SlideShare a Scribd company logo
1 of 70
Download to read offline
1
Dr Youssef Hammida
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Pilaster masonry wall
26


 Steel sheeting provides resistance during installation stresses. The sheets
must be driven into the ground and they have high resistance to the force
of being driven down.
 It is extremely light weight and makes it easier to lift and handle.
 Steel sheeting is reusable and recyclable.
 There is a long life for it both above and under water. It only requires light
protection to keep it maintained.
 The pile length is easily adaptable and can be welded or bolted to make it
work.
 They have stronger joints that can withstand the force of being driven into
place.
27
Steel Sheet Piling Construction Steps
 First, lay out the sheets in sections to make sure that the piles will
interlock correctly.
 Drive each sheet to the depth that has been mapped out.
 Then drive the second sheet that has the interlocks between the first
sheet and the second locked sheet.
 Repeat until the wall is completed.
 If the wall requires complex shapes use connector elements to ensure
that the integrity of the wall is maintained.
 Vibratory hammers are used for the installation of steel sheet piles.
An impact hammer is used if the soil is too dense for the vibratory
hammer.
 At sites where vibrations are not recommended the sheets are pushed
into place using hydraulics.
28
29
30
31
32
33
34
35
-------------------------------------------------------
36
37
-----------------------------
Sheet Pile Walls...
Sheet pile walls are another method for construction of basements and
temporary excavations, however they are increasingly being used as
permanent structures with the correctly specified surface coating.
‫ا‬‫لخوازيق‬,‫واألوتاد‬‫الساندة‬‫الحفر‬ ‫جوانب‬ ‫سند‬ ‫وظيفتها‬ ‫ألن‬ ‫الموقع‬ ‫حفر‬ ‫قبل‬ ‫تنفيذها‬ ‫بيتم‬
‫مرور‬ ‫قبل‬ ‫الحفر‬ ‫واليتم‬82‫ساند‬ ‫خازوق‬ ‫آخر‬ ‫تنفيذ‬ ‫على‬ ‫يوم‬
‫التأسيس‬ ‫تربة‬ ‫لمنسوب‬ ‫واليصل‬ ‫الحفر‬ ‫بقيمة‬ ‫مرتبط‬ ‫طوله‬ ‫الساند‬ ‫والخازوق‬
.
38
39
40
For free earth support method
, the soils at the lower part of piling is incapable of inducing effective restraint so
that it would not result in negative bending moments. In essence, the passive
pressures in front of the sheet piles are insufficient to prevent lateral deflection
and rotations at the lower end of piling. No passive resistance is developed on
the backside of the piling below the line of excavation.
For fixed earth support method
, the piling is driven deep enough so that the soil under the line of excavation
provides the required restraint against deformations and rotations. In short, the
lower end of piling is essentially fixed.
41
Anchored sheet pile wall
 Anchored sheet pile wall in cohesionless soil
 Anchored sheet pile wall in cohesive soil
Design using free earth support method
1. Sheet pile is rigid, and lateral deflection is small.
2. The lateral pressure distributes according to Rankine’s or Coulomb’s theories
3. The tie back is strong, and sheet pile rotate about the tie rod anchor point at
failure
4. Bottom of sheet pile is free to move.
42
The embedded depth can be determined by summarizing horizontal earth pressures and
moments about the anchor.
 Fx = 0 [1]
Mo = 0 [2]
the lateral earth pressure is a function of embedded depth. Both equations are highly
nonlinear. A trial and error method has to be used to determine the root.
For structural design, the sheet pile needs to be able to withstand maximum moment
and shear from lateral pressure. A structural analysis needs to be done to determine
maximum moment and shear.
43
Anchored sheet pile wall in cohesionless soil
Design length of sheet pile
Calculating active earth pressure
The method for calculating active earth pressure is the same as that in cantilever sheet
pile wall. The lateral forces Ha1 is calculated as
Ha1= Ka h2
/2+q Ka h
The depth a can be calculated as
a = pa /  (Kp-Ka)
The lateral forces Ha2 can be calculated as
Ha2=pa*a/2
Calculating passive earth pressure
The slope from point C to E in the figure above is  (Kp-Ka). The passive earth pressure at a
depth Y below a is calculated as
Pp =  (Kp-Ka) Y
44
The passive lateral force
HCEF =  (Kp-Ka) Y2
/2
Derive equation for Y from Mo = 0
Mo = Ha1*y1 + Ha2* y2 – HCEF* y3 = 0
Where
y1 = (2h/3-b)
y2 = (h+a/3-b)
y3 = (h+a+2Y/3)
The equation needs to be determined by a trial and error process.
Determine anchor force T from  Fx = 0
 Fx = Ha1+ Ha2– HCEF-T = 0
Then,
T = Ha1+ Ha2– HCEF
Design size of sheet pile
The structural is the same as cantilever sheet piles in cohesionless soil.
Maximum moment locates at a distance y below T where shear stress equals to zero.
T- Ka (y+b)2
/2=0
Solve for y, we have, y = -b+2*T/( Ka)
The maximum moment is
Mmax = T y -  Ka (y+b)3
/6
The required section modulus is S = Mmax / Fb
The sheet pile section is selected based on section modulus
45
Design of tie rod and soldier beam
The sheet pile design above is based on a unit width, foot or meter. The tie back force T
calculated from sheet pile design is force per linearly width of sheet pile. The top of
sheet pile often supported with soldier beams and tie rods at certain spacing.
Assume the spacing of tie rod is s, the tension in the rod is T times s. The required area of
tie rod is
A = T s / Ft
Where Ft is allowable tensile stress of steel and is equal to 0.6Fy in AISC ASD design.
The soil beam is designed as a continuous beam that subjected to tie back force T. The
maximum moment in the soldier beam is calculated from structural analysis. The
required section modulus is equal to S = Mmax / Fb.
Design procedure
1.Calculate lateral earth pressure at bottom of excavation, pa and Ha1.
pa =  Ka H, Ha1=pa*h/2
2.Calculate the length a, and Ha2.
a = pa /  (Kp-Ka), Ha2=pa*a/2
3.Assume a trial depth Y, calculate HCEF.
HCEF =  (Kp-Ka) Y2
/3
4.Let R = Ha1*y1 + Ha2* y2 – HCEF* y3
y1 = (2h/3-b)
46
y2 = (h+a/3-b)
y3 = (h+a+2Y/3)
Substitute Y into R, if R = 0, the embedded depth, D = Y + a.
If not, assume a new Y, repeat step 3 to 4.
5.Calculate the length of sheet pile, L = h+F.S.*D, FS is from 1.2 to 1.4.
6.Calculate anchored force T = Ha1+ Ha2– HCEF
7.Calculate y = -b+2*T/( Ka)
8.Calculate Mmax = T y -  Ka (y+b)3
/6
9.Calculate required section modulus S= Mmax/Fb.
10. Select sheet pile section.
11. Design tie rod
12. Design soldier beam.
47
Example 3. Design anchored sheet pile in cohesionless soil.
Depth of excavation, h = 10 ft
Unit weight of soil,  = 115 lb/ft3
Internal friction angle,  = 30 degree
Allowable design stress of sheet pile = 32 ksi
Yield strength of soldier beam, Fy = 36 ksi
Location of tie rod at 2 ft below ground surface, spacing, s = 12 ft
Requirement: Design length of an anchored sheet pile, select sheet pile section, and
design tie rod
Solution:
Design length of sheet pile:
Calculate lateral earth pressure coefficients:
Ka = tan (45-/2) = 0.333
Kp = tan (45-/2) = 3
The lateral earth pressure at bottom of excavation is
pa = Ka  h = 0.333*115*10 = 383.33 psf
The active lateral force above excavation
Ha1 = pa*h/2 = 383.33*10/2 = 1917 lb/ft
The depth a = pa /  (Kp-Ka) = 383.3 / [115*(3-0.333)] =1.25 ft
The corresponding lateral force
Ha2 = pa*a/2 = 383.33*1.25/2 = 238.6 lb/ft
Assume Y = 2.85 ft
HCEF =  (Kp-Ka) Y2
/3 = 115*(3-0.333)*2.852
/3 = 830.3 lb/ft
y1 = (2h/3-b) = (2*10/3-2)=4.67 ft
y2 = (h+a/3-b) = (10+1.25/3-2)=8.42 ft
48
y3 = (h+a+2Y/3) = (10+1.25+2*2.85/3) = 13.15 ft
R = Ha1*y1 + Ha2* y2 – HCEF* y3 = 1917*4.67+238.6*8.42-830.3*13.15 = 42.5 lb
R closes to zero, D = 2.85+1.25 = 4.1 ft
Length of sheet pile, L = 10 + 1.2* 4.1 = 14.9 ft Use 15 ft
Calculate anchor force,
T = Ha1+ Ha2– HCEF = 1917+238.6-830.3 = 1326 lb/ft
Calculate location of maximum moment,
y = -b+2*T/( Ka) = -2 ft + 2*1326/(115*0.333) = 6.32 ft
Mmax = T y -  Ka (y+b)3
/6 = 1326*6.32 – 115*0.333*(6.32+2)3
/6 = 4.7 kip-ft/ft
The required section modulus S= Mmax/Fb = 4.7*12/32 = 1.8 in3
/ft
Use PS28, S = 1.9 in3
/ft
Design tie rod, the required cross section area,
A = T s / (0.6*Fy) = 1.326*12/(0.6*36) = 0.442 in3
.
Use ¾” diameter tie rod, A = 0.442 in3
.
Design soldier beam:
The maximum moment of a continuous beams with 3 or more span is
M = 0.1*T s2
= 0.1*1326*122
=19.1 kip-ft
Required section modulus, S = M / (0.6*Fy) = 19.1*12/(0.6*36) = 6.4 in3
.
Use W6x15, S = 9.72 in3
.
49
Anchored sheet pile wall in cohesive soil.
Calculating active earth pressure
Calculation of active earth pressure above excavation is the same as that of cantilever
sheet pile in cohesive soil. The free-standing height of soil is d = 2C/
The lateral earth pressure at bottom of excavation, pa =  h – 2C, where  is unit weight
of soil. The resultant force Ha=pa*h/2
Calculating passive earth pressure
For cohesive soil, friction angle,  = 0, Ka = Kp = 1. The earth pressure below excavation,
p1= p-a= 2C-(h-2C) = 4C-h
Assume the embedded depth is D, the resultant force below bottom of excavation is
HBCDF = p1*D
Derive equation for D from Mo = 0
Mo = Ha1*y1 – HBCDF* y3 = 0
Where
y1 = 2(h-d)/3-(b-d)
y3 = h-b+D/2
The equation can be determined with a trial and error process.
50
Determine anchor force T from  Fx = 0
 Fx = Ha1– HBCDF-T = 0
T = Ha1+ Ha2– HCEF
Design size of sheet pile
Maximum moment locates at a distance y below T where shear stress equals to zero.
T- Ka (y+b-d)2
/2=0
Solve for y, we have, y = -b+d+2*T/( Ka)
The maximum moment is
Mmax = T y -  Ka (y+b-d)3
/6
The required section modulus is S = Mmax / Fb
The sheet pile section is selected based on section modulus
Design of tie rod and soldier beam
Design of tie rod and soldier beam is the same as that of anchored sheet pile in
cohesionless soil.
1.Calculate free standing height, d = 2C/
2.Calculate pa=(h-d)
3.Calculate Ha=pa*h/2
4.Calculate p1=4C-h,
5.Assume a value of D, and calculate HBCDF = p1*D
6.Calculate R= Ha*y1 – HBCDF* y3.
Where
y1 = 2(h-d)/3-(b-d)
y3 = h-b+D/2
If R is not close to zero, assume a new D, repeat steps 5 and 6
7.The design length of sheet pile is L=h+D*FS, FS=1.2 to 1.4.
8.Calculate anchored force T = Ha – HBCDF
9.Calculate y = -b+d+2*T/
10. Calculate Mmax = T y -  (y+b-d)3
/6
11. Calculate required section modulus S= Mmax/Fb. Select sheet pile section.
51
12. Design tie rod
13. Design soldier beam.
Example 4: Design anchored sheet pile in cohesive soil.
Depth of excavation, h = 15 ft
Unit weight of soil,  = 115 lb/ft3
Cohesion of soil, C = 500 psf
Internal friction angle,  = 0 degree
Allowable design strength of sheet pile = 32 ksi
Yield strength of soldier beam, Fy = 36 ksi
Location of tie rod at 2 ft below ground surface, spacing =12 ft.
Requirement: Design length of sheet pile and select sheet pile section
Solution:
Design length of sheet pile:
The free standing height, d = 2C/ = 2*500/115 = 8.7 ft
The lateral pressure at bottom of sheet pile, pa = (h-d)=115*(10-8.7)=150 psf
Total active force, Ha=pa*h/2 = 150*10/2 = 750 lb/ft
p1=4C-h = 4*550-115*15 = 275 psf
Assume D = 11.5 ft,
HBCDF = p1*D = 3163 lb/ft
y1 = 2(h-d)/3-(b-d) =2 (15-8.7)/3-(2-8.7) = 10.9 ft
y3 = h-b+D/2 = 15-2+11.5/2 = 18.75 ft
R= Ha*y1 – HBCDF* y3 = 5438*10.9-3163*18.75 = -36 lb Close to zero
The length of sheet pile, L = 15 + 1.2*11.5 = 28.8 ft Use 29 ft
Anchored force per foot of wall, T = Ha – HBCDF = 5438 – 3163 = 2275 lb/ft
52
Calculate location of maximum moment,
y = -b+d+2*T/ = -2+8.7+2*2275/115 = 13 ft
Maximum moment,
Mmax = T y -  (y+b-d)3
/6 = 2275*13 – 115*(13+2-8.7)3
/6 = 24770 lb-ft/ft
Required section modulus of sheet pile, S= Mmax/Fb = 22.47*12/32 = 8.4 in3
/ft
Use PDA 27 section modulus 10.7 in3
/ft
Design tie rod
Cross section of tie rod required, A = T*s/(0.6*Fy) = 2.275*12/(0.6*36) = 0.91 in2
.
Diameter of tie rod, d = 4*A/ = 1.08 in
Use 1-1/8” diameter tie rod.
Design soldier beam
Maximum moment in solider beam, Mmax = 0.1*T*s2
= 0.1*2275*122
= 32760 lb-ft
Required section modulus, S= Mmax/Fb= 32.76*12/(0.6*36) = 13.1 in3
.
Use W 8x18, section modulus S = 15.2 in3
.
53
types of deep support systems
are commonly used in metropolitan cities.
(i) Diaphragm walls
(ii) Pile walls (Contiguous, Tangent or Secant)
(iii) Soldier pile w
ith wooden lagging walls
(iv) Sheet pile walls
(v) Composite supporting systems – that is, any of the retaining
systems
Retaining systems like
diaphragm wall, contiguous pile walls;
and soldier piles with wooden lagging
described in this article has been successfully used. Case studies of their use indicate
that adequate quality control measures and instrumentation monitoring of
these systems go a long way in ensuring their safeand economic deployment at
sit
54
55
56
57
58
59
Contiguous Pile Walls General – Piled Retaining Systems
Abstract
Providing space for parking, public amenities,etc in multi-storey buildings at
town centres has created a need to go deep excavationsinto ground. Deep excavations
are supported by systems like conventional retaining walls, sheet pile walls,
braced walls, diaphragm walls and pile walls. This article describes various
excavation supporting systems that are in vogue essentially contiguous pile wall
and its advantages. A detailed design methodology of an excavation supporting
system is furnished in this study.
There are different types of pile walls
(Fig.4).Diameter and spacing of the piles is
decided based on soil type, ground water level and magnitude of design pressures.
Large spacing is avoided as it can result in caving of soil through gaps. In
Contiguous bored pile construction, center to center spacing of piles is kept slightly greater
thanthe pile diameter.
Secant bored pilesre formed by keeping this spacing of piles less
than the diameter.Tangen
60
Fig. 4: Schematic Arrangement of Contiguous Piled Retaining System.
Contiguous piles serving as retaining walls
are popular since traditional piling equipments can be resorted for their construction. They
are considered more economical than diaphragm wall in small to medium scale excavations
due to reduction in cost of site operations. Common pile diameters adopted are 0.6, 0.8 and
1 .0m. These piles are connected with a Capping beams at the top, which assists equitable
pressure distributions in piles. These retaining piles are suitable in areas where water table is
deep or where soil permeability is low. However, some acceptable amount of water can be
collected at the base and pumped out.
ARRANGEMENT OF CONTIGUOUS PILe
61
62
63
Secant Pile Walls are formedby constructing intersecting piles. Secant bored
pile walls are formed by keeping spacing ofpiles lessthan diameter.
Secant pile walls are used tobuild cut off walls for the control of
groundwater inflow and to minimizemovement in weak and wet soils.
Secant Wall constructed in the form of hard/soft or hard/firm and Secant
Wall Hard/hard wall. Secant Wall-hard- softs or hard/firm is similar
tothe contiguous bored pile wall
64
65
66
67
Soldier Piles and Wooden Lagging supported system
The supporting system comprised soldier piles
spaced at 1.8m c/c and with a closer spacing of 1.6m c/c near the launching shaft
(Fig.8). Wooden laggings of thickness 100mm to 120mm were supported
between the soldier piles.Three levels of Struts were provided at depths 3.285,
7.285, and 10.831m below the established ground level (EGL-209.80m).
Additional level of Waler beam with pre-stressed rock anchors were provided
2m above the excavation level. Rock anchors with capacity of 86.4T,spaced at
3.6m c/c, were embedded 6m into the quartzitic bedrock to meet the bond
strength consideration
68
Soldier Piles & Laggings Wooden Supporting System
69
70
Dr Youssef Hammida

More Related Content

What's hot

Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]Muhammad Irfan
 
Braced cut in deep excavation
Braced cut in deep excavationBraced cut in deep excavation
Braced cut in deep excavationYogesh Pandey
 
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...Make Mannan
 
Footing design
Footing designFooting design
Footing designShubham .
 
Best numerical problem group pile capacity (usefulsearch.org) (useful search)
Best numerical problem group pile capacity (usefulsearch.org) (useful search)Best numerical problem group pile capacity (usefulsearch.org) (useful search)
Best numerical problem group pile capacity (usefulsearch.org) (useful search)Make Mannan
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Muhammad Irfan
 
Retaining walls
Retaining wallsRetaining walls
Retaining wallsRahul
 
Column Analysis and Design
Column Analysis and Design Column Analysis and Design
Column Analysis and Design Waqas Javaid
 
Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000Vikas Mehta
 
Civil structural engineering - Flat slab design
Civil structural engineering -  Flat slab designCivil structural engineering -  Flat slab design
Civil structural engineering - Flat slab designSatish Narayan
 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soilLatif Hyder Wadho
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Muhammad Irfan
 
Raft foundations _design_and_analysis_with_a_practical_approach
Raft foundations _design_and_analysis_with_a_practical_approachRaft foundations _design_and_analysis_with_a_practical_approach
Raft foundations _design_and_analysis_with_a_practical_approachAlmotasem Darawish
 
Unit 1 sheet pile-converted
Unit 1   sheet pile-convertedUnit 1   sheet pile-converted
Unit 1 sheet pile-convertedNigitha rajan
 

What's hot (20)

Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]Geotechnical Engineering-I [Lec #21: Consolidation Problems]
Geotechnical Engineering-I [Lec #21: Consolidation Problems]
 
Chapter 17
Chapter 17Chapter 17
Chapter 17
 
Braced cut in deep excavation
Braced cut in deep excavationBraced cut in deep excavation
Braced cut in deep excavation
 
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
 
Footing design
Footing designFooting design
Footing design
 
Best numerical problem group pile capacity (usefulsearch.org) (useful search)
Best numerical problem group pile capacity (usefulsearch.org) (useful search)Best numerical problem group pile capacity (usefulsearch.org) (useful search)
Best numerical problem group pile capacity (usefulsearch.org) (useful search)
 
05 chapter 6 mat foundations
05 chapter 6 mat foundations05 chapter 6 mat foundations
05 chapter 6 mat foundations
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
 
Settlement of piles
Settlement of pilesSettlement of piles
Settlement of piles
 
Retaining walls
Retaining wallsRetaining walls
Retaining walls
 
PSC Lecture PPT.pdf
PSC  Lecture PPT.pdfPSC  Lecture PPT.pdf
PSC Lecture PPT.pdf
 
Column Analysis and Design
Column Analysis and Design Column Analysis and Design
Column Analysis and Design
 
Lecture 3 foundation settlement
Lecture 3 foundation settlementLecture 3 foundation settlement
Lecture 3 foundation settlement
 
Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000
 
Civil structural engineering - Flat slab design
Civil structural engineering -  Flat slab designCivil structural engineering -  Flat slab design
Civil structural engineering - Flat slab design
 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soil
 
Pile foundation
Pile  foundation Pile  foundation
Pile foundation
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
 
Raft foundations _design_and_analysis_with_a_practical_approach
Raft foundations _design_and_analysis_with_a_practical_approachRaft foundations _design_and_analysis_with_a_practical_approach
Raft foundations _design_and_analysis_with_a_practical_approach
 
Unit 1 sheet pile-converted
Unit 1   sheet pile-convertedUnit 1   sheet pile-converted
Unit 1 sheet pile-converted
 

Similar to Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall

Retaining wall(الجدران الاستنادية).- Scant Piles
Retaining wall(الجدران الاستنادية).- Scant PilesRetaining wall(الجدران الاستنادية).- Scant Piles
Retaining wall(الجدران الاستنادية).- Scant PilesDr.youssef hamida
 
Thiet ke tuong coc
Thiet ke tuong cocThiet ke tuong coc
Thiet ke tuong cocNguyen Duong
 
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...Dr.youssef hamida
 
Braced cut excavations design and problems ppt
Braced cut excavations design and problems pptBraced cut excavations design and problems ppt
Braced cut excavations design and problems pptRoshiyaFathima
 
Isolated footing design
Isolated footing designIsolated footing design
Isolated footing designsrinu_anduri
 
Design of RCC Column footing
Design of RCC Column footingDesign of RCC Column footing
Design of RCC Column footingArun Kurali
 
Ch1 introduction (1 14)
Ch1 introduction (1 14)Ch1 introduction (1 14)
Ch1 introduction (1 14)Rafi sulaiman
 
6-Eccecntric Footing.pdf shajasjakssjssjwjs
6-Eccecntric Footing.pdf shajasjakssjssjwjs6-Eccecntric Footing.pdf shajasjakssjssjwjs
6-Eccecntric Footing.pdf shajasjakssjssjwjsBrajeshRanjanAcharya
 
Fe1lecture4
Fe1lecture4Fe1lecture4
Fe1lecture4Ali Shah
 
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdflecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf2cd
 
Diseno de Muros de Contencion.pptx
Diseno de Muros de Contencion.pptxDiseno de Muros de Contencion.pptx
Diseno de Muros de Contencion.pptxCesarAndres80
 
Rcc member design steps
Rcc member design stepsRcc member design steps
Rcc member design stepsDYPCET
 
Lecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsLecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsTeja Ande
 
onw way slab design
onw way slab designonw way slab design
onw way slab designPalak Patel
 
Lecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsLecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsTeja Ande
 

Similar to Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall (20)

Retaining wall(الجدران الاستنادية).- Scant Piles
Retaining wall(الجدران الاستنادية).- Scant PilesRetaining wall(الجدران الاستنادية).- Scant Piles
Retaining wall(الجدران الاستنادية).- Scant Piles
 
Thiet ke tuong coc
Thiet ke tuong cocThiet ke tuong coc
Thiet ke tuong coc
 
Sheet pile presentation
Sheet pile presentationSheet pile presentation
Sheet pile presentation
 
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
 
FootingDesign.pptx
FootingDesign.pptxFootingDesign.pptx
FootingDesign.pptx
 
Ch1 introduction
Ch1 introductionCh1 introduction
Ch1 introduction
 
Braced cut excavations design and problems ppt
Braced cut excavations design and problems pptBraced cut excavations design and problems ppt
Braced cut excavations design and problems ppt
 
Isolated footing design
Isolated footing designIsolated footing design
Isolated footing design
 
Design of RCC Column footing
Design of RCC Column footingDesign of RCC Column footing
Design of RCC Column footing
 
Ch1 introduction (1 14)
Ch1 introduction (1 14)Ch1 introduction (1 14)
Ch1 introduction (1 14)
 
6-Eccecntric Footing.pdf shajasjakssjssjwjs
6-Eccecntric Footing.pdf shajasjakssjssjwjs6-Eccecntric Footing.pdf shajasjakssjssjwjs
6-Eccecntric Footing.pdf shajasjakssjssjwjs
 
Fe1lecture4
Fe1lecture4Fe1lecture4
Fe1lecture4
 
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdflecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
lecturenote_1463116827CHAPTER-II-BEARING CAPACITY OF FOUNDATION SOIL.pdf
 
Diseno de Muros de Contencion.pptx
Diseno de Muros de Contencion.pptxDiseno de Muros de Contencion.pptx
Diseno de Muros de Contencion.pptx
 
Rcc member design steps
Rcc member design stepsRcc member design steps
Rcc member design steps
 
ce742lec_8_11.pdf
ce742lec_8_11.pdfce742lec_8_11.pdf
ce742lec_8_11.pdf
 
Footing design
Footing designFooting design
Footing design
 
Lecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsLecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear Walls
 
onw way slab design
onw way slab designonw way slab design
onw way slab design
 
Lecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsLecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear Walls
 

More from Dr.Youssef Hammida

university of southern california civil engineering academia.edu
 university of southern california   civil engineering   academia.edu university of southern california   civil engineering   academia.edu
university of southern california civil engineering academia.eduDr.Youssef Hammida
 
Design strengthening of beams slabs with carbon (fiber) FRP تصميم تقوية الج...
Design strengthening of beams  slabs with carbon (fiber) FRP  تصميم تقوية الج...Design strengthening of beams  slabs with carbon (fiber) FRP  تصميم تقوية الج...
Design strengthening of beams slabs with carbon (fiber) FRP تصميم تقوية الج...Dr.Youssef Hammida
 
Design of FRP Axial Strengthening of RCC Columns -ACI 44 0.2R-08 - تصميم ت...
 	 Design of FRP Axial Strengthening of RCC Columns -ACI 44 0.2R-08 - تصميم ت... 	 Design of FRP Axial Strengthening of RCC Columns -ACI 44 0.2R-08 - تصميم ت...
Design of FRP Axial Strengthening of RCC Columns -ACI 44 0.2R-08 - تصميم ت...Dr.Youssef Hammida
 
DESIGNING AND BUILDING THE EIFFEL TOWER برج ايفل - باريس
DESIGNING AND BUILDING THE EIFFEL TOWER برج ايفل - باريسDESIGNING AND BUILDING THE EIFFEL TOWER برج ايفل - باريس
DESIGNING AND BUILDING THE EIFFEL TOWER برج ايفل - باريسDr.Youssef Hammida
 
Doors & Windows | Interior & Exterior Doors الأبواب والنوافذ الداخلية والخارجية
Doors & Windows | Interior & Exterior Doors الأبواب والنوافذ الداخلية والخارجيةDoors & Windows | Interior & Exterior Doors الأبواب والنوافذ الداخلية والخارجية
Doors & Windows | Interior & Exterior Doors الأبواب والنوافذ الداخلية والخارجيةDr.Youssef Hammida
 
STEEL & CONCRETE DOMES DESIGN - قباب الخرسانة والمعدتية ستيل
STEEL & CONCRETE DOMES DESIGN - قباب الخرسانة والمعدتية ستيلSTEEL & CONCRETE DOMES DESIGN - قباب الخرسانة والمعدتية ستيل
STEEL & CONCRETE DOMES DESIGN - قباب الخرسانة والمعدتية ستيلDr.Youssef Hammida
 
Forms of umbrellas for cars and swimming pools - اشكال مظلات السيارات والمسابح
Forms of umbrellas for cars and swimming pools - اشكال مظلات السيارات والمسابحForms of umbrellas for cars and swimming pools - اشكال مظلات السيارات والمسابح
Forms of umbrellas for cars and swimming pools - اشكال مظلات السيارات والمسابحDr.Youssef Hammida
 
جميع انواع بورتال فريم ستيل - PORTAL - FRAMES والهنغارات المعدنية والتفاصيل
 جميع انواع بورتال فريم ستيل - PORTAL - FRAMES والهنغارات المعدنية والتفاصيل   جميع انواع بورتال فريم ستيل - PORTAL - FRAMES والهنغارات المعدنية والتفاصيل
جميع انواع بورتال فريم ستيل - PORTAL - FRAMES والهنغارات المعدنية والتفاصيل Dr.Youssef Hammida
 
Design Frames manually - Seismic resistance - تصميم الاطارات يدويا - مقاوم...
 	 Design Frames manually - Seismic resistance - تصميم الاطارات يدويا - مقاوم... 	 Design Frames manually - Seismic resistance - تصميم الاطارات يدويا - مقاوم...
Design Frames manually - Seismic resistance - تصميم الاطارات يدويا - مقاوم...Dr.Youssef Hammida
 
Precast Concrete Connection - Details - الخرسانة الجاهزة - مسبقة الصنع وعناصر...
Precast Concrete Connection - Details - الخرسانة الجاهزة - مسبقة الصنع وعناصر...Precast Concrete Connection - Details - الخرسانة الجاهزة - مسبقة الصنع وعناصر...
Precast Concrete Connection - Details - الخرسانة الجاهزة - مسبقة الصنع وعناصر...Dr.Youssef Hammida
 
Flat_Slab_Punching shear Design ACI 318-08 - تسليح القص بالثقب فلات سلاب – ال...
Flat_Slab_Punching shear Design ACI 318-08 - تسليح القص بالثقب فلات سلاب – ال...Flat_Slab_Punching shear Design ACI 318-08 - تسليح القص بالثقب فلات سلاب – ال...
Flat_Slab_Punching shear Design ACI 318-08 - تسليح القص بالثقب فلات سلاب – ال...Dr.Youssef Hammida
 
core shear walls to resist the full shear forces base without the participat...
 core shear walls to resist the full shear forces base without the participat... core shear walls to resist the full shear forces base without the participat...
core shear walls to resist the full shear forces base without the participat...Dr.Youssef Hammida
 
التجارب والاشتراطات والحلول وملائمة وقيول مقاومة الخرسانة الأقل من المقاومة...
 التجارب والاشتراطات والحلول وملائمة وقيول مقاومة الخرسانة  الأقل من المقاومة... التجارب والاشتراطات والحلول وملائمة وقيول مقاومة الخرسانة  الأقل من المقاومة...
التجارب والاشتراطات والحلول وملائمة وقيول مقاومة الخرسانة الأقل من المقاومة...Dr.Youssef Hammida
 
Dual Systems Design Shear wall-Frame InterAction تصميم الجملة القصية الثنائية...
Dual Systems Design Shear wall-Frame InterAction تصميم الجملة القصية الثنائية...Dual Systems Design Shear wall-Frame InterAction تصميم الجملة القصية الثنائية...
Dual Systems Design Shear wall-Frame InterAction تصميم الجملة القصية الثنائية...Dr.Youssef Hammida
 
Retrofit Isolated Footing by: Concrete Jaking – Combind – Strap – Mat – Mecro...
Retrofit Isolated Footing by: Concrete Jaking – Combind – Strap – Mat – Mecro...Retrofit Isolated Footing by: Concrete Jaking – Combind – Strap – Mat – Mecro...
Retrofit Isolated Footing by: Concrete Jaking – Combind – Strap – Mat – Mecro...Dr.Youssef Hammida
 
Intermediate Moment Resisting Frame - الاطارات المتوسطة المقاومة للعزوم - وف...
Intermediate Moment  Resisting Frame - الاطارات المتوسطة المقاومة للعزوم - وف...Intermediate Moment  Resisting Frame - الاطارات المتوسطة المقاومة للعزوم - وف...
Intermediate Moment Resisting Frame - الاطارات المتوسطة المقاومة للعزوم - وف...Dr.Youssef Hammida
 
الجمهورية العربية السورية نقابة المهندسين السوريين- الكود العربي السوري الأسا...
الجمهورية العربية السورية نقابة المهندسين السوريين- الكود العربي السوري الأسا...الجمهورية العربية السورية نقابة المهندسين السوريين- الكود العربي السوري الأسا...
الجمهورية العربية السورية نقابة المهندسين السوريين- الكود العربي السوري الأسا...Dr.Youssef Hammida
 
الكود العربي السوري - تفاصيل ورسومات انشائية تصميم وتنفيذ شاملة لكافة عناصر ا...
الكود العربي السوري - تفاصيل ورسومات انشائية تصميم وتنفيذ شاملة لكافة عناصر ا...الكود العربي السوري - تفاصيل ورسومات انشائية تصميم وتنفيذ شاملة لكافة عناصر ا...
الكود العربي السوري - تفاصيل ورسومات انشائية تصميم وتنفيذ شاملة لكافة عناصر ا...Dr.Youssef Hammida
 
Humming earthquakes incident - حادثة الطنين من الزلازل والاهتزاز وتصدع الأبن...
 Humming earthquakes incident - حادثة الطنين من الزلازل والاهتزاز وتصدع الأبن... Humming earthquakes incident - حادثة الطنين من الزلازل والاهتزاز وتصدع الأبن...
Humming earthquakes incident - حادثة الطنين من الزلازل والاهتزاز وتصدع الأبن...Dr.Youssef Hammida
 
Effect of sliding mold on core walls and seismic- تأثيرالقالب المنزلق على جدر...
Effect of sliding mold on core walls and seismic- تأثيرالقالب المنزلق على جدر...Effect of sliding mold on core walls and seismic- تأثيرالقالب المنزلق على جدر...
Effect of sliding mold on core walls and seismic- تأثيرالقالب المنزلق على جدر...Dr.Youssef Hammida
 

More from Dr.Youssef Hammida (20)

university of southern california civil engineering academia.edu
 university of southern california   civil engineering   academia.edu university of southern california   civil engineering   academia.edu
university of southern california civil engineering academia.edu
 
Design strengthening of beams slabs with carbon (fiber) FRP تصميم تقوية الج...
Design strengthening of beams  slabs with carbon (fiber) FRP  تصميم تقوية الج...Design strengthening of beams  slabs with carbon (fiber) FRP  تصميم تقوية الج...
Design strengthening of beams slabs with carbon (fiber) FRP تصميم تقوية الج...
 
Design of FRP Axial Strengthening of RCC Columns -ACI 44 0.2R-08 - تصميم ت...
 	 Design of FRP Axial Strengthening of RCC Columns -ACI 44 0.2R-08 - تصميم ت... 	 Design of FRP Axial Strengthening of RCC Columns -ACI 44 0.2R-08 - تصميم ت...
Design of FRP Axial Strengthening of RCC Columns -ACI 44 0.2R-08 - تصميم ت...
 
DESIGNING AND BUILDING THE EIFFEL TOWER برج ايفل - باريس
DESIGNING AND BUILDING THE EIFFEL TOWER برج ايفل - باريسDESIGNING AND BUILDING THE EIFFEL TOWER برج ايفل - باريس
DESIGNING AND BUILDING THE EIFFEL TOWER برج ايفل - باريس
 
Doors & Windows | Interior & Exterior Doors الأبواب والنوافذ الداخلية والخارجية
Doors & Windows | Interior & Exterior Doors الأبواب والنوافذ الداخلية والخارجيةDoors & Windows | Interior & Exterior Doors الأبواب والنوافذ الداخلية والخارجية
Doors & Windows | Interior & Exterior Doors الأبواب والنوافذ الداخلية والخارجية
 
STEEL & CONCRETE DOMES DESIGN - قباب الخرسانة والمعدتية ستيل
STEEL & CONCRETE DOMES DESIGN - قباب الخرسانة والمعدتية ستيلSTEEL & CONCRETE DOMES DESIGN - قباب الخرسانة والمعدتية ستيل
STEEL & CONCRETE DOMES DESIGN - قباب الخرسانة والمعدتية ستيل
 
Forms of umbrellas for cars and swimming pools - اشكال مظلات السيارات والمسابح
Forms of umbrellas for cars and swimming pools - اشكال مظلات السيارات والمسابحForms of umbrellas for cars and swimming pools - اشكال مظلات السيارات والمسابح
Forms of umbrellas for cars and swimming pools - اشكال مظلات السيارات والمسابح
 
جميع انواع بورتال فريم ستيل - PORTAL - FRAMES والهنغارات المعدنية والتفاصيل
 جميع انواع بورتال فريم ستيل - PORTAL - FRAMES والهنغارات المعدنية والتفاصيل   جميع انواع بورتال فريم ستيل - PORTAL - FRAMES والهنغارات المعدنية والتفاصيل
جميع انواع بورتال فريم ستيل - PORTAL - FRAMES والهنغارات المعدنية والتفاصيل
 
Design Frames manually - Seismic resistance - تصميم الاطارات يدويا - مقاوم...
 	 Design Frames manually - Seismic resistance - تصميم الاطارات يدويا - مقاوم... 	 Design Frames manually - Seismic resistance - تصميم الاطارات يدويا - مقاوم...
Design Frames manually - Seismic resistance - تصميم الاطارات يدويا - مقاوم...
 
Precast Concrete Connection - Details - الخرسانة الجاهزة - مسبقة الصنع وعناصر...
Precast Concrete Connection - Details - الخرسانة الجاهزة - مسبقة الصنع وعناصر...Precast Concrete Connection - Details - الخرسانة الجاهزة - مسبقة الصنع وعناصر...
Precast Concrete Connection - Details - الخرسانة الجاهزة - مسبقة الصنع وعناصر...
 
Flat_Slab_Punching shear Design ACI 318-08 - تسليح القص بالثقب فلات سلاب – ال...
Flat_Slab_Punching shear Design ACI 318-08 - تسليح القص بالثقب فلات سلاب – ال...Flat_Slab_Punching shear Design ACI 318-08 - تسليح القص بالثقب فلات سلاب – ال...
Flat_Slab_Punching shear Design ACI 318-08 - تسليح القص بالثقب فلات سلاب – ال...
 
core shear walls to resist the full shear forces base without the participat...
 core shear walls to resist the full shear forces base without the participat... core shear walls to resist the full shear forces base without the participat...
core shear walls to resist the full shear forces base without the participat...
 
التجارب والاشتراطات والحلول وملائمة وقيول مقاومة الخرسانة الأقل من المقاومة...
 التجارب والاشتراطات والحلول وملائمة وقيول مقاومة الخرسانة  الأقل من المقاومة... التجارب والاشتراطات والحلول وملائمة وقيول مقاومة الخرسانة  الأقل من المقاومة...
التجارب والاشتراطات والحلول وملائمة وقيول مقاومة الخرسانة الأقل من المقاومة...
 
Dual Systems Design Shear wall-Frame InterAction تصميم الجملة القصية الثنائية...
Dual Systems Design Shear wall-Frame InterAction تصميم الجملة القصية الثنائية...Dual Systems Design Shear wall-Frame InterAction تصميم الجملة القصية الثنائية...
Dual Systems Design Shear wall-Frame InterAction تصميم الجملة القصية الثنائية...
 
Retrofit Isolated Footing by: Concrete Jaking – Combind – Strap – Mat – Mecro...
Retrofit Isolated Footing by: Concrete Jaking – Combind – Strap – Mat – Mecro...Retrofit Isolated Footing by: Concrete Jaking – Combind – Strap – Mat – Mecro...
Retrofit Isolated Footing by: Concrete Jaking – Combind – Strap – Mat – Mecro...
 
Intermediate Moment Resisting Frame - الاطارات المتوسطة المقاومة للعزوم - وف...
Intermediate Moment  Resisting Frame - الاطارات المتوسطة المقاومة للعزوم - وف...Intermediate Moment  Resisting Frame - الاطارات المتوسطة المقاومة للعزوم - وف...
Intermediate Moment Resisting Frame - الاطارات المتوسطة المقاومة للعزوم - وف...
 
الجمهورية العربية السورية نقابة المهندسين السوريين- الكود العربي السوري الأسا...
الجمهورية العربية السورية نقابة المهندسين السوريين- الكود العربي السوري الأسا...الجمهورية العربية السورية نقابة المهندسين السوريين- الكود العربي السوري الأسا...
الجمهورية العربية السورية نقابة المهندسين السوريين- الكود العربي السوري الأسا...
 
الكود العربي السوري - تفاصيل ورسومات انشائية تصميم وتنفيذ شاملة لكافة عناصر ا...
الكود العربي السوري - تفاصيل ورسومات انشائية تصميم وتنفيذ شاملة لكافة عناصر ا...الكود العربي السوري - تفاصيل ورسومات انشائية تصميم وتنفيذ شاملة لكافة عناصر ا...
الكود العربي السوري - تفاصيل ورسومات انشائية تصميم وتنفيذ شاملة لكافة عناصر ا...
 
Humming earthquakes incident - حادثة الطنين من الزلازل والاهتزاز وتصدع الأبن...
 Humming earthquakes incident - حادثة الطنين من الزلازل والاهتزاز وتصدع الأبن... Humming earthquakes incident - حادثة الطنين من الزلازل والاهتزاز وتصدع الأبن...
Humming earthquakes incident - حادثة الطنين من الزلازل والاهتزاز وتصدع الأبن...
 
Effect of sliding mold on core walls and seismic- تأثيرالقالب المنزلق على جدر...
Effect of sliding mold on core walls and seismic- تأثيرالقالب المنزلق على جدر...Effect of sliding mold on core walls and seismic- تأثيرالقالب المنزلق على جدر...
Effect of sliding mold on core walls and seismic- تأثيرالقالب المنزلق على جدر...
 

Recently uploaded

How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
Next-generation AAM aircraft unveiled by Supernal, S-A2
Next-generation AAM aircraft unveiled by Supernal, S-A2Next-generation AAM aircraft unveiled by Supernal, S-A2
Next-generation AAM aircraft unveiled by Supernal, S-A2Hyundai Motor Group
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?XfilesPro
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetEnjoy Anytime
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 

Recently uploaded (20)

How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
Next-generation AAM aircraft unveiled by Supernal, S-A2
Next-generation AAM aircraft unveiled by Supernal, S-A2Next-generation AAM aircraft unveiled by Supernal, S-A2
Next-generation AAM aircraft unveiled by Supernal, S-A2
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?How to Remove Document Management Hurdles with X-Docs?
How to Remove Document Management Hurdles with X-Docs?
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 

Retaining walls (الجدران الاستنادية)-steel sheet piles - sheet piles wall

  • 2. 2
  • 3. 3
  • 4. 4
  • 5. 5
  • 6. 6
  • 7. 7
  • 8. 8
  • 9. 9
  • 10. 10
  • 11. 11
  • 12. 12
  • 13. 13
  • 14. 14
  • 15. 15
  • 16. 16
  • 17. 17
  • 18. 18
  • 19. 19
  • 20. 20
  • 21. 21
  • 22. 22
  • 23. 23
  • 24. 24
  • 26. 26    Steel sheeting provides resistance during installation stresses. The sheets must be driven into the ground and they have high resistance to the force of being driven down.  It is extremely light weight and makes it easier to lift and handle.  Steel sheeting is reusable and recyclable.  There is a long life for it both above and under water. It only requires light protection to keep it maintained.  The pile length is easily adaptable and can be welded or bolted to make it work.  They have stronger joints that can withstand the force of being driven into place.
  • 27. 27 Steel Sheet Piling Construction Steps  First, lay out the sheets in sections to make sure that the piles will interlock correctly.  Drive each sheet to the depth that has been mapped out.  Then drive the second sheet that has the interlocks between the first sheet and the second locked sheet.  Repeat until the wall is completed.  If the wall requires complex shapes use connector elements to ensure that the integrity of the wall is maintained.  Vibratory hammers are used for the installation of steel sheet piles. An impact hammer is used if the soil is too dense for the vibratory hammer.  At sites where vibrations are not recommended the sheets are pushed into place using hydraulics.
  • 28. 28
  • 29. 29
  • 30. 30
  • 31. 31
  • 32. 32
  • 33. 33
  • 34. 34
  • 36. 36
  • 37. 37 ----------------------------- Sheet Pile Walls... Sheet pile walls are another method for construction of basements and temporary excavations, however they are increasingly being used as permanent structures with the correctly specified surface coating. ‫ا‬‫لخوازيق‬,‫واألوتاد‬‫الساندة‬‫الحفر‬ ‫جوانب‬ ‫سند‬ ‫وظيفتها‬ ‫ألن‬ ‫الموقع‬ ‫حفر‬ ‫قبل‬ ‫تنفيذها‬ ‫بيتم‬ ‫مرور‬ ‫قبل‬ ‫الحفر‬ ‫واليتم‬82‫ساند‬ ‫خازوق‬ ‫آخر‬ ‫تنفيذ‬ ‫على‬ ‫يوم‬ ‫التأسيس‬ ‫تربة‬ ‫لمنسوب‬ ‫واليصل‬ ‫الحفر‬ ‫بقيمة‬ ‫مرتبط‬ ‫طوله‬ ‫الساند‬ ‫والخازوق‬ .
  • 38. 38
  • 39. 39
  • 40. 40 For free earth support method , the soils at the lower part of piling is incapable of inducing effective restraint so that it would not result in negative bending moments. In essence, the passive pressures in front of the sheet piles are insufficient to prevent lateral deflection and rotations at the lower end of piling. No passive resistance is developed on the backside of the piling below the line of excavation. For fixed earth support method , the piling is driven deep enough so that the soil under the line of excavation provides the required restraint against deformations and rotations. In short, the lower end of piling is essentially fixed.
  • 41. 41 Anchored sheet pile wall  Anchored sheet pile wall in cohesionless soil  Anchored sheet pile wall in cohesive soil Design using free earth support method 1. Sheet pile is rigid, and lateral deflection is small. 2. The lateral pressure distributes according to Rankine’s or Coulomb’s theories 3. The tie back is strong, and sheet pile rotate about the tie rod anchor point at failure 4. Bottom of sheet pile is free to move.
  • 42. 42 The embedded depth can be determined by summarizing horizontal earth pressures and moments about the anchor.  Fx = 0 [1] Mo = 0 [2] the lateral earth pressure is a function of embedded depth. Both equations are highly nonlinear. A trial and error method has to be used to determine the root. For structural design, the sheet pile needs to be able to withstand maximum moment and shear from lateral pressure. A structural analysis needs to be done to determine maximum moment and shear.
  • 43. 43 Anchored sheet pile wall in cohesionless soil Design length of sheet pile Calculating active earth pressure The method for calculating active earth pressure is the same as that in cantilever sheet pile wall. The lateral forces Ha1 is calculated as Ha1= Ka h2 /2+q Ka h The depth a can be calculated as a = pa /  (Kp-Ka) The lateral forces Ha2 can be calculated as Ha2=pa*a/2 Calculating passive earth pressure The slope from point C to E in the figure above is  (Kp-Ka). The passive earth pressure at a depth Y below a is calculated as Pp =  (Kp-Ka) Y
  • 44. 44 The passive lateral force HCEF =  (Kp-Ka) Y2 /2 Derive equation for Y from Mo = 0 Mo = Ha1*y1 + Ha2* y2 – HCEF* y3 = 0 Where y1 = (2h/3-b) y2 = (h+a/3-b) y3 = (h+a+2Y/3) The equation needs to be determined by a trial and error process. Determine anchor force T from  Fx = 0  Fx = Ha1+ Ha2– HCEF-T = 0 Then, T = Ha1+ Ha2– HCEF Design size of sheet pile The structural is the same as cantilever sheet piles in cohesionless soil. Maximum moment locates at a distance y below T where shear stress equals to zero. T- Ka (y+b)2 /2=0 Solve for y, we have, y = -b+2*T/( Ka) The maximum moment is Mmax = T y -  Ka (y+b)3 /6 The required section modulus is S = Mmax / Fb The sheet pile section is selected based on section modulus
  • 45. 45 Design of tie rod and soldier beam The sheet pile design above is based on a unit width, foot or meter. The tie back force T calculated from sheet pile design is force per linearly width of sheet pile. The top of sheet pile often supported with soldier beams and tie rods at certain spacing. Assume the spacing of tie rod is s, the tension in the rod is T times s. The required area of tie rod is A = T s / Ft Where Ft is allowable tensile stress of steel and is equal to 0.6Fy in AISC ASD design. The soil beam is designed as a continuous beam that subjected to tie back force T. The maximum moment in the soldier beam is calculated from structural analysis. The required section modulus is equal to S = Mmax / Fb. Design procedure 1.Calculate lateral earth pressure at bottom of excavation, pa and Ha1. pa =  Ka H, Ha1=pa*h/2 2.Calculate the length a, and Ha2. a = pa /  (Kp-Ka), Ha2=pa*a/2 3.Assume a trial depth Y, calculate HCEF. HCEF =  (Kp-Ka) Y2 /3 4.Let R = Ha1*y1 + Ha2* y2 – HCEF* y3 y1 = (2h/3-b)
  • 46. 46 y2 = (h+a/3-b) y3 = (h+a+2Y/3) Substitute Y into R, if R = 0, the embedded depth, D = Y + a. If not, assume a new Y, repeat step 3 to 4. 5.Calculate the length of sheet pile, L = h+F.S.*D, FS is from 1.2 to 1.4. 6.Calculate anchored force T = Ha1+ Ha2– HCEF 7.Calculate y = -b+2*T/( Ka) 8.Calculate Mmax = T y -  Ka (y+b)3 /6 9.Calculate required section modulus S= Mmax/Fb. 10. Select sheet pile section. 11. Design tie rod 12. Design soldier beam.
  • 47. 47 Example 3. Design anchored sheet pile in cohesionless soil. Depth of excavation, h = 10 ft Unit weight of soil,  = 115 lb/ft3 Internal friction angle,  = 30 degree Allowable design stress of sheet pile = 32 ksi Yield strength of soldier beam, Fy = 36 ksi Location of tie rod at 2 ft below ground surface, spacing, s = 12 ft Requirement: Design length of an anchored sheet pile, select sheet pile section, and design tie rod Solution: Design length of sheet pile: Calculate lateral earth pressure coefficients: Ka = tan (45-/2) = 0.333 Kp = tan (45-/2) = 3 The lateral earth pressure at bottom of excavation is pa = Ka  h = 0.333*115*10 = 383.33 psf The active lateral force above excavation Ha1 = pa*h/2 = 383.33*10/2 = 1917 lb/ft The depth a = pa /  (Kp-Ka) = 383.3 / [115*(3-0.333)] =1.25 ft The corresponding lateral force Ha2 = pa*a/2 = 383.33*1.25/2 = 238.6 lb/ft Assume Y = 2.85 ft HCEF =  (Kp-Ka) Y2 /3 = 115*(3-0.333)*2.852 /3 = 830.3 lb/ft y1 = (2h/3-b) = (2*10/3-2)=4.67 ft y2 = (h+a/3-b) = (10+1.25/3-2)=8.42 ft
  • 48. 48 y3 = (h+a+2Y/3) = (10+1.25+2*2.85/3) = 13.15 ft R = Ha1*y1 + Ha2* y2 – HCEF* y3 = 1917*4.67+238.6*8.42-830.3*13.15 = 42.5 lb R closes to zero, D = 2.85+1.25 = 4.1 ft Length of sheet pile, L = 10 + 1.2* 4.1 = 14.9 ft Use 15 ft Calculate anchor force, T = Ha1+ Ha2– HCEF = 1917+238.6-830.3 = 1326 lb/ft Calculate location of maximum moment, y = -b+2*T/( Ka) = -2 ft + 2*1326/(115*0.333) = 6.32 ft Mmax = T y -  Ka (y+b)3 /6 = 1326*6.32 – 115*0.333*(6.32+2)3 /6 = 4.7 kip-ft/ft The required section modulus S= Mmax/Fb = 4.7*12/32 = 1.8 in3 /ft Use PS28, S = 1.9 in3 /ft Design tie rod, the required cross section area, A = T s / (0.6*Fy) = 1.326*12/(0.6*36) = 0.442 in3 . Use ¾” diameter tie rod, A = 0.442 in3 . Design soldier beam: The maximum moment of a continuous beams with 3 or more span is M = 0.1*T s2 = 0.1*1326*122 =19.1 kip-ft Required section modulus, S = M / (0.6*Fy) = 19.1*12/(0.6*36) = 6.4 in3 . Use W6x15, S = 9.72 in3 .
  • 49. 49 Anchored sheet pile wall in cohesive soil. Calculating active earth pressure Calculation of active earth pressure above excavation is the same as that of cantilever sheet pile in cohesive soil. The free-standing height of soil is d = 2C/ The lateral earth pressure at bottom of excavation, pa =  h – 2C, where  is unit weight of soil. The resultant force Ha=pa*h/2 Calculating passive earth pressure For cohesive soil, friction angle,  = 0, Ka = Kp = 1. The earth pressure below excavation, p1= p-a= 2C-(h-2C) = 4C-h Assume the embedded depth is D, the resultant force below bottom of excavation is HBCDF = p1*D Derive equation for D from Mo = 0 Mo = Ha1*y1 – HBCDF* y3 = 0 Where y1 = 2(h-d)/3-(b-d) y3 = h-b+D/2 The equation can be determined with a trial and error process.
  • 50. 50 Determine anchor force T from  Fx = 0  Fx = Ha1– HBCDF-T = 0 T = Ha1+ Ha2– HCEF Design size of sheet pile Maximum moment locates at a distance y below T where shear stress equals to zero. T- Ka (y+b-d)2 /2=0 Solve for y, we have, y = -b+d+2*T/( Ka) The maximum moment is Mmax = T y -  Ka (y+b-d)3 /6 The required section modulus is S = Mmax / Fb The sheet pile section is selected based on section modulus Design of tie rod and soldier beam Design of tie rod and soldier beam is the same as that of anchored sheet pile in cohesionless soil. 1.Calculate free standing height, d = 2C/ 2.Calculate pa=(h-d) 3.Calculate Ha=pa*h/2 4.Calculate p1=4C-h, 5.Assume a value of D, and calculate HBCDF = p1*D 6.Calculate R= Ha*y1 – HBCDF* y3. Where y1 = 2(h-d)/3-(b-d) y3 = h-b+D/2 If R is not close to zero, assume a new D, repeat steps 5 and 6 7.The design length of sheet pile is L=h+D*FS, FS=1.2 to 1.4. 8.Calculate anchored force T = Ha – HBCDF 9.Calculate y = -b+d+2*T/ 10. Calculate Mmax = T y -  (y+b-d)3 /6 11. Calculate required section modulus S= Mmax/Fb. Select sheet pile section.
  • 51. 51 12. Design tie rod 13. Design soldier beam. Example 4: Design anchored sheet pile in cohesive soil. Depth of excavation, h = 15 ft Unit weight of soil,  = 115 lb/ft3 Cohesion of soil, C = 500 psf Internal friction angle,  = 0 degree Allowable design strength of sheet pile = 32 ksi Yield strength of soldier beam, Fy = 36 ksi Location of tie rod at 2 ft below ground surface, spacing =12 ft. Requirement: Design length of sheet pile and select sheet pile section Solution: Design length of sheet pile: The free standing height, d = 2C/ = 2*500/115 = 8.7 ft The lateral pressure at bottom of sheet pile, pa = (h-d)=115*(10-8.7)=150 psf Total active force, Ha=pa*h/2 = 150*10/2 = 750 lb/ft p1=4C-h = 4*550-115*15 = 275 psf Assume D = 11.5 ft, HBCDF = p1*D = 3163 lb/ft y1 = 2(h-d)/3-(b-d) =2 (15-8.7)/3-(2-8.7) = 10.9 ft y3 = h-b+D/2 = 15-2+11.5/2 = 18.75 ft R= Ha*y1 – HBCDF* y3 = 5438*10.9-3163*18.75 = -36 lb Close to zero The length of sheet pile, L = 15 + 1.2*11.5 = 28.8 ft Use 29 ft Anchored force per foot of wall, T = Ha – HBCDF = 5438 – 3163 = 2275 lb/ft
  • 52. 52 Calculate location of maximum moment, y = -b+d+2*T/ = -2+8.7+2*2275/115 = 13 ft Maximum moment, Mmax = T y -  (y+b-d)3 /6 = 2275*13 – 115*(13+2-8.7)3 /6 = 24770 lb-ft/ft Required section modulus of sheet pile, S= Mmax/Fb = 22.47*12/32 = 8.4 in3 /ft Use PDA 27 section modulus 10.7 in3 /ft Design tie rod Cross section of tie rod required, A = T*s/(0.6*Fy) = 2.275*12/(0.6*36) = 0.91 in2 . Diameter of tie rod, d = 4*A/ = 1.08 in Use 1-1/8” diameter tie rod. Design soldier beam Maximum moment in solider beam, Mmax = 0.1*T*s2 = 0.1*2275*122 = 32760 lb-ft Required section modulus, S= Mmax/Fb= 32.76*12/(0.6*36) = 13.1 in3 . Use W 8x18, section modulus S = 15.2 in3 .
  • 53. 53 types of deep support systems are commonly used in metropolitan cities. (i) Diaphragm walls (ii) Pile walls (Contiguous, Tangent or Secant) (iii) Soldier pile w ith wooden lagging walls (iv) Sheet pile walls (v) Composite supporting systems – that is, any of the retaining systems Retaining systems like diaphragm wall, contiguous pile walls; and soldier piles with wooden lagging described in this article has been successfully used. Case studies of their use indicate that adequate quality control measures and instrumentation monitoring of these systems go a long way in ensuring their safeand economic deployment at sit
  • 54. 54
  • 55. 55
  • 56. 56
  • 57. 57
  • 58. 58
  • 59. 59 Contiguous Pile Walls General – Piled Retaining Systems Abstract Providing space for parking, public amenities,etc in multi-storey buildings at town centres has created a need to go deep excavationsinto ground. Deep excavations are supported by systems like conventional retaining walls, sheet pile walls, braced walls, diaphragm walls and pile walls. This article describes various excavation supporting systems that are in vogue essentially contiguous pile wall and its advantages. A detailed design methodology of an excavation supporting system is furnished in this study. There are different types of pile walls (Fig.4).Diameter and spacing of the piles is decided based on soil type, ground water level and magnitude of design pressures. Large spacing is avoided as it can result in caving of soil through gaps. In Contiguous bored pile construction, center to center spacing of piles is kept slightly greater thanthe pile diameter. Secant bored pilesre formed by keeping this spacing of piles less than the diameter.Tangen
  • 60. 60 Fig. 4: Schematic Arrangement of Contiguous Piled Retaining System. Contiguous piles serving as retaining walls are popular since traditional piling equipments can be resorted for their construction. They are considered more economical than diaphragm wall in small to medium scale excavations due to reduction in cost of site operations. Common pile diameters adopted are 0.6, 0.8 and 1 .0m. These piles are connected with a Capping beams at the top, which assists equitable pressure distributions in piles. These retaining piles are suitable in areas where water table is deep or where soil permeability is low. However, some acceptable amount of water can be collected at the base and pumped out. ARRANGEMENT OF CONTIGUOUS PILe
  • 61. 61
  • 62. 62
  • 63. 63 Secant Pile Walls are formedby constructing intersecting piles. Secant bored pile walls are formed by keeping spacing ofpiles lessthan diameter. Secant pile walls are used tobuild cut off walls for the control of groundwater inflow and to minimizemovement in weak and wet soils. Secant Wall constructed in the form of hard/soft or hard/firm and Secant Wall Hard/hard wall. Secant Wall-hard- softs or hard/firm is similar tothe contiguous bored pile wall
  • 64. 64
  • 65. 65
  • 66. 66
  • 67. 67 Soldier Piles and Wooden Lagging supported system The supporting system comprised soldier piles spaced at 1.8m c/c and with a closer spacing of 1.6m c/c near the launching shaft (Fig.8). Wooden laggings of thickness 100mm to 120mm were supported between the soldier piles.Three levels of Struts were provided at depths 3.285, 7.285, and 10.831m below the established ground level (EGL-209.80m). Additional level of Waler beam with pre-stressed rock anchors were provided 2m above the excavation level. Rock anchors with capacity of 86.4T,spaced at 3.6m c/c, were embedded 6m into the quartzitic bedrock to meet the bond strength consideration
  • 68. 68 Soldier Piles & Laggings Wooden Supporting System
  • 69. 69