SlideShare a Scribd company logo
1
Dr Youssef Hammida
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Pilaster masonry wall
27
28


 Steel sheeting provides resistance during installation stresses. The sheets must be
driven into the ground and they have high resistance to the force of being driven
down.
 It is extremely light weight and makes it easier to lift and handle.
 Steel sheeting is reusable and recyclable.
 There is a long life for it both above and under water. It only requires light protection
to keep it maintained.
 The pile length is easily adaptable and can be welded or bolted to make it work.
 They have stronger joints that can withstand the force of being driven into place.
29
Steel Sheet Piling Construction Steps
 First, lay out the sheets in sections to make sure that the piles will interlock
correctly.
 Drive each sheet to the depth that has been mapped out.
 Then drive the second sheet that has the interlocks between the first sheet and
the second locked sheet.
 Repeat until the wall is completed.
 If the wall requires complex shapes use connector elements to ensure that the
integrity of the wall is maintained.
 Vibratory hammers are used for the installation of steel sheet piles. An impact
hammer is used if the soil is too dense for the vibratory hammer.
 At sites where vibrations are not recommended the sheets are pushed into place
using hydraulics.
30
31
32
33
34
35
36
-------------------------------------------------------
37
38
-----------------------------
Sheet Pile Walls...
Sheet pile walls are another method for construction of basements and temporary
excavations, however they are increasingly being used as permanent structures with
the correctly specified surface coating.
‫ا‬‫لخوازيق‬,‫واألوتاد‬‫الساندة‬‫الحفر‬ ‫جوانب‬ ‫سند‬ ‫وظيفتها‬ ‫ألن‬ ‫الموقع‬ ‫حفر‬ ‫قبل‬ ‫تنفيذها‬ ‫بيتم‬
‫مرور‬ ‫قبل‬ ‫الحفر‬ ‫واليتم‬82‫ساند‬ ‫خازوق‬ ‫آخر‬ ‫تنفيذ‬ ‫على‬ ‫يوم‬
‫التأسيس‬ ‫تربة‬ ‫لمنسوب‬ ‫واليصل‬ ‫الحفر‬ ‫بقيمة‬ ‫مرتبط‬ ‫طوله‬ ‫الساند‬ ‫والخازوق‬
.
39
40
41
For free earth support method
the soils at the lower part of piling is incapable of inducing effective restraint so that it
would not result in negative bending moments. In essence, the passive pressures in front
of the sheet piles are insufficient to prevent lateral deflection and rotations at the lower
end of piling. No passive resistance is developed on the backside of the piling below the
line of excavation.
For fixed earth support method
, the piling is driven deep enough so that the soil under the line of excavation provides the
required restraint against deformations and rotations. In short, the lower end of piling is
essentially fixed.
42
Anchored sheet pile wall
 Anchored sheet pile wall in cohesionless soil
 Anchored sheet pile wall in cohesive soil
Design using free earth support method
1. Sheet pile is rigid, and lateral deflection is small.
2. The lateral pressure distributes according to Rankine’s or Coulomb’s theories
3. The tie back is strong, and sheet pile rotate about the tie rod anchor point at failure
4. Bottom of sheet pile is free to move.
43
embedded depth can be determined by summarizing horizontal earth pressures and moments about
the anchor.
 Fx = 0 [1]
Mo = 0 [2]
the lateral earth pressure is a function of embedded depth. Both equations are highly nonlinear. A
trial and error method has to be used to determine the root.
r structural design, the sheet pile needs to be able to withstand maximum moment and shear from
lateral pressure. A structural analysis needs to be done to determine maximum moment and
shear.
44
Anchored sheet pile wall in cohesionless soil
Design length of sheet pile
Calculating active earth pressure
The method for calculating active earth pressure is the same as that in cantilever sheet pile wall. The
lateral forces Ha1 is calculated as
Ha1= Ka h2
/2+q Ka h
The depth a can be calculated as
a = pa /  (Kp-Ka)
The lateral forces Ha2 can be calculated as
Ha2=pa*a/2
Calculating passive earth pressure
The slope from point C to E in the figure above is  (Kp-Ka). The passive earth pressure at a depth Y
below a is calculated as
Pp =  (Kp-Ka) Y
45
The passive lateral force
HCEF =  (Kp-Ka) Y2
/2
Derive equation for Y from Mo = 0
Mo = Ha1*y1 + Ha2* y2 – HCEF* y3 = 0
Where
y1 = (2h/3-b)
y2 = (h+a/3-b)
y3 = (h+a+2Y/3)
The equation needs to be determined by a trial and error process.
Determine anchor force T from  Fx = 0
 Fx = Ha1+ Ha2– HCEF-T = 0
Then,
T = Ha1+ Ha2– HCEF
Design size of sheet pile
The structural is the same as cantilever sheet piles in cohesionless soil.
Maximum moment locates at a distance y below T where shear stress equals to zero.
T- Ka (y+b)2
/2=0
Solve for y, we have, y = -b+2*T/( Ka)
The maximum moment is
Mmax = T y -  Ka (y+b)3
/6
The required section modulus is S = Mmax / Fb
The sheet pile section is selected based on section modulus
46
Design of tie rod and soldier beam
sheet pile design above is based on a unit width, foot or meter. The tie back force T calculated from
sheet pile design is force per linearly width of sheet pile. The top of sheet pile often supported with
soldier beams and tie rods at certain spacing.
Assume the spacing of tie rod is s, the tension in the rod is T times s. The required area of tie rod is
A = T s / Ft
Where Ft is allowable tensile stress of steel and is equal to 0.6Fy in AISC ASD design.
oil beam is designed as a continuous beam that subjected to tie back force T. The maximum moment
in the soldier beam is calculated from structural analysis. The required section modulus is equal to S
= Mmax / Fb.
Design procedure
1.Calculate lateral earth pressure at bottom of excavation, pa and Ha1.
pa =  Ka H, Ha1=pa*h/2
2.Calculate the length a, and Ha2.
a = pa /  (Kp-Ka), Ha2=pa*a/2
3.Assume a trial depth Y, calculate HCEF.
HCEF =  (Kp-Ka) Y2
/3
4.Let R = Ha1*y1 + Ha2* y2 – HCEF* y3
y1 = (2h/3-b)
y2 = (h+a/3-b)
47
y3 = (h+a+2Y/3)
Substitute Y into R, if R = 0, the embedded depth, D = Y + a.
If not, assume a new Y, repeat step 3 to 4.
5.Calculate the length of sheet pile, L = h+F.S.*D, FS is from 1.2 to 1.4.
6.Calculate anchored force T = Ha1+ Ha2– HCEF
7.Calculate y = -b+2*T/( Ka)
8.Calculate Mmax = T y -  Ka (y+b)3
/6
9.Calculate required section modulus S= Mmax/Fb.
10. Select sheet pile section.
11. Design tie rod
12. Design soldier beam.
48
Example 3. Design anchored sheet pile in cohesionless soil.
Depth of excavation, h = 10 ft
Unit weight of soil,  = 115 lb/ft3
Internal friction angle,  = 30 degree
Allowable design stress of sheet pile = 32 ksi
Yield strength of soldier beam, Fy = 36 ksi
Location of tie rod at 2 ft below ground surface, spacing, s = 12 ft
Requirement: Design length of an anchored sheet pile, select sheet pile section, and design tie rod
Solution:
Design length of sheet pile:
Calculate lateral earth pressure coefficients:
Ka = tan (45-/2) = 0.333
Kp = tan (45-/2) = 3
The lateral earth pressure at bottom of excavation is
pa = Ka  h = 0.333*115*10 = 383.33 psf
The active lateral force above excavation
Ha1 = pa*h/2 = 383.33*10/2 = 1917 lb/ft
The depth a = pa /  (Kp-Ka) = 383.3 / [115*(3-0.333)] =1.25 ft
The corresponding lateral force
Ha2 = pa*a/2 = 383.33*1.25/2 = 238.6 lb/ft
Assume Y = 2.85 ft
HCEF =  (Kp-Ka) Y2
/3 = 115*(3-0.333)*2.852
/3 = 830.3 lb/ft
y1 = (2h/3-b) = (2*10/3-2)=4.67 ft
y2 = (h+a/3-b) = (10+1.25/3-2)=8.42 ft
y3 = (h+a+2Y/3) = (10+1.25+2*2.85/3) = 13.15 ft
49
R = Ha1*y1 + Ha2* y2 – HCEF* y3 = 1917*4.67+238.6*8.42-830.3*13.15 = 42.5 lb
R closes to zero, D = 2.85+1.25 = 4.1 ft
Length of sheet pile, L = 10 + 1.2* 4.1 = 14.9 ft Use 15 ft
Calculate anchor force,
T = Ha1+ Ha2– HCEF = 1917+238.6-830.3 = 1326 lb/ft
Calculate location of maximum moment,
y = -b+2*T/( Ka) = -2 ft + 2*1326/(115*0.333) = 6.32 ft
Mmax = T y -  Ka (y+b)3
/6 = 1326*6.32 – 115*0.333*(6.32+2)3
/6 = 4.7 kip-ft/ft
The required section modulus S= Mmax/Fb = 4.7*12/32 = 1.8 in3
/ft
Use PS28, S = 1.9 in3
/ft
Design tie rod, the required cross section area,
A = T s / (0.6*Fy) = 1.326*12/(0.6*36) = 0.442 in3
.
Use ¾” diameter tie rod, A = 0.442 in3
.
Design soldier beam:
The maximum moment of a continuous beams with 3 or more span is
M = 0.1*T s2
= 0.1*1326*122
=19.1 kip-ft
Required section modulus, S = M / (0.6*Fy) = 19.1*12/(0.6*36) = 6.4 in3
.
Use W6x15, S = 9.72 in3
.
50
Anchored sheet pile wall in cohesive soil.
Calculating active earth pressure
Calculation of active earth pressure above excavation is the same as that of cantilever sheet pile in
cohesive soil. The free-standing height of soil is d = 2C/
The lateral earth pressure at bottom of excavation, pa =  h – 2C, where  is unit weight of soil. The
resultant force Ha=pa*h/2
Calculating passive earth pressure
For cohesive soil, friction angle,  = 0, Ka = Kp = 1. The earth pressure below excavation,
p1= p-a= 2C-(h-2C) = 4C-h
Assume the embedded depth is D, the resultant force below bottom of excavation is
HBCDF = p1*D
Derive equation for D from Mo = 0
Mo = Ha1*y1 – HBCDF* y3 = 0
Where
y1 = 2(h-d)/3-(b-d)
y3 = h-b+D/2
The equation can be determined with a trial and error process.
51
Determine anchor force T from  Fx = 0
 Fx = Ha1– HBCDF-T = 0
T = Ha1+ Ha2– HCEF
Design size of sheet pile
Maximum moment locates at a distance y below T where shear stress equals to zero.
T- Ka (y+b-d)2
/2=0
Solve for y, we have, y = -b+d+2*T/( Ka)
The maximum moment is
Mmax = T y -  Ka (y+b-d)3
/6
The required section modulus is S = Mmax / Fb
The sheet pile section is selected based on section modulus
Design of tie rod and soldier beam
Design of tie rod and soldier beam is the same as that of anchored sheet pile in cohesionless soil.
1.Calculate free standing height, d = 2C/
2.Calculate pa=(h-d)
3.Calculate Ha=pa*h/2
4.Calculate p1=4C-h,
5.Assume a value of D, and calculate HBCDF = p1*D
6.Calculate R= Ha*y1 – HBCDF* y3.
Where
y1 = 2(h-d)/3-(b-d)
y3 = h-b+D/2
If R is not close to zero, assume a new D, repeat steps 5 and 6
7.The design length of sheet pile is L=h+D*FS, FS=1.2 to 1.4.
8.Calculate anchored force T = Ha – HBCDF
9.Calculate y = -b+d+2*T/
10. Calculate Mmax = T y -  (y+b-d)3
/6
11. Calculate required section modulus S= Mmax/Fb. Select sheet pile section.
12. Design tie rod
52
13. Design soldier beam.
Example 4: Design anchored sheet pile in cohesive soil.
Depth of excavation, h = 15 ft
Unit weight of soil,  = 115 lb/ft3
Cohesion of soil, C = 500 psf
Internal friction angle,  = 0 degree
Allowable design strength of sheet pile = 32 ksi
Yield strength of soldier beam, Fy = 36 ksi
Location of tie rod at 2 ft below ground surface, spacing =12 ft.
Requirement: Design length of sheet pile and select sheet pile section
Solution:
Design length of sheet pile:
The free standing height, d = 2C/ = 2*500/115 = 8.7 ft
The lateral pressure at bottom of sheet pile, pa = (h-d)=115*(10-8.7)=150 psf
Total active force, Ha=pa*h/2 = 150*10/2 = 750 lb/ft
p1=4C-h = 4*550-115*15 = 275 psf
Assume D = 11.5 ft,
HBCDF = p1*D = 3163 lb/ft
y1 = 2(h-d)/3-(b-d) =2 (15-8.7)/3-(2-8.7) = 10.9 ft
y3 = h-b+D/2 = 15-2+11.5/2 = 18.75 ft
R= Ha*y1 – HBCDF* y3 = 5438*10.9-3163*18.75 = -36 lb Close to zero
The length of sheet pile, L = 15 + 1.2*11.5 = 28.8 ft Use 29 ft
Anchored force per foot of wall, T = Ha – HBCDF = 5438 – 3163 = 2275 lb/ft
53
Calculate location of maximum moment,
y = -b+d+2*T/ = -2+8.7+2*2275/115 = 13 ft
Maximum moment,
Mmax = T y -  (y+b-d)3
/6 = 2275*13 – 115*(13+2-8.7)3
/6 = 24770 lb-ft/ft
Required section modulus of sheet pile, S= Mmax/Fb = 22.47*12/32 = 8.4 in3
/ft
Use PDA 27 section modulus 10.7 in3
/ft
Design tie rod
Cross section of tie rod required, A = T*s/(0.6*Fy) = 2.275*12/(0.6*36) = 0.91 in2
.
Diameter of tie rod, d = 4*A/ = 1.08 in
Use 1-1/8” diameter tie rod.
Design soldier beam
Maximum moment in solider beam, Mmax = 0.1*T*s2
= 0.1*2275*122
= 32760 lb-ft
Required section modulus, S= Mmax/Fb= 32.76*12/(0.6*36) = 13.1 in3
.
Use W 8x18, section modulus S = 15.2 in3
.
54
types of deep support systems
are commonly used in metropolitan cities.
(i) Diaphragm walls
(ii) Pile walls (Contiguous, Tangent or Secant)
(iii) Soldier pile w
ith wooden lagging walls
(iv) Sheet pile walls
(v) Composite supporting systems – that is, any of the retaining
systems
Retaining systems like
diaphragm wall, contiguous pile walls;
and soldier piles with wooden lagging
escribed in this article has been successfully used. Case studies of their use indicate that
adequate quality control measures and instrumentation monitoring of these systems go a
long way in ensuring their safeand economic deployment at sit
55
56
57
58
59
60
Contiguous Pile Walls General – Piled Retaining Systems
Abstract
Providing space for parking, public amenities,etc in multi-storey buildings at
own centres has created a need to go deep excavationsinto ground. Deep excavations are
supported by systems like conventional retaining walls, sheet pile walls, braced walls,
diaphragm walls and pile walls. This article describes various excavation supporting
systems that are in vogue essentially contiguous pile wall and its advantages. A detailed
design methodology of an excavation supporting system is furnished in this study.
There are different types of pile walls
(Fig.4).Diameter and spacing of the piles is
decided based on soil type, ground water level and magnitude of design pressures.
Large spacing is avoided as it can result in caving of soil through gaps. In
iguous bored pile construction, center to center spacing of piles is kept slightly greater thanthe pile
diameter.
Secant bored pilesre formed by keeping this spacing of piles less
than the diameter.Tangen
61
Fig. 4: Schematic Arrangement of Contiguous Piled Retaining System.
Contiguous piles serving as retaining walls
are popular since traditional piling equipments can be resorted for their construction. They are considered
more economical than diaphragm wall in small to medium scale excavations due to reduction in cost of site
operations. Common pile diameters adopted are 0.6, 0.8 and
1 .0m. These piles are connected with a Capping beams at the top, which assists equitable pressure
distributions in piles. These retaining piles are suitable in areas where water table is deep or where soil
permeability is low. However, some acceptable amount of water can be collected at the base and pumped
out.
ARRANGEMENT OF CONTIGUOUS PILe
62
63
64
cant Pile Walls are formedby constructing intersecting piles. Secant bored pile walls
are formed by keeping spacing ofpiles lessthan diameter. Secant pile walls are used
tobuild cut off walls for the control of groundwater inflow and to
minimizemovement in weak and wet soils. Secant Wall constructed in the form of
hard/soft or hard/firm and Secant Wall Hard/hard wall. Secant Wall-hard- softs or
hard/firm is similar tothe contiguous bored pile wall
65
66
67
68
Soldier Piles and Wooden Lagging supported system
The supporting system comprised soldier piles
ed at 1.8m c/c and with a closer spacing of 1.6m c/c near the launching shaft (Fig.8).
Wooden laggings of thickness 100mm to 120mm were supported between the soldier
piles.Three levels of Struts were provided at depths 3.285, 7.285, and 10.831m below the
established ground level (EGL-209.80m). Additional level of Waler beam with pre-stressed
rock anchors were provided 2m above the excavation level. Rock anchors with capacity of
86.4T,spaced at 3.6m c/c, were embedded 6m into the quartzitic bedrock to meet the
bond strength consideration
69
Soldier Piles & Laggings Wooden Supporting System
70
71
72
1. Excavate trench for guide wall
73
2. Lean concrete trench base
74
3. Place guide wall mould
75
4. Place guide wall reinforcement
76
5. Casting guide wall
77
6. Completed cast guide wall
78
7. Remove guide wall mould after concrete set
guide wall 8. Completed guide wall
79
80
9. Open pilot hole for double wall casing installation
10. Install 1st section double wall casing
81
11. Continue to install more sections of double wall casings
12. Boring & installing double wall casings
82
13. Boring to pile toe level with different types of tools
14. Reinforcement cage ready for installation
83
15. Install reinforcement cage into completed pile bore
16. Concreting secant pile
84
17. Extract double wall casing by casing oscillator
18. Completed secant piles after pile heads trimming
85
Exposed Secant Pile Wall for Capping Beam Construction
Trimmed Secant Pile Wall
86
Ready for Capping Beam Casting
Secant pile cap beam
87
Dr Youssef Hammida

More Related Content

What's hot

Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)
Malika khalil
 
pile foundation and pile cap presentation
pile foundation and pile cap presentationpile foundation and pile cap presentation
pile foundation and pile cap presentation
Rahul bhatnagar
 
Etabs notes-pdf
Etabs notes-pdfEtabs notes-pdf
Etabs notes-pdf
LasikaMantrige
 
Singly reinforced beam ast - over reinforced
Singly reinforced beam   ast - over reinforcedSingly reinforced beam   ast - over reinforced
Singly reinforced beam ast - over reinforced
Selvakumar Palanisamy
 
Post tensioning in building structures
Post tensioning in building structuresPost tensioning in building structures
Post tensioning in building structures
Luan Truong Van
 
COMPOSITE BEAMS.pdf
COMPOSITE BEAMS.pdfCOMPOSITE BEAMS.pdf
COMPOSITE BEAMS.pdf
Zeinab Awada
 
Lecture 8 raft foundation
Lecture 8 raft foundationLecture 8 raft foundation
Lecture 8 raft foundation
Dr.Abdulmannan Orabi
 
Pile foundation
Pile  foundation Pile  foundation
Pile foundation
Sherchandra Shrestha
 
Combined footing 1-1-18
Combined footing 1-1-18Combined footing 1-1-18
Combined footing 1-1-18
SubhashPatankar2
 
Design of slender columns as per IS 456-2000
Design of slender columns as per IS 456-2000Design of slender columns as per IS 456-2000
Design of slender columns as per IS 456-2000
PraveenKumar Shanmugam
 
Ductile detailing IS 13920
Ductile detailing IS 13920Ductile detailing IS 13920
Ductile detailing IS 13920
INTEZAAR ALAM
 
Prestressed concrete
Prestressed concretePrestressed concrete
Prestressed concrete
Udisha15
 
Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000
Vikas Mehta
 
Sheet piles; advantages, types and methods
Sheet piles; advantages, types and methodsSheet piles; advantages, types and methods
Sheet piles; advantages, types and methods
Constrofacilitator
 
Design of columns uniaxial load as per IS 456-2000
Design of columns  uniaxial load as per IS 456-2000Design of columns  uniaxial load as per IS 456-2000
Design of columns uniaxial load as per IS 456-2000
PraveenKumar Shanmugam
 
Mat foundation
Mat foundationMat foundation
Mat foundation
V.m. Rajan
 
Beams and columns
Beams and columns Beams and columns
Beams and columns
Prabhat chhirolya
 
types of Foundations with animated sketches
types of Foundations with animated sketchestypes of Foundations with animated sketches
types of Foundations with animated sketches
Giri Babu S V
 
Sheet pile presentation
Sheet pile presentationSheet pile presentation
Sheet pile presentation
Jahangirnagar University
 

What's hot (20)

Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)
 
pile foundation and pile cap presentation
pile foundation and pile cap presentationpile foundation and pile cap presentation
pile foundation and pile cap presentation
 
Etabs notes-pdf
Etabs notes-pdfEtabs notes-pdf
Etabs notes-pdf
 
Singly reinforced beam ast - over reinforced
Singly reinforced beam   ast - over reinforcedSingly reinforced beam   ast - over reinforced
Singly reinforced beam ast - over reinforced
 
Post tensioning in building structures
Post tensioning in building structuresPost tensioning in building structures
Post tensioning in building structures
 
COMPOSITE BEAMS.pdf
COMPOSITE BEAMS.pdfCOMPOSITE BEAMS.pdf
COMPOSITE BEAMS.pdf
 
Lecture 8 raft foundation
Lecture 8 raft foundationLecture 8 raft foundation
Lecture 8 raft foundation
 
Pile foundation
Pile  foundation Pile  foundation
Pile foundation
 
Combined footing 1-1-18
Combined footing 1-1-18Combined footing 1-1-18
Combined footing 1-1-18
 
Deep foundation
Deep foundationDeep foundation
Deep foundation
 
Design of slender columns as per IS 456-2000
Design of slender columns as per IS 456-2000Design of slender columns as per IS 456-2000
Design of slender columns as per IS 456-2000
 
Ductile detailing IS 13920
Ductile detailing IS 13920Ductile detailing IS 13920
Ductile detailing IS 13920
 
Prestressed concrete
Prestressed concretePrestressed concrete
Prestressed concrete
 
Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000
 
Sheet piles; advantages, types and methods
Sheet piles; advantages, types and methodsSheet piles; advantages, types and methods
Sheet piles; advantages, types and methods
 
Design of columns uniaxial load as per IS 456-2000
Design of columns  uniaxial load as per IS 456-2000Design of columns  uniaxial load as per IS 456-2000
Design of columns uniaxial load as per IS 456-2000
 
Mat foundation
Mat foundationMat foundation
Mat foundation
 
Beams and columns
Beams and columns Beams and columns
Beams and columns
 
types of Foundations with animated sketches
types of Foundations with animated sketchestypes of Foundations with animated sketches
types of Foundations with animated sketches
 
Sheet pile presentation
Sheet pile presentationSheet pile presentation
Sheet pile presentation
 

Viewers also liked

Secant piled walls dsign - تصميم خوازيق الجدران الساندة - ميكرو بايل
Secant piled walls  dsign - تصميم خوازيق الجدران الساندة - ميكرو بايلSecant piled walls  dsign - تصميم خوازيق الجدران الساندة - ميكرو بايل
Secant piled walls dsign - تصميم خوازيق الجدران الساندة - ميكرو بايل
Dr.youssef hamida
 
Example desing seismic water tanks
Example desing seismic  water tanksExample desing seismic  water tanks
Example desing seismic water tanks
Dr.youssef hamida
 
many projects shoring
many projects shoringmany projects shoring
many projects shoringSamir Salman
 
Mid term
Mid termMid term
Mid term
SHAGUN0001
 
Chapter27
Chapter27Chapter27
Top down final
Top down finalTop down final
Top down finaldngu022
 
SOIL-SHEET PILE INTERACTION - PART II: NUMERICAL ANALYSIS AND SIMULATION
SOIL-SHEET PILE INTERACTION - PART II: NUMERICAL ANALYSIS AND SIMULATIONSOIL-SHEET PILE INTERACTION - PART II: NUMERICAL ANALYSIS AND SIMULATION
SOIL-SHEET PILE INTERACTION - PART II: NUMERICAL ANALYSIS AND SIMULATION
IAEME Publication
 
Research non seismic walls
Research  non seismic wallsResearch  non seismic walls
Research non seismic walls
Dr.youssef hamida
 
Coupling beams design كمرات وجوائز ربط بجدران القص
Coupling beams design   كمرات وجوائز ربط بجدران القصCoupling beams design   كمرات وجوائز ربط بجدران القص
Coupling beams design كمرات وجوائز ربط بجدران القص
Dr.youssef hamida
 
Topics and articles in structural engineering
Topics and articles in structural engineeringTopics and articles in structural engineering
Topics and articles in structural engineering
Dr.youssef hamida
 
Joint Torque Optimization for Quasi-static Graspless Manipulation / Icra2013 ...
Joint Torque Optimization for Quasi-static Graspless Manipulation / Icra2013 ...Joint Torque Optimization for Quasi-static Graspless Manipulation / Icra2013 ...
Joint Torque Optimization for Quasi-static Graspless Manipulation / Icra2013 ...
Fukuoka Institute of Technology
 
Thuyet minh tkco
Thuyet minh tkcoThuyet minh tkco
Thuyet minh tkco
Voduy Phuoc
 
retaining walls ( word )
retaining walls ( word )retaining walls ( word )
retaining walls ( word )hussein96o
 
Working Drawings lecture 02
Working Drawings lecture 02Working Drawings lecture 02
Working Drawings lecture 02
Khaled Ali
 
37467305 torsion-design-of-beam
37467305 torsion-design-of-beam37467305 torsion-design-of-beam
37467305 torsion-design-of-beam
Sopheak Thap
 
Lecture 1 outline -latest
Lecture 1 outline -latestLecture 1 outline -latest
Lecture 1 outline -latest
Dr. H.M.A. Mahzuz
 
Hollow cores slab detail
Hollow cores slab detailHollow cores slab detail
Hollow cores slab detail
Dr.youssef hamida
 

Viewers also liked (20)

Secant piled walls dsign - تصميم خوازيق الجدران الساندة - ميكرو بايل
Secant piled walls  dsign - تصميم خوازيق الجدران الساندة - ميكرو بايلSecant piled walls  dsign - تصميم خوازيق الجدران الساندة - ميكرو بايل
Secant piled walls dsign - تصميم خوازيق الجدران الساندة - ميكرو بايل
 
Example desing seismic water tanks
Example desing seismic  water tanksExample desing seismic  water tanks
Example desing seismic water tanks
 
many projects shoring
many projects shoringmany projects shoring
many projects shoring
 
Retaining wall
Retaining wallRetaining wall
Retaining wall
 
Mid term
Mid termMid term
Mid term
 
Chapter27
Chapter27Chapter27
Chapter27
 
Top down final
Top down finalTop down final
Top down final
 
SOIL-SHEET PILE INTERACTION - PART II: NUMERICAL ANALYSIS AND SIMULATION
SOIL-SHEET PILE INTERACTION - PART II: NUMERICAL ANALYSIS AND SIMULATIONSOIL-SHEET PILE INTERACTION - PART II: NUMERICAL ANALYSIS AND SIMULATION
SOIL-SHEET PILE INTERACTION - PART II: NUMERICAL ANALYSIS AND SIMULATION
 
KRASNY-SHEET PILE ONLY
KRASNY-SHEET PILE ONLYKRASNY-SHEET PILE ONLY
KRASNY-SHEET PILE ONLY
 
Research non seismic walls
Research  non seismic wallsResearch  non seismic walls
Research non seismic walls
 
Coupling beams design كمرات وجوائز ربط بجدران القص
Coupling beams design   كمرات وجوائز ربط بجدران القصCoupling beams design   كمرات وجوائز ربط بجدران القص
Coupling beams design كمرات وجوائز ربط بجدران القص
 
Topics and articles in structural engineering
Topics and articles in structural engineeringTopics and articles in structural engineering
Topics and articles in structural engineering
 
Joint Torque Optimization for Quasi-static Graspless Manipulation / Icra2013 ...
Joint Torque Optimization for Quasi-static Graspless Manipulation / Icra2013 ...Joint Torque Optimization for Quasi-static Graspless Manipulation / Icra2013 ...
Joint Torque Optimization for Quasi-static Graspless Manipulation / Icra2013 ...
 
Shildeshare
ShildeshareShildeshare
Shildeshare
 
Thuyet minh tkco
Thuyet minh tkcoThuyet minh tkco
Thuyet minh tkco
 
retaining walls ( word )
retaining walls ( word )retaining walls ( word )
retaining walls ( word )
 
Working Drawings lecture 02
Working Drawings lecture 02Working Drawings lecture 02
Working Drawings lecture 02
 
37467305 torsion-design-of-beam
37467305 torsion-design-of-beam37467305 torsion-design-of-beam
37467305 torsion-design-of-beam
 
Lecture 1 outline -latest
Lecture 1 outline -latestLecture 1 outline -latest
Lecture 1 outline -latest
 
Hollow cores slab detail
Hollow cores slab detailHollow cores slab detail
Hollow cores slab detail
 

Similar to Retaining wall(الجدران الاستنادية).- Scant Piles

Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wallRetaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
Dr.Youssef Hammida
 
Thiet ke tuong coc
Thiet ke tuong cocThiet ke tuong coc
Thiet ke tuong coc
Nguyen Duong
 
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Dr.youssef hamida
 
Unit 1 sheet pile-converted
Unit 1   sheet pile-convertedUnit 1   sheet pile-converted
Unit 1 sheet pile-converted
Nigitha rajan
 
FootingDesign.pptx
FootingDesign.pptxFootingDesign.pptx
FootingDesign.pptx
SolomonAlemu28
 
Braced cut excavations design and problems ppt
Braced cut excavations design and problems pptBraced cut excavations design and problems ppt
Braced cut excavations design and problems ppt
RoshiyaFathima
 
Ch1 introduction
Ch1 introductionCh1 introduction
Ch1 introduction
Reyam AL Mousawi
 
Design of RCC Column footing
Design of RCC Column footingDesign of RCC Column footing
Design of RCC Column footing
Arun Kurali
 
Isolated footing design
Isolated footing designIsolated footing design
Isolated footing design
srinu_anduri
 
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdflecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
2cd
 
Fe1lecture4
Fe1lecture4Fe1lecture4
Fe1lecture4
Ali Shah
 
Ch1 introduction (1 14)
Ch1 introduction (1 14)Ch1 introduction (1 14)
Ch1 introduction (1 14)
Rafi sulaiman
 
6-Eccecntric Footing.pdf shajasjakssjssjwjs
6-Eccecntric Footing.pdf shajasjakssjssjwjs6-Eccecntric Footing.pdf shajasjakssjssjwjs
6-Eccecntric Footing.pdf shajasjakssjssjwjs
BrajeshRanjanAcharya
 
Footing design
Footing designFooting design
Footing design
Vikas Mehta
 
ce742lec_8_11.pdf
ce742lec_8_11.pdfce742lec_8_11.pdf
ce742lec_8_11.pdf
ssuser3f175e
 
Rcc member design steps
Rcc member design stepsRcc member design steps
Rcc member design steps
DYPCET
 
Diseno de Muros de Contencion.pptx
Diseno de Muros de Contencion.pptxDiseno de Muros de Contencion.pptx
Diseno de Muros de Contencion.pptx
CesarAndres80
 
Lecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsLecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear Walls
Teja Ande
 
onw way slab design
onw way slab designonw way slab design
onw way slab design
Palak Patel
 
Lecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsLecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear Walls
Teja Ande
 

Similar to Retaining wall(الجدران الاستنادية).- Scant Piles (20)

Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wallRetaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall
 
Thiet ke tuong coc
Thiet ke tuong cocThiet ke tuong coc
Thiet ke tuong coc
 
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
 
Unit 1 sheet pile-converted
Unit 1   sheet pile-convertedUnit 1   sheet pile-converted
Unit 1 sheet pile-converted
 
FootingDesign.pptx
FootingDesign.pptxFootingDesign.pptx
FootingDesign.pptx
 
Braced cut excavations design and problems ppt
Braced cut excavations design and problems pptBraced cut excavations design and problems ppt
Braced cut excavations design and problems ppt
 
Ch1 introduction
Ch1 introductionCh1 introduction
Ch1 introduction
 
Design of RCC Column footing
Design of RCC Column footingDesign of RCC Column footing
Design of RCC Column footing
 
Isolated footing design
Isolated footing designIsolated footing design
Isolated footing design
 
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdflecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
 
Fe1lecture4
Fe1lecture4Fe1lecture4
Fe1lecture4
 
Ch1 introduction (1 14)
Ch1 introduction (1 14)Ch1 introduction (1 14)
Ch1 introduction (1 14)
 
6-Eccecntric Footing.pdf shajasjakssjssjwjs
6-Eccecntric Footing.pdf shajasjakssjssjwjs6-Eccecntric Footing.pdf shajasjakssjssjwjs
6-Eccecntric Footing.pdf shajasjakssjssjwjs
 
Footing design
Footing designFooting design
Footing design
 
ce742lec_8_11.pdf
ce742lec_8_11.pdfce742lec_8_11.pdf
ce742lec_8_11.pdf
 
Rcc member design steps
Rcc member design stepsRcc member design steps
Rcc member design steps
 
Diseno de Muros de Contencion.pptx
Diseno de Muros de Contencion.pptxDiseno de Muros de Contencion.pptx
Diseno de Muros de Contencion.pptx
 
Lecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsLecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear Walls
 
onw way slab design
onw way slab designonw way slab design
onw way slab design
 
Lecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsLecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear Walls
 

More from Dr.youssef hamida

cable suspended building - الابنية المعلقة بالكابلات والشدادات- د.م حميضة.pdf
cable suspended building - الابنية المعلقة بالكابلات والشدادات- د.م  حميضة.pdfcable suspended building - الابنية المعلقة بالكابلات والشدادات- د.م  حميضة.pdf
cable suspended building - الابنية المعلقة بالكابلات والشدادات- د.م حميضة.pdf
Dr.youssef hamida
 
p- delta analysis - تحليل اعمدة الاطارات لمقاومة عزوم الانتقال الافقي من الزل...
p- delta analysis - تحليل اعمدة الاطارات لمقاومة عزوم الانتقال الافقي من الزل...p- delta analysis - تحليل اعمدة الاطارات لمقاومة عزوم الانتقال الافقي من الزل...
p- delta analysis - تحليل اعمدة الاطارات لمقاومة عزوم الانتقال الافقي من الزل...
Dr.youssef hamida
 
cantilever skyscraper - ناطحات السحاب الكابولية كانتيليفر - د. حميضة.pdf
cantilever skyscraper - ناطحات السحاب الكابولية كانتيليفر  - د. حميضة.pdfcantilever skyscraper - ناطحات السحاب الكابولية كانتيليفر  - د. حميضة.pdf
cantilever skyscraper - ناطحات السحاب الكابولية كانتيليفر - د. حميضة.pdf
Dr.youssef hamida
 
Techniques for the Seismic Rehabilitation of Existing Buildings - طرق تاهيل ...
Techniques for the Seismic Rehabilitation of Existing Buildings -  طرق تاهيل ...Techniques for the Seismic Rehabilitation of Existing Buildings -  طرق تاهيل ...
Techniques for the Seismic Rehabilitation of Existing Buildings - طرق تاهيل ...
Dr.youssef hamida
 
د. يوسف حميضة-حلب تصميم المباني لمقاومة الزلازل - -محاضرة تأهيل- نقابة المهن...
د. يوسف حميضة-حلب تصميم المباني لمقاومة الزلازل -  -محاضرة تأهيل- نقابة المهن...د. يوسف حميضة-حلب تصميم المباني لمقاومة الزلازل -  -محاضرة تأهيل- نقابة المهن...
د. يوسف حميضة-حلب تصميم المباني لمقاومة الزلازل - -محاضرة تأهيل- نقابة المهن...
Dr.youssef hamida
 
تصميم الجسور القوسية والكبلات- امثلة محلولة- arches - cables.pdf
تصميم الجسور القوسية والكبلات- امثلة محلولة- arches - cables.pdfتصميم الجسور القوسية والكبلات- امثلة محلولة- arches - cables.pdf
تصميم الجسور القوسية والكبلات- امثلة محلولة- arches - cables.pdf
Dr.youssef hamida
 
ANSI_AISC 341-16_ Seismic Provisions for Structural Steel Buildings -اشتراطات...
ANSI_AISC 341-16_ Seismic Provisions for Structural Steel Buildings -اشتراطات...ANSI_AISC 341-16_ Seismic Provisions for Structural Steel Buildings -اشتراطات...
ANSI_AISC 341-16_ Seismic Provisions for Structural Steel Buildings -اشتراطات...
Dr.youssef hamida
 
Pinterest engineering-تصميمات وكل اختصاصات الهندسية.pdf
Pinterest engineering-تصميمات وكل اختصاصات الهندسية.pdfPinterest engineering-تصميمات وكل اختصاصات الهندسية.pdf
Pinterest engineering-تصميمات وكل اختصاصات الهندسية.pdf
Dr.youssef hamida
 
support in bridges - مساند الجسور والكباري- د حميضة.pdf
support in bridges - مساند الجسور والكباري- د حميضة.pdfsupport in bridges - مساند الجسور والكباري- د حميضة.pdf
support in bridges - مساند الجسور والكباري- د حميضة.pdf
Dr.youssef hamida
 
موقع د. يوسف حميضة-هندسة انشائية -تصميم المباني ملتقى المهندسين العرب.pdf
موقع د. يوسف حميضة-هندسة انشائية -تصميم المباني ملتقى المهندسين العرب.pdfموقع د. يوسف حميضة-هندسة انشائية -تصميم المباني ملتقى المهندسين العرب.pdf
موقع د. يوسف حميضة-هندسة انشائية -تصميم المباني ملتقى المهندسين العرب.pdf
Dr.youssef hamida
 
staircase construction design - تصميم وتنفيذ الادراج - د. يوسف حميضة.pdf
staircase construction design - تصميم وتنفيذ الادراج - د.  يوسف حميضة.pdfstaircase construction design - تصميم وتنفيذ الادراج - د.  يوسف حميضة.pdf
staircase construction design - تصميم وتنفيذ الادراج - د. يوسف حميضة.pdf
Dr.youssef hamida
 
houses on a slope - تصميم المنازل على المنحدرات- د . حميضة.pdf
houses on a slope - تصميم المنازل على المنحدرات- د . حميضة.pdfhouses on a slope - تصميم المنازل على المنحدرات- د . حميضة.pdf
houses on a slope - تصميم المنازل على المنحدرات- د . حميضة.pdf
Dr.youssef hamida
 
Islamic architecture - العمارة العربية والاسلامية- د حميضة.pdf
Islamic architecture - العمارة العربية والاسلامية- د حميضة.pdfIslamic architecture - العمارة العربية والاسلامية- د حميضة.pdf
Islamic architecture - العمارة العربية والاسلامية- د حميضة.pdf
Dr.youssef hamida
 
glass staircase designs - تصمم كل اشكال الأدراج الزجاجية.pdf
glass staircase designs - تصمم كل اشكال الأدراج الزجاجية.pdfglass staircase designs - تصمم كل اشكال الأدراج الزجاجية.pdf
glass staircase designs - تصمم كل اشكال الأدراج الزجاجية.pdf
Dr.youssef hamida
 
curved staircase designs - الأدراج المنحنية - د. حميصة.pdf
curved staircase designs - الأدراج المنحنية - د. حميصة.pdfcurved staircase designs - الأدراج المنحنية - د. حميصة.pdf
curved staircase designs - الأدراج المنحنية - د. حميصة.pdf
Dr.youssef hamida
 
صفحة تواصل د حميضة الاجتماعية والدفاع عن حقوق الانسان وعودة النازحين واللاجئي...
صفحة تواصل د حميضة الاجتماعية والدفاع عن حقوق الانسان وعودة النازحين واللاجئي...صفحة تواصل د حميضة الاجتماعية والدفاع عن حقوق الانسان وعودة النازحين واللاجئي...
صفحة تواصل د حميضة الاجتماعية والدفاع عن حقوق الانسان وعودة النازحين واللاجئي...
Dr.youssef hamida
 
مقالة وبوست توثيق جرائم الحرب وانتهاك حقوق الانسان ضد الإنسانية والشعب السوري...
مقالة وبوست توثيق جرائم الحرب وانتهاك حقوق الانسان ضد الإنسانية والشعب السوري...مقالة وبوست توثيق جرائم الحرب وانتهاك حقوق الانسان ضد الإنسانية والشعب السوري...
مقالة وبوست توثيق جرائم الحرب وانتهاك حقوق الانسان ضد الإنسانية والشعب السوري...
Dr.youssef hamida
 
مقاومة المواد - الشهيد دكتور عبد الرزاق عرعور جامعة حلب.pdf
مقاومة المواد - الشهيد دكتور عبد الرزاق عرعور جامعة حلب.pdfمقاومة المواد - الشهيد دكتور عبد الرزاق عرعور جامعة حلب.pdf
مقاومة المواد - الشهيد دكتور عبد الرزاق عرعور جامعة حلب.pdf
Dr.youssef hamida
 
__ACI 2243r-95-Expansion Joint Spacing. الكود الامريكي لفواصل التمدد وتأثير ...
__ACI 2243r-95-Expansion Joint Spacing.  الكود الامريكي لفواصل التمدد وتأثير ...__ACI 2243r-95-Expansion Joint Spacing.  الكود الامريكي لفواصل التمدد وتأثير ...
__ACI 2243r-95-Expansion Joint Spacing. الكود الامريكي لفواصل التمدد وتأثير ...
Dr.youssef hamida
 
كنيسة مار تقلا معلولا - د حميضة.pdf
كنيسة مار تقلا معلولا - د حميضة.pdfكنيسة مار تقلا معلولا - د حميضة.pdf
كنيسة مار تقلا معلولا - د حميضة.pdf
Dr.youssef hamida
 

More from Dr.youssef hamida (20)

cable suspended building - الابنية المعلقة بالكابلات والشدادات- د.م حميضة.pdf
cable suspended building - الابنية المعلقة بالكابلات والشدادات- د.م  حميضة.pdfcable suspended building - الابنية المعلقة بالكابلات والشدادات- د.م  حميضة.pdf
cable suspended building - الابنية المعلقة بالكابلات والشدادات- د.م حميضة.pdf
 
p- delta analysis - تحليل اعمدة الاطارات لمقاومة عزوم الانتقال الافقي من الزل...
p- delta analysis - تحليل اعمدة الاطارات لمقاومة عزوم الانتقال الافقي من الزل...p- delta analysis - تحليل اعمدة الاطارات لمقاومة عزوم الانتقال الافقي من الزل...
p- delta analysis - تحليل اعمدة الاطارات لمقاومة عزوم الانتقال الافقي من الزل...
 
cantilever skyscraper - ناطحات السحاب الكابولية كانتيليفر - د. حميضة.pdf
cantilever skyscraper - ناطحات السحاب الكابولية كانتيليفر  - د. حميضة.pdfcantilever skyscraper - ناطحات السحاب الكابولية كانتيليفر  - د. حميضة.pdf
cantilever skyscraper - ناطحات السحاب الكابولية كانتيليفر - د. حميضة.pdf
 
Techniques for the Seismic Rehabilitation of Existing Buildings - طرق تاهيل ...
Techniques for the Seismic Rehabilitation of Existing Buildings -  طرق تاهيل ...Techniques for the Seismic Rehabilitation of Existing Buildings -  طرق تاهيل ...
Techniques for the Seismic Rehabilitation of Existing Buildings - طرق تاهيل ...
 
د. يوسف حميضة-حلب تصميم المباني لمقاومة الزلازل - -محاضرة تأهيل- نقابة المهن...
د. يوسف حميضة-حلب تصميم المباني لمقاومة الزلازل -  -محاضرة تأهيل- نقابة المهن...د. يوسف حميضة-حلب تصميم المباني لمقاومة الزلازل -  -محاضرة تأهيل- نقابة المهن...
د. يوسف حميضة-حلب تصميم المباني لمقاومة الزلازل - -محاضرة تأهيل- نقابة المهن...
 
تصميم الجسور القوسية والكبلات- امثلة محلولة- arches - cables.pdf
تصميم الجسور القوسية والكبلات- امثلة محلولة- arches - cables.pdfتصميم الجسور القوسية والكبلات- امثلة محلولة- arches - cables.pdf
تصميم الجسور القوسية والكبلات- امثلة محلولة- arches - cables.pdf
 
ANSI_AISC 341-16_ Seismic Provisions for Structural Steel Buildings -اشتراطات...
ANSI_AISC 341-16_ Seismic Provisions for Structural Steel Buildings -اشتراطات...ANSI_AISC 341-16_ Seismic Provisions for Structural Steel Buildings -اشتراطات...
ANSI_AISC 341-16_ Seismic Provisions for Structural Steel Buildings -اشتراطات...
 
Pinterest engineering-تصميمات وكل اختصاصات الهندسية.pdf
Pinterest engineering-تصميمات وكل اختصاصات الهندسية.pdfPinterest engineering-تصميمات وكل اختصاصات الهندسية.pdf
Pinterest engineering-تصميمات وكل اختصاصات الهندسية.pdf
 
support in bridges - مساند الجسور والكباري- د حميضة.pdf
support in bridges - مساند الجسور والكباري- د حميضة.pdfsupport in bridges - مساند الجسور والكباري- د حميضة.pdf
support in bridges - مساند الجسور والكباري- د حميضة.pdf
 
موقع د. يوسف حميضة-هندسة انشائية -تصميم المباني ملتقى المهندسين العرب.pdf
موقع د. يوسف حميضة-هندسة انشائية -تصميم المباني ملتقى المهندسين العرب.pdfموقع د. يوسف حميضة-هندسة انشائية -تصميم المباني ملتقى المهندسين العرب.pdf
موقع د. يوسف حميضة-هندسة انشائية -تصميم المباني ملتقى المهندسين العرب.pdf
 
staircase construction design - تصميم وتنفيذ الادراج - د. يوسف حميضة.pdf
staircase construction design - تصميم وتنفيذ الادراج - د.  يوسف حميضة.pdfstaircase construction design - تصميم وتنفيذ الادراج - د.  يوسف حميضة.pdf
staircase construction design - تصميم وتنفيذ الادراج - د. يوسف حميضة.pdf
 
houses on a slope - تصميم المنازل على المنحدرات- د . حميضة.pdf
houses on a slope - تصميم المنازل على المنحدرات- د . حميضة.pdfhouses on a slope - تصميم المنازل على المنحدرات- د . حميضة.pdf
houses on a slope - تصميم المنازل على المنحدرات- د . حميضة.pdf
 
Islamic architecture - العمارة العربية والاسلامية- د حميضة.pdf
Islamic architecture - العمارة العربية والاسلامية- د حميضة.pdfIslamic architecture - العمارة العربية والاسلامية- د حميضة.pdf
Islamic architecture - العمارة العربية والاسلامية- د حميضة.pdf
 
glass staircase designs - تصمم كل اشكال الأدراج الزجاجية.pdf
glass staircase designs - تصمم كل اشكال الأدراج الزجاجية.pdfglass staircase designs - تصمم كل اشكال الأدراج الزجاجية.pdf
glass staircase designs - تصمم كل اشكال الأدراج الزجاجية.pdf
 
curved staircase designs - الأدراج المنحنية - د. حميصة.pdf
curved staircase designs - الأدراج المنحنية - د. حميصة.pdfcurved staircase designs - الأدراج المنحنية - د. حميصة.pdf
curved staircase designs - الأدراج المنحنية - د. حميصة.pdf
 
صفحة تواصل د حميضة الاجتماعية والدفاع عن حقوق الانسان وعودة النازحين واللاجئي...
صفحة تواصل د حميضة الاجتماعية والدفاع عن حقوق الانسان وعودة النازحين واللاجئي...صفحة تواصل د حميضة الاجتماعية والدفاع عن حقوق الانسان وعودة النازحين واللاجئي...
صفحة تواصل د حميضة الاجتماعية والدفاع عن حقوق الانسان وعودة النازحين واللاجئي...
 
مقالة وبوست توثيق جرائم الحرب وانتهاك حقوق الانسان ضد الإنسانية والشعب السوري...
مقالة وبوست توثيق جرائم الحرب وانتهاك حقوق الانسان ضد الإنسانية والشعب السوري...مقالة وبوست توثيق جرائم الحرب وانتهاك حقوق الانسان ضد الإنسانية والشعب السوري...
مقالة وبوست توثيق جرائم الحرب وانتهاك حقوق الانسان ضد الإنسانية والشعب السوري...
 
مقاومة المواد - الشهيد دكتور عبد الرزاق عرعور جامعة حلب.pdf
مقاومة المواد - الشهيد دكتور عبد الرزاق عرعور جامعة حلب.pdfمقاومة المواد - الشهيد دكتور عبد الرزاق عرعور جامعة حلب.pdf
مقاومة المواد - الشهيد دكتور عبد الرزاق عرعور جامعة حلب.pdf
 
__ACI 2243r-95-Expansion Joint Spacing. الكود الامريكي لفواصل التمدد وتأثير ...
__ACI 2243r-95-Expansion Joint Spacing.  الكود الامريكي لفواصل التمدد وتأثير ...__ACI 2243r-95-Expansion Joint Spacing.  الكود الامريكي لفواصل التمدد وتأثير ...
__ACI 2243r-95-Expansion Joint Spacing. الكود الامريكي لفواصل التمدد وتأثير ...
 
كنيسة مار تقلا معلولا - د حميضة.pdf
كنيسة مار تقلا معلولا - د حميضة.pdfكنيسة مار تقلا معلولا - د حميضة.pdf
كنيسة مار تقلا معلولا - د حميضة.pdf
 

Recently uploaded

NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
ssuser7dcef0
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Steel & Timber Design according to British Standard
Steel & Timber Design according to British StandardSteel & Timber Design according to British Standard
Steel & Timber Design according to British Standard
AkolbilaEmmanuel1
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
symbo111
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERSCW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
veerababupersonal22
 

Recently uploaded (20)

NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
NUMERICAL SIMULATIONS OF HEAT AND MASS TRANSFER IN CONDENSING HEAT EXCHANGERS...
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Steel & Timber Design according to British Standard
Steel & Timber Design according to British StandardSteel & Timber Design according to British Standard
Steel & Timber Design according to British Standard
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERSCW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
 

Retaining wall(الجدران الاستنادية).- Scant Piles

  • 2. 2
  • 3. 3
  • 4. 4
  • 5. 5
  • 6. 6
  • 7. 7
  • 8. 8
  • 9. 9
  • 10. 10
  • 11. 11
  • 12. 12
  • 13. 13
  • 14. 14
  • 15. 15
  • 16. 16
  • 17. 17
  • 18. 18
  • 19. 19
  • 20. 20
  • 21. 21
  • 22. 22
  • 23. 23
  • 24. 24
  • 25. 25
  • 27. 27
  • 28. 28    Steel sheeting provides resistance during installation stresses. The sheets must be driven into the ground and they have high resistance to the force of being driven down.  It is extremely light weight and makes it easier to lift and handle.  Steel sheeting is reusable and recyclable.  There is a long life for it both above and under water. It only requires light protection to keep it maintained.  The pile length is easily adaptable and can be welded or bolted to make it work.  They have stronger joints that can withstand the force of being driven into place.
  • 29. 29 Steel Sheet Piling Construction Steps  First, lay out the sheets in sections to make sure that the piles will interlock correctly.  Drive each sheet to the depth that has been mapped out.  Then drive the second sheet that has the interlocks between the first sheet and the second locked sheet.  Repeat until the wall is completed.  If the wall requires complex shapes use connector elements to ensure that the integrity of the wall is maintained.  Vibratory hammers are used for the installation of steel sheet piles. An impact hammer is used if the soil is too dense for the vibratory hammer.  At sites where vibrations are not recommended the sheets are pushed into place using hydraulics.
  • 30. 30
  • 31. 31
  • 32. 32
  • 33. 33
  • 34. 34
  • 35. 35
  • 37. 37
  • 38. 38 ----------------------------- Sheet Pile Walls... Sheet pile walls are another method for construction of basements and temporary excavations, however they are increasingly being used as permanent structures with the correctly specified surface coating. ‫ا‬‫لخوازيق‬,‫واألوتاد‬‫الساندة‬‫الحفر‬ ‫جوانب‬ ‫سند‬ ‫وظيفتها‬ ‫ألن‬ ‫الموقع‬ ‫حفر‬ ‫قبل‬ ‫تنفيذها‬ ‫بيتم‬ ‫مرور‬ ‫قبل‬ ‫الحفر‬ ‫واليتم‬82‫ساند‬ ‫خازوق‬ ‫آخر‬ ‫تنفيذ‬ ‫على‬ ‫يوم‬ ‫التأسيس‬ ‫تربة‬ ‫لمنسوب‬ ‫واليصل‬ ‫الحفر‬ ‫بقيمة‬ ‫مرتبط‬ ‫طوله‬ ‫الساند‬ ‫والخازوق‬ .
  • 39. 39
  • 40. 40
  • 41. 41 For free earth support method the soils at the lower part of piling is incapable of inducing effective restraint so that it would not result in negative bending moments. In essence, the passive pressures in front of the sheet piles are insufficient to prevent lateral deflection and rotations at the lower end of piling. No passive resistance is developed on the backside of the piling below the line of excavation. For fixed earth support method , the piling is driven deep enough so that the soil under the line of excavation provides the required restraint against deformations and rotations. In short, the lower end of piling is essentially fixed.
  • 42. 42 Anchored sheet pile wall  Anchored sheet pile wall in cohesionless soil  Anchored sheet pile wall in cohesive soil Design using free earth support method 1. Sheet pile is rigid, and lateral deflection is small. 2. The lateral pressure distributes according to Rankine’s or Coulomb’s theories 3. The tie back is strong, and sheet pile rotate about the tie rod anchor point at failure 4. Bottom of sheet pile is free to move.
  • 43. 43 embedded depth can be determined by summarizing horizontal earth pressures and moments about the anchor.  Fx = 0 [1] Mo = 0 [2] the lateral earth pressure is a function of embedded depth. Both equations are highly nonlinear. A trial and error method has to be used to determine the root. r structural design, the sheet pile needs to be able to withstand maximum moment and shear from lateral pressure. A structural analysis needs to be done to determine maximum moment and shear.
  • 44. 44 Anchored sheet pile wall in cohesionless soil Design length of sheet pile Calculating active earth pressure The method for calculating active earth pressure is the same as that in cantilever sheet pile wall. The lateral forces Ha1 is calculated as Ha1= Ka h2 /2+q Ka h The depth a can be calculated as a = pa /  (Kp-Ka) The lateral forces Ha2 can be calculated as Ha2=pa*a/2 Calculating passive earth pressure The slope from point C to E in the figure above is  (Kp-Ka). The passive earth pressure at a depth Y below a is calculated as Pp =  (Kp-Ka) Y
  • 45. 45 The passive lateral force HCEF =  (Kp-Ka) Y2 /2 Derive equation for Y from Mo = 0 Mo = Ha1*y1 + Ha2* y2 – HCEF* y3 = 0 Where y1 = (2h/3-b) y2 = (h+a/3-b) y3 = (h+a+2Y/3) The equation needs to be determined by a trial and error process. Determine anchor force T from  Fx = 0  Fx = Ha1+ Ha2– HCEF-T = 0 Then, T = Ha1+ Ha2– HCEF Design size of sheet pile The structural is the same as cantilever sheet piles in cohesionless soil. Maximum moment locates at a distance y below T where shear stress equals to zero. T- Ka (y+b)2 /2=0 Solve for y, we have, y = -b+2*T/( Ka) The maximum moment is Mmax = T y -  Ka (y+b)3 /6 The required section modulus is S = Mmax / Fb The sheet pile section is selected based on section modulus
  • 46. 46 Design of tie rod and soldier beam sheet pile design above is based on a unit width, foot or meter. The tie back force T calculated from sheet pile design is force per linearly width of sheet pile. The top of sheet pile often supported with soldier beams and tie rods at certain spacing. Assume the spacing of tie rod is s, the tension in the rod is T times s. The required area of tie rod is A = T s / Ft Where Ft is allowable tensile stress of steel and is equal to 0.6Fy in AISC ASD design. oil beam is designed as a continuous beam that subjected to tie back force T. The maximum moment in the soldier beam is calculated from structural analysis. The required section modulus is equal to S = Mmax / Fb. Design procedure 1.Calculate lateral earth pressure at bottom of excavation, pa and Ha1. pa =  Ka H, Ha1=pa*h/2 2.Calculate the length a, and Ha2. a = pa /  (Kp-Ka), Ha2=pa*a/2 3.Assume a trial depth Y, calculate HCEF. HCEF =  (Kp-Ka) Y2 /3 4.Let R = Ha1*y1 + Ha2* y2 – HCEF* y3 y1 = (2h/3-b) y2 = (h+a/3-b)
  • 47. 47 y3 = (h+a+2Y/3) Substitute Y into R, if R = 0, the embedded depth, D = Y + a. If not, assume a new Y, repeat step 3 to 4. 5.Calculate the length of sheet pile, L = h+F.S.*D, FS is from 1.2 to 1.4. 6.Calculate anchored force T = Ha1+ Ha2– HCEF 7.Calculate y = -b+2*T/( Ka) 8.Calculate Mmax = T y -  Ka (y+b)3 /6 9.Calculate required section modulus S= Mmax/Fb. 10. Select sheet pile section. 11. Design tie rod 12. Design soldier beam.
  • 48. 48 Example 3. Design anchored sheet pile in cohesionless soil. Depth of excavation, h = 10 ft Unit weight of soil,  = 115 lb/ft3 Internal friction angle,  = 30 degree Allowable design stress of sheet pile = 32 ksi Yield strength of soldier beam, Fy = 36 ksi Location of tie rod at 2 ft below ground surface, spacing, s = 12 ft Requirement: Design length of an anchored sheet pile, select sheet pile section, and design tie rod Solution: Design length of sheet pile: Calculate lateral earth pressure coefficients: Ka = tan (45-/2) = 0.333 Kp = tan (45-/2) = 3 The lateral earth pressure at bottom of excavation is pa = Ka  h = 0.333*115*10 = 383.33 psf The active lateral force above excavation Ha1 = pa*h/2 = 383.33*10/2 = 1917 lb/ft The depth a = pa /  (Kp-Ka) = 383.3 / [115*(3-0.333)] =1.25 ft The corresponding lateral force Ha2 = pa*a/2 = 383.33*1.25/2 = 238.6 lb/ft Assume Y = 2.85 ft HCEF =  (Kp-Ka) Y2 /3 = 115*(3-0.333)*2.852 /3 = 830.3 lb/ft y1 = (2h/3-b) = (2*10/3-2)=4.67 ft y2 = (h+a/3-b) = (10+1.25/3-2)=8.42 ft y3 = (h+a+2Y/3) = (10+1.25+2*2.85/3) = 13.15 ft
  • 49. 49 R = Ha1*y1 + Ha2* y2 – HCEF* y3 = 1917*4.67+238.6*8.42-830.3*13.15 = 42.5 lb R closes to zero, D = 2.85+1.25 = 4.1 ft Length of sheet pile, L = 10 + 1.2* 4.1 = 14.9 ft Use 15 ft Calculate anchor force, T = Ha1+ Ha2– HCEF = 1917+238.6-830.3 = 1326 lb/ft Calculate location of maximum moment, y = -b+2*T/( Ka) = -2 ft + 2*1326/(115*0.333) = 6.32 ft Mmax = T y -  Ka (y+b)3 /6 = 1326*6.32 – 115*0.333*(6.32+2)3 /6 = 4.7 kip-ft/ft The required section modulus S= Mmax/Fb = 4.7*12/32 = 1.8 in3 /ft Use PS28, S = 1.9 in3 /ft Design tie rod, the required cross section area, A = T s / (0.6*Fy) = 1.326*12/(0.6*36) = 0.442 in3 . Use ¾” diameter tie rod, A = 0.442 in3 . Design soldier beam: The maximum moment of a continuous beams with 3 or more span is M = 0.1*T s2 = 0.1*1326*122 =19.1 kip-ft Required section modulus, S = M / (0.6*Fy) = 19.1*12/(0.6*36) = 6.4 in3 . Use W6x15, S = 9.72 in3 .
  • 50. 50 Anchored sheet pile wall in cohesive soil. Calculating active earth pressure Calculation of active earth pressure above excavation is the same as that of cantilever sheet pile in cohesive soil. The free-standing height of soil is d = 2C/ The lateral earth pressure at bottom of excavation, pa =  h – 2C, where  is unit weight of soil. The resultant force Ha=pa*h/2 Calculating passive earth pressure For cohesive soil, friction angle,  = 0, Ka = Kp = 1. The earth pressure below excavation, p1= p-a= 2C-(h-2C) = 4C-h Assume the embedded depth is D, the resultant force below bottom of excavation is HBCDF = p1*D Derive equation for D from Mo = 0 Mo = Ha1*y1 – HBCDF* y3 = 0 Where y1 = 2(h-d)/3-(b-d) y3 = h-b+D/2 The equation can be determined with a trial and error process.
  • 51. 51 Determine anchor force T from  Fx = 0  Fx = Ha1– HBCDF-T = 0 T = Ha1+ Ha2– HCEF Design size of sheet pile Maximum moment locates at a distance y below T where shear stress equals to zero. T- Ka (y+b-d)2 /2=0 Solve for y, we have, y = -b+d+2*T/( Ka) The maximum moment is Mmax = T y -  Ka (y+b-d)3 /6 The required section modulus is S = Mmax / Fb The sheet pile section is selected based on section modulus Design of tie rod and soldier beam Design of tie rod and soldier beam is the same as that of anchored sheet pile in cohesionless soil. 1.Calculate free standing height, d = 2C/ 2.Calculate pa=(h-d) 3.Calculate Ha=pa*h/2 4.Calculate p1=4C-h, 5.Assume a value of D, and calculate HBCDF = p1*D 6.Calculate R= Ha*y1 – HBCDF* y3. Where y1 = 2(h-d)/3-(b-d) y3 = h-b+D/2 If R is not close to zero, assume a new D, repeat steps 5 and 6 7.The design length of sheet pile is L=h+D*FS, FS=1.2 to 1.4. 8.Calculate anchored force T = Ha – HBCDF 9.Calculate y = -b+d+2*T/ 10. Calculate Mmax = T y -  (y+b-d)3 /6 11. Calculate required section modulus S= Mmax/Fb. Select sheet pile section. 12. Design tie rod
  • 52. 52 13. Design soldier beam. Example 4: Design anchored sheet pile in cohesive soil. Depth of excavation, h = 15 ft Unit weight of soil,  = 115 lb/ft3 Cohesion of soil, C = 500 psf Internal friction angle,  = 0 degree Allowable design strength of sheet pile = 32 ksi Yield strength of soldier beam, Fy = 36 ksi Location of tie rod at 2 ft below ground surface, spacing =12 ft. Requirement: Design length of sheet pile and select sheet pile section Solution: Design length of sheet pile: The free standing height, d = 2C/ = 2*500/115 = 8.7 ft The lateral pressure at bottom of sheet pile, pa = (h-d)=115*(10-8.7)=150 psf Total active force, Ha=pa*h/2 = 150*10/2 = 750 lb/ft p1=4C-h = 4*550-115*15 = 275 psf Assume D = 11.5 ft, HBCDF = p1*D = 3163 lb/ft y1 = 2(h-d)/3-(b-d) =2 (15-8.7)/3-(2-8.7) = 10.9 ft y3 = h-b+D/2 = 15-2+11.5/2 = 18.75 ft R= Ha*y1 – HBCDF* y3 = 5438*10.9-3163*18.75 = -36 lb Close to zero The length of sheet pile, L = 15 + 1.2*11.5 = 28.8 ft Use 29 ft Anchored force per foot of wall, T = Ha – HBCDF = 5438 – 3163 = 2275 lb/ft
  • 53. 53 Calculate location of maximum moment, y = -b+d+2*T/ = -2+8.7+2*2275/115 = 13 ft Maximum moment, Mmax = T y -  (y+b-d)3 /6 = 2275*13 – 115*(13+2-8.7)3 /6 = 24770 lb-ft/ft Required section modulus of sheet pile, S= Mmax/Fb = 22.47*12/32 = 8.4 in3 /ft Use PDA 27 section modulus 10.7 in3 /ft Design tie rod Cross section of tie rod required, A = T*s/(0.6*Fy) = 2.275*12/(0.6*36) = 0.91 in2 . Diameter of tie rod, d = 4*A/ = 1.08 in Use 1-1/8” diameter tie rod. Design soldier beam Maximum moment in solider beam, Mmax = 0.1*T*s2 = 0.1*2275*122 = 32760 lb-ft Required section modulus, S= Mmax/Fb= 32.76*12/(0.6*36) = 13.1 in3 . Use W 8x18, section modulus S = 15.2 in3 .
  • 54. 54 types of deep support systems are commonly used in metropolitan cities. (i) Diaphragm walls (ii) Pile walls (Contiguous, Tangent or Secant) (iii) Soldier pile w ith wooden lagging walls (iv) Sheet pile walls (v) Composite supporting systems – that is, any of the retaining systems Retaining systems like diaphragm wall, contiguous pile walls; and soldier piles with wooden lagging escribed in this article has been successfully used. Case studies of their use indicate that adequate quality control measures and instrumentation monitoring of these systems go a long way in ensuring their safeand economic deployment at sit
  • 55. 55
  • 56. 56
  • 57. 57
  • 58. 58
  • 59. 59
  • 60. 60 Contiguous Pile Walls General – Piled Retaining Systems Abstract Providing space for parking, public amenities,etc in multi-storey buildings at own centres has created a need to go deep excavationsinto ground. Deep excavations are supported by systems like conventional retaining walls, sheet pile walls, braced walls, diaphragm walls and pile walls. This article describes various excavation supporting systems that are in vogue essentially contiguous pile wall and its advantages. A detailed design methodology of an excavation supporting system is furnished in this study. There are different types of pile walls (Fig.4).Diameter and spacing of the piles is decided based on soil type, ground water level and magnitude of design pressures. Large spacing is avoided as it can result in caving of soil through gaps. In iguous bored pile construction, center to center spacing of piles is kept slightly greater thanthe pile diameter. Secant bored pilesre formed by keeping this spacing of piles less than the diameter.Tangen
  • 61. 61 Fig. 4: Schematic Arrangement of Contiguous Piled Retaining System. Contiguous piles serving as retaining walls are popular since traditional piling equipments can be resorted for their construction. They are considered more economical than diaphragm wall in small to medium scale excavations due to reduction in cost of site operations. Common pile diameters adopted are 0.6, 0.8 and 1 .0m. These piles are connected with a Capping beams at the top, which assists equitable pressure distributions in piles. These retaining piles are suitable in areas where water table is deep or where soil permeability is low. However, some acceptable amount of water can be collected at the base and pumped out. ARRANGEMENT OF CONTIGUOUS PILe
  • 62. 62
  • 63. 63
  • 64. 64 cant Pile Walls are formedby constructing intersecting piles. Secant bored pile walls are formed by keeping spacing ofpiles lessthan diameter. Secant pile walls are used tobuild cut off walls for the control of groundwater inflow and to minimizemovement in weak and wet soils. Secant Wall constructed in the form of hard/soft or hard/firm and Secant Wall Hard/hard wall. Secant Wall-hard- softs or hard/firm is similar tothe contiguous bored pile wall
  • 65. 65
  • 66. 66
  • 67. 67
  • 68. 68 Soldier Piles and Wooden Lagging supported system The supporting system comprised soldier piles ed at 1.8m c/c and with a closer spacing of 1.6m c/c near the launching shaft (Fig.8). Wooden laggings of thickness 100mm to 120mm were supported between the soldier piles.Three levels of Struts were provided at depths 3.285, 7.285, and 10.831m below the established ground level (EGL-209.80m). Additional level of Waler beam with pre-stressed rock anchors were provided 2m above the excavation level. Rock anchors with capacity of 86.4T,spaced at 3.6m c/c, were embedded 6m into the quartzitic bedrock to meet the bond strength consideration
  • 69. 69 Soldier Piles & Laggings Wooden Supporting System
  • 70. 70
  • 71. 71
  • 72. 72 1. Excavate trench for guide wall
  • 73. 73 2. Lean concrete trench base
  • 74. 74 3. Place guide wall mould
  • 75. 75 4. Place guide wall reinforcement
  • 77. 77 6. Completed cast guide wall
  • 78. 78 7. Remove guide wall mould after concrete set guide wall 8. Completed guide wall
  • 79. 79
  • 80. 80 9. Open pilot hole for double wall casing installation 10. Install 1st section double wall casing
  • 81. 81 11. Continue to install more sections of double wall casings 12. Boring & installing double wall casings
  • 82. 82 13. Boring to pile toe level with different types of tools 14. Reinforcement cage ready for installation
  • 83. 83 15. Install reinforcement cage into completed pile bore 16. Concreting secant pile
  • 84. 84 17. Extract double wall casing by casing oscillator 18. Completed secant piles after pile heads trimming
  • 85. 85 Exposed Secant Pile Wall for Capping Beam Construction Trimmed Secant Pile Wall
  • 86. 86 Ready for Capping Beam Casting Secant pile cap beam