2008 18/09/2008 05/03/2009 27/03/2009 14/07/2009 22/09/2010 19/09/2011 30/08/2014 26/01/2017
number of linked open datasets on the Web
10
Query data vs. search for documents
ex. DBpedia
11
infer, reason, with semantics
URI
reference address
communication
WEB
RDF
URI
reference address
communication
WEB
RDF
RDFS
OWL
12
RDFS to declare classes of resources,
properties, and organize their hierarchy
Document
Report
creator
author
Document Person
13
OWL in one…
algebraic properties
disjoint properties
qualified cardinality
1..1
!
individual prop. neg
chained prop.


enumeration
intersection
union
complement
 disjunction
restriction!
cardinality
1..1
equivalence
[>18]
disjoint union
value restriction
keys
…
back to the topic
MOTIVATIONS
 rely on Web standard to represent, exchange and foster
interoperability between deontic rule bases
 rely on existing standards (e.g. SPARQL) and
infrastructures
(e.g. triple stores) to implement deontic systems
 combine linked data and semantic Web reasoning and
formalisms (e.g. OWL) with deontic reasoning to
support more inferences
QUESTIONS
Can we represent and
reason on the deontic
aspects of normative rules
with standard Semantic
Web languages?
QUESTIONS
Can we represent and
reason on the deontic
aspects of normative rules
with standard Semantic
Web languages?
 useful ontology-based reasoning
For which aspects schema-based reasoning (RDFS, OWL)
is relevant?
QUESTIONS
Can we represent and
reason on the deontic
aspects of normative rules
with standard Semantic
Web languages?
 useful ontology-based reasoning
For which aspects schema-based reasoning (RDFS, OWL)
is relevant?
 beyond classical ontology-based reasoning
Can we operationally formalize other deontic reasoning rules
with RDF and SPARQL?
identifying, classifying
ONTOLOGY
Ontological extension of the
LegalRuleML Meta Model focusing
on the deontic aspects
 LegalRuleML Meta Model [9] : primitives for deontic
rule and normative requirement representation
(Permission, Obligation, Prohibition).
 Integrate abstract formal framework for normative
requirements of regulatory compliance [10]
 Consider results on modal defeasible reasoning for
deontic logic on the Semantic Web [11]
MOTIVATING SCENARIOS
Step 1 to specify problems that
are not adequately addressed by
existing solutions [13].
e.g.
 support the annotation, detection and retrieval of
normative requirements and rules.
 support users in information retrieval with the ability
to identify and reason on the different types of
normative requirements and their statuses.
COMPETENCY QUESTIONS
Step 2 to place demands on the
targeted ontology, and they
provide expressiveness
requirements [13].
e.g.
 What are the instances of a given requirement and
its sub-types, e.g. obligation?
 Is a requirement violated by one or more states of
affairs, and if so, which ones?
 Which rules, documents and states of affairs are
linked to a requirement and how?
and… « voilà ! »
Normative Requirement Vocabulary (NRV) http://ns.inria.fr/nrv#
Compensable Requirement,
Non Compensable
Requirement, Compensated
Requirement : classes of
requirements with different
compensation statuses.
top classes (1/2)
Violable requirement, Non
Violable Requirement,
Violated Requirement and
Compliant Requirement: relation
to a Compliance or a Violation
top classes (2/2)
and… « voilà ! »
Normative Requirement Vocabulary (NRV) http://ns.inria.fr/nrv#
FORMALIZED ONTOLOGY
reuse & extend
lrmlmm: http://docs.oasis-open.org/legalruleml/ns/v1.0/metamodel#
owl: http://www.w3.org/2002/07/owl#
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
rulemm: http://docs.oasis-open.org/legalruleml/ns/v1.0/rule-metamodel#
xml: http://www.w3.org/XML/1998/namespace
xsd: http://www.w3.org/2001/XMLSchema#
nrv: http://ns.inria.fr/nrv#
nru: http://ns.inria.fr/nrv-inst#
FORMALIZED ONTOLOGY
extract 1: normative requirements
disjoint characteristics
:NormativeRequirement a rdfs:Class;
owl:disjointUnionOf
( :CompensableRequirement :NonCompensableRequirement );
owl:disjointUnionOf
( :ViolableRequirement :NonViolableRequirement );
owl:disjointUnionOf
( :PersistentRequirement :NonPersistentRequirement ).
FORMALIZED ONTOLOGY
extract 2: disjointness of violation
relations
:hasCompliance
a owl:ObjectProperty ;
rdfs:label "has for compliance"@en ;
rdfs:domain :ViolableRequirement ;
rdfs:range lrmlmm:Compliance ;
owl:propertyDisjointWith :hasViolation .
EXPRESSIVITY
OWL fragment
 disjoint unions means OWL DL, i.e.,
 more precisely
 remove cardinality restrictions, unions and
disjointedness: OWL EL and OWL RL
missing part
LIMITS
a motivation case: compliance and
violation are disjoint locally to a
state of affair
:CompliantRequirement a rdfs:Class ;
rdfs:subClassOf :ViolableRequirement ;
owl:equivalentClass [ a owl:Restriction ;
owl:onProperty :hasCompliance ;
owl:minCardinality 1 ] .
owl:equivalentClass [ a owl:Restriction ;
owl:onProperty :hasViolation ;
owl:maxCardinality 0 ] .
THE GRAPH AS A RESOURCE
“name that graph”, Gandon,
Corby, 2010, W3C Workshop on
RDF 1.1
http://www-sop.inria.fr/edelweiss/fabien/docs/w3c/rdfsource/rdfsource.html
http://ns.inria.fr/fabien.gandon/foaf#me RDF Source
http://purl.org/dc/elements/1.1/title
mailto:fgandon@inria.fr Fabien Gandon
http://purl.org/dc/elements/1.1/creator
http://xmlns.com/foaf/0.1/mbox
http://xmlns.com/foaf/0.1/Person
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://xmlns.com/foaf/0.1/name
NAMED GRAPHS
encapsulate state of affairs inside
RDF 1.1 named graphs to bound
the scope of some statements
GRAPH :StateOfAffairs1 {
:Tom :activity [ a :Driving ;
:speed "100"^^xsd:integer ;
rdfs:label "driving at 100km/h"@en ] . }
:StateOfAffairs1 a lrmlmm:FactualStatement .
METADATA
represent and
document legal
sources,
requirements, etc.
<http://gov.au/driving-rule> a lrmlmm:Source ;
rdfs:label "driving rules in Australia"@en .
nru:LSS1 a lrmlmm:Sources ;
lrmlmm:hasLegalSource <http://gov.au/driving-rule> .
nru:LRD1 a lrmlmm:LegalRuleMLDocument ;
lrmlmm:hasLegalSources nru:LSS1 ;
lrmlmm:hasAlternatives [ lrmlmm:fromLegalSources nru:LSS1 ;
lrmlmm:hasAlternative nru:PS1 ] ;
lrmlmm:hasStatements nru:SS1 .
nru:SS1 a lrmlmm:Statements ;
lrmlmm:hasStatement nru:PS1 .
nru:PS1 a lrmlmm:PrescriptiveStatement, lrmlmm:Prohibition ;
rdfs:label "can't drive over 90km/h"@en .
SPARQL RULES
implement some of the deontic
reasoning using SPARQL
operations on named graphs
DELETE { graph ?g { nru:PS1 nrv:hasCompliance ?g } }
INSERT { graph ?g { nru:PS1 a nrv:ViolatedRequirement ;
nrv:hasViolation ?g } }
WHERE { graph ?g { ?a a :Driving ; :speed ?s . }
FILTER (?s>90) } ;
DELETE { graph ?g { nru:PS1 a nrv:ViolatedRequirement ;
nrv:hasViolation ?g } }
INSERT { graph ?g { nru:PS1 nrv:hasCompliance ?g } }
WHERE { graph ?g { ?a a :Driving ; :speed ?s . }
FILTER (?s<=90) }
crash testing
formalization
PROOF OF CONCEPT
with two established tools
 Protégé [17] and its reasoners to check the NRV
OWL ontology : coherent and consistent.
 CORESE [18] to experiment named graph and
SPARQL based reasoning.
QUERY & INFER
e.g. CORESE/KGRAM [18]
FO  R  GF  GR
mapping modulo an ontology
car
vehicle
car(x)vehicle(x)
GF
GR
vehicle
car
O
RIF-BLD SPARQL RIFSPARQL
?x ?x
C C
List(T1. . . Tn) (T1’. . . Tn’)
OpenList(T1. . . Tn T)
External(op((T1. . . Tn))) Filter(op’ (T1’. . . Tn’))
T1 = T2 Filter(T1’ =T2’)
X # C X’ rdf:type C’
T1 ## T2 T1’ rdfs:subClassOf T2’
C(A1 ->V1 . . .An ->Vn)
C(T1 . . . Tn)
AND(A1. . . An) A1’. . . An’
Or(A1. . . An) {A1’} …UNION {An’}
OPTIONAL{B}
Exists ?x1 . . . ?xn (A) A’
Forall ?x1 . . . ?xn (H)
Forall ?x1 . . . ?xn (H:- B) CONSTRUCT { H’}
WHERE{ B’}
restrictions
equivalence no equivalence
extensions
demo:
INSIDE THE NAMED GRAPHS
state of affairs 1
state of affairs 2
CONCLUSION
Named Graph (state of affair) Subject Predicate Object
http://ns.inria.fr/nrv-inst#StateOfAffairs1 Tom http://ns.inria.fr/nrv-inst#activity driving at 100km/h
http://ns.inria.fr/nrv-inst#StateOfAffairs1 Tom http://www.w3.org/2000/01/rdf-schema#label Tom
http://ns.inria.fr/nrv-inst#StateOfAffairs1 can't drive over 90km http://www.w3.org/1999/02/22-rdf-syntax-ns#type violated requirement
http://ns.inria.fr/nrv-inst#StateOfAffairs1 can't drive over 90km has for violation http://ns.inria.fr/nrv-inst#StateOfAffairs1
http://ns.inria.fr/nrv-inst#StateOfAffairs1 driving at 100km/h http://ns.inria.fr/nrv-inst#speed 100
http://ns.inria.fr/nrv-inst#StateOfAffairs1 driving at 100km/h http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://ns.inria.fr/nrv-inst#Driving
http://ns.inria.fr/nrv-inst#StateOfAffairs1 driving at 100km/h http://www.w3.org/2000/01/rdf-schema#label "driving at 100km/h"@en
Named Graph (state of affair) Subject Predicate Object
http://ns.inria.fr/nrv-inst#StateOfAffairs2 Jim http://ns.inria.fr/nrv-inst#activity driving at 90km/h
http://ns.inria.fr/nrv-inst#StateOfAffairs2 Jim http://www.w3.org/2000/01/rdf-schema#label Jim
http://ns.inria.fr/nrv-inst#StateOfAffairs2 can't drive over 90km http://www.w3.org/1999/02/22-rdf-syntax-ns#type compliant requirement
http://ns.inria.fr/nrv-inst#StateOfAffairs2 can't drive over 90km has for compliance http://ns.inria.fr/nrv-inst#StateOfAffairs2
http://ns.inria.fr/nrv-inst#StateOfAffairs2 driving at 90km/h http://ns.inria.fr/nrv-inst#speed 90
http://ns.inria.fr/nrv-inst#StateOfAffairs2 driving at 90km/h http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://ns.inria.fr/nrv-inst#Driving
http://ns.inria.fr/nrv-inst#StateOfAffairs2 driving at 90km/h http://www.w3.org/2000/01/rdf-schema#label "driving at 90km/h"@en
Legal Rules on the Semantic Web
OWL + Named Graphs + SPARQL Rules
Future: differentiated classes of validity, non-binary modes,…
The Web Conference 2018 Call For Contributions
The 2018 edition of The Web Conference (27th edition of the
former WWW conference) will offer many opportunities to present
and discuss latest advances in academia and industry.
•Research tracks
•Posters
•Tutorials
•Workshops
Other tracks (in alphabetical order):
•Challenges track
•Demos track
•Developers’ track
•Hackathon/Hackateen
•Hyperspot – Exhibition
•International project track
•Journal paper track
•Journalism, Misinformation
•and Fact Checking
•Minute of madness
•PHD symposium
•The BIG Web
•W3C track
•Web For All
•(W4A co-located conference)
•Web programming
and more CfP coming soon…
“bridging natural and artificial intelligence worldwide”

More Related Content

What's hot

Web open standards for linked data and knowledge graphs as enablers of EU dig...
Web open standards for linked data and knowledge graphs as enablers of EU dig...Web open standards for linked data and knowledge graphs as enablers of EU dig...
Web open standards for linked data and knowledge graphs as enablers of EU dig...
Fabien Gandon
 
on the ontological necessity of the multidisciplinary development of the web
on the ontological necessity of the multidisciplinary development of the webon the ontological necessity of the multidisciplinary development of the web
on the ontological necessity of the multidisciplinary development of the web
Fabien Gandon
 
Introduction to Graph Databases
Introduction to Graph DatabasesIntroduction to Graph Databases
Introduction to Graph Databases
Paolo Pareti
 
Overview of the Research in Wimmics 2018
Overview of the Research in Wimmics 2018Overview of the Research in Wimmics 2018
Overview of the Research in Wimmics 2018
Fabien Gandon
 
From the Semantic Web to the Web of Data: ten years of linking up
From the Semantic Web to the Web of Data: ten years of linking upFrom the Semantic Web to the Web of Data: ten years of linking up
From the Semantic Web to the Web of Data: ten years of linking up
Davide Palmisano
 
The Web We Mix - benevolent AIs for a resilient web
The Web We Mix - benevolent AIs for a resilient webThe Web We Mix - benevolent AIs for a resilient web
The Web We Mix - benevolent AIs for a resilient web
Fabien Gandon
 
The Semantic Web: RPI ITWS Capstone (Fall 2012)
The Semantic Web: RPI ITWS Capstone (Fall 2012)The Semantic Web: RPI ITWS Capstone (Fall 2012)
The Semantic Web: RPI ITWS Capstone (Fall 2012)
Rensselaer Polytechnic Institute
 
Linking Open Data with Drupal
Linking Open Data with DrupalLinking Open Data with Drupal
Linking Open Data with Drupal
emmanuel_jamin
 
ITWS Capstone Lecture (Spring 2013)
ITWS Capstone Lecture (Spring 2013)ITWS Capstone Lecture (Spring 2013)
ITWS Capstone Lecture (Spring 2013)
Rensselaer Polytechnic Institute
 
Knowledge Graph Introduction
Knowledge Graph IntroductionKnowledge Graph Introduction
Knowledge Graph Introduction
Sören Auer
 
Das Semantische Daten Web für Unternehmen
Das Semantische Daten Web für UnternehmenDas Semantische Daten Web für Unternehmen
Das Semantische Daten Web für Unternehmen
Sören Auer
 
121004 linking open_data_with_drupal_v1
121004 linking open_data_with_drupal_v1121004 linking open_data_with_drupal_v1
121004 linking open_data_with_drupal_v1
manujam
 
Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...
Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...
Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...
Marko Rodriguez
 
Semantic Web and Web 3.0 - Web Technologies (1019888BNR)
Semantic Web and Web 3.0 - Web Technologies (1019888BNR)Semantic Web and Web 3.0 - Web Technologies (1019888BNR)
Semantic Web and Web 3.0 - Web Technologies (1019888BNR)
Beat Signer
 
Linked Open Data to support content based Recommender Systems
Linked Open Data to support content based Recommender SystemsLinked Open Data to support content based Recommender Systems
Linked Open Data to support content based Recommender Systems
Vito Ostuni
 
Get on the Linked Data Web!
Get on the Linked Data Web!Get on the Linked Data Web!
Get on the Linked Data Web!
Armin Haller
 
Brief State of the Art - Semantic Web technologies for geospatial data - Mode...
Brief State of the Art - Semantic Web technologies for geospatial data - Mode...Brief State of the Art - Semantic Web technologies for geospatial data - Mode...
Brief State of the Art - Semantic Web technologies for geospatial data - Mode...
Ana Roxin
 
Tuning Personalized PageRank for Semantics-aware Recommendations based on Lin...
Tuning Personalized PageRank for Semantics-aware Recommendations based on Lin...Tuning Personalized PageRank for Semantics-aware Recommendations based on Lin...
Tuning Personalized PageRank for Semantics-aware Recommendations based on Lin...
Cataldo Musto
 
Introduction of Knowledge Graphs
Introduction of Knowledge GraphsIntroduction of Knowledge Graphs
Introduction of Knowledge Graphs
Jeff Z. Pan
 
Introduction to the Semantic Web
Introduction to the Semantic WebIntroduction to the Semantic Web
Introduction to the Semantic Web
Marin Dimitrov
 

What's hot (20)

Web open standards for linked data and knowledge graphs as enablers of EU dig...
Web open standards for linked data and knowledge graphs as enablers of EU dig...Web open standards for linked data and knowledge graphs as enablers of EU dig...
Web open standards for linked data and knowledge graphs as enablers of EU dig...
 
on the ontological necessity of the multidisciplinary development of the web
on the ontological necessity of the multidisciplinary development of the webon the ontological necessity of the multidisciplinary development of the web
on the ontological necessity of the multidisciplinary development of the web
 
Introduction to Graph Databases
Introduction to Graph DatabasesIntroduction to Graph Databases
Introduction to Graph Databases
 
Overview of the Research in Wimmics 2018
Overview of the Research in Wimmics 2018Overview of the Research in Wimmics 2018
Overview of the Research in Wimmics 2018
 
From the Semantic Web to the Web of Data: ten years of linking up
From the Semantic Web to the Web of Data: ten years of linking upFrom the Semantic Web to the Web of Data: ten years of linking up
From the Semantic Web to the Web of Data: ten years of linking up
 
The Web We Mix - benevolent AIs for a resilient web
The Web We Mix - benevolent AIs for a resilient webThe Web We Mix - benevolent AIs for a resilient web
The Web We Mix - benevolent AIs for a resilient web
 
The Semantic Web: RPI ITWS Capstone (Fall 2012)
The Semantic Web: RPI ITWS Capstone (Fall 2012)The Semantic Web: RPI ITWS Capstone (Fall 2012)
The Semantic Web: RPI ITWS Capstone (Fall 2012)
 
Linking Open Data with Drupal
Linking Open Data with DrupalLinking Open Data with Drupal
Linking Open Data with Drupal
 
ITWS Capstone Lecture (Spring 2013)
ITWS Capstone Lecture (Spring 2013)ITWS Capstone Lecture (Spring 2013)
ITWS Capstone Lecture (Spring 2013)
 
Knowledge Graph Introduction
Knowledge Graph IntroductionKnowledge Graph Introduction
Knowledge Graph Introduction
 
Das Semantische Daten Web für Unternehmen
Das Semantische Daten Web für UnternehmenDas Semantische Daten Web für Unternehmen
Das Semantische Daten Web für Unternehmen
 
121004 linking open_data_with_drupal_v1
121004 linking open_data_with_drupal_v1121004 linking open_data_with_drupal_v1
121004 linking open_data_with_drupal_v1
 
Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...
Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...
Neno/Fhat: Semantic Network Programming Language and Virtual Machine Specific...
 
Semantic Web and Web 3.0 - Web Technologies (1019888BNR)
Semantic Web and Web 3.0 - Web Technologies (1019888BNR)Semantic Web and Web 3.0 - Web Technologies (1019888BNR)
Semantic Web and Web 3.0 - Web Technologies (1019888BNR)
 
Linked Open Data to support content based Recommender Systems
Linked Open Data to support content based Recommender SystemsLinked Open Data to support content based Recommender Systems
Linked Open Data to support content based Recommender Systems
 
Get on the Linked Data Web!
Get on the Linked Data Web!Get on the Linked Data Web!
Get on the Linked Data Web!
 
Brief State of the Art - Semantic Web technologies for geospatial data - Mode...
Brief State of the Art - Semantic Web technologies for geospatial data - Mode...Brief State of the Art - Semantic Web technologies for geospatial data - Mode...
Brief State of the Art - Semantic Web technologies for geospatial data - Mode...
 
Tuning Personalized PageRank for Semantics-aware Recommendations based on Lin...
Tuning Personalized PageRank for Semantics-aware Recommendations based on Lin...Tuning Personalized PageRank for Semantics-aware Recommendations based on Lin...
Tuning Personalized PageRank for Semantics-aware Recommendations based on Lin...
 
Introduction of Knowledge Graphs
Introduction of Knowledge GraphsIntroduction of Knowledge Graphs
Introduction of Knowledge Graphs
 
Introduction to the Semantic Web
Introduction to the Semantic WebIntroduction to the Semantic Web
Introduction to the Semantic Web
 

Similar to Normative Requirements as Linked Data

Resource Discovery Landscape
Resource Discovery LandscapeResource Discovery Landscape
Resource Discovery Landscape
Andy Powell
 
Explanations in Dialogue Systems through Uncertain RDF Knowledge Bases
Explanations in Dialogue Systems through Uncertain RDF Knowledge BasesExplanations in Dialogue Systems through Uncertain RDF Knowledge Bases
Explanations in Dialogue Systems through Uncertain RDF Knowledge Bases
Daniel Sonntag
 
Linking Big Data to Rich Process Descriptions
Linking Big Data to Rich Process DescriptionsLinking Big Data to Rich Process Descriptions
Linking Big Data to Rich Process Descriptions
Christoph Lange
 
Visualize open data with Plone - eea.daviz PLOG 2013
Visualize open data with Plone - eea.daviz PLOG 2013Visualize open data with Plone - eea.daviz PLOG 2013
Visualize open data with Plone - eea.daviz PLOG 2013
Antonio De Marinis
 
Sem facet paper
Sem facet paperSem facet paper
Sem facet paper
DBOnto
 
SemFacet paper
SemFacet paperSemFacet paper
SemFacet paper
DBOnto
 
슬라이드 1
슬라이드 1슬라이드 1
슬라이드 1
butest
 
Bio2RDF@BH2010
Bio2RDF@BH2010Bio2RDF@BH2010
Bio2RDF@BH2010
François Belleau
 
Port Clearance Rules in PSOA RuleML: From Controlled-English Regulation to Ob...
Port Clearance Rules in PSOA RuleML: From Controlled-English Regulation to Ob...Port Clearance Rules in PSOA RuleML: From Controlled-English Regulation to Ob...
Port Clearance Rules in PSOA RuleML: From Controlled-English Regulation to Ob...
RuleML
 
Enabling semantic integration
Enabling semantic integration Enabling semantic integration
Enabling semantic integration
Jean-Paul Calbimonte
 
Toward Automatic Generation of SPARQL result set Visualizations
Toward Automatic Generation of SPARQL result set VisualizationsToward Automatic Generation of SPARQL result set Visualizations
Toward Automatic Generation of SPARQL result set Visualizations
Marcello Leida
 
Towards efficient processing of RDF data streams
Towards efficient processing of RDF data streamsTowards efficient processing of RDF data streams
Towards efficient processing of RDF data streams
Alejandro Llaves
 
Towards efficient processing of RDF data streams
Towards efficient processing of RDF data streamsTowards efficient processing of RDF data streams
Towards efficient processing of RDF data streams
Alejandro Llaves
 
Analyzing the Evolution of Vocabulary Terms and Their Impact on the LOD Cloud
Analyzing the Evolution of Vocabulary Terms and Their Impact on the LOD CloudAnalyzing the Evolution of Vocabulary Terms and Their Impact on the LOD Cloud
Analyzing the Evolution of Vocabulary Terms and Their Impact on the LOD Cloud
MOVING Project
 
Paper presentation @ CGW ‘06 workshop, 2006
Paper presentation @ CGW ‘06 workshop, 2006Paper presentation @ CGW ‘06 workshop, 2006
Paper presentation @ CGW ‘06 workshop, 2006
Paolo Missier
 
Ontologies and semantic web
Ontologies and semantic webOntologies and semantic web
Ontologies and semantic web
Stanley Wang
 
Re2018 Semios for Requirements
Re2018 Semios for RequirementsRe2018 Semios for Requirements
Re2018 Semios for Requirements
Clément Portet
 
ICWE2017 BigDataEurope
ICWE2017 BigDataEuropeICWE2017 BigDataEurope
ICWE2017 BigDataEurope
BigData_Europe
 
Geospatial querying in Apache Marmotta - ApacheCon Big Data Europe 2015
Geospatial querying in Apache Marmotta - ApacheCon Big Data Europe 2015Geospatial querying in Apache Marmotta - ApacheCon Big Data Europe 2015
Geospatial querying in Apache Marmotta - ApacheCon Big Data Europe 2015
Sergio Fernández
 
WSO2 Machine Learner - Product Overview
WSO2 Machine Learner - Product OverviewWSO2 Machine Learner - Product Overview
WSO2 Machine Learner - Product Overview
WSO2
 

Similar to Normative Requirements as Linked Data (20)

Resource Discovery Landscape
Resource Discovery LandscapeResource Discovery Landscape
Resource Discovery Landscape
 
Explanations in Dialogue Systems through Uncertain RDF Knowledge Bases
Explanations in Dialogue Systems through Uncertain RDF Knowledge BasesExplanations in Dialogue Systems through Uncertain RDF Knowledge Bases
Explanations in Dialogue Systems through Uncertain RDF Knowledge Bases
 
Linking Big Data to Rich Process Descriptions
Linking Big Data to Rich Process DescriptionsLinking Big Data to Rich Process Descriptions
Linking Big Data to Rich Process Descriptions
 
Visualize open data with Plone - eea.daviz PLOG 2013
Visualize open data with Plone - eea.daviz PLOG 2013Visualize open data with Plone - eea.daviz PLOG 2013
Visualize open data with Plone - eea.daviz PLOG 2013
 
Sem facet paper
Sem facet paperSem facet paper
Sem facet paper
 
SemFacet paper
SemFacet paperSemFacet paper
SemFacet paper
 
슬라이드 1
슬라이드 1슬라이드 1
슬라이드 1
 
Bio2RDF@BH2010
Bio2RDF@BH2010Bio2RDF@BH2010
Bio2RDF@BH2010
 
Port Clearance Rules in PSOA RuleML: From Controlled-English Regulation to Ob...
Port Clearance Rules in PSOA RuleML: From Controlled-English Regulation to Ob...Port Clearance Rules in PSOA RuleML: From Controlled-English Regulation to Ob...
Port Clearance Rules in PSOA RuleML: From Controlled-English Regulation to Ob...
 
Enabling semantic integration
Enabling semantic integration Enabling semantic integration
Enabling semantic integration
 
Toward Automatic Generation of SPARQL result set Visualizations
Toward Automatic Generation of SPARQL result set VisualizationsToward Automatic Generation of SPARQL result set Visualizations
Toward Automatic Generation of SPARQL result set Visualizations
 
Towards efficient processing of RDF data streams
Towards efficient processing of RDF data streamsTowards efficient processing of RDF data streams
Towards efficient processing of RDF data streams
 
Towards efficient processing of RDF data streams
Towards efficient processing of RDF data streamsTowards efficient processing of RDF data streams
Towards efficient processing of RDF data streams
 
Analyzing the Evolution of Vocabulary Terms and Their Impact on the LOD Cloud
Analyzing the Evolution of Vocabulary Terms and Their Impact on the LOD CloudAnalyzing the Evolution of Vocabulary Terms and Their Impact on the LOD Cloud
Analyzing the Evolution of Vocabulary Terms and Their Impact on the LOD Cloud
 
Paper presentation @ CGW ‘06 workshop, 2006
Paper presentation @ CGW ‘06 workshop, 2006Paper presentation @ CGW ‘06 workshop, 2006
Paper presentation @ CGW ‘06 workshop, 2006
 
Ontologies and semantic web
Ontologies and semantic webOntologies and semantic web
Ontologies and semantic web
 
Re2018 Semios for Requirements
Re2018 Semios for RequirementsRe2018 Semios for Requirements
Re2018 Semios for Requirements
 
ICWE2017 BigDataEurope
ICWE2017 BigDataEuropeICWE2017 BigDataEurope
ICWE2017 BigDataEurope
 
Geospatial querying in Apache Marmotta - ApacheCon Big Data Europe 2015
Geospatial querying in Apache Marmotta - ApacheCon Big Data Europe 2015Geospatial querying in Apache Marmotta - ApacheCon Big Data Europe 2015
Geospatial querying in Apache Marmotta - ApacheCon Big Data Europe 2015
 
WSO2 Machine Learner - Product Overview
WSO2 Machine Learner - Product OverviewWSO2 Machine Learner - Product Overview
WSO2 Machine Learner - Product Overview
 

More from Fabien Gandon

Walking Our Way to the Web
Walking Our Way to the WebWalking Our Way to the Web
Walking Our Way to the Web
Fabien Gandon
 
a shift in our research focus: from knowledge acquisition to knowledge augmen...
a shift in our research focus: from knowledge acquisition to knowledge augmen...a shift in our research focus: from knowledge acquisition to knowledge augmen...
a shift in our research focus: from knowledge acquisition to knowledge augmen...
Fabien Gandon
 
Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Evaluation d’explications pour la prédiction de liens dans les graphes de con...Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Fabien Gandon
 
A Never-Ending Project for Humanity Called “the Web”
A Never-Ending Project for Humanity Called “the Web”A Never-Ending Project for Humanity Called “the Web”
A Never-Ending Project for Humanity Called “the Web”
Fabien Gandon
 
CovidOnTheWeb : covid19 linked data published on the Web
CovidOnTheWeb : covid19 linked data published on the WebCovidOnTheWeb : covid19 linked data published on the Web
CovidOnTheWeb : covid19 linked data published on the Web
Fabien Gandon
 
from linked data & knowledge graphs to linked intelligence & intelligence graphs
from linked data & knowledge graphs to linked intelligence & intelligence graphsfrom linked data & knowledge graphs to linked intelligence & intelligence graphs
from linked data & knowledge graphs to linked intelligence & intelligence graphs
Fabien Gandon
 
Web science AI and IA
Web science AI and IAWeb science AI and IA
Web science AI and IA
Fabien Gandon
 
How to supervise your supervisor?
How to supervise your supervisor?How to supervise your supervisor?
How to supervise your supervisor?
Fabien Gandon
 
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Fabien Gandon
 
Retours sur le MOOC "Web Sémantique et Web de données"
Retours sur le MOOC "Web Sémantique et Web de données"Retours sur le MOOC "Web Sémantique et Web de données"
Retours sur le MOOC "Web Sémantique et Web de données"
Fabien Gandon
 
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Fabien Gandon
 
Les (r)évolutions de la planète Web
Les (r)évolutions de la planète WebLes (r)évolutions de la planète Web
Les (r)évolutions de la planète Web
Fabien Gandon
 
Données liées et Web sémantique : quand le lien fait sens.
Données liées et Web sémantique : quand le lien fait sens. Données liées et Web sémantique : quand le lien fait sens.
Données liées et Web sémantique : quand le lien fait sens.
Fabien Gandon
 
Data protection and security on the web, ESWC2014 Panel
Data protection and security on the web, ESWC2014 PanelData protection and security on the web, ESWC2014 Panel
Data protection and security on the web, ESWC2014 Panel
Fabien Gandon
 
An introduction to Semantic Web and Linked Data
An introduction to Semantic Web and Linked DataAn introduction to Semantic Web and Linked Data
An introduction to Semantic Web and Linked Data
Fabien Gandon
 
quand le lien fait sens
quand le lien fait sensquand le lien fait sens
quand le lien fait sens
Fabien Gandon
 
when the link makes sense
when the link makes sensewhen the link makes sense
when the link makes sense
Fabien Gandon
 
Données de la culture et culture des données
Données de la culture et culture des donnéesDonnées de la culture et culture des données
Données de la culture et culture des données
Fabien Gandon
 

More from Fabien Gandon (18)

Walking Our Way to the Web
Walking Our Way to the WebWalking Our Way to the Web
Walking Our Way to the Web
 
a shift in our research focus: from knowledge acquisition to knowledge augmen...
a shift in our research focus: from knowledge acquisition to knowledge augmen...a shift in our research focus: from knowledge acquisition to knowledge augmen...
a shift in our research focus: from knowledge acquisition to knowledge augmen...
 
Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Evaluation d’explications pour la prédiction de liens dans les graphes de con...Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Evaluation d’explications pour la prédiction de liens dans les graphes de con...
 
A Never-Ending Project for Humanity Called “the Web”
A Never-Ending Project for Humanity Called “the Web”A Never-Ending Project for Humanity Called “the Web”
A Never-Ending Project for Humanity Called “the Web”
 
CovidOnTheWeb : covid19 linked data published on the Web
CovidOnTheWeb : covid19 linked data published on the WebCovidOnTheWeb : covid19 linked data published on the Web
CovidOnTheWeb : covid19 linked data published on the Web
 
from linked data & knowledge graphs to linked intelligence & intelligence graphs
from linked data & knowledge graphs to linked intelligence & intelligence graphsfrom linked data & knowledge graphs to linked intelligence & intelligence graphs
from linked data & knowledge graphs to linked intelligence & intelligence graphs
 
Web science AI and IA
Web science AI and IAWeb science AI and IA
Web science AI and IA
 
How to supervise your supervisor?
How to supervise your supervisor?How to supervise your supervisor?
How to supervise your supervisor?
 
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
 
Retours sur le MOOC "Web Sémantique et Web de données"
Retours sur le MOOC "Web Sémantique et Web de données"Retours sur le MOOC "Web Sémantique et Web de données"
Retours sur le MOOC "Web Sémantique et Web de données"
 
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
 
Les (r)évolutions de la planète Web
Les (r)évolutions de la planète WebLes (r)évolutions de la planète Web
Les (r)évolutions de la planète Web
 
Données liées et Web sémantique : quand le lien fait sens.
Données liées et Web sémantique : quand le lien fait sens. Données liées et Web sémantique : quand le lien fait sens.
Données liées et Web sémantique : quand le lien fait sens.
 
Data protection and security on the web, ESWC2014 Panel
Data protection and security on the web, ESWC2014 PanelData protection and security on the web, ESWC2014 Panel
Data protection and security on the web, ESWC2014 Panel
 
An introduction to Semantic Web and Linked Data
An introduction to Semantic Web and Linked DataAn introduction to Semantic Web and Linked Data
An introduction to Semantic Web and Linked Data
 
quand le lien fait sens
quand le lien fait sensquand le lien fait sens
quand le lien fait sens
 
when the link makes sense
when the link makes sensewhen the link makes sense
when the link makes sense
 
Données de la culture et culture des données
Données de la culture et culture des donnéesDonnées de la culture et culture des données
Données de la culture et culture des données
 

Recently uploaded

一比一原版英国伦敦大学亚非学院毕业证(soas毕业证书)如何办理
一比一原版英国伦敦大学亚非学院毕业证(soas毕业证书)如何办理一比一原版英国伦敦大学亚非学院毕业证(soas毕业证书)如何办理
一比一原版英国伦敦大学亚非学院毕业证(soas毕业证书)如何办理
duxss
 
Comparative analysis of ipc and bharitye Naya sahinta
Comparative analysis of ipc and bharitye Naya sahintaComparative analysis of ipc and bharitye Naya sahinta
Comparative analysis of ipc and bharitye Naya sahinta
adi2292
 
一比一原版加拿大多伦多大学毕业证(uoft毕业证书)如何办理
一比一原版加拿大多伦多大学毕业证(uoft毕业证书)如何办理一比一原版加拿大多伦多大学毕业证(uoft毕业证书)如何办理
一比一原版加拿大多伦多大学毕业证(uoft毕业证书)如何办理
onduyv
 
一比一原版(liverpool毕业证书)利物浦大学毕业证如何办理
一比一原版(liverpool毕业证书)利物浦大学毕业证如何办理一比一原版(liverpool毕业证书)利物浦大学毕业证如何办理
一比一原版(liverpool毕业证书)利物浦大学毕业证如何办理
aypxuyw
 
PoliticalScience_SrSec_2023-24.pdfffffff
PoliticalScience_SrSec_2023-24.pdfffffffPoliticalScience_SrSec_2023-24.pdfffffff
PoliticalScience_SrSec_2023-24.pdfffffff
RajatVerma652178
 
Indonesian Manpower Regulation on Severance Pay for Retiring Private Sector E...
Indonesian Manpower Regulation on Severance Pay for Retiring Private Sector E...Indonesian Manpower Regulation on Severance Pay for Retiring Private Sector E...
Indonesian Manpower Regulation on Severance Pay for Retiring Private Sector E...
AHRP Law Firm
 
一比一原版(uottawa毕业证书)加拿大渥太华大学毕业证如何办理
一比一原版(uottawa毕业证书)加拿大渥太华大学毕业证如何办理一比一原版(uottawa毕业证书)加拿大渥太华大学毕业证如何办理
一比一原版(uottawa毕业证书)加拿大渥太华大学毕业证如何办理
uhsox
 
一比一原版(trent毕业证书)加拿大特伦特大学毕业证如何办理
一比一原版(trent毕业证书)加拿大特伦特大学毕业证如何办理一比一原版(trent毕业证书)加拿大特伦特大学毕业证如何办理
一比一原版(trent毕业证书)加拿大特伦特大学毕业证如何办理
mecyyn
 
A Critical Study of ICC Prosecutor's Move on GAZA War
A Critical Study of ICC Prosecutor's Move on GAZA WarA Critical Study of ICC Prosecutor's Move on GAZA War
A Critical Study of ICC Prosecutor's Move on GAZA War
Nilendra Kumar
 
一比一原版(uwgb毕业证书)美国威斯康星大学绿湾分校毕业证如何办理
一比一原版(uwgb毕业证书)美国威斯康星大学绿湾分校毕业证如何办理一比一原版(uwgb毕业证书)美国威斯康星大学绿湾分校毕业证如何办理
一比一原版(uwgb毕业证书)美国威斯康星大学绿湾分校毕业证如何办理
pdeehy
 
How to Review a Contract Faster and More Efficiently
How to Review a Contract Faster and More EfficientlyHow to Review a Contract Faster and More Efficiently
How to Review a Contract Faster and More Efficiently
PracticeLeagueLegalt
 
一比一原版英国桑德兰大学毕业证(uos学位证)如何办理
一比一原版英国桑德兰大学毕业证(uos学位证)如何办理一比一原版英国桑德兰大学毕业证(uos学位证)如何办理
一比一原版英国桑德兰大学毕业证(uos学位证)如何办理
zv943dhb
 
一比一原版(glasgow毕业证书)格拉斯哥大学毕业证如何办理
一比一原版(glasgow毕业证书)格拉斯哥大学毕业证如何办理一比一原版(glasgow毕业证书)格拉斯哥大学毕业证如何办理
一比一原版(glasgow毕业证书)格拉斯哥大学毕业证如何办理
ooqzo
 
Should AI hold Intellectual Property Rights?
Should AI hold Intellectual Property Rights?Should AI hold Intellectual Property Rights?
Should AI hold Intellectual Property Rights?
RoseZubler1
 
一比一原版英国伦敦商学院毕业证(lbs毕业证书)如何办理
一比一原版英国伦敦商学院毕业证(lbs毕业证书)如何办理一比一原版英国伦敦商学院毕业证(lbs毕业证书)如何办理
一比一原版英国伦敦商学院毕业证(lbs毕业证书)如何办理
gedsuu
 
一比一原版(uwlc毕业证书)美国威斯康星大学拉克罗斯分校毕业证如何办理
一比一原版(uwlc毕业证书)美国威斯康星大学拉克罗斯分校毕业证如何办理一比一原版(uwlc毕业证书)美国威斯康星大学拉克罗斯分校毕业证如何办理
一比一原版(uwlc毕业证书)美国威斯康星大学拉克罗斯分校毕业证如何办理
qevye
 
17-03 2022 -full agreement full version .pdf
17-03 2022 -full agreement full version .pdf17-03 2022 -full agreement full version .pdf
17-03 2022 -full agreement full version .pdf
ssuser0dfed9
 
原版定做(sheffield学位证书)英国谢菲尔德大学毕业证文凭证书原版一模一样
原版定做(sheffield学位证书)英国谢菲尔德大学毕业证文凭证书原版一模一样原版定做(sheffield学位证书)英国谢菲尔德大学毕业证文凭证书原版一模一样
原版定做(sheffield学位证书)英国谢菲尔德大学毕业证文凭证书原版一模一样
abondo3
 
Legal Research and Legal Methodology-1.pptx
Legal Research and Legal Methodology-1.pptxLegal Research and Legal Methodology-1.pptx
Legal Research and Legal Methodology-1.pptx
varalakshmillm
 
Capital Punishment by Saif Javed (LLM)ppt.pptx
Capital Punishment by Saif Javed (LLM)ppt.pptxCapital Punishment by Saif Javed (LLM)ppt.pptx
Capital Punishment by Saif Javed (LLM)ppt.pptx
OmGod1
 

Recently uploaded (20)

一比一原版英国伦敦大学亚非学院毕业证(soas毕业证书)如何办理
一比一原版英国伦敦大学亚非学院毕业证(soas毕业证书)如何办理一比一原版英国伦敦大学亚非学院毕业证(soas毕业证书)如何办理
一比一原版英国伦敦大学亚非学院毕业证(soas毕业证书)如何办理
 
Comparative analysis of ipc and bharitye Naya sahinta
Comparative analysis of ipc and bharitye Naya sahintaComparative analysis of ipc and bharitye Naya sahinta
Comparative analysis of ipc and bharitye Naya sahinta
 
一比一原版加拿大多伦多大学毕业证(uoft毕业证书)如何办理
一比一原版加拿大多伦多大学毕业证(uoft毕业证书)如何办理一比一原版加拿大多伦多大学毕业证(uoft毕业证书)如何办理
一比一原版加拿大多伦多大学毕业证(uoft毕业证书)如何办理
 
一比一原版(liverpool毕业证书)利物浦大学毕业证如何办理
一比一原版(liverpool毕业证书)利物浦大学毕业证如何办理一比一原版(liverpool毕业证书)利物浦大学毕业证如何办理
一比一原版(liverpool毕业证书)利物浦大学毕业证如何办理
 
PoliticalScience_SrSec_2023-24.pdfffffff
PoliticalScience_SrSec_2023-24.pdfffffffPoliticalScience_SrSec_2023-24.pdfffffff
PoliticalScience_SrSec_2023-24.pdfffffff
 
Indonesian Manpower Regulation on Severance Pay for Retiring Private Sector E...
Indonesian Manpower Regulation on Severance Pay for Retiring Private Sector E...Indonesian Manpower Regulation on Severance Pay for Retiring Private Sector E...
Indonesian Manpower Regulation on Severance Pay for Retiring Private Sector E...
 
一比一原版(uottawa毕业证书)加拿大渥太华大学毕业证如何办理
一比一原版(uottawa毕业证书)加拿大渥太华大学毕业证如何办理一比一原版(uottawa毕业证书)加拿大渥太华大学毕业证如何办理
一比一原版(uottawa毕业证书)加拿大渥太华大学毕业证如何办理
 
一比一原版(trent毕业证书)加拿大特伦特大学毕业证如何办理
一比一原版(trent毕业证书)加拿大特伦特大学毕业证如何办理一比一原版(trent毕业证书)加拿大特伦特大学毕业证如何办理
一比一原版(trent毕业证书)加拿大特伦特大学毕业证如何办理
 
A Critical Study of ICC Prosecutor's Move on GAZA War
A Critical Study of ICC Prosecutor's Move on GAZA WarA Critical Study of ICC Prosecutor's Move on GAZA War
A Critical Study of ICC Prosecutor's Move on GAZA War
 
一比一原版(uwgb毕业证书)美国威斯康星大学绿湾分校毕业证如何办理
一比一原版(uwgb毕业证书)美国威斯康星大学绿湾分校毕业证如何办理一比一原版(uwgb毕业证书)美国威斯康星大学绿湾分校毕业证如何办理
一比一原版(uwgb毕业证书)美国威斯康星大学绿湾分校毕业证如何办理
 
How to Review a Contract Faster and More Efficiently
How to Review a Contract Faster and More EfficientlyHow to Review a Contract Faster and More Efficiently
How to Review a Contract Faster and More Efficiently
 
一比一原版英国桑德兰大学毕业证(uos学位证)如何办理
一比一原版英国桑德兰大学毕业证(uos学位证)如何办理一比一原版英国桑德兰大学毕业证(uos学位证)如何办理
一比一原版英国桑德兰大学毕业证(uos学位证)如何办理
 
一比一原版(glasgow毕业证书)格拉斯哥大学毕业证如何办理
一比一原版(glasgow毕业证书)格拉斯哥大学毕业证如何办理一比一原版(glasgow毕业证书)格拉斯哥大学毕业证如何办理
一比一原版(glasgow毕业证书)格拉斯哥大学毕业证如何办理
 
Should AI hold Intellectual Property Rights?
Should AI hold Intellectual Property Rights?Should AI hold Intellectual Property Rights?
Should AI hold Intellectual Property Rights?
 
一比一原版英国伦敦商学院毕业证(lbs毕业证书)如何办理
一比一原版英国伦敦商学院毕业证(lbs毕业证书)如何办理一比一原版英国伦敦商学院毕业证(lbs毕业证书)如何办理
一比一原版英国伦敦商学院毕业证(lbs毕业证书)如何办理
 
一比一原版(uwlc毕业证书)美国威斯康星大学拉克罗斯分校毕业证如何办理
一比一原版(uwlc毕业证书)美国威斯康星大学拉克罗斯分校毕业证如何办理一比一原版(uwlc毕业证书)美国威斯康星大学拉克罗斯分校毕业证如何办理
一比一原版(uwlc毕业证书)美国威斯康星大学拉克罗斯分校毕业证如何办理
 
17-03 2022 -full agreement full version .pdf
17-03 2022 -full agreement full version .pdf17-03 2022 -full agreement full version .pdf
17-03 2022 -full agreement full version .pdf
 
原版定做(sheffield学位证书)英国谢菲尔德大学毕业证文凭证书原版一模一样
原版定做(sheffield学位证书)英国谢菲尔德大学毕业证文凭证书原版一模一样原版定做(sheffield学位证书)英国谢菲尔德大学毕业证文凭证书原版一模一样
原版定做(sheffield学位证书)英国谢菲尔德大学毕业证文凭证书原版一模一样
 
Legal Research and Legal Methodology-1.pptx
Legal Research and Legal Methodology-1.pptxLegal Research and Legal Methodology-1.pptx
Legal Research and Legal Methodology-1.pptx
 
Capital Punishment by Saif Javed (LLM)ppt.pptx
Capital Punishment by Saif Javed (LLM)ppt.pptxCapital Punishment by Saif Javed (LLM)ppt.pptx
Capital Punishment by Saif Javed (LLM)ppt.pptx
 

Normative Requirements as Linked Data

  • 1. NORMATIVE REQUIREMENTS AS LINKED DATA Fabien GANDON Guido GOVERNATORI Serena VILLATA
  • 2. MIREL MIning and REasoning with Legal texts http://www.mirelproject.eu/
  • 3. MIREL MIning and REasoning with Legal texts http://www.mirelproject.eu/  International and inter-sectorial network to define a formal framework and to develop tools  European Union's 2020 research and innovation programme Marie Skłodowska-Curie grant agreement No 690974.  Conceptual challenges e.g. legal interpretation in mining and reasoning  Computational challenges e.g. handling of big legal data, and the complexity of regulatory compliance
  • 4. MIREL MIning and REasoning with Legal texts http://www.mirelproject.eu/  International and inter-sectorial network to define a formal framework and to develop tools  European Union's 2020 research and innovation programme Marie Skłodowska-Curie grant agreement No 690974.  Conceptual challenges e.g. legal interpretation in mining and reasoning  Computational challenges e.g. handling of big legal data, and the complexity of regulatory compliance  Bridge: legal ontologies and NLP parsers  reasoning methods and formal logic  promotes mobility and staff exchange, here:  bridge normative requirements and linked data
  • 6.
  • 7. 7 HTTP URI reference address communication WEB RDF the giant global graph of data HTTP URI HTML reference address communication WEB
  • 8. 8 "Music" RDFis a model for directed labeled multigraphs http://inria.fr/rr/doc.html http://ns.inria.fr/fabien.gandon#me http://inria.fr/schema#author http://inria.fr/schema#topic http://inria.fr/rr/doc.html http://inria.fr/schema#keyword
  • 9. 9 linked open data(sets) cloud on the Web 0 200 400 600 800 1000 1200 1400 01/05/2007 08/10/2007 07/11/2007 10/11/2007 28/02/2008 31/03/2008 18/09/2008 05/03/2009 27/03/2009 14/07/2009 22/09/2010 19/09/2011 30/08/2014 26/01/2017 number of linked open datasets on the Web
  • 10. 10 Query data vs. search for documents ex. DBpedia
  • 11. 11 infer, reason, with semantics URI reference address communication WEB RDF URI reference address communication WEB RDF RDFS OWL
  • 12. 12 RDFS to declare classes of resources, properties, and organize their hierarchy Document Report creator author Document Person
  • 13. 13 OWL in one… algebraic properties disjoint properties qualified cardinality 1..1 ! individual prop. neg chained prop.   enumeration intersection union complement  disjunction restriction! cardinality 1..1 equivalence [>18] disjoint union value restriction keys …
  • 14. back to the topic
  • 15. MOTIVATIONS  rely on Web standard to represent, exchange and foster interoperability between deontic rule bases  rely on existing standards (e.g. SPARQL) and infrastructures (e.g. triple stores) to implement deontic systems  combine linked data and semantic Web reasoning and formalisms (e.g. OWL) with deontic reasoning to support more inferences
  • 16. QUESTIONS Can we represent and reason on the deontic aspects of normative rules with standard Semantic Web languages?
  • 17. QUESTIONS Can we represent and reason on the deontic aspects of normative rules with standard Semantic Web languages?  useful ontology-based reasoning For which aspects schema-based reasoning (RDFS, OWL) is relevant?
  • 18. QUESTIONS Can we represent and reason on the deontic aspects of normative rules with standard Semantic Web languages?  useful ontology-based reasoning For which aspects schema-based reasoning (RDFS, OWL) is relevant?  beyond classical ontology-based reasoning Can we operationally formalize other deontic reasoning rules with RDF and SPARQL?
  • 20. ONTOLOGY Ontological extension of the LegalRuleML Meta Model focusing on the deontic aspects  LegalRuleML Meta Model [9] : primitives for deontic rule and normative requirement representation (Permission, Obligation, Prohibition).  Integrate abstract formal framework for normative requirements of regulatory compliance [10]  Consider results on modal defeasible reasoning for deontic logic on the Semantic Web [11]
  • 21. MOTIVATING SCENARIOS Step 1 to specify problems that are not adequately addressed by existing solutions [13]. e.g.  support the annotation, detection and retrieval of normative requirements and rules.  support users in information retrieval with the ability to identify and reason on the different types of normative requirements and their statuses.
  • 22. COMPETENCY QUESTIONS Step 2 to place demands on the targeted ontology, and they provide expressiveness requirements [13]. e.g.  What are the instances of a given requirement and its sub-types, e.g. obligation?  Is a requirement violated by one or more states of affairs, and if so, which ones?  Which rules, documents and states of affairs are linked to a requirement and how?
  • 23. and… « voilà ! » Normative Requirement Vocabulary (NRV) http://ns.inria.fr/nrv#
  • 24. Compensable Requirement, Non Compensable Requirement, Compensated Requirement : classes of requirements with different compensation statuses. top classes (1/2)
  • 25. Violable requirement, Non Violable Requirement, Violated Requirement and Compliant Requirement: relation to a Compliance or a Violation top classes (2/2)
  • 26. and… « voilà ! » Normative Requirement Vocabulary (NRV) http://ns.inria.fr/nrv#
  • 27. FORMALIZED ONTOLOGY reuse & extend lrmlmm: http://docs.oasis-open.org/legalruleml/ns/v1.0/metamodel# owl: http://www.w3.org/2002/07/owl# rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# rdfs: http://www.w3.org/2000/01/rdf-schema# rulemm: http://docs.oasis-open.org/legalruleml/ns/v1.0/rule-metamodel# xml: http://www.w3.org/XML/1998/namespace xsd: http://www.w3.org/2001/XMLSchema# nrv: http://ns.inria.fr/nrv# nru: http://ns.inria.fr/nrv-inst#
  • 28. FORMALIZED ONTOLOGY extract 1: normative requirements disjoint characteristics :NormativeRequirement a rdfs:Class; owl:disjointUnionOf ( :CompensableRequirement :NonCompensableRequirement ); owl:disjointUnionOf ( :ViolableRequirement :NonViolableRequirement ); owl:disjointUnionOf ( :PersistentRequirement :NonPersistentRequirement ).
  • 29. FORMALIZED ONTOLOGY extract 2: disjointness of violation relations :hasCompliance a owl:ObjectProperty ; rdfs:label "has for compliance"@en ; rdfs:domain :ViolableRequirement ; rdfs:range lrmlmm:Compliance ; owl:propertyDisjointWith :hasViolation .
  • 30. EXPRESSIVITY OWL fragment  disjoint unions means OWL DL, i.e.,  more precisely  remove cardinality restrictions, unions and disjointedness: OWL EL and OWL RL
  • 32. LIMITS a motivation case: compliance and violation are disjoint locally to a state of affair :CompliantRequirement a rdfs:Class ; rdfs:subClassOf :ViolableRequirement ; owl:equivalentClass [ a owl:Restriction ; owl:onProperty :hasCompliance ; owl:minCardinality 1 ] . owl:equivalentClass [ a owl:Restriction ; owl:onProperty :hasViolation ; owl:maxCardinality 0 ] .
  • 33. THE GRAPH AS A RESOURCE “name that graph”, Gandon, Corby, 2010, W3C Workshop on RDF 1.1 http://www-sop.inria.fr/edelweiss/fabien/docs/w3c/rdfsource/rdfsource.html http://ns.inria.fr/fabien.gandon/foaf#me RDF Source http://purl.org/dc/elements/1.1/title mailto:fgandon@inria.fr Fabien Gandon http://purl.org/dc/elements/1.1/creator http://xmlns.com/foaf/0.1/mbox http://xmlns.com/foaf/0.1/Person http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://xmlns.com/foaf/0.1/name
  • 34. NAMED GRAPHS encapsulate state of affairs inside RDF 1.1 named graphs to bound the scope of some statements GRAPH :StateOfAffairs1 { :Tom :activity [ a :Driving ; :speed "100"^^xsd:integer ; rdfs:label "driving at 100km/h"@en ] . } :StateOfAffairs1 a lrmlmm:FactualStatement .
  • 35. METADATA represent and document legal sources, requirements, etc. <http://gov.au/driving-rule> a lrmlmm:Source ; rdfs:label "driving rules in Australia"@en . nru:LSS1 a lrmlmm:Sources ; lrmlmm:hasLegalSource <http://gov.au/driving-rule> . nru:LRD1 a lrmlmm:LegalRuleMLDocument ; lrmlmm:hasLegalSources nru:LSS1 ; lrmlmm:hasAlternatives [ lrmlmm:fromLegalSources nru:LSS1 ; lrmlmm:hasAlternative nru:PS1 ] ; lrmlmm:hasStatements nru:SS1 . nru:SS1 a lrmlmm:Statements ; lrmlmm:hasStatement nru:PS1 . nru:PS1 a lrmlmm:PrescriptiveStatement, lrmlmm:Prohibition ; rdfs:label "can't drive over 90km/h"@en .
  • 36. SPARQL RULES implement some of the deontic reasoning using SPARQL operations on named graphs DELETE { graph ?g { nru:PS1 nrv:hasCompliance ?g } } INSERT { graph ?g { nru:PS1 a nrv:ViolatedRequirement ; nrv:hasViolation ?g } } WHERE { graph ?g { ?a a :Driving ; :speed ?s . } FILTER (?s>90) } ; DELETE { graph ?g { nru:PS1 a nrv:ViolatedRequirement ; nrv:hasViolation ?g } } INSERT { graph ?g { nru:PS1 nrv:hasCompliance ?g } } WHERE { graph ?g { ?a a :Driving ; :speed ?s . } FILTER (?s<=90) }
  • 38. PROOF OF CONCEPT with two established tools  Protégé [17] and its reasoners to check the NRV OWL ontology : coherent and consistent.  CORESE [18] to experiment named graph and SPARQL based reasoning.
  • 39. QUERY & INFER e.g. CORESE/KGRAM [18]
  • 40. FO  R  GF  GR mapping modulo an ontology car vehicle car(x)vehicle(x) GF GR vehicle car O RIF-BLD SPARQL RIFSPARQL ?x ?x C C List(T1. . . Tn) (T1’. . . Tn’) OpenList(T1. . . Tn T) External(op((T1. . . Tn))) Filter(op’ (T1’. . . Tn’)) T1 = T2 Filter(T1’ =T2’) X # C X’ rdf:type C’ T1 ## T2 T1’ rdfs:subClassOf T2’ C(A1 ->V1 . . .An ->Vn) C(T1 . . . Tn) AND(A1. . . An) A1’. . . An’ Or(A1. . . An) {A1’} …UNION {An’} OPTIONAL{B} Exists ?x1 . . . ?xn (A) A’ Forall ?x1 . . . ?xn (H) Forall ?x1 . . . ?xn (H:- B) CONSTRUCT { H’} WHERE{ B’} restrictions equivalence no equivalence extensions
  • 41. demo:
  • 42. INSIDE THE NAMED GRAPHS state of affairs 1 state of affairs 2
  • 43. CONCLUSION Named Graph (state of affair) Subject Predicate Object http://ns.inria.fr/nrv-inst#StateOfAffairs1 Tom http://ns.inria.fr/nrv-inst#activity driving at 100km/h http://ns.inria.fr/nrv-inst#StateOfAffairs1 Tom http://www.w3.org/2000/01/rdf-schema#label Tom http://ns.inria.fr/nrv-inst#StateOfAffairs1 can't drive over 90km http://www.w3.org/1999/02/22-rdf-syntax-ns#type violated requirement http://ns.inria.fr/nrv-inst#StateOfAffairs1 can't drive over 90km has for violation http://ns.inria.fr/nrv-inst#StateOfAffairs1 http://ns.inria.fr/nrv-inst#StateOfAffairs1 driving at 100km/h http://ns.inria.fr/nrv-inst#speed 100 http://ns.inria.fr/nrv-inst#StateOfAffairs1 driving at 100km/h http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://ns.inria.fr/nrv-inst#Driving http://ns.inria.fr/nrv-inst#StateOfAffairs1 driving at 100km/h http://www.w3.org/2000/01/rdf-schema#label "driving at 100km/h"@en Named Graph (state of affair) Subject Predicate Object http://ns.inria.fr/nrv-inst#StateOfAffairs2 Jim http://ns.inria.fr/nrv-inst#activity driving at 90km/h http://ns.inria.fr/nrv-inst#StateOfAffairs2 Jim http://www.w3.org/2000/01/rdf-schema#label Jim http://ns.inria.fr/nrv-inst#StateOfAffairs2 can't drive over 90km http://www.w3.org/1999/02/22-rdf-syntax-ns#type compliant requirement http://ns.inria.fr/nrv-inst#StateOfAffairs2 can't drive over 90km has for compliance http://ns.inria.fr/nrv-inst#StateOfAffairs2 http://ns.inria.fr/nrv-inst#StateOfAffairs2 driving at 90km/h http://ns.inria.fr/nrv-inst#speed 90 http://ns.inria.fr/nrv-inst#StateOfAffairs2 driving at 90km/h http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://ns.inria.fr/nrv-inst#Driving http://ns.inria.fr/nrv-inst#StateOfAffairs2 driving at 90km/h http://www.w3.org/2000/01/rdf-schema#label "driving at 90km/h"@en Legal Rules on the Semantic Web OWL + Named Graphs + SPARQL Rules Future: differentiated classes of validity, non-binary modes,…
  • 44. The Web Conference 2018 Call For Contributions The 2018 edition of The Web Conference (27th edition of the former WWW conference) will offer many opportunities to present and discuss latest advances in academia and industry. •Research tracks •Posters •Tutorials •Workshops Other tracks (in alphabetical order): •Challenges track •Demos track •Developers’ track •Hackathon/Hackateen •Hyperspot – Exhibition •International project track •Journal paper track •Journalism, Misinformation •and Fact Checking •Minute of madness •PHD symposium •The BIG Web •W3C track •Web For All •(W4A co-located conference) •Web programming and more CfP coming soon… “bridging natural and artificial intelligence worldwide”