1
POLARIZATION
SOLO HERMELIN
Updated 27.05.06http://www.solohermelin.com
POLARIZATION
History
SOLO
TABLE OF CONTENT
Natural or Unpolarized Light
Monochromatic Planar Wave Equations
Linear Polarization or Plane-Polarization
Circular Polarization
Elliptically Polarization
Methods of Achieving Polarization
Polarization Ellipse
Degenerated States of Polarization Ellipse
The Stokes Polarization Parameters
Measuring the Stokes Parameters
Poincaré Sphere
The Mueller Matrices for Polarizing Components
The Jones Polarization Parameters
3
POLARIZATIONSOLO
TABLE OF CONTENT (Continue – 1)
Faraday Effect
Electro – Optical Effects ( Pockels, Kerr)
References Optics Polarization
4
POLARIZATION
Erasmus Bartholinus, doctor of medicine and professor of
mathematics at the University of Copenhagen, showed in 1669 that
crystals of “Iceland spar” (which we now call calcite, CaCO3)
produced two refracted rays from a single incident beam. One ray,
the “ordinary ray”, followed Snell’s law, while the other, the
“extraordinary ray”, was not always even in the plan of incidence.
SOLO
History
Erasmus Bartholinus
1625-1698
http://www.polarization.com/history/history.html
5
POLARIZATIONSOLO
History
Étienne Louis Malus
1775-1812
Etienne Louis Malus, military engineer and captain in the army of
Napoleon, published in 1809 the Malus Law of irradiance through a
Linear polarizer: I(θ)=I(0) cos2
θ. In 1810 he won the French Academy
Prize with the discovery that reflected and scattered light also possessed
“sidedness” which he called “polarization”.
6
POLARIZATION
Arago and Fresnel investigated the interference of
polarized rays of light and found in 1816 that two
rays polarized at right angles to each other never
interface.
SOLO
History (continue)
Dominique François
Jean Arago
1786-1853
Augustin Jean
Fresnel
1788-1827
Arago relayed to Thomas Young in London the results
of the experiment he had performed with Fresnel. This
stimulate Young to propose in 1817 that the oscillations
in the optical wave where transverse, or perpendicular
to the direction of propagation, and not longitudinal as
every proponent of wave theory believed. Thomas Young
1773-1829
Return to Table of Content
7
POLARIZATIONSOLO
The Natural Light is emitted by excitation of material atoms. Each excited atom
radiates a wave train for roughly 10-8
sec. The Natural light is the result of radiation of a
large collection of such atoms. New waves are emitted in a completely unpredictable
fashion
and the light is actually composed of a succession of short living polarization states.
Natural or Unpolarized Light
A light source consists of a very large number of randomly oriented atoms emitters.
We say that the Natural light is compose of a collection
of monochromatic (polichromatic) unpolarized rays.
One mathematical description of a monochromatic
unpolarized ray moving in z direction, at a certain
location in space, is by a Electric Intensity phasor of
constant amplitude and a random phase:
( ) ( )( ) ( )( )
yx
tzktjtzktj yx
eAeAtE 11
∧
+−
∧
+−
+=
δωδω
zyx 111 ,,
∧∧∧
are orthogonal unit vectors and δx (t) are δy (t)
are randomly phase angles.
8
POLARIZATIONSOLO
Light is a transverse electromagnetic wave; i.e. the Electric and Magnetic Intensities
are perpendicular to each other and oscillate perpendicular to the direction of propagation.
For the natural light the direction of the Electric Intensity vector changes randomly
from time to time. We say that the natural light is Unpolarized.
A Planar wave (in which the Electric Intensity propagates remaining in a plane –
containing the propagation direction) is said to be Linearly Polarized or Plane-Polarized.
If light is composed of two plane waves of equal amplitude but differing in phase by 90°
then the light is aid to be Circular Polarized.
If light is composed of two plane waves of different amplitudes and/or the difference
in phase is different than 0,90,180,270° then the light is said to be Elliptically Polarized.
E

Return to Table of Content
9
ELECTROMAGNETICSSOLO
To satisfy the Maxwell equations for a source free media we must have:
Monochromatic Planar Wave Equations
we haveUsing: 1ˆˆ&ˆˆ
0 =⋅== kkknkkk εµω








=⋅∇
=⋅∇
−=×∇
=×∇
0
0
H
E
HjE
EjH
ωµ
ωε











=⋅
=⋅
=×
−=×
0ˆ
0ˆ
ˆ
ˆ
0
0
00
00
Hk
Ek
HEk
EHk
ε
µ
µ
ε







=⋅−
=⋅−
−=×−
=×−
⇒
⋅−
⋅−
⋅−⋅−
⋅−⋅−
−=∇ ⋅−⋅−
0
0
0
0
00
00
rkj
rkj
rkjrkj
rkjrkj
ekje
eHkj
eEkj
eHjeEkj
eEjeHkj
rkjrkj










ωµ
ωε
( ) *
2
*
2
&
2
ˆ
2
ˆ
HHwEEwwcn
k
wwcn
k
S meme
µε
====+=

Time Average
Poynting Vector of
the Planar Wave
( ) ( )rktjrktj
eHHeEE

⋅−⋅−
== ωω
00 &
Return to Table of Content
10
POLARIZATIONSOLO
A Planar wave (in which the Electric Intensity propagates remaining in a plane –
containing the propagation direction) is said to be Linearly Polarized or Plane-Polarized.
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
http://www.enzim.hu/~szia/cddemo/edemo0.htm)Andras Szilagyi(
Linear Polarization or Plane-Polarization
( )
yyzktj
y eAE 1
∧
+−
=
δω
Return to Table of Content
11
POLARIZATIONSOLO
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
If light is composed of two plane waves of equal amplitude but differing in phase by 90°
then the light is said to be Circular Polarized.
http://www.optics.arizona.edu/jcwyant/JoseDiaz/Polarization-Circular.htm
( ) ( )
yx xx zktjzktj
eAeAE 11
2/
∧
++−
∧
+−
+= πδωδω
Circular Polarization
Return to Table of Content
12
POLARIZATIONSOLO
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
If light is composed of two plane waves of different amplitudes and/or the difference
in phase is different than 0,90,180,270° then the light is said to be Elliptically Polarized.
( ) ( )
yx
yx
zktj
y
zktj
x eAeAE 11
∧
+−
∧
+−
+=
δωδω
Elliptically Polarization
Return to Table of Content
13
POLARIZATIONSOLO
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
Methods of Achieving Polarization
Polarization is based on one of four fundamental physical mechanisms:
1. Dichroism or selective absorbtion 3. Reflection
2. Scattering 4. Birefrigerence
To obtain Polarization we must have some asymmetry in the optical process.
14
POLARIZATIONSOLO
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
Methods of Achieving Polarization (continue – 1)
Polarization by Dichroism
A dichroic material has different absorption properties for perpendicular incident
planes. An example of a dichroic material is the tourmaline that is a class of borone
silicate. The tourmaline has a unique optic axis, and any electronic field normal to
it is strongly absorbed.
15
POLARIZATION
SOLO
Polaroids (Dichroism)
http://en.wikipedia.org/wiki/Edwin_H._Land
Edwin H. Land
1909-1991
In 1928 Edwin H. Land undergraduate at Harvard College
invented the Polaroid J-sheet. It consists of many microscopic
Crystals of iodoquinine sulphate embeded in a transparent
Nitrocellulose polymer film.
The sunglasses use polaroid material that uses
dichroism to achieve absorption..
16
Methods of Achieving Polarization (continue – 1)
Wire-Grid Polarizer (Dichroism)
POLARIZATIONSOLO
Grid of parallel conducting wires with a spacing comparable to the wavelength of
the electromagnetic wave.
The Electric Field vector parallel to the wires is attenuated because of the
currents induced in the wires.
17
POLARIZATIONSOLO
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
Methods of Achieving Polarization (continue – 2)
Polarization by Scattering
18
POLARIZATIONSOLO
Methods of Achieving Polarization (continue – 3)
Polarization by Scattering
19
POLARIZATIONSOLO
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
Methods of Achieving Polarization (continue – 4)
Polarization by Reflection
20
POLARIZATIONSOLO
Methods of Achieving Polarization (continue – 5)
Polarization by Reflection
The Pile-of-plate Polarizer
The problem encounter using the Brewster Effect is that the reflected beam although
completely polarized is weak and the refracted beam is only partially polarized.
The solution is to use a pile-of-
plates polarizer as in Figure.
This was invented by F.J. Arago in 1812.
Dominique François
Jean Arago
1786-1853
21
POLARIZATIONSOLO
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
Polarization by Birefrigerence (continue – 4)
Polarization can be achieved with crystalline materials which have a different index of
refraction in different planes. Such materials are said to be birefringent or doubly refracting.
Nicol Prism
The Nicol Prism (1828) is made
up from two prisms of calcite
cemented with Canada balsam.
The ordinary ray can be made to
totally reflect off the prism
boundary, leving only the
extraordinary ray.
William Nicol(1768 ?– 1851) Scottish physicist
Methods of Achieving Polarization (continue – 6)
22
POLARIZATIONSOLO
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
Polarization by Birefrigerence (continue – 4)
Polarization can be achieved with crystalline materials which have a different index of
refraction in different planes. Such materials are said to be birefringent or doubly refracting.
Wollaston Prism
William Hyde
Wollaston
1766-1828
Methods of Achieving Polarization (continue – 7)
23
POLARIZATIONSOLO
http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
Polarization by Birefrigerence (continue – 4)
Polarization can be achieved with crystalline materials which have a different index of
refraction in different planes. Such materials are said to be birefringent or doubly refracting.
Glan-Foucault Polarizer
Methods of Achieving Polarization (continue – 8)
24
POLARIZATION
Methods of Achieving Polarization (continue – 9)
25
POLARIZATION
Methods of Achieving Polarization (continue – 10)
26
POLARIZATION
SOLO
Polarizations Prisms Overview
http://www.unitedcrystals.com/POverview.html
Methods of Achieving Polarization (continue – 11)
27
POLARIZATION
SOLO
Polarizations Prisms Overview
http://www.unitedcrystals.com/POverview.html
Methods of Achieving Polarization (continue – 12)
Return to Table of Content
28
POLARIZATIONSOLO
The Polarization of a monochromatic planar wave is defined in terms of the behavior
of the tip of the phasor vector as a function of timeE
( ) ( )
yx
yx
zktj
y
zktj
x eAeAE 11
∧
+−
∧
+−
+=
δωδω
Tacking the real part we obtain:
( )x
x
x
zkt
A
E
δω +−= cos
( ) ( ) δδωδδωδδδω
δ
sinsincoscoscos xxxyx
y
y
zktzktzkt
A
E
+−−+−=








−++−=

δδ sin1cos
2








−=
x
x
x
x
y
y
A
E
A
E
A
E

δδ 2
22
sin1cos
















−=








−
x
x
x
x
y
y
A
E
A
E
A
E
δδ 2
22
sincos2 =








+−







y
y
y
y
x
x
x
x
A
E
A
E
A
E
A
E
1
sinsin
cos
2
sin
2
2
2
=








+−







δδ
δ
δ y
y
y
y
x
x
x
x
A
E
A
E
A
E
A
E
ellipse
( )y
y
y
zkt
A
E
δω +−= cos
Polarization Ellipse
29
POLARIZATION
SOLO
Let transform the ellipse equation to canonical form by using a linear transformation
through an angle ψ (to be defined)
1
sinsin
cos
2
sin
2
2
2
=








+−







δδ
δ
δ y
y
y
y
x
x
x
x
A
E
A
E
A
E
A
E













 −
=







⇔













−
=







η
ξ
η
ξ
ψψ
ψψ
ψψ
ψψ
E
E
E
E
E
E
E
E
y
x
y
x
cossin
sincos
cossin
sincos
1
sin
cossin
cos
sin
cossin
sin
sincos
2
sin
sincos
22
=







 +
+







 +







 −
−






 −
δ
ψψ
δ
δ
ψψ
δ
ψψ
δ
ψψ ηξηξηξηξ
yyxx A
EE
A
EE
A
EE
A
EE
( ) 1sincos
sin
cos2
sin
cossin2
sin
cossin2
cos
sin
cos
sin
sin
2
sin
cos
sin
sin
cos
sin
sin
sin
cos
2
sin
sin
sin
cos
0
22
22222
22
2
22
2
2
22
2
22
2
2
=








−−+−+








+++








−+
  
ψ
ηξ
ηξ
ψψ
δ
δ
δ
ψψ
δ
ψψ
δ
δ
ψ
δ
ψ
δ
ψ
δ
ψ
δ
δ
ψ
δ
ψ
δ
ψ
δ
ψ
definingby
yxyx
yxyxyxyx
AAAA
EE
AAAA
E
AAAA
E
Choose ψ such that the last term is zero, or
02cos
cos211
2sin 22
=−








− ψ
δ
ψ
yxxy
AAAA ( )
δαδδψ
α
cos2tancos
/1
/
cos
2
2tan
/:tan
222
xy AA
xy
xy
yx
yx
AA
AA
AA
AA =
=
−
=
−
=
Polarization Ellipse (continue – 1)
30
POLARIZATION
SOLO
1
22
=








+








η
η
ξ
ξ
A
E
A
E
Define (see Figure)
δ
δ
ψ
δ
ψ
δ
ψ
δ
ψ
δ
δ
ψ
δ
ψ
δ
ψ
δ
ψ
χ
ξ
η
cos
sin
cos
sin
sin
2
sin
cos
sin
sin
cos
sin
sin
sin
cos
2
sin
sin
sin
cos
:tan
22
2
22
2
22
2
22
2
2
2
yxyx
yxyx
AAAA
AAAA
A
A
++
−+
=








=
( ) ( )
( ) ( )
δψψαψψα
δψψαψψα
δψψψψ
δψψψψ
χ
α
coscossintan2cossintan
coscossintan2sincostan
coscossin/2cossin/
coscossin/2sincos/
tan
222
222tan/
222
222
2
++
−+
++
−+
=
=
=xy EE
xyxy
xyxy
EEEE
EEEE
( )( ) ( )
α
δψααψ
α
δψψααψψ
χ
χ
χ 2
2
2
222
2
2
tan1
cos2sintan2tan12cos
tan1
coscossintan4tan1sincos
tan1
tan1
2cos
+
+−
=
+
+−−
=
+
−
=
From δαψ cos2tan2tan =
α
ψ
δ
2tan
2tan
cos =
and
α
α
α
α
α
α 2
2
2
tan1
tan1
2cos&
tan1
tan2
2tan
+
−
=
−
=
( )
ψ
α
ψ
ψ
ψ
α
α
α
α
ψ
ψααψ
χ
ψ
α
2cos
2cos
2cos
2sin
2cos
tan1
tan1
tan1
2tan
2tan
2sintan2tan12cos
2cos
2cos/1
2
2cos
2
2
2
2
=





+
+
−
=
+
+−
=
  
δαψ cos2tan2tan =
Polarization Ellipse (continue – 2)
31
POLARIZATIONSOLO
1
22
=








+








η
η
ξ
ξ
A
E
A
E
χ
α
ψ
2cos
2cos
2cos = δαψ cos2tan2tan =
χ
δ
αδα
χ
α
ψψψ
2cos
cos
2sincos2tan
2cos
2cos
2tan2cos2sin ===
Therefore
1cos
sin
cos
sin
sin
2
sin
cos
sin
sin
cos
sin
sin
sin
cos
2
sin
sin
sin
cos
22
2
22
2
2
22
2
22
2
2
=








+++








−+ δ
δ
ψ
δ
ψ
δ
ψ
δ
ψ
δ
δ
ψ
δ
ψ
δ
ψ
δ
ψ
ηξ
yxyxyxyx
AAAA
E
AAAA
E
Also
δ
δ
ψ
δ
ψ
δ
ψ
δ
ψ
δ
δ
ψ
δ
ψ
δ
ψ
δ
ψ
η
ξ
cos
sin
cos
sin
sin
2
sin
cos
sin
sin1
cos
sin
sin
sin
cos
2
sin
sin
sin
cos1
22
2
22
2
2
22
2
22
2
2
yxyx
yxyx
AAAAA
AAAAA
++=
−+=
δηξ
22222
sin
11111








+=+
yx AAAA
Polarization Ellipse (continue – 3)
To Stokes
Parameters
32
POLARIZATION
SOLO
Let compute the area of the Polarization Ellipse
( )
( )yyyyy
xxxxx
AzktAEy
AzktAEx
δτδω
δτδω
τ
τ
+=








+−==
+=








+−==
coscos:
coscos:


( ) ( )
( ) ( ) δπτδδτδδ
τδτδτ
π
δ
π
sin2sinsin
2
1
sincos
2
0
2
0
yxyxxyyx
xxyy
AAdAA
dAAdxyArea
=








++−−=
++−==
∫
∫∫

But the area of the Polarization Ellipse is1
22
=








+








η
η
ξ
ξ
A
E
A
E
ηξπ AAArea =
Therefore δηξ sinyx
AAAA =
Using
δηξ
22222
sin
11111








+=+
yx
AAAA δηξ
ηξ
222
22
22
22
sin
1
yx
yx
AA
AA
AA
AA +
=
+ 2222
yx AAAA +=+ ηξ
Energy Equation
Polarization Ellipse (continue – 4)
33
POLARIZATION
SOLO
δηξ sinyx
AAAA =
2222
yx AAAA +=+ ηξ Energy Equation
ξ
η
χ
A
A
=:tanwe defined
Therefore
δαδ
δ
χ
χ
χ
ηξ
ηξ
ξ
η
ξ
η
sin2sinsin
1
2
sin22
1
2
tan1
tan2
2sin 2222222
=








+
=
+
=
+
=








+
=
+
=
y
x
y
x
yx
yx
A
A
A
A
AA
AA
AA
AA
A
A
A
A
δαχ sin2sin2sin =
Polarization Ellipse (continue – 5)
δαψ cos2tan2tan =We also found that
ψ
χ
ψχψ
χ
αψ
χ
αψ
αχ
δ
δ
δ
2sin
2tan
2cos2cos2tan
2sin
2cos2tan
2sin
2tan/2tan
2sin/2sin
cos
sin
tan =
⋅⋅
=
⋅
===
ψ
χ
δ
2sin
2tan
tan =
ψχα 2cos2cos2cos ⋅=
To Stokes
Parameters
34
POLARIZATION
SOLO
Summary
Polarization Ellipse (continue – 6)
δηξ sinyx
AAAA =
2222
yx AAAA +=+ ηξ



=
=
δαχ
δαψ
sin2sin2sin
cos2tan2tan





=
⋅=
ψ
χ
δ
ψχα
2sin
2tan
tan
2cos2cos2cos






⇐






χ
ψ
δ
α






⇐






δ
α
χ
ψ
ξ
η
χ
A
A
=:tan
x
y
A
A
=:tanα
1
sinsin
cos
2
sin
2
2
2
=








+−







δδ
δ
δ y
y
y
y
x
x
x
x
A
E
A
E
A
E
A
E
1
22
=








+








η
η
ξ
ξ
A
E
A
E













 −
=







η
ξ
ψψ
ψψ
E
E
E
E
y
x
cossin
sincos
xy
δδδ −=( ) ( )
yxyx
yx
zktj
y
zktj
xyx eAeAEEE 1111
∧
+−
∧
+−
∧∧
+=+=
δωδω
Return to Table of Content
35
POLARIZATIONSOLO
( ) ( )
yx yx
zktj
y
zktj
x eAeAE 11
∧
+−
∧
+−
+=
δωδω
Linearly Horizontally Polarized (LHP):
( )x
x
x
zkt
A
E
δω +−= cos
Degenerated States of Polarization Ellipse
( )
01 ==
∧
+−
y
zktj
x AeAE xxδω
http://www.enzim.hu/~szia/cddemo/edemo0.htm (Andras Szilagyi)
Linearly Vertically Polarized (LVP): ( )
01 ==
∧
+−
x
zktj
y AeAE yyδω
( )y
y
y
zkt
A
E
δω +−= cos
36
POLARIZATIONSOLO
Linear + 45° Polarized (L+45P)
Degenerated States of Polarization Ellipse
( )tzkj
yx
eAAE yx
ω−−
∧∧






+= 11
( )tzkj
yx
eAAE yx
ω−−
∧∧






−= 11
Plane Polarization
Mixed
0=−= xy
δδδ πδδδ =−= xy
Linear - 45 ° Polarized (L-45P)
http://www.enzim.hu/~szia/cddemo/edemo0.htm (Andras Szilagyi)
( ) ( )
yx yx
zktj
y
zktj
x eAeAE 11
∧
+−
∧
+−
+=
δωδω
37
POLARIZATIONSOLO
( )x
x
zkt
A
E
δω +−= cos ( )x
y
zkt
A
E
δω +−−= sin
Degenerated States of Polarization Ellipse
Right Circular Polarization (RCP) AAA yxxy
===−= &2/πδδδ
1
22
=





+





A
E
A
E yx
http://www.enzim.hu/~szia/cddemo/edemo0.htm (Andras Szilagyi)
( ) ( )
yx yx
zktj
y
zktj
x eAeAE 11
∧
+−
∧
+−
+=
δωδω
( )x
x
zkt
A
E
δω +−= cos ( )x
y
zkt
A
E
δω +−= sin
Left Circular Polarization (LCP) AAA yxxy
===−= &
2
3π
δδδ
38
POLARIZATIONSOLO
( )x
x
zkt
A
E
δω +−= cos ( )x
y
zkt
A
E
δω +−= sin
Degenerated States of Polarization Ellipse
Left Circular Polarization (LCP) AAA yxxy ===−= &
2
3π
δδδ
1
22
=





+





A
E
A
E yx
http://www.enzim.hu/~szia/cddemo/edemo0.htm (Andras Szilagyi)
Superposition of Two Circular Polarizations
( ) ( )
yx yx
zktj
y
zktj
x eAeAE 11
∧
+−
∧
+−
+=
δωδω
Return to Table of Content
39
POLARIZATION
SOLO
The Stokes Polarization Parameters
George Gabriel Stokes
1819-1903
G.G. Stokes, “On the Composition and Resolution of Streams of
Polarized Light from different Sources”,
Trans. Cambridge Phil. Soc., Vol.9, 1852, pp.399-416
( ) ( ) yx yyxx zktAzktAE 11 coscos
∧∧
+−++−= δωδω

where
( ) ( ) ( ) ( )
δδ 2
22
sin
,
cos
,,
2
,
=








+−







y
y
y
y
x
x
x
x
A
tzE
A
tzE
A
tzE
A
tzE
The Polarization Ellipse is
All the information of polarization is contained in this equation.
In order to observe the quantities involved let take the time average <…
> of
the time dependent quantities in the Polarization Ellipse equation.
( ) ( ) ( ) ( )
δδ 2
2
2
2
2
sin
,
cos
,,
2
,
=+−
y
y
yx
yx
x
x
A
tzE
AA
tzEtzE
A
tzE
( ) ( ) ( ) ( ) yxjidttzEtzE
T
tzEtzE
T
ji
T
ji
,,,,
1
:,,
0
lim == ∫→∞
( ) ( ) ( ) ( ) ( )22222
sin2,4cos,,8,4 δδ yxyxyxyxxy AAtzEAtzEtzEAAtzEA =+−
40
POLARIZATION
SOLO
The Stokes Polarization Parameters (continue – 1)
We obtain
( ) ( ) ( ) ( ) ( )22222
sin2,4cos,,8,4 δδ yxyxyxyxxy
AAtzEAtzEtzEAAtzEA =+−
( ) ( ) ( ) ( )
( ) ( ) δδδωδδ
δωδω
δ
cos
2
22coscos
1
2
coscos
1
,,
0
0
lim
lim
yx
T
xyyx
T
yx
T
yxyx
T
zx
AA
dtzkt
T
AA
dtzktzktAA
T
tzEtzE
=








++−−−=
+−+−=
∫
∫
→∞
→∞

( ) ( ) ( )[ ]
2
2cos1
1
2
cos
1
,
2
0
2
0
222
limlim
x
T
x
T
x
T
xx
T
x
A
dtzkt
T
A
dtzktA
T
tzE =+−−=+−= ∫∫ →∞→∞
δωδω
( ) ( )
2
cos
1
,
2
0
222
lim
y
T
yy
T
y
A
dtzktA
T
tzE =+−= ∫→∞
δω
( ) ( )222222
sin22cos22 δδ yxyxyxyx
AAAAAAAA =+−
By adding and subtracting on the left side of this equation we obtain
( ) ( ) ( ) ( )22222222
sin2cos2 δδ yxyxyxyx
AAAAAAAA =−−−+
44
2 yx
AA +
41
POLARIZATION
SOLO
The Stokes Polarization Parameters (continue – 2)
The Stokes Parameters are defined as
( ) ( ) ( ) ( )22222222
sin2cos2 δδ yxyxyxyx
AAAAAAAA ++−=+
δ
δ
sin2
cos2
3
2
22
1
22
0
yx
yx
yx
yx
AAVS
AAUS
AAQS
AAIS
==
==
−==
+==
2
3
2
2
2
1
2
0 SSSS ++=
The Stokes Vector is defined as
















−
+
=














=














=
δ
δ
sin2
cos2
22
22
3
2
1
0
yx
yx
yx
yx
AA
AA
AA
AA
V
U
Q
I
S
S
S
S
S

The Stokes Parameters are observable using a
proper experiment.
42
POLARIZATION
SOLO
The Stokes Polarization Parameters (continue – 3)
Consider a quasi-monochromatic wave of mean frequency ω propagating in z direction
( ) ( )( )
( ) ( )( )
( ) ( ) yxyx ztEztEetAetAE yx
ttzkj
y
ttzkj
x
xy
1111 ,,
∧∧∧
+−−
∧
+−−
+=+= δωδω
For monochromatic waves Ax, Ay, δx, δy, ω are constant.
Quasi-monochromatic Light
For quasi-monochromatic waves Ax, Ay, δx, δy , ω are slowly changing with time.
We have
( ) ( ) ( ) ( ) yxjidttzEtzE
T
tzEtzE
T
ji
T
ji
,,,,
1
:,,
0
lim == ∫
∗
→∞
∗
( ) ( ) 2
0
21
:,, lim x
T
x
T
xx
AdtA
T
tzEtzE == ∫→∞
∗
( ) ( ) 2
0
21
:,, lim y
T
y
T
yy
AdtA
T
tzEtzE == ∫→∞
∗
( ) ( ) ( )yxyx
j
yx
T
j
y
j
x
T
yx
eAAdteAeA
T
tzEtzE
δδδδ −−
→∞
∗
== ∫
0
1
:,, lim
( ) ( ) ( )yxxy j
yx
T
j
x
j
y
T
xy
eAAdteAeA
T
tzEtzE
δδδδ −−−
→∞
∗
== ∫
0
1
:,, lim
43
POLARIZATION
SOLO
The Stokes Polarization Parameters (continue – 3)
( ) ( )( )
( ) ( )( )
( ) ( ) yxyx ztEztEetAetAE yx
ttzkj
y
ttzkj
x
xy
1111 ,,
∧∧∧
+−−
∧
+−−
+=+= δωδω
Quasi-monochromatic Light
The Stokes Parameters are defined as
( )
( )
( )
( ) ∗∗
∗∗
∗∗
∗∗
−=−=
+=−=
−=−=
+=+=
xyyxxyyx
xyyxxyyx
yyxxyx
yyxxyx
EEEEjAAS
EEEEAAS
EEEEAAS
EEEEAAS
δδ
δδ
sin2
cos2
3
2
22
1
22
0
( ) ( ) 2
0
21
:,, lim x
T
x
T
xx AdtA
T
tzEtzE == ∫→∞
∗
( ) ( ) 2
0
21
:,, lim y
T
y
T
yy AdtA
T
tzEtzE == ∫→∞
∗
( ) ( ) ( )yxyx
j
yx
T
j
y
j
x
T
yx eAAdteAeA
T
tzEtzE
δδδδ −−
→∞
∗
== ∫
0
1
:,, lim
( ) ( ) ( )yxxy j
yx
T
j
x
j
y
T
xy eAAdteAeA
T
tzEtzE
δδδδ −−−
→∞
∗
== ∫
0
1
:,, lim
44
POLARIZATION
SOLO
The Stokes Polarization Parameters (continue – 4)
Stokes Vector for Different Polarization Types
LHP














=
0
0
1
1
0IS

2
0
0
x
y
AI
A
=
=
LVP
2
0
0
y
x
AI
A
=
=














−
=
0
0
1
1
0IS















=
0
1
0
1
0IS

L+45P
2
0
2
0
x
yx
AI
AA
=
=
=δ














−
=
0
1
0
1
0IS

L-45P
2
0
2 x
yx
AI
AA
=
=
= πδ














=
1
0
0
1
0IS

RCP
2
0
2
2
x
yx
AI
AA
=
=
=
π
δ














−
=
1
0
0
1
0IS

2
0 2
2
3
x
yx
AI
AA
=
=
=
π
δ
LCP
δ
δ
sin2
cos2
3
2
22
1
22
0
yx
yx
yx
yx
AAS
AAS
AAS
AAS
=
=
−=
+=
2
3
2
2
2
1
2
0
SSSS ++=
( ) ( )
yxyx
yx
zktj
y
zktj
xyx eAeAEEE 1111
∧
+−
∧
+−
∧∧
+=+=
δωδω
45
POLARIZATION
SOLO
The Stokes Polarization Parameters (continue – 5)
The Stokes Parameters are defined as
δ
δ
sin2
cos2
3
2
22
1
22
0
yx
yx
yx
yx
AAS
AAS
AAS
AAS
=
=
−=
+=
2
3
2
2
2
1
2
0
SSSS ++=
δαχ sin2sin2sin =
αψχ 2cos2cos2cos =⋅
δαψχ cos2sin2sin2cos ⋅=⋅
We found
22
22
2
2
222
tan1
tan1
2cos&
tan1
tan
2sin
yx
yx
yx
yx
AA
AA
AA
AA
+
−
=
+
−
=
+
=
+
=
α
α
α
α
α
α
x
y
A
A
=:tanα
0
1
22
22
2cos2cos
S
S
AA
AA
yx
yx
=
+
−
=⋅ ψχ
0
2
22
cos
cos2sin2sin2cos
S
S
AA
AA
yx
yx
=
+
⋅
=⋅=⋅
δ
δαψχ
0
3
22
sin
sin2sin2sin
S
S
AA
AA
yx
yx
=
+
⋅
==
δ
δαχ






=






=
−
−
0
31
1
21
sin
2
1
tan
2
1
S
S
S
S
χ
ψ
Return to Table of Content
46
POLARIZATION
SOLO
Consider a quasi-monochromatic wave of mean frequency ω propagating in z direction
composed of a Unpolarized component AUP with random phases δrx and δry and a
Polarized component Ax, δx , Ay, δy
( ) ( ) ( )tzkjj
yP
j
UP
j
xP
j
UPyx eeAeAeAeAEEE yxyx
yyrxxr ωδδδδ −−
∧∧∧∧




+++=+= 1111
Measuring the Stokes Parameters
Pass the beam through a waveplate that induces a wave retardation of φ and
a polarizer with a transmission axis at an angle β relative to x axis
( )
( ) ( )
( ) ( )tzkjj
yP
j
UP
j
xP
j
UP
eeAeAeAeAE yx
yyrxxr ωϕδδϕδδ −−
∧
−
∧
+




+++= 11
2/2/
'
( )
( ) ( )
( )[ ] ( )tzkjj
yP
j
UP
j
xP
j
UP
eeAeAeAeAE yyrxxr ωϕδδϕδδ
ββ −−−+
+++= sincos"
2/2/
The waveplate that induces a wave retardation of φ between the phases of x and y
components of the polarized light but will not affect the random phase of the unpolarized light.
The polarizer will transmit only the component along the transmission axis
47
POLARIZATION
SOLO
Measuring the Stokes Parameters (continue – 1)
( )
( ) ( )
( )[ ] ( )tzkjj
yP
j
UP
j
xP
j
UP
eeAeAeAeAE yyrxxr ωϕδδϕδδ
ββ −−−+
+++= sincos"
2/2/
( ) ( )
( ) ( )
( )[ ] ( )
( ) ( )
( )[ ] zz
yyrxxryyrxxr
j
yP
j
UP
j
xP
j
UP
j
yP
j
UP
j
xP
j
UP eAeAeAeAeAeAeAeAcnkEEcnkS 11 sincossincos"",
2/2/2/2/
∧
−−−+−−−+
∧
∗
+++⋅+++=⋅= ββββϕβ
ϕδδϕδδϕδδϕδδ

( )
( ) ( )
( )[ ] ( )
( ) ( )
( )[ ]
( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( )
βββ
βββ
βββ
βββ
ββββ
ϕδδϕδδϕδδ
δϕδδϕδδδ
ϕδδϕδδδϕδ
δδδϕδδϕδ
ϕδδϕδδϕδδϕδδ
22
0
2/
0
2/
2
0
2/2
0
2/
0
2
0
2/22
0
2/
00
2/22
0
2/2
2/2/2/2/
sincossin
sin2/cossin
cossincos
cossincos2/
sincossincos








++








++








++








++








++








++








++








+=
+++⋅+++
−−−−−−−
−−−+−
−−+−−+
−−−−+
−−−+−−−+
yP
jj
yPUP
j
yPxP
jj
yPUP
jj
yPUPUP
jj
UPxP
jj
UP
j
xPyP
jj
xPUPxP
jj
xPUP
jj
UPyP
jj
UP
jj
xPUPUP
j
yP
j
UP
j
xP
j
UP
j
yP
j
UP
j
xP
j
UP
AeeAAeAAeeAA
eeAAAeeAAeeA
eAAeeAAAeeAA
eeAAeeAeeAAA
eAeAeAeAeAeAeAeA
yxpxyyxr
yyyrxyrrr
xyxyrxx
xryxryxrx
yyrxxryyrxxr
    
    
    
    
The time average Poynting vector is
48
POLARIZATION
SOLO
( ) ( )
( )[ ] zyP
jj
yPxPxPUP AeeAAAAcnkS 1
22222
sincossincos2/
∧
−−−
++++= ββββ ϕδϕδ

2
2sin
cossin
2
2cos1
sin
2
2cos1
cos
2
2
β
ββ
β
β
β
β
=
−
=
+
=
( ) ( ) ( ) ( )[ ]{ }
( ) ( ) ( ) ( )[ ]
( ) ( )[ ]
[ ]βϕβϕβ
βϕδβϕδβ
βϕβϕβ
βϕϕϕϕβ
δδδδ
δδ
2sinsin2sincos2cos
2
2sinsinsin22sincossin22cos
2
2sinsin2sincos2cos
2
2sinsincossincos2cos
2
********
22222
22222
22222
xyyxxyyxyyxxyyxx
yPxPyPxPyPxPyPxPUP
jj
yPxP
jj
yPxPyPxPyPxPUP
jj
yPxPyPxPyPxPUP
EEEEjEEEEEEEEEEEE
cnk
AAjAAAAAAA
cnk
eeAAjeeAAAAAAA
cnk
jejeAAAAAAA
cnk
S
−+++−++=
++−+++=
−−++−+++=
++−+−+++=
−−
−

Measuring the Stokes Parameters (continue – 2)
( )
( ) ( )
( )[ ] ( )
( ) ( )
( )[ ] zz
yyrxxryyrxxr
j
yP
j
UP
j
xP
j
UP
j
yP
j
UP
j
xP
j
UP eAeAeAeAeAeAeAeAcnkEEcnkS 11 sincossincos
2/2/2/2/
∧
−−−+−−−+
∧
∗
+++⋅+++=⋅= ββββ
ϕδδϕδδϕδδϕδδ

[ ]βϕβϕβ 2sinsin2sincos2cos
2
3210 SjSSS
cnk
S +++=

( )
( )
( )
( )xyyPxPxyyx
xyyPxPxyyx
yPxPyyxx
yPxPUPyyxx
AAEEEEjS
AAEEEES
AAEEEES
AAAEEEES
δδ
δδ
−=−=
−=+=
−=−=
++=+=
∗∗
∗∗
∗∗
∗∗
sin2
cos2
3
2
22
1
222
0
49
POLARIZATION
SOLO
Measuring the Stokes Parameters (continue – 3)
( ) [ ]βϕβϕβϕβ 2sinsin2sincos2cos
2
, 3210 SjSSS
cnk
S +++=

( )
( )
( )
( )xyyPxPxyyx
xyyPxPxyyx
yPxPyyxx
yPxPUPyyxx
AAEEEEjS
AAEEEES
AAEEEES
AAAEEEES
δδ
δδ
−=−=
−=+=
−=−=
++=+=
∗∗
∗∗
∗∗
∗∗
sin2
cos2
3
2
22
1
222
0
The Stokes Parameters are measured by first removing the waveplate φ = 0
( ) [ ]ββϕβ 2sin2cos
2
0, 210 SSS
cnk
S ++==

Now the polarizer is sequentially rotate to β = 0, π/4 and π/2
( ) [ ]10
2
0,0 SS
cnk
S +=== ϕβ

( ) [ ]20
2
0,4/ SS
cnk
S +=== ϕπβ

( ) [ ]10
2
0,2/ SS
cnk
S −=== ϕπβ

For the final measurement we
add the waveplate with φ = π/2
and polarizer at β = π/4
( ) [ ]30
2
2/,4/ SS
cnk
S −=== πϕπβ

( ) ( )[ ]0,2/0,0
2
0 ==+=== ϕπβϕβ SS
cnk
S

( ) ( )[ ]0,2/0,0
2
1 ==−=== ϕπβϕβ SS
cnk
S

( ) 02 0,4/2
2
SS
cnk
S −=== ϕπβ

( )2/,4/2
2
03
πϕπβ ==−= S
cnk
SS

50
POLARIZATION
SOLO
Measuring the Stokes Parameters (continue – 4)
( ) [ ]βϕβϕβϕβ 2sinsin2sincos2cos
2
, 3210 SjSSS
cnk
S +++=

( )
( )
( )
( )xyyPxPxyyx
xyyPxPxyyx
yPxPyyxx
yPxPUPyyxx
AAEEEEjS
AAEEEES
AAEEEES
AAAEEEES
δδ
δδ
−=−=
−=+=
−=−=
++=+=
∗∗
∗∗
∗∗
∗∗
sin2
cos2
3
2
22
1
222
0
The Stokes Parameters can measure the degree of polarization of a beam.
We can see that a beam is unpolarized iff: 00 321
2
0
===>=+=
∗∗
SSSAEEEES UPyyxx
The Degree of Polarization is defined as: 10
0
2
3
2
2
2
1
222
22
≤≤
++
=
++
+
= P
S
SSS
AAA
AA
P
yPxPUP
yPxP
If the beam is completely polarized then AUP = 0: 0
2
3
2
2
2
1
2
0
>++= SSSS
Return to Table of Content
51
POLARIZATION
SOLO
H. Poincaré, “Théorie Mathématique de la Lumiere”,
Gauthiers-Villars, Paris, 1892, Vol.2, Ch.12
Poincaré Sphere
Jules Henri Poincaré
1854-1912
We found
03
02
01
/2sin
/2sin2cos
/2cos2cos
SS
SS
SS
=
=⋅
=⋅
χ
ψχ
ψχ
We see that the normalized Stokes Parameters can be
represented as a unit vector on a sphere (called Poincaré
Sphere) using the Polarized Ellipse parameters χ and ψ.
52
POLARIZATION
SOLO
Poincaré Sphere
J.D. Kraus, “Electromagnetics”, 4th
Ed., McGraw Hill, 1992, p.607
Return to Table of Content
53
POLARIZATION
SOLO
The Mueller Matrices for Polarizing Components
In 1948 Hans Mueller, then a professor of physics at MIT devised a matrix method
that deals with the relation of Stokes vector at the output of an optical device to the
Stokes vector at the input of the optical device.




























=














3
2
1
0
33323130
23222120
13121110
03020100
3
2
1
0
'
'
'
'
S
S
S
S
mmmm
mmmm
mmmm
mmmm
S
S
S
S
inputoutput SMS

=
or
Hans Mueller, “The Foundation of Optics”, J. Opt. Soc. Am., 37, pg. 110 (1947)
38, pg. 661(1948)
54
POLARIZATION
SOLO
The Mueller Matrices for Polarizing Components
Suppose that we have a few optical elements through which the ray passes .
( ) inputinputoutput SMSMMMSMMSMS

==== 12312323
or
123 MMMM =
55
POLARIZATION
SOLO
The Mueller Matrices for Polarizing Components
Polarizer
10'
10'
≤≤=
≤≤=
yyyy
xxxx
pEpE
pEpE
The Polarizer is described by two orthogonal transmission axes that are
characterized, respectively, by transmission factors px and py (0 ≤ px,py ≤ 1).
( )∗∗
∗∗
∗∗
∗∗
−=
+=
−=
+=
xyyx
xyyx
yyxx
yyxx
EEEEjS
EEEES
EEEES
EEEES
3
2
1
0
( )∗∗
∗∗
∗∗
∗∗
−=
+=
−=
+=
'''''
'''''
'''''
'''''
3
2
1
0
xyyx
xyyx
yyxx
yyxx
EEEEjS
EEEES
EEEES
EEEES




























+−
−+
=














3
2
1
0
2222
2222
3
2
1
0
2000
0200
00
00
2
1
'
'
'
'
S
S
S
S
pp
pp
pppp
pppp
S
S
S
S
yx
yx
yxyx
yxyx
( )














+−
−+
=
yx
yx
yxyx
yxyx
yxPOL
pp
pp
pppp
pppp
ppM
2000
0200
00
00
2
1
,
2222
2222
56
POLARIZATION
SOLO
The Mueller Matrices for Polarizing Components
Polarizer
( )
22
1
:
/tan:
yx
xy
ppp
pp
+=
= −
βLet define




























=














3
2
1
0
2
2
22
22
3
2
1
0
2sin000
02sin00
002cos
002cos
2
1
'
'
'
'
S
S
S
S
p
p
pp
pp
S
S
S
S
β
β
β
β
( )














=
β
β
β
β
β
2sin000
02sin00
0012cos
002cos1
2
,
2
p
pMPOL
β
β
sin
cos
pp
pp
y
x
=
=
57
POLARIZATION
SOLO
The Mueller Matrices for Polarizing Components
Polarizer (continue -1)
0'
10'
=
≤≤=
y
xxxx
E
pEpE
Ideal Linear Polarizer py = 0 and 0 ≤ px ≤ 1.
( )
( )














+=




























=














0
0
1
1
2
0000
0000
0011
0011
2
'
'
'
'
10
2
3
2
1
0
||
2
3
2
1
0
SS
p
S
S
S
S
p
S
S
S
S
x
M
x
POL
  
Regardless the state of polarization of
the input beam the output beam is
Linear Horizontally Polarized (LHP)
10'
0'
≤≤=
=
yyyy
x
pEpE
E
Ideal Linear Polarizer px = 0 and 0 ≤ py ≤ 1.
( )
( )














−
−=




























−
−
=














⊥
0
0
1
1
2
0000
0000
0011
0011
2
'
'
'
'
10
2
3
2
1
0
2
3
2
1
0
SS
p
S
S
S
S
p
S
S
S
S
y
M
y
POL
  
Regardless the state of polarization of
the input beam the output beam is
Linear Vertically Polarized (LVP)
58
POLARIZATION
SOLO
The Mueller Matrices for Polarizing Components
Polarizer (continue -2)
Crossed Polarizers
( ) ( )














=




























−
−














=














⊥
0
0
0
0
22
0000
0000
0011
0011
2
0000
0000
0011
0011
2
'
'
'
'
22
3
2
1
0
2
||
2
3
2
1
0
yx
M
y
M
x
pp
S
S
S
S
pp
S
S
S
S
POLPOL
    
Regardless the state of polarization of
the input beam the output beam is
completely blocked
Crossed Polarizers are a combination of a Linear Polarizer with the transmission
axes normal to the x-axis, followed by a Linear Polarizer with the transmission
axes parallel to the x-axis (or vice-versa).
59
POLARIZATION
SOLO
The Mueller Matrices for Polarizing Components
Polarizer (continue -3)
Eigenvalues and Eigenvectors of the Linear Polarizer Mueller Matrix
Let find the Input Stokes Vectors that are unaffected by the Polarizer; i.e.:














=




























+−
−+
=














3
2
1
0
3
2
1
0
2222
2222
3
2
1
0
2000
0200
00
00
2
1
'
'
'
'
S
S
S
S
S
S
S
S
pp
pp
pppp
pppp
S
S
S
S
POLM
yx
yx
yxyx
yxyx
λ
  
( ) 0
22000
02200
002
002
2
1
,
2222
2222
44
=
−
−
−+−
−−+
=−
λ
λ
λ
λ
λ
yx
yx
yxyx
yxyx
xyxPOL
pp
pp
pppp
pppp
IppM














==
0
0
1
1
& 1
2
1 Spx

λ














−
==
0
0
1
1
& 2
2
2 Spy

λ
1st
eigenvalue-
eigenvector
2nd
eigenvalue-
eigenvector
We can see that only LHP and LVP are unaffected
by the Linear Polarizer.
60
POLARIZATION
SOLO
The Mueller Matrices for Polarizing Components
Waveplate
y
j
y
x
j
x
EeE
EeE
2/
2/
'
'
ϕ
ϕ
−
=
=
The Waveplate is a polarizing element that introduced a phase shift φ between
the orthogonal components of an optical beam. A Waveplate is a phase-shifter
but is also called a retarder or a compensator.
( )∗∗
∗∗
∗∗
∗∗
−=
+=
−=
+=
xyyx
xyyx
yyxx
yyxx
EEEEjS
EEEES
EEEES
EEEES
3
2
1
0
( )∗∗
∗∗
∗∗
∗∗
−=
+=
−=
+=
'''''
'''''
'''''
'''''
3
2
1
0
xyyx
xyyx
yyxx
yyxx
EEEEjS
EEEES
EEEES
EEEES




























−
=














3
2
1
0
3
2
1
0
cossin00
sincos00
0010
0001
'
'
'
'
S
S
S
S
S
S
S
S
ϕϕ
ϕϕ
( )














−
=
ϕϕ
ϕϕ
ϕ
cossin00
sincos00
0010
0001
WP
M
61
POLARIZATION
SOLO
The Mueller Matrices for Polarizing Components
Waveplate (continue – 1)
Quarter-Waveplate φ = π/2
The Quarter-Waveplate transforms Linearly Polarized (L+45P or L-45P) to
Right or Left Circularly Polarized (RCP or LCP) or vice-versa.
( )














−
==
0100
1000
0010
0001
2/πϕWPM
( )
  
RCPPLPL
WPM














=




























−
=














=
++
1
0
0
1
0
1
0
1
0100
1000
0010
0001
0
1
0
1
2/
4545
πϕ ( )
  
LCPPLPL
WPM














−
=














−














−
=














−
=
−−
1
0
0
1
0
1
0
1
0100
1000
0010
0001
0
1
0
1
2/
4545
πϕ
( )
  
PLRCPRCP
WPM
45
0
1
0
1
1
0
0
1
0100
1000
0010
0001
1
0
0
1
2/
−














−
=




























−
=














= πϕ ( )
  

LCP
PLLCPLCP
WPM
45
0
1
0
1
1
0
0
1
0100
1000
0010
0001
1
0
0
1
2/
+














=














−













−
=














−
= πϕ
62
POLARIZATION
SOLO
The Mueller Matrices for Polarizing Components
Waveplate (continue – 2)
Half-Waveplate φ = π
( )














−
−
==
1000
0100
0010
0001
πϕWPM














−
−
=




























−
−
=














3
2
1
0
3
2
1
0
3
2
1
0
1000
0100
0010
0001
'
'
'
'
S
S
S
S
S
S
S
S
S
S
S
S
χ
ψχ
ψχ
2sin
2sin2cos
2cos2cos
0
3
0
2
0
1
=
⋅=
⋅=
S
S
S
S
S
S






=






=
−
−
0
31
1
21
sin
2
1
tan
2
1
S
S
S
S
χ
ψ
2
'
2
'
π
χχ
ψ
π
ψ
−=
−=
The Half-Waveplate reverses the orientation and ellipticity of the polarization
ellipse (polarization state).
63
POLARIZATION
SOLO
The Mueller Matrices for Polarizing Components
Waveplate (continue – 3)
The phases of two adjacent Half-Waveplates add.
( ) ( )
( ) ( ) 



























++
+−+
=




























−














−
=














3
2
1
0
2121
2121
3
2
1
0
22
22
11
11
3
2
1
0
cossin00
sincos00
0010
0001
cossin00
sincos00
0010
0001
cossin00
sincos00
0010
0001
'
'
'
'
S
S
S
S
S
S
S
S
S
S
S
S
ϕϕϕϕ
ϕϕϕϕ
ϕϕ
ϕϕ
ϕϕ
ϕϕ
Eigenvalues and Eigenvectors of the Waveplate Mueller Matrix
( ) 0
cossin00
sincos00
0010
0001
4 =
−
−−
−
−
=−
λϕϕ
ϕλϕ
λ
λ
λϕ IMWP

LHP
S














==
0
0
1
1
&1 11

λ

LVP
S














−
=−=
0
0
1
1
&1 22

λ
1st
eigenvalue-
eigenvector
2nd
eigenvalue-
eigenvector
We can see that only LHP and LVP are
unaffected by the Waveplate Polarizer.
64
POLARIZATION
SOLO
The Mueller Matrices for Polarizing Components
The Mueller Matrix of a Rotator (Coordinate Rotation)
( )
( ) θθθγ
θθθγ
cossinsin'
sincoscos'
yxy
yxx
EEEE
EEEE
+−=−=
+=−=
Assume that the polarizing device rotates its orthogonal axes along the ray
propagation direction by an angle θ. The orthogonal axes are defined as (‘).
( )∗∗
∗∗
∗∗
∗∗
−=
+=
−=
+=
xyyx
xyyx
yyxx
yyxx
EEEEjS
EEEES
EEEES
EEEES
3
2
1
0
( )∗∗
∗∗
∗∗
∗∗
−=
+=
−=
+=
'''''
'''''
'''''
'''''
3
2
1
0
xyyx
xyyx
yyxx
yyxx
EEEEjS
EEEES
EEEES
EEEES




























−
=














3
2
1
0
3
2
1
0
1000
02cos2sin0
02sin2cos0
0001
'
'
'
'
S
S
S
S
S
S
S
S
θθ
θθ
( )














−
=
1000
02cos2sin0
02sin2cos0
0001
θθ
θθ
θROTM
'1'1
1111
''
sincos
yx
yxyx
yx
yx
EE
EEEE
∧∧
∧∧∧∧
+=








+=+= γγ
65
POLARIZATION
SOLO
The Mueller Matrices for Polarizing Components
Assume that the polarizing device rotates its orthogonal axes along the ray
propagation direction by an angle θ. The Mueller Rotation Matrix from x,y to x’,y’ is
( )














−
=
1000
02cos2sin0
02sin2cos0
0001
θθ
θθ
θROTM
The Mueller Polarizator Matrix is
( )














=
β
β
β
β
β
2sin000
02sin00
0012cos
002cos1
2
,
2
p
pMPOL
( ) SMS ROT

θ='
( ) ( ) ( ) SMpMSpMS ROTPOLPOL

θββ ,'," ==
The Mueller Rotation Matrix from x’,y’ to x,y is
( )














−
=−
1000
02cos2sin0
02sin2cos0
0001
θθ
θθ
θROTM ( ) ( ) ( ) ( ) SMpMMSMS ROTPOLROTROT

θβθθ ,"'" −=−=
( ) ( ) ( ) ( )θβθθβ ROTPOLROTPOL MpMMpM ,,, −=
The Mueller Matrix of a Rotated Polarizer
66
POLARIZATION
SOLO
The Mueller Matrices for Polarizing Components
( )
( )
( )














+−
−+
=
β
θβθθθβθβ
θθβθβθθβ
θβθβ
θβ
2sin000
02cos2sin2sin2cos2sin2sin12sin2cos
02cos2sin2sin12sin2sin2cos2cos2cos
02sin2cos2cos2cos1
2
,, 22
222
p
pMPOL
The Mueller Matrix for Rotated Polarizer is
( ) ( ) ( ) ( )














−




























−
=
−=
1000
02cos2sin0
02sin2cos0
0001
2sin000
02sin00
0012cos
002cos1
1000
02cos2sin0
02sin2cos0
0001
2
,,,
2
θθ
θθ
β
β
β
β
θθ
θθ
θβθθβ
p
MpMMpM ROTPOLROTPOL
The Mueller Matrix of a Rotated Polarizer (continue – 1)
67
POLARIZATION
SOLO
The Mueller Matrices for Polarizing Components
( )
( )
( )














−
+−
−−+
=
ϕϕβϕβ
ϕβϕββϕββ
ϕβϕββϕββ
ϕβ
cossin2cossin2sin0
sin2coscos2cos2sincos12cos2sin0
sin2sincos12cos2sincos2sin2cos0
0001
, 22
22
WPM
The Mueller Matrix for Rotated Waveplate is
( ) ( ) ( ) ( )














−














−














−
=
−=
1000
02cos2sin0
02sin2cos0
0001
cossin00
sincos00
0010
0001
1000
02cos2sin0
02sin2cos0
0001
,,
θθ
θθ
ϕϕ
ϕϕθθ
θθ
θϕθθβ ROTWPROTPOL MMMpM
The Mueller Matrix of a Rotated Waveplate
Return to Table of Content
68
POLARIZATION
SOLO
The Jones Polarization Parameters
R. Clark Jones, “A New Calculus for the Treatment of Optical Systems”,
J. Opt. Soc. Am., Vol.31, July 1941, pp.500-503
J. Opt. Soc. Am., Vol.32, Aug. 1942, pp.486-493
J. Opt. Soc. Am., Vol.37, Feb. 1947, pp.107-110
J. Opt. Soc. Am., Vol.37, Feb. 1947, pp.110-112
J. Opt. Soc. Am., Vol.38, Aug. 1948, pp.671-585 R. Clark Jones
1916-2004
Mueller matrices deal with the intensity of the beam. If the phase information
is important we must use Jones formalism.
Jones calculus was developed in the same time with the Mueller calculus by R.
Clark Jones who introduced Jones vectors and Jones matrices:
Jones vectors describe the
polarization of light:
Jones matrices describe
the optical component:








+
=
y
x
yx
E
E
EE
J
22
1
[ ] 





=
2221
1211
jj
jj
J
Jones calculus deals only with polarized light.
69
POLARIZATION
SOLO
Stokes and Jones Vector for Different Polarization Types
LHP






=














=
0
1
0
0
1
1
0
JIS

2
0
0
x
y
AI
A
=
=
LVP
2
0
0
y
x
AI
A
=
=






=














−
=
1
0
0
0
1
1
0
JIS







=














=
1
1
2
1
0
1
0
1
0
JIS

L+45P
2
0
2
0
x
yx
AI
AA
=
=
=δ






−
=














−
=
1
1
2
1
0
1
0
1
0
JIS

L-45P
2
0
2 x
yx
AI
AA
=
=
= πδ






=














=
i
JIS
1
2
1
1
0
0
1
0

RCP
2
0
2
2
x
yx
AI
AA
=
=
=
π
δ






−
=














−
=
i
JIS
1
2
1
1
0
0
1
0

2
0 2
2
3
x
yx
AI
AA
=
=
=
π
δ
LCP
δ
δ
sin2
cos2
3
2
22
1
22
0
yx
yx
yx
yx
AAS
AAS
AAS
AAS
=
=
−=
+=
2
3
2
2
2
1
2
0
SSSS ++=
( ) ( )
yxyx
yx
zktj
y
zktj
xyx eAeAEEE 1111
∧
+−
∧
+−
∧∧
+=+=
δωδω
Return to Table of Content
70
POLARIZATION
SOLO
Faraday Effect (Hecht p.261)
Michael Faraday (England) 1845 described the rotation of the plane of polarized light
that passed through glass in a magnetic field.
Return to Table of Content
71
POLARIZATION
SOLO
Pockels Effect (Hecht p.263, Chuang p.509, Meyer-Arent p.318)
Vnr
nretardatio
Er
n
n
n
Ln
Ln
yx
z
yy
xx
3
0''
32
''
''
2
:
21
2
2
λ
π
λ
π
λ
π
=Φ−Φ=Φ
⇒
=
∆
−=





∆
=Φ
=Φ
Pockels Effect 1893
Electro – Optical Effects
The electro – optical effects are called Pockels or Kerr where the refractive index
changes linearly or quadraticly, respectively.



=
=
=





∆
Kerrk
Pockelsk
EKn
n
k
2
11
02
Frederich Carl Alwin
Pockels
(1865-1913)
http://www.physi.uni-heidelberg.de/~schmiedm/Vorlesung/LasPhys02/LectureNotes/OpticsCrystals.pdf#search='Pockels%20Effect'
http://en.wikipedia.org/wiki/Pockels_effect
72
POLARIZATION
SOLO
Electro – Optical Effects
Kerr Effect (Hecht p.263, Chuang p.509, Meyer-Arent p.318)
The electro – optical effects are Kerr or Pockels
2
0
EKn λ=∆
2
2
0
2
d
VKλπ
=Φ∆
In the Kerr Electro-optic Effect 1875 is the electric field that causes the substance to
become birefringent.
Return to Table of Content
73
POLARIZATIONSOLO
Plane Polarized Wave in an Absorbing Medium
Circular Polarized Wave in an Absorbing Medium
74
POLARIZATIONSOLO
Plane Polarized Wave in an Refracting Medium
Circular Polarized Wave in an Refracting Medium
75
POLARIZATIONSOLO
Plane Polarized Wave in a Medium Showing Circular Dichroism
Plane Polarized Wave in a Medium Showing Circular Birefrigens
76
POLARIZATIONSOLO
Plane Polarized Wave in a Medium Showing Both
Circular Dichroism and Circular Birefrigens
77
OPTICSSOLO
http://microscopy.fsu.edu/
Return to Table of Content
78
OPTICSSOLO
References Optics Polarization
A. Yariv, P. Yeh, “Optical Waves in Crystals”, John Wiley & Sons, 1984
M. Born, E. Wolf, “Principles of Optics”, Pergamon Press,6th
Ed., 1980
E. Hecht, A. Zajac, “Optics”, Addison-Wesley, 1979, Ch.8
C.C. Davis, “Lasers and Electro-Optics”, Cambridge University Press, 1996
G.R. Fowles, “Introduction to Modern Optics”,2nd
Ed., Dover, 1975, Ch.2
M.V.Klein, T.E. Furtak, “Optics”, 2nd Ed., John Wiley & Sons, 1986
http://en.wikipedia.org/wiki/Polarization
W.C.Elmore, M.A. Heald, “Physics of Waves”, Dover Publications, 1969
E. Collett, “Polarization Light in Fiber Optics”, PolaWave Group, 2003
W. Swindell, Ed., “Polarization Light”, Benchmark Papers in Optics, V.1,
Dowden, Hutchinson & Ross, Inc., 1975
http://www.enzim.hu/~szia/cddemo/edemo0.htm (Andras Szilagyi)
79
ELECTROMAGNETICSSOLO
References Electromagnetics
J.D. Jackson, “Classical Electrodynamics”, 3rd Ed., John Wiley & Sons, 1999
R. S. Elliott, “Electromagnetics”, McGraw-Hill, 1966
J.A. Stratton, “Electromagnetic Theory”, McGraw-Hill, 1941
W.K.H. Panofsky, M. Phillips, “Classical Electricity and Magnetism”, Addison-
Wesley, 1962
F.T. Ulaby, R.K. More, A.K. Fung, “Microwave Remote Sensors Active and
Passive”, Addison-Wesley, 1981
A.L. Maffett, “Topics for a Statistical Description of Radar Cross Section”,
John Wiley & Sons, 1988
80
ELECTROMAGNETICSSOLO
References
1.W.K.H. Panofsky & M. Phillips, “Classical Electricity and Magnetism”,
2.J.D. Jackson, “Classical Electrodynamics”,
3.R.S. Elliott, “Electromagnetics”,
4.A.L. Maffett, “Topics for a Statistical Description of Radar Cross Section”,
Return to Table of Content
January 4, 2015 81
SOLO POLARIZATION
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 –2013
Stanford University
1983 – 1986 PhD AA

Polarization

  • 1.
  • 2.
    POLARIZATION History SOLO TABLE OF CONTENT Naturalor Unpolarized Light Monochromatic Planar Wave Equations Linear Polarization or Plane-Polarization Circular Polarization Elliptically Polarization Methods of Achieving Polarization Polarization Ellipse Degenerated States of Polarization Ellipse The Stokes Polarization Parameters Measuring the Stokes Parameters Poincaré Sphere The Mueller Matrices for Polarizing Components The Jones Polarization Parameters
  • 3.
    3 POLARIZATIONSOLO TABLE OF CONTENT(Continue – 1) Faraday Effect Electro – Optical Effects ( Pockels, Kerr) References Optics Polarization
  • 4.
    4 POLARIZATION Erasmus Bartholinus, doctorof medicine and professor of mathematics at the University of Copenhagen, showed in 1669 that crystals of “Iceland spar” (which we now call calcite, CaCO3) produced two refracted rays from a single incident beam. One ray, the “ordinary ray”, followed Snell’s law, while the other, the “extraordinary ray”, was not always even in the plan of incidence. SOLO History Erasmus Bartholinus 1625-1698 http://www.polarization.com/history/history.html
  • 5.
    5 POLARIZATIONSOLO History Étienne Louis Malus 1775-1812 EtienneLouis Malus, military engineer and captain in the army of Napoleon, published in 1809 the Malus Law of irradiance through a Linear polarizer: I(θ)=I(0) cos2 θ. In 1810 he won the French Academy Prize with the discovery that reflected and scattered light also possessed “sidedness” which he called “polarization”.
  • 6.
    6 POLARIZATION Arago and Fresnelinvestigated the interference of polarized rays of light and found in 1816 that two rays polarized at right angles to each other never interface. SOLO History (continue) Dominique François Jean Arago 1786-1853 Augustin Jean Fresnel 1788-1827 Arago relayed to Thomas Young in London the results of the experiment he had performed with Fresnel. This stimulate Young to propose in 1817 that the oscillations in the optical wave where transverse, or perpendicular to the direction of propagation, and not longitudinal as every proponent of wave theory believed. Thomas Young 1773-1829 Return to Table of Content
  • 7.
    7 POLARIZATIONSOLO The Natural Lightis emitted by excitation of material atoms. Each excited atom radiates a wave train for roughly 10-8 sec. The Natural light is the result of radiation of a large collection of such atoms. New waves are emitted in a completely unpredictable fashion and the light is actually composed of a succession of short living polarization states. Natural or Unpolarized Light A light source consists of a very large number of randomly oriented atoms emitters. We say that the Natural light is compose of a collection of monochromatic (polichromatic) unpolarized rays. One mathematical description of a monochromatic unpolarized ray moving in z direction, at a certain location in space, is by a Electric Intensity phasor of constant amplitude and a random phase: ( ) ( )( ) ( )( ) yx tzktjtzktj yx eAeAtE 11 ∧ +− ∧ +− += δωδω zyx 111 ,, ∧∧∧ are orthogonal unit vectors and δx (t) are δy (t) are randomly phase angles.
  • 8.
    8 POLARIZATIONSOLO Light is atransverse electromagnetic wave; i.e. the Electric and Magnetic Intensities are perpendicular to each other and oscillate perpendicular to the direction of propagation. For the natural light the direction of the Electric Intensity vector changes randomly from time to time. We say that the natural light is Unpolarized. A Planar wave (in which the Electric Intensity propagates remaining in a plane – containing the propagation direction) is said to be Linearly Polarized or Plane-Polarized. If light is composed of two plane waves of equal amplitude but differing in phase by 90° then the light is aid to be Circular Polarized. If light is composed of two plane waves of different amplitudes and/or the difference in phase is different than 0,90,180,270° then the light is said to be Elliptically Polarized. E  Return to Table of Content
  • 9.
    9 ELECTROMAGNETICSSOLO To satisfy theMaxwell equations for a source free media we must have: Monochromatic Planar Wave Equations we haveUsing: 1ˆˆ&ˆˆ 0 =⋅== kkknkkk εµω         =⋅∇ =⋅∇ −=×∇ =×∇ 0 0 H E HjE EjH ωµ ωε            =⋅ =⋅ =× −=× 0ˆ 0ˆ ˆ ˆ 0 0 00 00 Hk Ek HEk EHk ε µ µ ε        =⋅− =⋅− −=×− =×− ⇒ ⋅− ⋅− ⋅−⋅− ⋅−⋅− −=∇ ⋅−⋅− 0 0 0 0 00 00 rkj rkj rkjrkj rkjrkj ekje eHkj eEkj eHjeEkj eEjeHkj rkjrkj           ωµ ωε ( ) * 2 * 2 & 2 ˆ 2 ˆ HHwEEwwcn k wwcn k S meme µε ====+=  Time Average Poynting Vector of the Planar Wave ( ) ( )rktjrktj eHHeEE  ⋅−⋅− == ωω 00 & Return to Table of Content
  • 10.
    10 POLARIZATIONSOLO A Planar wave(in which the Electric Intensity propagates remaining in a plane – containing the propagation direction) is said to be Linearly Polarized or Plane-Polarized. http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html http://www.enzim.hu/~szia/cddemo/edemo0.htm)Andras Szilagyi( Linear Polarization or Plane-Polarization ( ) yyzktj y eAE 1 ∧ +− = δω Return to Table of Content
  • 11.
    11 POLARIZATIONSOLO http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html If light iscomposed of two plane waves of equal amplitude but differing in phase by 90° then the light is said to be Circular Polarized. http://www.optics.arizona.edu/jcwyant/JoseDiaz/Polarization-Circular.htm ( ) ( ) yx xx zktjzktj eAeAE 11 2/ ∧ ++− ∧ +− += πδωδω Circular Polarization Return to Table of Content
  • 12.
    12 POLARIZATIONSOLO http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html If light iscomposed of two plane waves of different amplitudes and/or the difference in phase is different than 0,90,180,270° then the light is said to be Elliptically Polarized. ( ) ( ) yx yx zktj y zktj x eAeAE 11 ∧ +− ∧ +− += δωδω Elliptically Polarization Return to Table of Content
  • 13.
    13 POLARIZATIONSOLO http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html Methods of AchievingPolarization Polarization is based on one of four fundamental physical mechanisms: 1. Dichroism or selective absorbtion 3. Reflection 2. Scattering 4. Birefrigerence To obtain Polarization we must have some asymmetry in the optical process.
  • 14.
    14 POLARIZATIONSOLO http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html Methods of AchievingPolarization (continue – 1) Polarization by Dichroism A dichroic material has different absorption properties for perpendicular incident planes. An example of a dichroic material is the tourmaline that is a class of borone silicate. The tourmaline has a unique optic axis, and any electronic field normal to it is strongly absorbed.
  • 15.
    15 POLARIZATION SOLO Polaroids (Dichroism) http://en.wikipedia.org/wiki/Edwin_H._Land Edwin H.Land 1909-1991 In 1928 Edwin H. Land undergraduate at Harvard College invented the Polaroid J-sheet. It consists of many microscopic Crystals of iodoquinine sulphate embeded in a transparent Nitrocellulose polymer film. The sunglasses use polaroid material that uses dichroism to achieve absorption..
  • 16.
    16 Methods of AchievingPolarization (continue – 1) Wire-Grid Polarizer (Dichroism) POLARIZATIONSOLO Grid of parallel conducting wires with a spacing comparable to the wavelength of the electromagnetic wave. The Electric Field vector parallel to the wires is attenuated because of the currents induced in the wires.
  • 17.
  • 18.
    18 POLARIZATIONSOLO Methods of AchievingPolarization (continue – 3) Polarization by Scattering
  • 19.
  • 20.
    20 POLARIZATIONSOLO Methods of AchievingPolarization (continue – 5) Polarization by Reflection The Pile-of-plate Polarizer The problem encounter using the Brewster Effect is that the reflected beam although completely polarized is weak and the refracted beam is only partially polarized. The solution is to use a pile-of- plates polarizer as in Figure. This was invented by F.J. Arago in 1812. Dominique François Jean Arago 1786-1853
  • 21.
    21 POLARIZATIONSOLO http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html Polarization by Birefrigerence(continue – 4) Polarization can be achieved with crystalline materials which have a different index of refraction in different planes. Such materials are said to be birefringent or doubly refracting. Nicol Prism The Nicol Prism (1828) is made up from two prisms of calcite cemented with Canada balsam. The ordinary ray can be made to totally reflect off the prism boundary, leving only the extraordinary ray. William Nicol(1768 ?– 1851) Scottish physicist Methods of Achieving Polarization (continue – 6)
  • 22.
    22 POLARIZATIONSOLO http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html Polarization by Birefrigerence(continue – 4) Polarization can be achieved with crystalline materials which have a different index of refraction in different planes. Such materials are said to be birefringent or doubly refracting. Wollaston Prism William Hyde Wollaston 1766-1828 Methods of Achieving Polarization (continue – 7)
  • 23.
    23 POLARIZATIONSOLO http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html Polarization by Birefrigerence(continue – 4) Polarization can be achieved with crystalline materials which have a different index of refraction in different planes. Such materials are said to be birefringent or doubly refracting. Glan-Foucault Polarizer Methods of Achieving Polarization (continue – 8)
  • 24.
    24 POLARIZATION Methods of AchievingPolarization (continue – 9)
  • 25.
    25 POLARIZATION Methods of AchievingPolarization (continue – 10)
  • 26.
  • 27.
    27 POLARIZATION SOLO Polarizations Prisms Overview http://www.unitedcrystals.com/POverview.html Methodsof Achieving Polarization (continue – 12) Return to Table of Content
  • 28.
    28 POLARIZATIONSOLO The Polarization ofa monochromatic planar wave is defined in terms of the behavior of the tip of the phasor vector as a function of timeE ( ) ( ) yx yx zktj y zktj x eAeAE 11 ∧ +− ∧ +− += δωδω Tacking the real part we obtain: ( )x x x zkt A E δω +−= cos ( ) ( ) δδωδδωδδδω δ sinsincoscoscos xxxyx y y zktzktzkt A E +−−+−=         −++−=  δδ sin1cos 2         −= x x x x y y A E A E A E  δδ 2 22 sin1cos                 −=         − x x x x y y A E A E A E δδ 2 22 sincos2 =         +−        y y y y x x x x A E A E A E A E 1 sinsin cos 2 sin 2 2 2 =         +−        δδ δ δ y y y y x x x x A E A E A E A E ellipse ( )y y y zkt A E δω +−= cos Polarization Ellipse
  • 29.
    29 POLARIZATION SOLO Let transform theellipse equation to canonical form by using a linear transformation through an angle ψ (to be defined) 1 sinsin cos 2 sin 2 2 2 =         +−        δδ δ δ y y y y x x x x A E A E A E A E               − =        ⇔              − =        η ξ η ξ ψψ ψψ ψψ ψψ E E E E E E E E y x y x cossin sincos cossin sincos 1 sin cossin cos sin cossin sin sincos 2 sin sincos 22 =         + +         +         − −        − δ ψψ δ δ ψψ δ ψψ δ ψψ ηξηξηξηξ yyxx A EE A EE A EE A EE ( ) 1sincos sin cos2 sin cossin2 sin cossin2 cos sin cos sin sin 2 sin cos sin sin cos sin sin sin cos 2 sin sin sin cos 0 22 22222 22 2 22 2 2 22 2 22 2 2 =         −−+−+         +++         −+    ψ ηξ ηξ ψψ δ δ δ ψψ δ ψψ δ δ ψ δ ψ δ ψ δ ψ δ δ ψ δ ψ δ ψ δ ψ definingby yxyx yxyxyxyx AAAA EE AAAA E AAAA E Choose ψ such that the last term is zero, or 02cos cos211 2sin 22 =−         − ψ δ ψ yxxy AAAA ( ) δαδδψ α cos2tancos /1 / cos 2 2tan /:tan 222 xy AA xy xy yx yx AA AA AA AA = = − = − = Polarization Ellipse (continue – 1)
  • 30.
    30 POLARIZATION SOLO 1 22 =         +         η η ξ ξ A E A E Define (see Figure) δ δ ψ δ ψ δ ψ δ ψ δ δ ψ δ ψ δ ψ δ ψ χ ξ η cos sin cos sin sin 2 sin cos sin sin cos sin sin sin cos 2 sin sin sin cos :tan 22 2 22 2 22 2 22 2 2 2 yxyx yxyx AAAA AAAA A A ++ −+ =         = () ( ) ( ) ( ) δψψαψψα δψψαψψα δψψψψ δψψψψ χ α coscossintan2cossintan coscossintan2sincostan coscossin/2cossin/ coscossin/2sincos/ tan 222 222tan/ 222 222 2 ++ −+ ++ −+ = = =xy EE xyxy xyxy EEEE EEEE ( )( ) ( ) α δψααψ α δψψααψψ χ χ χ 2 2 2 222 2 2 tan1 cos2sintan2tan12cos tan1 coscossintan4tan1sincos tan1 tan1 2cos + +− = + +−− = + − = From δαψ cos2tan2tan = α ψ δ 2tan 2tan cos = and α α α α α α 2 2 2 tan1 tan1 2cos& tan1 tan2 2tan + − = − = ( ) ψ α ψ ψ ψ α α α α ψ ψααψ χ ψ α 2cos 2cos 2cos 2sin 2cos tan1 tan1 tan1 2tan 2tan 2sintan2tan12cos 2cos 2cos/1 2 2cos 2 2 2 2 =      + + − = + +− =    δαψ cos2tan2tan = Polarization Ellipse (continue – 2)
  • 31.
    31 POLARIZATIONSOLO 1 22 =         +         η η ξ ξ A E A E χ α ψ 2cos 2cos 2cos = δαψcos2tan2tan = χ δ αδα χ α ψψψ 2cos cos 2sincos2tan 2cos 2cos 2tan2cos2sin === Therefore 1cos sin cos sin sin 2 sin cos sin sin cos sin sin sin cos 2 sin sin sin cos 22 2 22 2 2 22 2 22 2 2 =         +++         −+ δ δ ψ δ ψ δ ψ δ ψ δ δ ψ δ ψ δ ψ δ ψ ηξ yxyxyxyx AAAA E AAAA E Also δ δ ψ δ ψ δ ψ δ ψ δ δ ψ δ ψ δ ψ δ ψ η ξ cos sin cos sin sin 2 sin cos sin sin1 cos sin sin sin cos 2 sin sin sin cos1 22 2 22 2 2 22 2 22 2 2 yxyx yxyx AAAAA AAAAA ++= −+= δηξ 22222 sin 11111         +=+ yx AAAA Polarization Ellipse (continue – 3) To Stokes Parameters
  • 32.
    32 POLARIZATION SOLO Let compute thearea of the Polarization Ellipse ( ) ( )yyyyy xxxxx AzktAEy AzktAEx δτδω δτδω τ τ +=         +−== +=         +−== coscos: coscos:   ( ) ( ) ( ) ( ) δπτδδτδδ τδτδτ π δ π sin2sinsin 2 1 sincos 2 0 2 0 yxyxxyyx xxyy AAdAA dAAdxyArea =         ++−−= ++−== ∫ ∫∫  But the area of the Polarization Ellipse is1 22 =         +         η η ξ ξ A E A E ηξπ AAArea = Therefore δηξ sinyx AAAA = Using δηξ 22222 sin 11111         +=+ yx AAAA δηξ ηξ 222 22 22 22 sin 1 yx yx AA AA AA AA + = + 2222 yx AAAA +=+ ηξ Energy Equation Polarization Ellipse (continue – 4)
  • 33.
    33 POLARIZATION SOLO δηξ sinyx AAAA = 2222 yxAAAA +=+ ηξ Energy Equation ξ η χ A A =:tanwe defined Therefore δαδ δ χ χ χ ηξ ηξ ξ η ξ η sin2sinsin 1 2 sin22 1 2 tan1 tan2 2sin 2222222 =         + = + = + =         + = + = y x y x yx yx A A A A AA AA AA AA A A A A δαχ sin2sin2sin = Polarization Ellipse (continue – 5) δαψ cos2tan2tan =We also found that ψ χ ψχψ χ αψ χ αψ αχ δ δ δ 2sin 2tan 2cos2cos2tan 2sin 2cos2tan 2sin 2tan/2tan 2sin/2sin cos sin tan = ⋅⋅ = ⋅ === ψ χ δ 2sin 2tan tan = ψχα 2cos2cos2cos ⋅= To Stokes Parameters
  • 34.
    34 POLARIZATION SOLO Summary Polarization Ellipse (continue– 6) δηξ sinyx AAAA = 2222 yx AAAA +=+ ηξ    = = δαχ δαψ sin2sin2sin cos2tan2tan      = ⋅= ψ χ δ ψχα 2sin 2tan tan 2cos2cos2cos       ⇐       χ ψ δ α       ⇐       δ α χ ψ ξ η χ A A =:tan x y A A =:tanα 1 sinsin cos 2 sin 2 2 2 =         +−        δδ δ δ y y y y x x x x A E A E A E A E 1 22 =         +         η η ξ ξ A E A E               − =        η ξ ψψ ψψ E E E E y x cossin sincos xy δδδ −=( ) ( ) yxyx yx zktj y zktj xyx eAeAEEE 1111 ∧ +− ∧ +− ∧∧ +=+= δωδω Return to Table of Content
  • 35.
    35 POLARIZATIONSOLO ( ) () yx yx zktj y zktj x eAeAE 11 ∧ +− ∧ +− += δωδω Linearly Horizontally Polarized (LHP): ( )x x x zkt A E δω +−= cos Degenerated States of Polarization Ellipse ( ) 01 == ∧ +− y zktj x AeAE xxδω http://www.enzim.hu/~szia/cddemo/edemo0.htm (Andras Szilagyi) Linearly Vertically Polarized (LVP): ( ) 01 == ∧ +− x zktj y AeAE yyδω ( )y y y zkt A E δω +−= cos
  • 36.
    36 POLARIZATIONSOLO Linear + 45°Polarized (L+45P) Degenerated States of Polarization Ellipse ( )tzkj yx eAAE yx ω−− ∧∧       += 11 ( )tzkj yx eAAE yx ω−− ∧∧       −= 11 Plane Polarization Mixed 0=−= xy δδδ πδδδ =−= xy Linear - 45 ° Polarized (L-45P) http://www.enzim.hu/~szia/cddemo/edemo0.htm (Andras Szilagyi) ( ) ( ) yx yx zktj y zktj x eAeAE 11 ∧ +− ∧ +− += δωδω
  • 37.
    37 POLARIZATIONSOLO ( )x x zkt A E δω +−=cos ( )x y zkt A E δω +−−= sin Degenerated States of Polarization Ellipse Right Circular Polarization (RCP) AAA yxxy ===−= &2/πδδδ 1 22 =      +      A E A E yx http://www.enzim.hu/~szia/cddemo/edemo0.htm (Andras Szilagyi) ( ) ( ) yx yx zktj y zktj x eAeAE 11 ∧ +− ∧ +− += δωδω ( )x x zkt A E δω +−= cos ( )x y zkt A E δω +−= sin Left Circular Polarization (LCP) AAA yxxy ===−= & 2 3π δδδ
  • 38.
    38 POLARIZATIONSOLO ( )x x zkt A E δω +−=cos ( )x y zkt A E δω +−= sin Degenerated States of Polarization Ellipse Left Circular Polarization (LCP) AAA yxxy ===−= & 2 3π δδδ 1 22 =      +      A E A E yx http://www.enzim.hu/~szia/cddemo/edemo0.htm (Andras Szilagyi) Superposition of Two Circular Polarizations ( ) ( ) yx yx zktj y zktj x eAeAE 11 ∧ +− ∧ +− += δωδω Return to Table of Content
  • 39.
    39 POLARIZATION SOLO The Stokes PolarizationParameters George Gabriel Stokes 1819-1903 G.G. Stokes, “On the Composition and Resolution of Streams of Polarized Light from different Sources”, Trans. Cambridge Phil. Soc., Vol.9, 1852, pp.399-416 ( ) ( ) yx yyxx zktAzktAE 11 coscos ∧∧ +−++−= δωδω  where ( ) ( ) ( ) ( ) δδ 2 22 sin , cos ,, 2 , =         +−        y y y y x x x x A tzE A tzE A tzE A tzE The Polarization Ellipse is All the information of polarization is contained in this equation. In order to observe the quantities involved let take the time average <… > of the time dependent quantities in the Polarization Ellipse equation. ( ) ( ) ( ) ( ) δδ 2 2 2 2 2 sin , cos ,, 2 , =+− y y yx yx x x A tzE AA tzEtzE A tzE ( ) ( ) ( ) ( ) yxjidttzEtzE T tzEtzE T ji T ji ,,,, 1 :,, 0 lim == ∫→∞ ( ) ( ) ( ) ( ) ( )22222 sin2,4cos,,8,4 δδ yxyxyxyxxy AAtzEAtzEtzEAAtzEA =+−
  • 40.
    40 POLARIZATION SOLO The Stokes PolarizationParameters (continue – 1) We obtain ( ) ( ) ( ) ( ) ( )22222 sin2,4cos,,8,4 δδ yxyxyxyxxy AAtzEAtzEtzEAAtzEA =+− ( ) ( ) ( ) ( ) ( ) ( ) δδδωδδ δωδω δ cos 2 22coscos 1 2 coscos 1 ,, 0 0 lim lim yx T xyyx T yx T yxyx T zx AA dtzkt T AA dtzktzktAA T tzEtzE =         ++−−−= +−+−= ∫ ∫ →∞ →∞  ( ) ( ) ( )[ ] 2 2cos1 1 2 cos 1 , 2 0 2 0 222 limlim x T x T x T xx T x A dtzkt T A dtzktA T tzE =+−−=+−= ∫∫ →∞→∞ δωδω ( ) ( ) 2 cos 1 , 2 0 222 lim y T yy T y A dtzktA T tzE =+−= ∫→∞ δω ( ) ( )222222 sin22cos22 δδ yxyxyxyx AAAAAAAA =+− By adding and subtracting on the left side of this equation we obtain ( ) ( ) ( ) ( )22222222 sin2cos2 δδ yxyxyxyx AAAAAAAA =−−−+ 44 2 yx AA +
  • 41.
    41 POLARIZATION SOLO The Stokes PolarizationParameters (continue – 2) The Stokes Parameters are defined as ( ) ( ) ( ) ( )22222222 sin2cos2 δδ yxyxyxyx AAAAAAAA ++−=+ δ δ sin2 cos2 3 2 22 1 22 0 yx yx yx yx AAVS AAUS AAQS AAIS == == −== +== 2 3 2 2 2 1 2 0 SSSS ++= The Stokes Vector is defined as                 − + =               =               = δ δ sin2 cos2 22 22 3 2 1 0 yx yx yx yx AA AA AA AA V U Q I S S S S S  The Stokes Parameters are observable using a proper experiment.
  • 42.
    42 POLARIZATION SOLO The Stokes PolarizationParameters (continue – 3) Consider a quasi-monochromatic wave of mean frequency ω propagating in z direction ( ) ( )( ) ( ) ( )( ) ( ) ( ) yxyx ztEztEetAetAE yx ttzkj y ttzkj x xy 1111 ,, ∧∧∧ +−− ∧ +−− +=+= δωδω For monochromatic waves Ax, Ay, δx, δy, ω are constant. Quasi-monochromatic Light For quasi-monochromatic waves Ax, Ay, δx, δy , ω are slowly changing with time. We have ( ) ( ) ( ) ( ) yxjidttzEtzE T tzEtzE T ji T ji ,,,, 1 :,, 0 lim == ∫ ∗ →∞ ∗ ( ) ( ) 2 0 21 :,, lim x T x T xx AdtA T tzEtzE == ∫→∞ ∗ ( ) ( ) 2 0 21 :,, lim y T y T yy AdtA T tzEtzE == ∫→∞ ∗ ( ) ( ) ( )yxyx j yx T j y j x T yx eAAdteAeA T tzEtzE δδδδ −− →∞ ∗ == ∫ 0 1 :,, lim ( ) ( ) ( )yxxy j yx T j x j y T xy eAAdteAeA T tzEtzE δδδδ −−− →∞ ∗ == ∫ 0 1 :,, lim
  • 43.
    43 POLARIZATION SOLO The Stokes PolarizationParameters (continue – 3) ( ) ( )( ) ( ) ( )( ) ( ) ( ) yxyx ztEztEetAetAE yx ttzkj y ttzkj x xy 1111 ,, ∧∧∧ +−− ∧ +−− +=+= δωδω Quasi-monochromatic Light The Stokes Parameters are defined as ( ) ( ) ( ) ( ) ∗∗ ∗∗ ∗∗ ∗∗ −=−= +=−= −=−= +=+= xyyxxyyx xyyxxyyx yyxxyx yyxxyx EEEEjAAS EEEEAAS EEEEAAS EEEEAAS δδ δδ sin2 cos2 3 2 22 1 22 0 ( ) ( ) 2 0 21 :,, lim x T x T xx AdtA T tzEtzE == ∫→∞ ∗ ( ) ( ) 2 0 21 :,, lim y T y T yy AdtA T tzEtzE == ∫→∞ ∗ ( ) ( ) ( )yxyx j yx T j y j x T yx eAAdteAeA T tzEtzE δδδδ −− →∞ ∗ == ∫ 0 1 :,, lim ( ) ( ) ( )yxxy j yx T j x j y T xy eAAdteAeA T tzEtzE δδδδ −−− →∞ ∗ == ∫ 0 1 :,, lim
  • 44.
    44 POLARIZATION SOLO The Stokes PolarizationParameters (continue – 4) Stokes Vector for Different Polarization Types LHP               = 0 0 1 1 0IS  2 0 0 x y AI A = = LVP 2 0 0 y x AI A = =               − = 0 0 1 1 0IS                = 0 1 0 1 0IS  L+45P 2 0 2 0 x yx AI AA = = =δ               − = 0 1 0 1 0IS  L-45P 2 0 2 x yx AI AA = = = πδ               = 1 0 0 1 0IS  RCP 2 0 2 2 x yx AI AA = = = π δ               − = 1 0 0 1 0IS  2 0 2 2 3 x yx AI AA = = = π δ LCP δ δ sin2 cos2 3 2 22 1 22 0 yx yx yx yx AAS AAS AAS AAS = = −= += 2 3 2 2 2 1 2 0 SSSS ++= ( ) ( ) yxyx yx zktj y zktj xyx eAeAEEE 1111 ∧ +− ∧ +− ∧∧ +=+= δωδω
  • 45.
    45 POLARIZATION SOLO The Stokes PolarizationParameters (continue – 5) The Stokes Parameters are defined as δ δ sin2 cos2 3 2 22 1 22 0 yx yx yx yx AAS AAS AAS AAS = = −= += 2 3 2 2 2 1 2 0 SSSS ++= δαχ sin2sin2sin = αψχ 2cos2cos2cos =⋅ δαψχ cos2sin2sin2cos ⋅=⋅ We found 22 22 2 2 222 tan1 tan1 2cos& tan1 tan 2sin yx yx yx yx AA AA AA AA + − = + − = + = + = α α α α α α x y A A =:tanα 0 1 22 22 2cos2cos S S AA AA yx yx = + − =⋅ ψχ 0 2 22 cos cos2sin2sin2cos S S AA AA yx yx = + ⋅ =⋅=⋅ δ δαψχ 0 3 22 sin sin2sin2sin S S AA AA yx yx = + ⋅ == δ δαχ       =       = − − 0 31 1 21 sin 2 1 tan 2 1 S S S S χ ψ Return to Table of Content
  • 46.
    46 POLARIZATION SOLO Consider a quasi-monochromaticwave of mean frequency ω propagating in z direction composed of a Unpolarized component AUP with random phases δrx and δry and a Polarized component Ax, δx , Ay, δy ( ) ( ) ( )tzkjj yP j UP j xP j UPyx eeAeAeAeAEEE yxyx yyrxxr ωδδδδ −− ∧∧∧∧     +++=+= 1111 Measuring the Stokes Parameters Pass the beam through a waveplate that induces a wave retardation of φ and a polarizer with a transmission axis at an angle β relative to x axis ( ) ( ) ( ) ( ) ( )tzkjj yP j UP j xP j UP eeAeAeAeAE yx yyrxxr ωϕδδϕδδ −− ∧ − ∧ +     +++= 11 2/2/ ' ( ) ( ) ( ) ( )[ ] ( )tzkjj yP j UP j xP j UP eeAeAeAeAE yyrxxr ωϕδδϕδδ ββ −−−+ +++= sincos" 2/2/ The waveplate that induces a wave retardation of φ between the phases of x and y components of the polarized light but will not affect the random phase of the unpolarized light. The polarizer will transmit only the component along the transmission axis
  • 47.
    47 POLARIZATION SOLO Measuring the StokesParameters (continue – 1) ( ) ( ) ( ) ( )[ ] ( )tzkjj yP j UP j xP j UP eeAeAeAeAE yyrxxr ωϕδδϕδδ ββ −−−+ +++= sincos" 2/2/ ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] zz yyrxxryyrxxr j yP j UP j xP j UP j yP j UP j xP j UP eAeAeAeAeAeAeAeAcnkEEcnkS 11 sincossincos"", 2/2/2/2/ ∧ −−−+−−−+ ∧ ∗ +++⋅+++=⋅= ββββϕβ ϕδδϕδδϕδδϕδδ  ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) βββ βββ βββ βββ ββββ ϕδδϕδδϕδδ δϕδδϕδδδ ϕδδϕδδδϕδ δδδϕδδϕδ ϕδδϕδδϕδδϕδδ 22 0 2/ 0 2/ 2 0 2/2 0 2/ 0 2 0 2/22 0 2/ 00 2/22 0 2/2 2/2/2/2/ sincossin sin2/cossin cossincos cossincos2/ sincossincos         ++         ++         ++         ++         ++         ++         ++         += +++⋅+++ −−−−−−− −−−+− −−+−−+ −−−−+ −−−+−−−+ yP jj yPUP j yPxP jj yPUP jj yPUPUP jj UPxP jj UP j xPyP jj xPUPxP jj xPUP jj UPyP jj UP jj xPUPUP j yP j UP j xP j UP j yP j UP j xP j UP AeeAAeAAeeAA eeAAAeeAAeeA eAAeeAAAeeAA eeAAeeAeeAAA eAeAeAeAeAeAeAeA yxpxyyxr yyyrxyrrr xyxyrxx xryxryxrx yyrxxryyrxxr                     The time average Poynting vector is
  • 48.
    48 POLARIZATION SOLO ( ) () ( )[ ] zyP jj yPxPxPUP AeeAAAAcnkS 1 22222 sincossincos2/ ∧ −−− ++++= ββββ ϕδϕδ  2 2sin cossin 2 2cos1 sin 2 2cos1 cos 2 2 β ββ β β β β = − = + = ( ) ( ) ( ) ( )[ ]{ } ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] [ ]βϕβϕβ βϕδβϕδβ βϕβϕβ βϕϕϕϕβ δδδδ δδ 2sinsin2sincos2cos 2 2sinsinsin22sincossin22cos 2 2sinsin2sincos2cos 2 2sinsincossincos2cos 2 ******** 22222 22222 22222 xyyxxyyxyyxxyyxx yPxPyPxPyPxPyPxPUP jj yPxP jj yPxPyPxPyPxPUP jj yPxPyPxPyPxPUP EEEEjEEEEEEEEEEEE cnk AAjAAAAAAA cnk eeAAjeeAAAAAAA cnk jejeAAAAAAA cnk S −+++−++= ++−+++= −−++−+++= ++−+−+++= −− −  Measuring the Stokes Parameters (continue – 2) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] zz yyrxxryyrxxr j yP j UP j xP j UP j yP j UP j xP j UP eAeAeAeAeAeAeAeAcnkEEcnkS 11 sincossincos 2/2/2/2/ ∧ −−−+−−−+ ∧ ∗ +++⋅+++=⋅= ββββ ϕδδϕδδϕδδϕδδ  [ ]βϕβϕβ 2sinsin2sincos2cos 2 3210 SjSSS cnk S +++=  ( ) ( ) ( ) ( )xyyPxPxyyx xyyPxPxyyx yPxPyyxx yPxPUPyyxx AAEEEEjS AAEEEES AAEEEES AAAEEEES δδ δδ −=−= −=+= −=−= ++=+= ∗∗ ∗∗ ∗∗ ∗∗ sin2 cos2 3 2 22 1 222 0
  • 49.
    49 POLARIZATION SOLO Measuring the StokesParameters (continue – 3) ( ) [ ]βϕβϕβϕβ 2sinsin2sincos2cos 2 , 3210 SjSSS cnk S +++=  ( ) ( ) ( ) ( )xyyPxPxyyx xyyPxPxyyx yPxPyyxx yPxPUPyyxx AAEEEEjS AAEEEES AAEEEES AAAEEEES δδ δδ −=−= −=+= −=−= ++=+= ∗∗ ∗∗ ∗∗ ∗∗ sin2 cos2 3 2 22 1 222 0 The Stokes Parameters are measured by first removing the waveplate φ = 0 ( ) [ ]ββϕβ 2sin2cos 2 0, 210 SSS cnk S ++==  Now the polarizer is sequentially rotate to β = 0, π/4 and π/2 ( ) [ ]10 2 0,0 SS cnk S +=== ϕβ  ( ) [ ]20 2 0,4/ SS cnk S +=== ϕπβ  ( ) [ ]10 2 0,2/ SS cnk S −=== ϕπβ  For the final measurement we add the waveplate with φ = π/2 and polarizer at β = π/4 ( ) [ ]30 2 2/,4/ SS cnk S −=== πϕπβ  ( ) ( )[ ]0,2/0,0 2 0 ==+=== ϕπβϕβ SS cnk S  ( ) ( )[ ]0,2/0,0 2 1 ==−=== ϕπβϕβ SS cnk S  ( ) 02 0,4/2 2 SS cnk S −=== ϕπβ  ( )2/,4/2 2 03 πϕπβ ==−= S cnk SS 
  • 50.
    50 POLARIZATION SOLO Measuring the StokesParameters (continue – 4) ( ) [ ]βϕβϕβϕβ 2sinsin2sincos2cos 2 , 3210 SjSSS cnk S +++=  ( ) ( ) ( ) ( )xyyPxPxyyx xyyPxPxyyx yPxPyyxx yPxPUPyyxx AAEEEEjS AAEEEES AAEEEES AAAEEEES δδ δδ −=−= −=+= −=−= ++=+= ∗∗ ∗∗ ∗∗ ∗∗ sin2 cos2 3 2 22 1 222 0 The Stokes Parameters can measure the degree of polarization of a beam. We can see that a beam is unpolarized iff: 00 321 2 0 ===>=+= ∗∗ SSSAEEEES UPyyxx The Degree of Polarization is defined as: 10 0 2 3 2 2 2 1 222 22 ≤≤ ++ = ++ + = P S SSS AAA AA P yPxPUP yPxP If the beam is completely polarized then AUP = 0: 0 2 3 2 2 2 1 2 0 >++= SSSS Return to Table of Content
  • 51.
    51 POLARIZATION SOLO H. Poincaré, “ThéorieMathématique de la Lumiere”, Gauthiers-Villars, Paris, 1892, Vol.2, Ch.12 Poincaré Sphere Jules Henri Poincaré 1854-1912 We found 03 02 01 /2sin /2sin2cos /2cos2cos SS SS SS = =⋅ =⋅ χ ψχ ψχ We see that the normalized Stokes Parameters can be represented as a unit vector on a sphere (called Poincaré Sphere) using the Polarized Ellipse parameters χ and ψ.
  • 52.
    52 POLARIZATION SOLO Poincaré Sphere J.D. Kraus,“Electromagnetics”, 4th Ed., McGraw Hill, 1992, p.607 Return to Table of Content
  • 53.
    53 POLARIZATION SOLO The Mueller Matricesfor Polarizing Components In 1948 Hans Mueller, then a professor of physics at MIT devised a matrix method that deals with the relation of Stokes vector at the output of an optical device to the Stokes vector at the input of the optical device.                             =               3 2 1 0 33323130 23222120 13121110 03020100 3 2 1 0 ' ' ' ' S S S S mmmm mmmm mmmm mmmm S S S S inputoutput SMS  = or Hans Mueller, “The Foundation of Optics”, J. Opt. Soc. Am., 37, pg. 110 (1947) 38, pg. 661(1948)
  • 54.
    54 POLARIZATION SOLO The Mueller Matricesfor Polarizing Components Suppose that we have a few optical elements through which the ray passes . ( ) inputinputoutput SMSMMMSMMSMS  ==== 12312323 or 123 MMMM =
  • 55.
    55 POLARIZATION SOLO The Mueller Matricesfor Polarizing Components Polarizer 10' 10' ≤≤= ≤≤= yyyy xxxx pEpE pEpE The Polarizer is described by two orthogonal transmission axes that are characterized, respectively, by transmission factors px and py (0 ≤ px,py ≤ 1). ( )∗∗ ∗∗ ∗∗ ∗∗ −= += −= += xyyx xyyx yyxx yyxx EEEEjS EEEES EEEES EEEES 3 2 1 0 ( )∗∗ ∗∗ ∗∗ ∗∗ −= += −= += ''''' ''''' ''''' ''''' 3 2 1 0 xyyx xyyx yyxx yyxx EEEEjS EEEES EEEES EEEES                             +− −+ =               3 2 1 0 2222 2222 3 2 1 0 2000 0200 00 00 2 1 ' ' ' ' S S S S pp pp pppp pppp S S S S yx yx yxyx yxyx ( )               +− −+ = yx yx yxyx yxyx yxPOL pp pp pppp pppp ppM 2000 0200 00 00 2 1 , 2222 2222
  • 56.
    56 POLARIZATION SOLO The Mueller Matricesfor Polarizing Components Polarizer ( ) 22 1 : /tan: yx xy ppp pp += = − βLet define                             =               3 2 1 0 2 2 22 22 3 2 1 0 2sin000 02sin00 002cos 002cos 2 1 ' ' ' ' S S S S p p pp pp S S S S β β β β ( )               = β β β β β 2sin000 02sin00 0012cos 002cos1 2 , 2 p pMPOL β β sin cos pp pp y x = =
  • 57.
    57 POLARIZATION SOLO The Mueller Matricesfor Polarizing Components Polarizer (continue -1) 0' 10' = ≤≤= y xxxx E pEpE Ideal Linear Polarizer py = 0 and 0 ≤ px ≤ 1. ( ) ( )               +=                             =               0 0 1 1 2 0000 0000 0011 0011 2 ' ' ' ' 10 2 3 2 1 0 || 2 3 2 1 0 SS p S S S S p S S S S x M x POL    Regardless the state of polarization of the input beam the output beam is Linear Horizontally Polarized (LHP) 10' 0' ≤≤= = yyyy x pEpE E Ideal Linear Polarizer px = 0 and 0 ≤ py ≤ 1. ( ) ( )               − −=                             − − =               ⊥ 0 0 1 1 2 0000 0000 0011 0011 2 ' ' ' ' 10 2 3 2 1 0 2 3 2 1 0 SS p S S S S p S S S S y M y POL    Regardless the state of polarization of the input beam the output beam is Linear Vertically Polarized (LVP)
  • 58.
    58 POLARIZATION SOLO The Mueller Matricesfor Polarizing Components Polarizer (continue -2) Crossed Polarizers ( ) ( )               =                             − −               =               ⊥ 0 0 0 0 22 0000 0000 0011 0011 2 0000 0000 0011 0011 2 ' ' ' ' 22 3 2 1 0 2 || 2 3 2 1 0 yx M y M x pp S S S S pp S S S S POLPOL      Regardless the state of polarization of the input beam the output beam is completely blocked Crossed Polarizers are a combination of a Linear Polarizer with the transmission axes normal to the x-axis, followed by a Linear Polarizer with the transmission axes parallel to the x-axis (or vice-versa).
  • 59.
    59 POLARIZATION SOLO The Mueller Matricesfor Polarizing Components Polarizer (continue -3) Eigenvalues and Eigenvectors of the Linear Polarizer Mueller Matrix Let find the Input Stokes Vectors that are unaffected by the Polarizer; i.e.:               =                             +− −+ =               3 2 1 0 3 2 1 0 2222 2222 3 2 1 0 2000 0200 00 00 2 1 ' ' ' ' S S S S S S S S pp pp pppp pppp S S S S POLM yx yx yxyx yxyx λ    ( ) 0 22000 02200 002 002 2 1 , 2222 2222 44 = − − −+− −−+ =− λ λ λ λ λ yx yx yxyx yxyx xyxPOL pp pp pppp pppp IppM               == 0 0 1 1 & 1 2 1 Spx  λ               − == 0 0 1 1 & 2 2 2 Spy  λ 1st eigenvalue- eigenvector 2nd eigenvalue- eigenvector We can see that only LHP and LVP are unaffected by the Linear Polarizer.
  • 60.
    60 POLARIZATION SOLO The Mueller Matricesfor Polarizing Components Waveplate y j y x j x EeE EeE 2/ 2/ ' ' ϕ ϕ − = = The Waveplate is a polarizing element that introduced a phase shift φ between the orthogonal components of an optical beam. A Waveplate is a phase-shifter but is also called a retarder or a compensator. ( )∗∗ ∗∗ ∗∗ ∗∗ −= += −= += xyyx xyyx yyxx yyxx EEEEjS EEEES EEEES EEEES 3 2 1 0 ( )∗∗ ∗∗ ∗∗ ∗∗ −= += −= += ''''' ''''' ''''' ''''' 3 2 1 0 xyyx xyyx yyxx yyxx EEEEjS EEEES EEEES EEEES                             − =               3 2 1 0 3 2 1 0 cossin00 sincos00 0010 0001 ' ' ' ' S S S S S S S S ϕϕ ϕϕ ( )               − = ϕϕ ϕϕ ϕ cossin00 sincos00 0010 0001 WP M
  • 61.
    61 POLARIZATION SOLO The Mueller Matricesfor Polarizing Components Waveplate (continue – 1) Quarter-Waveplate φ = π/2 The Quarter-Waveplate transforms Linearly Polarized (L+45P or L-45P) to Right or Left Circularly Polarized (RCP or LCP) or vice-versa. ( )               − == 0100 1000 0010 0001 2/πϕWPM ( )    RCPPLPL WPM               =                             − =               = ++ 1 0 0 1 0 1 0 1 0100 1000 0010 0001 0 1 0 1 2/ 4545 πϕ ( )    LCPPLPL WPM               − =               −               − =               − = −− 1 0 0 1 0 1 0 1 0100 1000 0010 0001 0 1 0 1 2/ 4545 πϕ ( )    PLRCPRCP WPM 45 0 1 0 1 1 0 0 1 0100 1000 0010 0001 1 0 0 1 2/ −               − =                             − =               = πϕ ( )     LCP PLLCPLCP WPM 45 0 1 0 1 1 0 0 1 0100 1000 0010 0001 1 0 0 1 2/ +               =               −              − =               − = πϕ
  • 62.
    62 POLARIZATION SOLO The Mueller Matricesfor Polarizing Components Waveplate (continue – 2) Half-Waveplate φ = π ( )               − − == 1000 0100 0010 0001 πϕWPM               − − =                             − − =               3 2 1 0 3 2 1 0 3 2 1 0 1000 0100 0010 0001 ' ' ' ' S S S S S S S S S S S S χ ψχ ψχ 2sin 2sin2cos 2cos2cos 0 3 0 2 0 1 = ⋅= ⋅= S S S S S S       =       = − − 0 31 1 21 sin 2 1 tan 2 1 S S S S χ ψ 2 ' 2 ' π χχ ψ π ψ −= −= The Half-Waveplate reverses the orientation and ellipticity of the polarization ellipse (polarization state).
  • 63.
    63 POLARIZATION SOLO The Mueller Matricesfor Polarizing Components Waveplate (continue – 3) The phases of two adjacent Half-Waveplates add. ( ) ( ) ( ) ( )                             ++ +−+ =                             −               − =               3 2 1 0 2121 2121 3 2 1 0 22 22 11 11 3 2 1 0 cossin00 sincos00 0010 0001 cossin00 sincos00 0010 0001 cossin00 sincos00 0010 0001 ' ' ' ' S S S S S S S S S S S S ϕϕϕϕ ϕϕϕϕ ϕϕ ϕϕ ϕϕ ϕϕ Eigenvalues and Eigenvectors of the Waveplate Mueller Matrix ( ) 0 cossin00 sincos00 0010 0001 4 = − −− − − =− λϕϕ ϕλϕ λ λ λϕ IMWP  LHP S               == 0 0 1 1 &1 11  λ  LVP S               − =−= 0 0 1 1 &1 22  λ 1st eigenvalue- eigenvector 2nd eigenvalue- eigenvector We can see that only LHP and LVP are unaffected by the Waveplate Polarizer.
  • 64.
    64 POLARIZATION SOLO The Mueller Matricesfor Polarizing Components The Mueller Matrix of a Rotator (Coordinate Rotation) ( ) ( ) θθθγ θθθγ cossinsin' sincoscos' yxy yxx EEEE EEEE +−=−= +=−= Assume that the polarizing device rotates its orthogonal axes along the ray propagation direction by an angle θ. The orthogonal axes are defined as (‘). ( )∗∗ ∗∗ ∗∗ ∗∗ −= += −= += xyyx xyyx yyxx yyxx EEEEjS EEEES EEEES EEEES 3 2 1 0 ( )∗∗ ∗∗ ∗∗ ∗∗ −= += −= += ''''' ''''' ''''' ''''' 3 2 1 0 xyyx xyyx yyxx yyxx EEEEjS EEEES EEEES EEEES                             − =               3 2 1 0 3 2 1 0 1000 02cos2sin0 02sin2cos0 0001 ' ' ' ' S S S S S S S S θθ θθ ( )               − = 1000 02cos2sin0 02sin2cos0 0001 θθ θθ θROTM '1'1 1111 '' sincos yx yxyx yx yx EE EEEE ∧∧ ∧∧∧∧ +=         +=+= γγ
  • 65.
    65 POLARIZATION SOLO The Mueller Matricesfor Polarizing Components Assume that the polarizing device rotates its orthogonal axes along the ray propagation direction by an angle θ. The Mueller Rotation Matrix from x,y to x’,y’ is ( )               − = 1000 02cos2sin0 02sin2cos0 0001 θθ θθ θROTM The Mueller Polarizator Matrix is ( )               = β β β β β 2sin000 02sin00 0012cos 002cos1 2 , 2 p pMPOL ( ) SMS ROT  θ=' ( ) ( ) ( ) SMpMSpMS ROTPOLPOL  θββ ,'," == The Mueller Rotation Matrix from x’,y’ to x,y is ( )               − =− 1000 02cos2sin0 02sin2cos0 0001 θθ θθ θROTM ( ) ( ) ( ) ( ) SMpMMSMS ROTPOLROTROT  θβθθ ,"'" −=−= ( ) ( ) ( ) ( )θβθθβ ROTPOLROTPOL MpMMpM ,,, −= The Mueller Matrix of a Rotated Polarizer
  • 66.
    66 POLARIZATION SOLO The Mueller Matricesfor Polarizing Components ( ) ( ) ( )               +− −+ = β θβθθθβθβ θθβθβθθβ θβθβ θβ 2sin000 02cos2sin2sin2cos2sin2sin12sin2cos 02cos2sin2sin12sin2sin2cos2cos2cos 02sin2cos2cos2cos1 2 ,, 22 222 p pMPOL The Mueller Matrix for Rotated Polarizer is ( ) ( ) ( ) ( )               −                             − = −= 1000 02cos2sin0 02sin2cos0 0001 2sin000 02sin00 0012cos 002cos1 1000 02cos2sin0 02sin2cos0 0001 2 ,,, 2 θθ θθ β β β β θθ θθ θβθθβ p MpMMpM ROTPOLROTPOL The Mueller Matrix of a Rotated Polarizer (continue – 1)
  • 67.
    67 POLARIZATION SOLO The Mueller Matricesfor Polarizing Components ( ) ( ) ( )               − +− −−+ = ϕϕβϕβ ϕβϕββϕββ ϕβϕββϕββ ϕβ cossin2cossin2sin0 sin2coscos2cos2sincos12cos2sin0 sin2sincos12cos2sincos2sin2cos0 0001 , 22 22 WPM The Mueller Matrix for Rotated Waveplate is ( ) ( ) ( ) ( )               −               −               − = −= 1000 02cos2sin0 02sin2cos0 0001 cossin00 sincos00 0010 0001 1000 02cos2sin0 02sin2cos0 0001 ,, θθ θθ ϕϕ ϕϕθθ θθ θϕθθβ ROTWPROTPOL MMMpM The Mueller Matrix of a Rotated Waveplate Return to Table of Content
  • 68.
    68 POLARIZATION SOLO The Jones PolarizationParameters R. Clark Jones, “A New Calculus for the Treatment of Optical Systems”, J. Opt. Soc. Am., Vol.31, July 1941, pp.500-503 J. Opt. Soc. Am., Vol.32, Aug. 1942, pp.486-493 J. Opt. Soc. Am., Vol.37, Feb. 1947, pp.107-110 J. Opt. Soc. Am., Vol.37, Feb. 1947, pp.110-112 J. Opt. Soc. Am., Vol.38, Aug. 1948, pp.671-585 R. Clark Jones 1916-2004 Mueller matrices deal with the intensity of the beam. If the phase information is important we must use Jones formalism. Jones calculus was developed in the same time with the Mueller calculus by R. Clark Jones who introduced Jones vectors and Jones matrices: Jones vectors describe the polarization of light: Jones matrices describe the optical component:         + = y x yx E E EE J 22 1 [ ]       = 2221 1211 jj jj J Jones calculus deals only with polarized light.
  • 69.
    69 POLARIZATION SOLO Stokes and JonesVector for Different Polarization Types LHP       =               = 0 1 0 0 1 1 0 JIS  2 0 0 x y AI A = = LVP 2 0 0 y x AI A = =       =               − = 1 0 0 0 1 1 0 JIS        =               = 1 1 2 1 0 1 0 1 0 JIS  L+45P 2 0 2 0 x yx AI AA = = =δ       − =               − = 1 1 2 1 0 1 0 1 0 JIS  L-45P 2 0 2 x yx AI AA = = = πδ       =               = i JIS 1 2 1 1 0 0 1 0  RCP 2 0 2 2 x yx AI AA = = = π δ       − =               − = i JIS 1 2 1 1 0 0 1 0  2 0 2 2 3 x yx AI AA = = = π δ LCP δ δ sin2 cos2 3 2 22 1 22 0 yx yx yx yx AAS AAS AAS AAS = = −= += 2 3 2 2 2 1 2 0 SSSS ++= ( ) ( ) yxyx yx zktj y zktj xyx eAeAEEE 1111 ∧ +− ∧ +− ∧∧ +=+= δωδω Return to Table of Content
  • 70.
    70 POLARIZATION SOLO Faraday Effect (Hechtp.261) Michael Faraday (England) 1845 described the rotation of the plane of polarized light that passed through glass in a magnetic field. Return to Table of Content
  • 71.
    71 POLARIZATION SOLO Pockels Effect (Hechtp.263, Chuang p.509, Meyer-Arent p.318) Vnr nretardatio Er n n n Ln Ln yx z yy xx 3 0'' 32 '' '' 2 : 21 2 2 λ π λ π λ π =Φ−Φ=Φ ⇒ = ∆ −=      ∆ =Φ =Φ Pockels Effect 1893 Electro – Optical Effects The electro – optical effects are called Pockels or Kerr where the refractive index changes linearly or quadraticly, respectively.    = = =      ∆ Kerrk Pockelsk EKn n k 2 11 02 Frederich Carl Alwin Pockels (1865-1913) http://www.physi.uni-heidelberg.de/~schmiedm/Vorlesung/LasPhys02/LectureNotes/OpticsCrystals.pdf#search='Pockels%20Effect' http://en.wikipedia.org/wiki/Pockels_effect
  • 72.
    72 POLARIZATION SOLO Electro – OpticalEffects Kerr Effect (Hecht p.263, Chuang p.509, Meyer-Arent p.318) The electro – optical effects are Kerr or Pockels 2 0 EKn λ=∆ 2 2 0 2 d VKλπ =Φ∆ In the Kerr Electro-optic Effect 1875 is the electric field that causes the substance to become birefringent. Return to Table of Content
  • 73.
    73 POLARIZATIONSOLO Plane Polarized Wavein an Absorbing Medium Circular Polarized Wave in an Absorbing Medium
  • 74.
    74 POLARIZATIONSOLO Plane Polarized Wavein an Refracting Medium Circular Polarized Wave in an Refracting Medium
  • 75.
    75 POLARIZATIONSOLO Plane Polarized Wavein a Medium Showing Circular Dichroism Plane Polarized Wave in a Medium Showing Circular Birefrigens
  • 76.
    76 POLARIZATIONSOLO Plane Polarized Wavein a Medium Showing Both Circular Dichroism and Circular Birefrigens
  • 77.
  • 78.
    78 OPTICSSOLO References Optics Polarization A.Yariv, P. Yeh, “Optical Waves in Crystals”, John Wiley & Sons, 1984 M. Born, E. Wolf, “Principles of Optics”, Pergamon Press,6th Ed., 1980 E. Hecht, A. Zajac, “Optics”, Addison-Wesley, 1979, Ch.8 C.C. Davis, “Lasers and Electro-Optics”, Cambridge University Press, 1996 G.R. Fowles, “Introduction to Modern Optics”,2nd Ed., Dover, 1975, Ch.2 M.V.Klein, T.E. Furtak, “Optics”, 2nd Ed., John Wiley & Sons, 1986 http://en.wikipedia.org/wiki/Polarization W.C.Elmore, M.A. Heald, “Physics of Waves”, Dover Publications, 1969 E. Collett, “Polarization Light in Fiber Optics”, PolaWave Group, 2003 W. Swindell, Ed., “Polarization Light”, Benchmark Papers in Optics, V.1, Dowden, Hutchinson & Ross, Inc., 1975 http://www.enzim.hu/~szia/cddemo/edemo0.htm (Andras Szilagyi)
  • 79.
    79 ELECTROMAGNETICSSOLO References Electromagnetics J.D. Jackson,“Classical Electrodynamics”, 3rd Ed., John Wiley & Sons, 1999 R. S. Elliott, “Electromagnetics”, McGraw-Hill, 1966 J.A. Stratton, “Electromagnetic Theory”, McGraw-Hill, 1941 W.K.H. Panofsky, M. Phillips, “Classical Electricity and Magnetism”, Addison- Wesley, 1962 F.T. Ulaby, R.K. More, A.K. Fung, “Microwave Remote Sensors Active and Passive”, Addison-Wesley, 1981 A.L. Maffett, “Topics for a Statistical Description of Radar Cross Section”, John Wiley & Sons, 1988
  • 80.
    80 ELECTROMAGNETICSSOLO References 1.W.K.H. Panofsky &M. Phillips, “Classical Electricity and Magnetism”, 2.J.D. Jackson, “Classical Electrodynamics”, 3.R.S. Elliott, “Electromagnetics”, 4.A.L. Maffett, “Topics for a Statistical Description of Radar Cross Section”, Return to Table of Content
  • 81.
    January 4, 201581 SOLO POLARIZATION Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 –2013 Stanford University 1983 – 1986 PhD AA