1
OPTICS
Part II
SOLO HERMELIN
Updated: 16.01.10http://www.solohermelin.com
2
Table of Content
SOLO OPTICS
Maxwell’s Equations
Boundary Conditions
Electromagnatic Wave Equations
Monochromatic Planar Wave Equations
Spherical Waveforms
Cylindrical Waveforms
Energy and Momentum
Electrical Dipole (Hertzian Dipole) Radiation
Reflections and Refractions Laws Development
Using the Electromagnetic Approach
IR Radiometric Quantities
Physical Laws of Radiometry
Geometrical Optics
Foundation of Geometrical Optics – Derivation of Eikonal Equation
The Light Rays and the Intensity Law of Geometrical Optics
The Three Laws of Geometrical Optics
Fermat’s Principle (1657)
O
P
T
I
C
S
P
a
r
t
I
3
Table of Content (continue)
SOLO OPTICS
Plane-Parallel Plate
Prisms
Lens Definitions
Derivation of Gaussian Formula for a Single Spherical Surface Lens
Using Fermat’s Principle
Derivation of Gaussian Formula for a Single Spherical Surface Lens
Using Snell’s Law
Derivation of Lens Makers’ Formula
First Order, Paraxial or Gaussian Optics
Ray Tracing
Matrix Formulation
O
P
T
I
C
S
P
a
r
t
I
4
Table of Content (continue)
SOLO OPTICS
Optical Diffraction
Fresnel – Huygens’ Diffraction Theory
Complementary Apertures. Babinet Principle
Rayleigh-Sommerfeld Diffraction Formula
Extensions of Fresnel-Kirchhoff Diffraction Theory
Phase Approximations – Fresnel (Near-Field) Approximation
Phase Approximations – Fraunhofer (Near-Field) Approximation
Fresnel and Fraunhofer Diffraction Approximations
Fraunhofer Diffraction and the Fourier Transform
Fraunhofer Diffraction Approximations Examples
Resolution of Optical Systems
Optical Transfer Function (OTF)
Point Spread Function (PSF)
Modulation Transfer Function (MTF)
Phase Transfer Function (PTF)
Relations between Wave Aberration, Point Spread Function
and Modulation Transfer Function
Other Metrics that define Image Quality – Srahl Ratio
Other Metrics that define Image Quality - Pickering Scale
Other Metrics that define Image Quality – Atmospheric Turbulence
Fresnel Diffraction Approximations Examples
5
SOLO OPTICS
Continue from
OPTICS Part I
6
Optical DiffractionSOLO
Augustin Jean
Fresnel
1788-1827
In 1818 Fresnel, by using Huygens’ concept of secondary wavelets
and Young’s explanation of interface, developed the diffraction theory
of scalar waves.
P
0P
Q 1x
0x
1y
0y


Fr

Sr


 r

O
'

Screen
Image
plane
Source
plane
0O
1O
Sn1

 - Screen Aperture
Sn1 - normal to Screen
FrPP

0
SrQP

0
rQP


From a source P0 at a distance from a aperture a spherical wavelet
propagates toward the aperture:    Srktj
S
source
Q e
r
A
tU 
 '
' 
According to Huygens Principle second wavelets will start at the aperture and will add
at the image point P.
      
    
 



 dre
rr
A
Kdre
r
U
KtU rrktj
S
sourcerkttjQ
P
S 2/2/'
',', 

where:  ',K obliquity or inclination factor    SSS nrnr 11cos&11cos' 11
 

 
 




0',0
max0',0


K
K Obliquity factor and π/2 phase were introduced by Fresnel to explain
experiences results.
Fresnel Diffraction Formula
Fresnel took in consideration the phase of each wavelet to obtain:
Fresnel – Huygens’ Diffraction Theory
Fresnel –Kirchoff
Diffraction Formula
See full development in P.P.
“Diffraction”
Table of Content
7
SOLO
Fresnel-Kirchhoff Diffraction Theory
In 1882 Gustav Kirchhoff, using mathematical foundation,
succeeded to show that the amplitude and phases ascribed to the
wavelets by Fresnel, by enhancing the Huyghen’s Principle, were a
consequence of the wave nature of light.
HBED

  &
For an Homogeneous, Linear and Isotropic Medium where
are constant scalars, we have
,
t
E
t
D
H
t
t
H
t
B
E
ED
HB


























Since we have also
tt 




t
D
H





t
B
E





For Source less
Medium
 
   
























0&
0
2
2
2
DED
EEE
t
E
E






02
2
2




t
E
E



Maxwell Equations are   eJ
t
D
HA







mBGM 

)(
  mJ
t
B
EF







  eDGE 

James C.
Maxwell
(1831-1879)
Gustav Robert Kirchhoff
1824-1887
Optical Diffraction
8
SOLO
Fresnel-Kirchhoff Diffraction Theory
0
1
2
2
2
2








 U
tv
Scalar Differential Wave Equation
For a monochromatic wave of frequency f ( ω = 2πf ) a solution is:
              tjPjPUPtPUtPU  expexpRecos, 
Define the phasor       PjPUPU  exp
U
v
U
tv 2
2
2
2
2
1 






 2
2 
v
f
v
k
  022
 UkPhasor Scalar Differential Wave Equation
This is the Scalar Helmholtz Differential Equation
Hermann von Helmholtz
1821-1894
Boundary Conditions for the Helmholtz Differential Equation:
• Dirichlet (U given on the boundary)
• Neumann (dU/dn given on the boundary)
Johann Peter Gustav
Lejeune Dirichlet
1805-1859
Franz Neumann
1798-1895

1
0
11 2
2
2
2
2
2
2
2
2











 vE
tvt
E
v
E



Vector Differential Wave Equation
Optical Diffraction
9
To find the solution of the Scalar Helmholtz Differential Equation we need to use the
following:
• Scalar Green’s Identity
   


SV
dSGUUGdVGUUG 22
• Green’s Function
 
 
SF
SF
FS
rr
rrkj
rrG 





exp
;
This Green’s Function is a particular solution of the following Helmholtz
Non-homogeneous Differential Equation:
     SFFSFSS rrrrGkrrG

 4;; 22
SOLO
Fresnel-Kirchhoff Diffraction Theory
provided that and are
continuous in volume V
UUU 2
,,  GGG 2
,, 
Free-Space Green’s Function

n
i
iSS
1

iS
nS
dV
dSnS

1
V
Fr

Sr

F
0r SF rrr


PositionSourcerS

PositionFieldrF

  022
 Uk Scalar Helmholtz Differential Equation
Optical Diffraction
10
SOLO
• Scalar Green’s Identities
   


SV
dSGUUGdVGUUG 22
Let start from the Gauss’ Divergence
Theorem



SV
dSAdVA

Karl Friederich Gauss
1777-1855
where is any vector field (function of position and time)
continuous and differentiable in the volume V bounded by the
enclosed surface S. Let define .
A

UGA 

  UGUGUGA 2


Then
    


S
Gauss
VV
dSUGdVUGUGdVUG 2
    


S
Gauss
VV
dSGUdVGUUGdVGU 2
Subtracting the second equation from the first we obtain
First Green’s Identity
Second Green’s Identity
We have
GEORGE GREEN
1793-1841
Fresnel-Kirchhoff Diffraction Theory
To find a general solution of the Scalar Helmoltz Differential
Equation we need to use the

n
i
iSS
1

iS
nS
dV
dSn

1
V
Fr

Sr

F
0r SF rrr


If we interchange with we obtainG U
Optical Diffraction
11
Integral Theorem of Helmholtz and Kirchhoff
      F
V
sF
V
SS rUdVUrrUGkUGkdVGUUG

 442222
 
Using:
     SFFSFSS rrrrGkrrG

 4;; 22

n
i
iSS
1

iS
nS
dV
dSnS

1
V
Fr

Sr

F
0r SF rrr


PositionSourcerS

PositionFieldrF

SOLO
Fresnel-Kirchhoff Diffraction Theory
    0,22
 SFS rrUk

From the left side of the Second Scalar Green’s Identity we have:
   












SS
SS dS
n
G
U
n
U
GdSGUUG
 
 
SF
SF
FS
rr
rrkj
rrG 





exp
;Using:
we obtain:  
   
 

























S SF
SF
SF
SF
F dS
rr
rrkj
n
U
n
U
rr
rrkj
rU 



 expexp
4
1

This is the Integral Theorem of Helmholtz and Kirchhoff that enables to calculate
as function of the values of and on the enclosed surface S.nU  /UU
Note: This Theorem was developed first by H. von Helmholtz in acoustics.
Hermann von Helmholtz
1821-1894
Gustav Robert Kirchhoff
1824-1887
From the right side of the Second Scalar Green’s
Identity, using we have:dS
n
U
dSnUdSU SSS




1
Scalar Helmholtz Differential Equation
Optical Diffraction
12
Sommerfeld Radiation Conditions
SOLO
Fresnel-Kirchhoff Diffraction Theory
 



























SS
S
F
dS
n
G
U
n
U
G
dS
n
G
U
n
U
GrU
1
4
1
4
1



P
Fr

Sr

r


1S
S
R
Screen
Aperture
d

Sn1

Sn1
since the condition that the previous integral be finite is:
   
R
Rkj
rrG
SFS
exp
; 


Consider the surface of integration  SSS 1
1S - on the screen
S - hemisphere with radius R
  Gkj
R
Rkj
R
kj
n
G








 exp1
 





















dRUkj
n
U
GdS
n
G
U
n
U
G
S
2
  1
exp
limlim 
 R
Rkj
RGR
RR
0lim 









Ukj
n
U
R
R
This is Sommerfeld Radiation Conditions
 - on the aperture
Optical Diffraction
13
is known as optical disturbance. Being a scalar quantity, it cannot accurately
represent an electromagnetic field. However, the square of this scalar quantity can
be regarded as a measure of the irradiance at a given point.
U
Sommerfeld Radiation Conditions (continue)
SOLO
Fresnel-Kirchhoff Diffraction Theory
 



























SS
S
F
dS
n
G
U
n
U
G
dS
n
G
U
n
U
GrU
1
4
1
4
1



0lim 









Ukj
n
U
R
R
This is Sommerfeld Radiation Conditions
This implies that: 0
4
1












S
dS
n
G
U
n
U
G

and the Integral of Helmholtz and Kirchhoff becomes:
  












1
4
1
S
F dS
n
G
U
n
U
GrU


P
Fr

Sr

r


1S
S
R
Screen
Aperture
d
Sn1

Sn1
0P
Q
Arnold Johannes
Wilhelm
Sommerfeld
1868 - 1951
Optical Diffraction
14
The Kirchhoff Boundary Conditions
SOLO
Fresnel-Kirchhoff Diffraction Theory
Kirchhoff assumed the following boundary conditions:
  











 dS
n
G
U
n
U
GrU F
4
1
1. The field distribution and its derivative ,
across the aperture , are the same as in the
absence of the screen.
U nU  /

2. On the shadowed part of the screen and0
1
S
U
0/
1
 S
nU
The Integral of Helmholtz and Kirchhoff becomes:
The field at point P is the superposition of the aperture values 0
U 0/  
nU
Note:
Moreover, mathematically the condition implies0/&0
11
 SS
nUU 0/&0  
nUU
However, if the dimensions of the aperture are large relative to the
wavelength λ, the integral agrees well with the experiment.
P
Fr

Sr

r


1S
S
R
Screen
Aperture
0P 0,0
1
1




S
S n
U
U

 

n
U
U ,
Q

Sn1

Sn1
S

Kirchhoff boundary conditions are not physical since the presence of the screen
changes field values on the aperture and on the screen.
Optical Diffraction
15
Fresnel-Kirchhoff Diffraction Formula
SOLO
Fresnel-Kirchhoff Diffraction Theory
  











 dS
n
G
U
n
U
GrU F
4
1
The Integral of Helmholtz and Kirchhoff:
Assume that the aperture is illuminated by a single
spherical wave:
   
S
Ssource
S
r
rkjA
rU
exp


     
 
























SS
S
Ssource
S
S
S
Ssource
SSSS
S
nr
r
rkjA
r
kj
n
r
rkjA
nrU
n
rU
11
exp1
1
exp
1


 
 
SF
SF
FS
rr
rrkj
rrG 





exp
;
   
 
 





























S
S
SF
SF
S
rrr
SFSS
FS
nr
r
rkj
r
kj
n
rr
rrkj
nrrG
n
rrG SF
11
exp1
1
exp
1,
,



 
P
Fr

Sr

r


1S
S
R
Screen
Aperture
0P 0,0
1
1




S
S n
U
U

 

n
U
U ,
Q

Sn1

Sn1
S

Optical Diffraction
16
Fresnel-Kirchhoff Diffraction Formula
SOLO
Fresnel-Kirchhoff Diffraction Theory
  











 dS
n
G
U
n
U
GrU F
4
1
The Integral of Helmholtz and Kirchhoff:
Assume that the aperture is illuminated by a single
spherical wave, and:
Srr,
   








 
SS
S
SsourceS
nr
r
rkjA
j
n
rU
11
exp2



   
r
rkj
rrG FS
exp
; 

   








 
S
FS
nr
r
rkj
j
n
rrG
11
exp2,



Srr
k
1
,
12



    
































 
 dS
nrnr
rr
rrkjA
jrU
SSS
s
ssource
F
2
1111
exp


   
S
Ssource
S
r
rkjA
rU
exp


P
Fr

Sr

r


1S
S
R
Screen
Aperture
0P 0,0
1
1




S
S n
U
U

 

n
U
U ,
Q

Sn1

Sn1
S

Optical Diffraction
17
Fresnel-Kirchhoff Diffraction Formula
SOLO
Fresnel-Kirchhoff Diffraction Theory
    
 
 






















































 

dSK
rr
rrkj
A
dS
nrnr
rr
rrkjA
jrU
S
s
s
source
SSS
s
ssource
F




,
2
exp
2
1111
exp
  






























SSSS
S
SSS
S nrnr
nrnr
K 11cos&11cos
2
coscos
2
1111
, 


1. Obliquity or Inclination Factor:
    0,0&10,0   SS KK
2. Additional phase π/2
3. The amplitude is scaled by the factor 1/λ (not found in Fresnel derivation)
P
Fr

Sr

r


1S
S
R
Screen
Aperture
0P 0,0
1
1




S
S n
U
U

 

n
U
U ,
Q

Sn1

Sn1
S

We recovered Fresnel Diffraction Formula with:
Optical Diffraction
18
Reciprocity Theorem of Helmholtz
SOLO
Fresnel-Kirchhoff Diffraction Theory
    
 
 






















































 

dSK
rr
rrkj
A
dS
nrnr
rr
rrkjA
jrU
S
s
s
source
SSS
s
ssource
F




,
2
exp
2
1111
exp
We can see that the Fresnel-Kirchhoff Diffraction Formula is symmetrical with respect
to r and rS, i.e. point source and observation point. Therefore we can interchange them
and obtain the same relation. This result is called Reciprocity Theorem of Helmholtz.
P
Fr

Sr

r


1S
S
R
Screen
Aperture
0P 0,0
1
1




S
S n
U
U

 

n
U
U ,
Q

Sn1

Sn1
S

Hermann von Helmholtz
1821-1894
Note:
This is similar to Lorentz’s Reciprocity Theorem in Electromagnetism.
Optical Diffraction
19
Huygens-Fresnel Principle
SOLO
Fresnel-Kirchhoff Diffraction Theory
 
 
 



















 dSK
rr
rrkj
A
rU S
s
s
source
F 


,
2
exp

The Fresnel Diffraction Formula can be rewritten as:
     

 dS
r
rkj
QVrU F
exp
where:
   
s
s
S
source
r
rkj
K
A
QV








2
exp
,



The interpretation of this formula is that each point
of a wavefront can be considered as the center of a
secondary spherical wave, and those secondary spherical
waves interfere to result in the total field, is known as the
Huygens-Fresnel Principle.
P
Fr

Sr

r


1S
S
R
Screen
Aperture
0P 0,0
1
1




S
S n
U
U

 

n
U
U ,
Q

Sn1

Sn1
S

Table of Content
Optical Diffraction
20
SOLO
Consider a diffracting aperture Σ. Suppose that the aperture
is divided into two portions Σ 1 and Σ 2 such that Σ = Σ1 + Σ2.
The two aperture Σ1 and Σ2 are said to be complementary.
Complementary Apertures. Babinet Principle
From the Fresnel Diffraction Formula:
     
       






21
dS
r
rkj
QVdS
r
rkj
QV
dS
r
rkj
QVrU F
expexp
exp
P
Fr

1Sr

1
r

2
1S
Screen
Apertures
0P
1
Q
Sn1
2Sr

2r
1
2Q
We can see that the result is the added effect of all complimentary
apertures. This is known as Babinet Principle.
The result can be very helpful when Σ is a very complicated
aperture, that can be decomposed in a few simple apertures.
Table of Content
Optical Diffraction
21
SOLO
The Kirchhoff Diffraction Formula is an approximation since for zero field and
normal derivative on any finite surface the field is zero everywhere. This was pointed
out by Poincare in 1892 and by Sommerfeld in 1894.
The first rigorous solution of a diffraction problem was given by Sommerfeld in
1896 for a two-dimensional case of a planar wave incident on an infinitesimally thin,
perfectly conducting half plane. This solution is not given here.
Arnold Johannes
Wilhelm
Sommerfeld
1868 - 1951
Jules Henri Poincaré
1854-1912
Sommerfeld, A. : “Mathematische Theorie der Diffraction”,
Math. Ann., 47:317, 1896 translated in english as
“Optics, Lectures on Theoretical Physics”, vol. IV,
Academic Press Inc., New York, 1954
Rayleigh-Sommerfeld Diffraction Formula
Optical Diffraction
22
SOLO
Rayleigh-Sommerfeld Diffraction Formula
Let start from the Helmholtz and Kirchhoff Integral:
P
Fr

Sr

r


1S
S
R
Screen
Aperture
0P
0,0
1
1




S
S n
U
U

 

n
U
U ,
Q

Sn1

Sn1
S

0'PFr'








 SSSSS nnrrr 112'

  












1
4
1
S
F dS
n
G
U
n
U
GrU


Suppose that the Scalar Green Function is generated not only by P0 located at ,
but also by a point P’0 located symmetric relative to the screen at







 SSSSS nnrrr 112'

Sr

G
 
   
SF
SF
SF
SF
SF
rr
rrkj
rr
rrkj
rrG
'
'expexp
,_ 










 
   
SF
SF
SF
SF
SF
rr
rrkj
rr
rrkj
rrG
'
'expexp
, 










or:
We have 11 ,,
' SSFSSF rrrr 


   




 SSSFSSSF nrrnrr 1'1 11 ,,

0
1,

 S
G   011
exp1
2
11
,,
_























 S
S
S
nr
r
rkj
r
kj
n
G
0
1,





S
n
G  0
exp
2
1
1
,
,









S
S r
rkj
G
Optical Diffraction
23
SOLO
Rayleigh-Sommerfeld Diffraction Formula
1. Start from the Helmholtz and Kirchhoff Integral:
P
Fr

Sr

r


1S
S
R
Screen
Aperture
0P
0,0
1
1




S
S n
U
U

 

n
U
U ,
Q

Sn1

Sn1
S

0'PFr'








 SSSSS nnrrr 112'

  












1
4
1
S
F dS
n
G
U
n
U
GrU


 
   
SF
SF
SF
SF
SF
rr
rrkj
rr
rrkj
rrG
'
'expexp
,_ 









Choose
0
1,

 S
G   011
exp1
2
11
,,
_























 S
S
S
nr
r
rkj
r
kj
n
G
On the shadowed part of the screen and0
1
S
U 0/
1
 S
nU
     









 










 dSnr
r
rkj
rU
j
dS
n
G
UrU SS
k
r
kj
F 11
exp
4
1 /2
1
_ 


This is Rayleigh-Sommerfeld Diffraction Formula of the first kind
SF rrr


Arnold Johannes
Wilhelm
Sommerfeld
1868 - 1951
   
S
Ssource
S
r
rkjA
UrU
exp
 

John William Strutt
Lord Rayleigh
(1842-1919)
     








 dSnr
r
rkj
r
rkjAj
rU S
S
Ssource
F 11
expexp


we obtain:
Optical Diffraction
24
SOLO
Rayleigh-Sommerfeld Diffraction Formula
2. Start from the Helmholtz and Kirchhoff Integral:
P
Fr

Sr

r


1S
S
R
Screen
Aperture
0P
0,0
1
1




S
S n
U
U

 

n
U
U ,
Q

Sn1

Sn1
S

0'PFr'








 SSSSS nnrrr 112'

  












1
4
1
S
F dS
n
G
U
n
U
GrU


 
   
SF
SF
SF
SF
SF
rr
rrkj
rr
rrkj
rrG
'
'expexp
, 










Choose
On the shadowed part of the screen and0
1
S
U 0/
1
 S
nU
SF rrr

0
1,





S
n
G  0
exp
2
1
1
,
,









S
S r
rkj
G
   
 











 dS
n
U
r
rkj
dS
n
U
GrU F
exp
2
1
4
1


   
S
Ssource
S
r
rkjA
UrU
exp
 
    








 
SS
S
SsourceS
nr
r
rkjA
j
n
rU
11
exp2



     








 dSnr
r
rkj
r
rkjAj
rU SS
S
Ssource
F 11
expexp


For
we obtain:
This is Rayleigh-Sommerfeld Diffraction Formula of the second kind
Table of Content
Optical Diffraction
25
P
0P
Q 1x
0x
1y
0y


Sr'

Sr


 r

O
S 
Screen
Image
plane
Source
plane
0O
1O
Sn1

 - Screen Aperture
Sn1 - normal to Screen
1r
0r

SSS rn cos11 
cos11  rnS
z
Sn1
'r
 Fr

FrPP

0
SrQP

0
rQP


SrOP '0


'1 rOO


SOLO
     


 dS
r
rkj
r
rkjAj
rU S
S
Ssource
F
2
coscosexpexp 


Start with Fresnel-Kirchhoff (or Rayleigh-Sommerfeld) Diffraction Formula
1. If the inclination factor is nearly constant over the aperture   constKK S  ,
Extensions of Fresnel-Kirchhoff Diffraction Theory
     

 dS
r
rkj
r
rkjAKj
rU
S
Ssource
F
expexp


     

 dS
r
rkj
rU
Kj
rU SF
exp

2. Replace the incident point source wavefront
with a general waveform
 
S
S
r
rkjexp
 Sinc rU

3. Characterize the aperture by a
transfer function τ to model amplitude
or phase changes due to optic system
       

 dS
r
rkj
rrU
j
rU SSF
exp

 Table of Content
Optical Diffraction
26
SOLO
Phase Approximations – Fresnel (Near-Field) Approximation
Fresnel Approximation or Near Field Approximation
can be used when aperture dimensions are
comparable to distance to source rS or image r.
     


 dS
r
rkj
r
rkjAj
rU S
S
Ssource
F
2
coscosexpexp 


Start with Fresnel-Kirchhoff Diffraction Formula
If the inclination factor is nearly constant over the aperture
  constKK S  ,
         
 
 dS
r
rkj
rU
Kj
dS
r
rkj
r
rkjAKj
rU S
S
Ssource
F
expexpexp 

P
Q 1x
1y



 r

O

Screen
Image
plane
1O
Sn1

1r

z
Sn1
'r

rQP


'1 rOO


P
0P
Q 1x
0x
1y
0y


Sr'

Sr


 r

O
S 
Screen
Image
plane
Source
plane
0O
1O
Sn1

 - Screen Aperture
Sn1 - normal to Screen
1r
0r

SSS rn cos11 
cos11  rnS
z
Sn1
'r
 Fr

     
1
''2
'
'
1''2'
'
2
2
1
2
1
2
11
2/1
2
2
1
2/1
11
0
1
2
1












 












r
r
k
r
r
r
r
r
rrrrrrr
rrr
x
x













   















 

'2
exp
'
'expexp
2
1
r
r
kj
r
rkj
r
rkj 
      
2
max
2
1
2
1
'
'2
exp
'
'exp
rrk
dS
r
r
kjrU
r
rkjKj
rU SF








 
 






Augustin Jean Fresnel
1788-1827
Optical Diffraction
27
SOLO
Phase Approximations – Fraunhofer (Near-Field) Approximation
Fraunhofer Approximation or Far Field Approximation
can be used when aperture dimensions are very small
comparable to distance to source rS or image r.
     


 dS
r
rkj
r
rkjAj
rU S
S
Ssource
F
2
coscosexpexp 


Start with Fresnel-Kirchhoff Diffraction Formula
If the inclination factor is nearly constant over the aperture
  constKK S  ,
         
 
 dS
r
rkj
rU
Kj
dS
r
rkj
r
rkjAKj
rU S
S
Ssource
F
expexpexp 

P
Q 1x
1y



 r

O

Screen
Image
plane
1O
Sn1

1r

z
Sn1
'r

rQP


'1 rOO


P
0P
Q 1x
0x
1y
0y


Sr'

Sr


 r

O
S 
Screen
Image
plane
Source
plane
0O
1O
Sn1

 - Screen Aperture
Sn1 - normal to Screen
1r
0r

SSS rn cos11 
cos11  rnS
z
Sn1
'r
 Fr

   





 

'
exp
'
'expexp 1
r
r
kj
r
rkj
r
rkj 
      
  2
max
22
1
1
'
2
'
exp
'
'exp
rr
k
dS
r
r
kjrU
r
rkjKj
rU SF






 
 





     
1
'2'
'
'2'
'
'
2
1''2'
'
2
22
11
2
22
11
2
11
2/1
2
2
1
2
1
2/1
11
0
1
2
1












 












r
rk
r
r
r
r
r
r
r
r
r
rr
rrrrrrr
rrr
x
x













Optical Diffraction
28
0P
Q
0x
0y

Sr'

Sr



O
S
ScreenSource
plane
0O

Sn10r

SrQP

0
S
rOP '0


SOLO
Fresnel and Fraunhofer Diffraction Approximations
Fresnel Approximations at the Source
 
  





























S
S
SS
S
S
xx
x
SS
S
S
SSS
SS
r
r
rr
r
r
rr
r
r
rrr
rr
'2
'1
'2'
'
'
''
'
21'
'2'
'
2
282
11
2/12
2
2/122
2






       







 

S
S
S
S
S
S
S
r
r
kjrkj
r
rkj
r
rkj
'2
'1
exp'1exp
'
'expexp
2
2




 
S
S
r
rkj
'
'exp
 

Srkj '1exp
 







 
S
S
r
r
kj
'2
'1
exp
2
2


Spherical wave centered at P0.
Lowest order approximation to the phase of
a spherical wavefront
Planar wave propagating in directionSr'1
P
0P
Q 1x
0x
1y
0y


Sr'

Sr


 r

O
S 
Screen
Image
plane
Source
plane
0O
1O
Sn1

 - Screen Aperture
Sn1 - normal to Screen
1r
0r

SSS rn cos11 
cos11  rnS
z
Sn1
'r
 Fr

Optical Diffraction
29
SOLO
Fresnel and Fraunhofer Diffraction Approximations
P
Q 1x
1y



 r

O

Screen
Image
plane
1O
Sn1

1r

z
Sn1
'r

rQP


'1 rOO


     


















 












''2
'
'
2
1'
'2'
'
1
22
1
2
11
2/1
2
2
1
2
1
2/1
11
0
1
2
1
r
r
r
r
r
r
rr
r
rrrrrr
rrr
x
x




   













 
































'
exp
'2
exp
'2
exp
'
'expexp 1
22
1
r
r
kj
r
kj
r
r
kj
r
rkj
r
rkj 

Fresnel Approximations at the Image plane
P
0P
Q 1x
0x
1y
0y


Sr'

Sr


 r

O
S 
Screen
Image
plane
Source
plane
0O
1O
Sn1

 - Screen Aperture
Sn1 - normal to Screen
1r
0r

SSS rn cos11 
cos11  rnS
z
Sn1
'r
 Fr

 
'
'exp
r
rkj
 

 '1exp rkj
 







 
'2
'1
exp
2
2
r
r
kj


Spherical wave centered at O.
Lowest order approximation to the phase of
a spherical wavefront
Planar wave propagating in direction'1r
Optical Diffraction
30
SOLO
Fresnel and Fraunhofer Diffraction Approximations (1st way)
     
 


 dS
r
rkj
r
rkjAj
rU
SK
S
S
Ssource
F
  




,
2
coscosexpexp
Fresnel Approximation
             




























 dS
r
rrr
r
r
kjrrkjrrkj
rr
rrkjKAj
rU
S
S
S
S
Ssource
F
'2
'1
'2
'1
exp'1'1exp'1exp
''
''exp
2
1
2
1
2
2
1





Fraunhofer Approximation

   
1
'2
'1
'2
'12
2
1
2
1
2
2




S
S
k
r
rrr
r
r 



or S
MAX
rr ','
2



         


 dSrrkjrrkj
rr
rrkjKAj
rU S
S
Ssource
F



'1'1exp'1exp
''
''exp
1
If
   
1
'2
'1
'2
'1
exp
2
1
2
1
2
2




















 


S
S
r
rrr
r
r
kj


we obtain
Augustin Jean Fresnel
1788-1827
  constKK S  ,
Start with
'1'1 rrq S


P
0P
Q 1x
0x
1y
0y


Sr'

Sr


 r

O
S 
Screen
Image
plane
Source
plane
0O
1O
Sn1

 - Screen Aperture
Sn1 - normal to Screen
1r
0r

SSS rn cos11 
cos11  rnS
z
Sn1
'r
 Fr

FrPP

0
SrQP

0
rQP


SrOP '0


'1 rOO


Optical Diffraction
31
SOLO
Fresnel and Fraunhofer Diffraction Approximations (2nd way)
Fresnel Approximation
           






 
 dS
r
rr
kjrrU
r
rkjj
rU SSF
'2
exp
'
'exp 11 




Fraunhofer Approximation

  '1
'2
2 max
2
1
22
1
2
r
r
r
r
k







If
we obtain
Augustin Jean Fresnel
1788-1827
Start with        

 dS
r
rkj
rrU
j
rU SSF
exp


- aperture optical transfer function Sr


- disturbance at the aperture SrU

       











 
 dS
r
r
kjrrU
r
rkjj
rU SSF
'
exp
'
'exp 1 




   











 
















 

'
exp
'2
exp
'
'expexp 1
2
1
2
r
r
kj
r
r
kj
r
rkj
r
rkj 

P
Q 1x
1y



 r

O

Screen
Image
plane
1O
Sn1

1r

z
Sn1
'r

rQP


'1 rOO




 1' rrr              





 





 









 2
11
2/1
2
11
2/1
11
0
1
2
'2
1'
'
1''2'
r
rr
r
r
rr
rrrrrrr






       











 





 
 dS
r
r
kj
r
r
kjrrU
r
rkjj
rU SSF
'
exp
'2
exp
'
'exp 1
2
1
2





      














 











'2'
'
'
2
1''2'
22
11
2
112/1
2
2
1
2
1
2/1
11
0
1
2
r
r
r
r
r
r
rr
rrrrrrr
x
x


Optical Diffraction
32
SOLO
Fresnel and Fraunhofer Diffraction Approximations
Augustin Jean Fresnel
1788-1827
1x
1y

max
D
Screen
1O
1r

z

2
D
R 
Fresnel Region Fraunhofer Region

2
D
R 
R

O

  '1
'2
2 max
2
1
22
1
2
r
r
r
r
k








Fraunhofer Approximation
If
Optical Diffraction
33
SOLO
Fraunhofer Diffraction and the Fourier Transform
       











 
 dS
r
r
kjrrU
r
rkjj
rU SSF
'
exp
'
'exp 1 




 


11
1
'
2
'
yx
rr
r
k 




 

         






 




ddyx
r
jrrU
r
rkjj
rU SSF 11
'
2
exp
'
'exp 
The integral is the two dimensional Fourier Transform
of the field within the aperture    SS rrU


 
 
      

  fFTddkkjfkkF yxyx 

exp,
2
1
:, 2
          SSF rrUFT
r
rkjj
rU



2
2
'
'exp
Therefore
P
0P
Q 1x
0x
1y
0y


Sr'

Sr


 r

O
S 
Screen
Image
plane
Source
plane
0O
1O
Sn1

 - Screen Aperture
Sn1 - normal to Screen
1r
0r

SSS rn cos11 
cos11  rnS
z
Sn1
'r
 Fr

FrPP

0
SrQP

0
rQP


SrOP '0


'1 rOO


Two Dimensional
Fourier Transform
Optical Diffraction
34
SOLO
Fraunhofer Diffraction Approximations Examples
Rectangular Aperture
P
Q 1x
1y



 r

O

Screen
Image
plane
1O
Sn1
1r

z
Sn1
'r
1
2
1
2
       
   






















 





 







1
1
1
1
11
0
2
11
2
10
'
2
exp
'
2
exp
'2
'exp
'
exp
'
exp
'2
exp
'
'exp
















dy
r
jdx
r
j
r
rkjUkj
dd
r
y
kj
r
x
kj
r
r
kj
r
rkjUj
rU
k
F

   


 

elsevere
U
rrU SS
0
& 21110 


For a Rectangular Aperture
Therefore
       











 






 dS
r
r
kjrrU
r
r
kj
r
rkjj
rU SSF
'
exp
'2
exp
'
'exp 1
2
1 














































11
11
1
1
1111
1
'
2
'
2
sin
2
'
2
'
2
exp
'
2
exp
'
2
exp
1
1




















x
r
x
r
x
r
j
x
r
jx
r
j
dx
r
j










































11
11
1
1
1111
1
'
2
'
2
sin
2
'
2
'
2
exp
'
2
exp
'
2
exp
1
1




















y
r
y
r
y
r
j
y
r
jy
r
j
dy
r
j
   






























11
11
11
11
4/
11
0
'
2
'
2
sin
'
2
'
2
sin
'
'exp2













y
r
y
r
x
r
x
r
r
rkjUkj
rU
A
F

Optical Diffraction
35
SOLO
Fraunhofer Diffraction Approximations Examples
Rectangular Aperture (continue – 1)
Since U stands for scalar field intensity
(E or H), the irradiance I is given by
where < > is the time average and * is
the complex conjugate.
   





























11
11
11
11
0
'
2
'
2
sin
'
2
'
2
sin
'
'exp8













y
r
y
r
x
r
x
r
Ar
rkjUkj
rU F

      
FFF rUrUrI

~
Therefore
    2
11
11
2
2
11
11
2
'
2
'
2
sin
'
2
'
2
sin
0









































y
r
y
r
x
r
x
r
IrI F

I (0) is the irradiance at O1 (x1 = y1 = 0).
Hecht pg.466
Optical Diffraction
36
SOLO
Fraunhofer Diffraction Approximations Examples
Single Slit Aperture
Let substitute in the
rectangular aperture ξ1 → 0
where < > is the time average and * is
the complex conjugate.
   





























11
11
11
11
0
'
2
'
2
sin
'
2
'
2
sin
'
'exp8













y
r
y
r
x
r
x
r
Ar
rkjUkj
rU F

      
FFF rUrUrI

~
Therefore
    2
11
11
2
'
2
'
2
sin
0





















y
r
y
r
IrI F

I (0) is the irradiance at O1 (x1 = y1 = 0).
to obtain the single (vertical) slit diffraction
   















11
11
0
'
2
'
2
sin
'
'exp2







y
r
y
r
Ar
rkjUkj
rU FSLITSINGLE

Since U stands for scalar field intensity
(E or H), the irradiance I is given by
Hecht, pg. 453
Hecht, pg. 456
Optical Diffraction
37
SOLO
Fraunhofer Diffraction Approximations Examples
Single Slit Aperture (continue)
    2
11
11
2
'
2
'
2
sin
0





















y
r
y
r
IrI F

I (0) is the irradiance at O1 (x1 = y1 = 0).
Hecht, pg. 456
Hecht 455
Define: 11
'
2
: 


  y
r
    2
2
sin
0


 II 
The extremum of I (β) is obtained from:
      0
sincossin2
0 3







I
d
Id
The results are given by:
minimum,3,2,0sin  
maximum tan
The solutions can be obtained
graphically as shown in the figure and
are: ,4707.3,4590.2,4303.1  
Optical Diffraction
38
SOLO
Fraunhofer Diffraction Approximations Examples
Double Slit Aperture
     
 
 
 
 
 













 





 






 









d
r
x
kjd
r
x
kj
r
r
kj
r
rkjUj
rU
ba
ba
ba
ba
F
2/
2/
1
2/
2/
1
2
10
'
exp
'
exp
'2
exp
'
'exp
P
Q
1x
1y



 r

O

Screen
Image
plane
1O
Sn1
1r

z
Sn1
'r

1
b
b
a       











 






 dS
r
r
kjrrU
r
r
kj
r
rkjj
rU SSF
'
exp
'2
exp
'
'exp 1
2
1 




 
     



















































ax
r
j
bx
r
bx
r
b
x
r
j
bax
r
jbax
r
j
dx
r
j
ba
ba
1
1
1
1
112/
2/
1
'
exp
'
'
sin
1
'
2
'
exp
'
exp
'
2
exp















 
     



















































ax
r
j
bx
r
bx
r
b
x
r
j
bax
r
jbax
r
j
dx
r
j
ba
ba
1
1
1
1
112/
2/
1
'
exp
'
'
sin
1
'
2
'
exp
'
exp
'
2
exp















   



























 ax
r
bx
r
bx
r
br
r
kj
r
rkjUj
rU F 1
1
12
10
'
cos
'
'
sin
2
'2
exp
'
'exp








    




















 ax
r
bx
r
bx
r
IrI F 1
2
2
1
1
2
'
cos
'
'
sin
0







      
FFF rUrUrI

~
   
       


 

elsevere
babababaU
rrU SS
0
2/2/&2/2/0



Optical Diffraction
39
SOLO
Fraunhofer Diffraction Approximations Examples
Double Slit Aperture (continue -= 1)
Hecht p.458
      








2
2
2
12
2
1
12
cos
sin
0
'
cos
'
'
sin
0 I
a
r
x
b
r
x
b
r
x
IrI F 






















P
Q
1x
1y



 r

O

Screen
Image
plane
1O
Sn1
1r

z
Sn1
'r

1
b
b
a
The factor (sin β/ β)2 that
was previously found as the
distribution function for a
single slit is here the envelope
for the interference fringes
given by the term cos2γ.
Bright fringes occur for
γ = 0,±π ,±2π,…
The angular separation
between fringes is Δγ = π.
Optical Diffraction
40
Hecht 459
SOLO
Fraunhofer Diffraction Approximations Examples
Double Slit Aperture (continue – 2)
Optical Diffraction
41
SOLO
Fraunhofer Diffraction Approximations Examples
Multiple Slit Aperture
P
1y
r

Image
plane
1O
1r

Q




O

Screen

Sn1
'r

b
b
a
a
b
b
a
b
a
The Aperture consists of a large number N of identical
parallel slits of width b and separation a.
     
 



 












 







1
0
2/
2/
1
2
10
'
exp
'2
exp
'
'exp N
k
bak
bak
F d
r
x
kj
r
r
kj
r
rkjUj
rU 



       











 






 dS
r
r
kjrrU
r
r
kj
r
rkjj
rU SSF
'
exp
'2
exp
'
'exp 1
2
1 



































































akx
r
j
bx
r
bx
r
b
x
r
j
b
kax
r
j
b
kax
r
j
dx
r
j
bka
bka
1
1
1
1
112/
2/
1
'
2
exp
'
'
sin
1
'
2
2'
2
exp
2'
2
exp
'
2
exp















   
   















































































































 


ax
r
aNx
r
bx
r
bx
r
br
r
kj
r
rkjUj
ax
r
j
aNx
r
j
bx
r
bx
r
br
r
kj
r
rkjUj
akx
r
j
bx
r
bx
r
br
r
kj
r
rkjUj
rU
N
k
F
1
1
1
12
10
1
1
1
12
10
1
0
1
1
12
10
'
sin
'
sin
'
'
sin
1
'2
exp
'
'exp
'
2
exp1
'
2
exp1
'
'
sin
1
'2
exp
'
'exp
'
2
exp
'
'
sin
1
'2
exp
'
'exp


























   


 

elsevere
NkbkabkaU
rrU SS
0
1,,1,02/2/0
 

Optical Diffraction
42
SOLO
Fraunhofer Diffraction Approximations Examples
Multiple Slit Aperture (continue – 1)
P
1y
r

Image
plane
1O
1r

Q




O

Screen

Sn1
'r

b
b
a
a
b
b
a
b
a
The Aperture consists of a large number N of identical
parallel slits of width b and separation a.
   



































ax
r
aNx
r
bx
r
bx
r
br
r
kj
r
rkjUj
rU F
1
1
1
12
10
'
sin
'
sin
'
'
sin
1
'2
exp
'
'exp










     












22
2
2
2
1
22
1
2
2
1
1
2
sin
sinsin
0
'
sin
'
sin
'
'
sin
0
N
N
I
ax
r
N
aNx
r
bx
r
bx
r
IrI F 






























      
FFF rUrUrI

~
Optical Diffraction
43
SOLO
Fraunhofer Diffraction Approximations Examples
Multiple Slit Aperture (continue – 2)
Hecht p.462
Hecht p.463
     












22
2
2
2
1
22
1
2
2
1
1
2
sin
sinsin
0
'
sin
'
sin
'
'
sin
0
N
N
I
ax
r
N
aNx
r
bx
r
bx
r
IrI F 






























Optical Diffraction
44
SOLO
Fraunhofer Diffraction Approximations Examples
Multiple Slit Aperture (continue – 2)
     












22
2
2
2
1
22
1
2
2
1
1
2
sin
sinsin
0
'
sin
'
sin
'
'
sin
0
N
N
I
ax
r
N
aNx
r
bx
r
bx
r
IrI F 






























Sears p.222
Hecht p. 462
Sears p.236
Interference Irradiation
for 1, 2, 3 and 4 slits as
function of observation
angle.
Diffraction Pattern for 1,
2, 3, 4 and 5 slits.
Optical Diffraction
45
SOLO
Resolution of Optical Systems
According to Huygens-Fresnel Principle, a differential area dS, within an optical
Aperture, may be envisioned as being covered with coherent secondary point sources.
z
y


Z
Y

R

q
 sincos  yz
 sincos qYqZ
Differential area dS, coordinates
Image , coordinates
 dddS 
 
dSe
r
E
dE rktiA 






 
The spherical wave that
propagates from dS to Image is
where
          22/122/1222
/1/21 RZzYyRRZzYyRzZyYXr    2/1222
ZYXR 
           
   RkaqJkaqRe
R
E
ddee
R
E
dSee
R
E
dEE RktiA
a
RkpqiRktiA
Aperture
RzZyYkiRktiA
Aperture
// 1
0
2
0
cos// 
 



















  






The spherical wave at Image, for a Circular Aperture, is
Optical Diffraction
46
SOLO
Resolution of Optical Systems
z
y


Z
Y

R

q
 
   RkaqJkaqRe
R
E
E RktiA
// 1







 
where
   






2
0
cos
2
dve
i
uJ vuvmi
m
m
Bessel Function (of the first kind)
E. Hecht, “Optics”
The spherical wave at Image, for a Circular Aperture, is
Optical Diffraction
47
SOLO
Resolution of Optical Systems
z
y


Z
Y

R

q
Irradiance 


 EEHEHESI
EH



2
1
2
1
2
1
   
 
   
 
2
1
2
1
2
22
/
/2
0
/
/22
2
1












 
Rkaq
RkaqJ
I
Rkaq
RkaqJ
R
aE
EEI A 




 
Daaak
RkaquuJ n
Rq





22.1
2
22.1
2
83.383.3
sin83.3/0
sin/
11 

D
nnn

 44.22 
E. Hecht, “Optics”
Circular Aperture
Optical Diffraction
48
SOLO
Resolution of Optical Systems
z
y


Z
Y

R

qDistribution of Energy in the Diffraction Pattern
at the Focus of a Perfect Circular Lens
E. Hecht, “Optics”
Ring f/(λf#) Peak Energy in ring
Illumination (%)
Central max 0 1 83.9
1st dark ring 1.22 0
1st bright ring 1.64 0.017 7.1
2nd dark 2.24 0
2nd bright 2.66 0.0041 2.8
3rd dark 3.24 0
3rd bright 3.70 0.0016 1.5
4th dark 4.24 0
4th bright 4.74 0.00078 1.0
5th dark 5.24 0
Optical Diffraction
49
SOLO
Fraunhofer Diffraction Approximations Examples
Circular Aperture
Hecht p.469
Optical Diffraction
50
SOLO
Resolution of Optical SystemsAiry Rings
In 1835, Sir George Biddell Airy, developed the formula for diffraction pattern, of
an image of a point source in an aberration-free optical system, using the wave
theory.
E. Hecht, “Optics”
Optical Diffraction
51
SOLO
Resolution of Optical Systems
E. Hecht, “Optics”
Optical Diffraction
52
Rayleigh’s Criterion (1902)
The images are said to be just resolved when the
center of one Airy Disk falls on the first minimum
of the Airy pattern of the other image.
The minimum resolvable angular separation or
angular limit is:
D
nnn

 44.22 
Sparrow’s Criterion
At the Rayleigh’s limit there is a central minimum
Or saddle point between adjacent peaks.
Decreasing the distance between the two point
sources cause the central dip to grow shallower and
ultimately to disappear. The angular separation
corresponding to that configuration is the Sparrow’s
Limit.
SOLO
Resolution of Optical Systems
Optical Diffraction
53
Resolution – Diffraction Limit
Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley
Optical Diffraction
54
Diffraction limit to resolution of two close
point-object images: best resolution is
possible when the two are of near equal,
optimum intensity. As the two PSF merge
closer, the intensity deep between them
rapidly diminishes. At the center separation
of half the Airy disc diameter -
1.22λ/D radians (138/D in arc seconds, for
λ=0.55μ and the aperture diameter D in
mm), known as Rayleigh limit - the deep is
at nearly 3/4 of the peak intensity.
Reducing the separation to λ/D (113.4/D in
arc seconds for D in mm, or 4.466/D for D
in inches, both for λ=0.55μ) brings the
intensity deep only ~4% bellow the peak.
This is the conventional diffraction
resolution limit, nearly identical to the
empirical double star resolution limit,
known as Dawes' limit. With even slight
further reduction in the separation, the
contrast deep disappears, and the two
spurious discs merge together. The
separation at which the intensity flattens at
the top is called Sparrow's limit, given by
107/D for D in mm, and 4.2/D for D in
inches (λ=0.55μ).
Optical Diffraction
55
SOLO
Fresnel Diffraction Approximations Examples
Rectangular Aperture
           






 
 dS
r
rr
kjrrU
r
rkjj
rU SSF
'2
exp
'
'exp 11 




define
Augustin Jean Fresnel
1788-1827
P
Q 1x
1y



 r

O

Screen
Image
plane
1O
Sn1
1r

z
Sn1
'r
1
2
1
2
       
     







 





 






 





 



2
1
2
1
'
2
2
exp
'
2
2
exp
'2
'exp
'2
exp
'2
exp
'
'exp
2
1
2
10
2
2
1
2
10
















d
r
y
jd
r
x
j
r
rkjUkj
dd
r
y
kj
r
x
kj
r
rkjUj
rU
k
F

   


 

elsevere
U
rrU SS
0
& 21110 


For a Rectangular Aperture
  




 d
r
d
r
x
'
2
'
2
:
2
12



 
 










  2
1
2
1
2
2
1
2
exp
2
'
'
2
2
exp









dj
r
d
r
x
j
   212111
'
2
&
'
2




  x
r
x
r
Therefore
  




 d
r
d
r
y
'
2
'
2
:
2
12



   212111
'
2
&
'
2




  y
r
y
r
 
 










  2
1
2
1
2
2
1
2
exp
2
'
'
2
2
exp









dj
r
d
r
y
j
Optical Diffraction
56
SOLO
Fresnel Diffraction Approximations Examples
Rectangular Aperture (continue – 1)
Augustin Jean Fresnel
1788-1827
P
Q 1x
1y



 r

O

Screen
Image
plane
1O
Sn1
1r

z
Sn1
'r
1
2
1
2
       
 




















 





 

2
1
2
1
2
1
2
1
220
2
1
2
10
2
exp
2
exp
2
'exp
'
2
2
exp
'
2
2
exp
'
'exp



















djdj
rkjUj
d
r
y
jd
r
x
j
r
rkjUj
rU F

Define Fresnel Integrals
 
  























0
2
0
2
2
sin:
2
cos:
dS
dC
   

SjCdj 





0
2
2
exp
              2
1
2
1
2
'exp0 


  SjCSjC
rkjUj
rU F 

Using the Fresnel Integrals we can write
    5.0 SC
Optical Diffraction
57
SOLO
Fresnel Diffraction Approximations Examples
Rectangular Aperture (continue – 2)
Augustin Jean Fresnel
1788-1827
Hecht p.499
Optical Diffraction
58
SOLO
Fresnel Diffraction Approximations Examples
Augustin Jean Fresnel
1788-1827
P
Q 1x
1y



 r

O

Screen
Image
plane
1O
Sn1
1r

z
Sn1
'r
1
2
1
2
Optical Diffraction
59
SOLO
Fresnel Diffraction Approximations Examples
Cornu Spiral
Fresnel Integrals are defined as
     












uu
duuuSduuuC
0
2
0
2
2
sin:&
2
cos:

   uSjuCduuj
u






0
2
2
exp

    5.0 SC
Marie Alfred Cornu professor at the École Polytechnique in Paris
established a graphical approach, for calculating intensities in
Fresnel diffraction integrals.
The Cornu Spiral is defined as the
plot of S (u) versus C (u)
duuSd
duuCd














2
2
2
sin
2
cos


    duSdCd 
22
Therefore u may be thought as measuring arc
length along the spiral.
“Méthode nouvelle pour la discussion des problèmes de diffraction dans le cas
d’une onde cylindrique”, J.Phys.3 (1874), 5-15,44-52
Optical Diffraction
60
SOLO
Fresnel Diffraction Approximations Examples
Cornu Spiral (continue – 1)
     












uu
duuuSduuuC
0
2
0
2
2
sin:&
2
cos:

   uSjuCduuj
u






0
2
2
exp

    5.0 SC
The Cornu Spiral is defined as the plot of S (u) versus C (u)
duuSdduuCd 











 22
2
sin&
2
cos

    duSdCd 
22



















 2
2
2
2
tan
2
cos
2
sin
u
u
u
Cd
Sd 


Therefore every point on the curve makes the angle
with the real ( C ) axis.
2
2
u

The radius of curvature of Cornu Spiral is
The tangent vector of Cornu Spiral is
SuCuT 1
2
sin1
2
cos 22














    u
SuCuu
udTdSdCdTd 


1
1
2
cos1
2
sin
1
/
1
/
1
22
22






















 
showing that the curve spirals toward the limit points.
 





2
1
2
2
cos
u
u
duu

 





2
1
2
2
sin
u
u
duu

 





2
1
2
2
exp
u
u
duuj

Table of Content
Optical Diffraction
61
SOLO
Fresnel Diffraction Approximations Examples
Augustin Jean Fresnel
1788-1827
Circular Aperture
Hecht p.491
Hecht p.492
Optical Diffraction
62
SOLO
Fresnel Diffraction Approximations Examples
Augustin Jean Fresnel
1788-1827
Circular Obstacles
Optical Diffraction
63
SOLO
Fresnel Diffraction Approximations Examples
Augustin Jean Fresnel
1788-1827
Fresnel Zone Plate
Optical Diffraction
64
SOLO
Fresnel Diffraction Approximations Examples
Augustin Jean Fresnel
1788-1827
Fresnel Diffraction by a Slit
Hecht p.504 a
Fresnel Diffraction
Hecht p.504 b
Optical Diffraction
65
SOLO
Fresnel Diffraction Approximations Examples
Augustin Jean Fresnel
1788-1827
Semi-Infinite Opaque Screen
Hecht p.506 a
Hecht p.506
Optical Diffraction
66
SOLO
Fresnel Diffraction Approximations Examples
Augustin Jean Fresnel
1788-1827
Semi-Infinite Opaque Screen
Hecht p.506 a
Hecht p.507
Optical Diffraction
67
SOLO Optics
Optical Transfer Function (OTF)
68
Point Spread Function (PSF)
The Point Spread Function, or PSF, is the image that an Optical System forms of
a Point Source. The PSF is the most fundamental object, and forms the basis for any
complex object. PSF is the analogous to Impulse Response Function in electronics.
   2
, yxPFTPSF 
The PSF for a perfect optical system (with no aberration) is the Airy disc, which is
the Fraunhofer diffraction pattern for a circular pupil.
SOLO Optics
69
Point Spread Function (PSF)
As the pupil size gets larger, the Airy disc gets smaller.
SOLO Optics
70
Convolution
     yxIyxOyxPSF ,,, 
        yxIyxOFTyxPSFFTFT ,,,1

Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley
SOLO Optics
71
Modulation Transfer Function (MTF)
Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley
SOLO Optics
72
Modulation Transfer Function (MTF)
The Modulation Transfer Function (MTF) indicates the ability of an Optical System
to reproduce various levels of details (spatial frequencies) from the object to image.
Its units are the ratio of image contrast over the object contrast as a function of
spatial frequency.


3.57
a
fcutoff
Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley
SOLO Optics
73
Modulation Transfer Function (MTF)
Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley
SOLO Optics
74
Phase Transfer Function (PTF)
• PTF contains information about asymmetry in PSF
• PTF contains information about contrast reversals (spurious resolution)
Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley
SOLO Optics
75
Relations between Wave Aberration, Point Spread Function and Modulation Transfer Function
• The Point Spread Function (PSF) is the Fourier Transform (FT) of the pupil function
• The Modulation Transfer Function (MTF) is the amplitude component of the FT of the PSF
• The Phase Transfer Function (PTF) is the phase component of the FT of the PSF
• The Optical Transfer Function (OTF) composed of MTF and PTF can also be computed
as the autocorrelation of the pupil function.
   
 







 yxWi
eyxPFTyxPSF
,
2
,, 

     iiyx yxPSFFTAmplitudeffMTF ,, 
     iiyx yxPSFFTPhaseffPTF ,, 
      yxyxyx ffPTFiffMTFffOTF ,exp,, 
SOLO Optics
76
Relations between Wave Aberration, Point Spread Function and Modulation Transfer Function
 
 







 yxWi
eFTyxPSF
,
2
, 

     iiyx yxPSFFTAmplitudeffMTF ,,       iiyx yxPSFFTPhaseffPTF ,, 
Austin Roorda, “Review of Basic Principles in Optics,
Wavefront and Wavefront Error”,
University of California, Berkley
SOLO Optics
Ideal Optical System
77
Relations between Wave Aberration, Point Spread Function and Modulation Transfer Function
 
 







 yxWi
eFTyxPSF
,
2
, 

     iiyx yxPSFFTAmplitudeffMTF ,,       iiyx yxPSFFTPhaseffPTF ,, 
Austin Roorda, “Review of Basic Principles in Optics,
Wavefront and Wavefront Error”,
University of California, Berkley
SOLO Optics
Real Optical System
78
Relations between Wave Aberration, Point Spread Function and Modulation Transfer Function
 
 







 yxWi
eFTyxPSF
,
2
, 

     iiyx yxPSFFTAmplitudeffMTF ,,       iiyx yxPSFFTPhaseffPTF ,, 
Austin Roorda, “Review of Basic Principles in Optics,
Wavefront and Wavefront Error”,
University of California, Berkley
SOLO Optics
Real Optical System
79
FIGURE : PSF and MTF for nominal wavefront errors of selected aberrations resulting in
~0.80 Strehl (~1/14 wave RMS), and the error doubled.
(a) the effect of 1/4 and 1/2 wave P-V
wavefront error of defocus on the
PSF intensity distribution (left)
and image contrast (right).
Doubling the error nearly halves
the peak diffraction intensity, but
the average contrast loss nearly
triples (evident from the peak PSF
intensity).
(b) 1/4 and 1/2 wave P-V of spherical
aberration. While the peak PSF
intensity change is nearly identical
to that of defocus, wider energy
spread away from the disc results in
more of an effect at mid- to high-
frequency range. Central disc at 1/2
wave P-V becomes larger, and less
well defined. The 1/2 wave curve
indicates ~20% lower actual cutoff
frequency in field conditions.
http://www.telescope-optics.net/
SOLO Optics
80
FIGURE : PSF and MTF for nominal wavefront errors of selected aberrations resulting in
~0.80 Strehl (~1/14 wave RMS), and the error doubled.
(c) 0.42 and 0.84 wave P-V wavefront error of
coma. Both, intensity distribution
(PSF) and contrast transfer change
with the orientation angle, due to the
asymmetric character of aberration.
The worst effect is along the axis of
aberration (red), or length-wise with
respect to the blur (0 and π orientation
angle), and the least is in the
orientation perpendicular to it (green).
(d) 0.37 and 0.74 wave P-V of astigmatism.
Due to the tighter energy spread, there
is less of a contrast loss with larger, but
more with small details, compared to
previous wavefront errors. Contrast is
best along the axis of aberration (red),
falling to the minimum (green) at every
45° (π/4), and raising back to its peak
at every 90°. The PSF is deceiving
here: since it is for a linear angular
orientation, the energy spread is lowest
for the contrast minima.
http://www.telescope-optics.net/
SOLO Optics
81
(e) Turned down edge effect on the PSF and
MTF. The P-V errors for 95% zone are
2.5 and 5 waves as needed for the initial
0.80 Strehl (the RMS is similarly out of
proportion). Lost energy is more evenly
spread out, and the central disc becomes
enlarged. Odd but expected TE property -
due to the relatively small area of the
wavefront affected - is that further
increase beyond 0.80 Strehl error level
does almost no additional damage.
f) The effect of ~1/14 and ~1/7 wave
RMS wavefront error of roughness,
resulting in the peak intensity and contrast
drop similar to those with other aberrations.
Due to the random nature of the aberration,
its nominal P-V wavefront error can vary
significantly for a given RMS error and
image quality level. Shown is the medium-
scale roughness ("primary ripple" or "dog
biscuit", in amateur mirror makers' jargon)
effect.
(g) 0.37 and 0.74 wave P-V of wavefront error
caused by pinching having the typical
3-sided symmetry (trefoil). The aberration
is radially asymmetric, with the degree of
pattern deformation varying between the
maxima (red MTF line, for the pupil angle
θ=0, 2π/3, 4π/3), and minima (green line,
for θ=π/3, π, 5π/3); (the blue line is for a
perfect aperture). Other forms do occur,
with or without some form of symmetry.
FIGURE : PSF and MTF for nominal wavefront errors of selected aberrations resulting in ~0.80 Strehl (~1/14 wave RMS), and the
error doubled.
82
h) 0.7 and 1.4 wave P-V wavefront error caused
by tube currents starting at the upper
30% of the tube radius. The energy
spreads mainly in the orientation of
wavefront deformation (red PSF line, to
the left). Similarly to the TE,
further increase in the nominal error
beyond a certain level has relatively
small effect Contrast and resolution for
the orthogonal to it pattern orientation
are as good as perfect (green MTF line).
(i) Near-average PSF/MTF effect of ~1/14 and
~1/7 wave RMS wavefront error of
atmospheric turbulence. The
atmosphere caused error fluctuates
constantly, and so do image contrast and
resolution level. Larger seeing errors (1/7
wave RMS is rather common with
medium-to-large apertures) result in a
drop of contrast in the mid- and high-
frequency range to near-zero level.
FIGURE : PSF and MTF for nominal wavefront errors of selected aberrations resulting
in ~0.80 Strehl (~1/14 wave RMS), and the error doubled.
http://www.telescope-optics.net/
SOLO Optics
83
Other Metrics that define Image Quality
Strehl Ratio
Strehl, Karl 1895, Aplanatische und fehlerhafte Abbildung im
Fernrohr, Zeitschrift für Instrumentenkunde 15 (Oct.), 362-370.
Dr. Karl Strehl
1864 -1940
One of the most frequently used optical terms in both,
professional and amateur circles is the Strehl ratio. It is
the simplest meaningful way of expressing the effect of
wavefront aberrations on image quality. By definition,
Strehl ratio - introduced by Dr. Karl Strehl at the end of
19th century - is the ratio of peak diffraction intensities of
an aberrated vs. perfect wavefront. The ratio indicates
image quality in presence of wavefront aberrations; often
times, it is used to define the maximum acceptable level of
wavefront aberration for general observing - so-called
diffraction-limited level - conventionally set at 0.80 Strehl.
SOLO Optics
84
The Strehl ratio is the ratio of the irradiance at the center of the reference
sphere to the irradiance in the absence of aberration.
Irradiance is the square of the complex field amplitude u
0
E
E
Strehl 
2
uE 
 dxdyyxWjUu )),(2exp(0 
Other Metrics that define Image Quality
Strehl Ratio
Expectation Notation


dxdy
dxdyyxu
uu
),(
SOLO Optics
85
Derivation of Strehl Approximation
 2
0
21 W
E
E
Strehl 
),(2
0
yxWj
eUu 

  22
0 ),(2
2
1
),(21 yxWyxWjUu  
  2
0
2
00 ),(2
2
1
),(2 yxWUyxWUjUu  
series expansion
    2
0
22
0
2
0 ),(2),(2 yxWEyxWEEE  
multiply by
complex conjugate
2222
),(),(),(),( yxWyxWyxWyxWW 
wavefront variance:
SOLO Optics
86
 2
0
21 W
E
E
Strehl 
22
2
),(),( yxWyxWWWW 
where W is the wavefront variance:
 2
2 W
eStrehl 
Another approximation for the Strehl ratio is
Strehl Approximation
Diffraction Limit
8.0Strehl
A system is diffraction-limited when the Strehl ratio is greater
than or equal to 0.8
Maréchal’s criterion:
This implies that the rms wavefront error is less than /13.3 or
that the total wavefront error is less than about /4.
SOLO Optics
87
Other Metrics that define Image Quality
Strehl Ratio
dl
eye
H
H
RatioStrehl 
Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley
SOLO Optics
88
Other Metrics that define Image Quality
Strehl Ratio
  2m
n
Crms
when rms is small
 2
2
2
1 rmsStrehl 








SOLO Optics
89
Other Metrics that define Image Quality
FIGURE 34: Pickering's seeing scale uses 10 levels to categorize seeing quality, with the level 1 being
the worst and level 10 near-perfect. Its seeing description corresponding to the numerical
seeing levels are: 1-2 "very poor", 3 "poor to very poor", 4 "poor", 5 "fair", 6 "fair to good"
7 "good", 8 "good to excellent", 9 "excellent" and 10 "perfect". Diffraction-limited seeing
error level (~0.8 Strehl) is between 8 and 9.
Pickering 1 Pickering 2 Pickering 3 Pickering 4 Pickering 5
Pickering 6 Pickering 7 Pickering 9 Pickering 10Pickering 8
William H. Pickering
(1858-1938)
SOLO Optics
90
Other Metrics that define Image Quality
FIGURE: Illustration of a point source (stellar) image degradation caused by
atmospheric turbulence. The left column shows best possible average
seeing error in 2 arc seconds seeing (ro~70mm @ 550nm) for four
aperture sizes. The errors are generated according to Eq.53-54, with the
2" aperture error having only the roughness component (Eq.54), and
larger apertures having the tilt component added at a rate of 20% for
every next level of the aperture size, as a rough approximation of its
increasing contribution to the total error (the way it is handled by the
human eye is pretty much uncharted territory). The two columns to the
right show one possible range of error fluctuation, between half and
double the average error. The best possible average RMS seeing error is
approximately 0.05, 0.1, 0.2 and 0.4 wave, from top to bottom (the effect
would be identical if the aperture was kept constant, and ro reduced). The
smallest aperture is nearly unaffected most of the time. The 4" is already
mainly bellow "diffraction-limited", while the 8" has very little chance of
ever reaching it, even for brief periods of time. The 16" is, evidently,
affected the most. The D/ro ratio for its x2 error level is over 10, resulting
in clearly developed speckle structure. Note that the magnification shown
is over 1000x per inch of aperture, or roughly 10 to 50 times more than
practical limits for 2"-16" aperture range, respectively. At given nominal
magnification, actual (apparent) blur size would be smaller inversely to
the aperture size. It would bring the x2 blur in the 16" close to that in 2"
aperture (but it is obvious how a further deterioration in seeing quality
would affect the 16" more).
Eugène Michel Antoniadi
(1870 –, 1944)
The scale, invented by Eugène Antoniadi, a Greek astronomer, is on a 5 point system, with one being
the best seeing conditions and 5 being worst. The actual definitions are as follows:
I. Perfect seeing, without a quiver.
II. Slight quivering of the image with moments of calm lasting several seconds.
III. Moderate seeing with larger air tremors that blur the image.
IV. Poor seeing, constant troublesome undulations of the image.
V. Very bad seeing, hardly stable enough to allow a rough sketch to be made.
Image Degradation Caused by Atmospheric Turbulence
SOLO Optics
91
     iiyx yxPSFFTAmplitudeffMTF ,, 
 
 







 yxWi
eFTyxPSF
,
2
, 

Point Spread Function
SOLO Optics
92
 
 







 yxWi
eFTyxPSF
,
2
, 

     iiyx yxPSFFTAmplitudeffMTF ,, 
Point Spread Function
SOLO Optics
93
     iiyx yxPSFFTAmplitudeffMTF ,, 
 
 







 yxWi
eFTyxPSF
,
2
, 
 Point Spread Function
SOLO Optics
94
SOLO
converging beam
=
spherical wavefront
parallel beam
=
plane wavefront
Image Plane
Ideal Optics
ideal wavefront
parallel beam
=
plane wavefront
Image Plane
Non-ideal Optics
defocused wavefront
ideal wavefrontparallel beam
=
plane wavefront
Image Plane
Non-ideal Optics
aberrated beam
=
iregular wavefront
diverging beam
=
spherical wavefront
aberrated beam
=
irregular wavefront
Image Plane
Non-ideal Optics
ideal wavefront
Optical Aberration See full development in P.P.
“Optical Aberration”
95
SOLO
converging beam
=
spherical wavefront
parallel beam
=
plane wavefront
Image Plane
Ideal Optics
P'
Optical Aberration
converging beam
=
spherical wavefront
Image Plane
Ideal Optics
diverging beam
=
spherical wavefront
P
P'
An Ideal Optical System can be defined by one of the three different and equivalent ways:
All the rays emerging from a point source P, situated at a finite or infinite distance
from the Optical System, will intersect at a common point P’, on the Image Plane.
1
All the rays emerging from a point source P will travel the same Optical Path to reach
the image point P’.
2
The wavefront of light, focused by the Optical System on the Image Plane, has a
perfectly spherical shape, with the center at the Image point P.
3
Ideal Optical System
96
SOLO
ideal wavefrontparallel beam
=
plane wavefront
Image Plane
Non-ideal Optics
aberrated beam
=
iregular wavefront
diverging beam
=
spherical wavefront
aberrated beam
=
irregular wavefront
Image Plane
Non-ideal Optics
ideal wavefront
Optical Aberration
Real Optical System
An Aberrated Optical System can be defined by one of the three different and equivalent
ways:
The rays emerging from a point source P, situated at a finite or infinite distance
from the Optical System, do not intersect at a common point P’, on the Image Plane.
1
The rays emerging from a point source P will not travel the same Optical Path to reach
the Image Plane
2
The wavefront of light, focused by the Optical System on the Image Plane, is not
spherical.
3
97
Optical Aberration W (x,y) is the path deviation between the distorted and reference
Wavefront.
SOLO Optical Aberration
98
SOLO Optical Aberration
Display of Optical Aberration W (x,y)
Rays Deviation1
Optical Path Length Difference2
wavefront shape W (x,y)3
x
y
x
x
y
 yxW ,
y
 yxW ,
Red circle denotes the pupile margin.
Arrows shows how each ray is deviated
as it emerges from the pupil plane.
Each of the vectors indicates the the
local slope of W (x,y).
The aberration W (x,y) is
represented in x,y plane by
color contours.
Wavefront
Error
Optical
Distance
Errors
Ray
Errors
The Wavefront error agrees with
Optical Path Length Difference,
But has opposite sign because a
long (short) optical path causes
phase retardation (advancement).
Aberration Type:
Negative vertical
coma
Reference
99
SOLO Optical Aberration
Display of Optical Aberration W (x,y)
Advanced phase <= Short optical path
Retarded phase <= Long optical path
Reference
Ectasia
x
y y
 yxW ,
x x
y
 yxW ,
Ray Errors Optical Distance Errors Wavefront Error
100
Optical AberrationSOLO
Real Imaging Systems
Start from the idealized conditions of Gaussian Optics.
Object
Gaussian
Image
planeExit
Pupil
(ExP)
Optics
 00 ,0, zxP 
 gg zxP ,0,'
iz
gz
y
x
z
Gaussian
Image
 zyxQ ,,
 0,0,0O
n
We have an Ideal Optical System with the center of the Exit Pupil (ExP) at point O (0,0,0).
The Optical Axis (OA) passes through O in the z direction. Normal to OA we defined the
Cartezian coordinates x,y. (x,z) is the tangential (meridional) plane and (y,z) the sagittal
plane defined by P and OA.
 00 ,0, zxP  Object
 0,0,0O Center of ExP
 gg zxP ,0,' Gaussian Image
gzz  Gaussian Image plane
'POP Chief Ray
'PQP General Ray  zyxQ ,,
The Gaussian Image is obtained
from rays starting at the Object P that
passing through the Optics intersect
at P’.
  ':' QPnPQnPQPpathOptical 
General Ray
Aberrations
101
SOLO
Real Imaging Systems
'POP Chief Ray
'PQP General Ray  zyxQ ,,
For an idealized system all the optical
paths are equal.
  ':' QPnPQnPQPpathOptical 
General Ray
 
  ''
''
OPnPOnPOP
QPnPQnPQP


    
    
    2/1222/12
0
2
0
2/1222
2/12
0
22
0
gg
gg
zxnzxn
zzyxxn
zzyxxn



Object
Gaussian
Image
planeExit
Pupil
(ExP)
Optics
 00 ,0, zxP 
 gg zxP ,0,'
iz
gz
y
x
z
Gaussian
Image
 zyxQ ,,
 0,0,0O
n
Optical Aberration
Aberrations (continue – 1)
102
SOLO
Real Imaging Systems
Object
Gaussian
Image
planeExit
Pupil
(ExP)
Optics
 00 ,0, zxP 
 gg zxP ,0,'
iz
Gaussian
Spherical
Waves
center P gz
y
x
z
Gaussian
Image
 zyxQ ,,
 0,0,0O
Gaussian
Spherical
Waves
center P'
For homogeneous media (n = constant) the velocity of light is constant, therefore the
rays starting/arriving from/to a point are perpendicular to the spherical wavefronts.
Optical paths from P:
     2/12
0
22
0),( zzyxxnQPV 
     2/1222
)',( gg zzyxxnPQV 
Optical paths to P’:
Rays from P:
   
   
     2/12
0
22
0
00
,,),(
ˆ
,
1
zzyxx
zzzyyxxx
QPV
n
s zyxQP






Rays to P’:
   
   
     2/1222
,,)',(
ˆ
',
1
gg
gg
zyxPQ
zzyxx
zzzyyxxx
PQV
n
s






Optical Aberration
Aberrations (continue – 2)
103
SOLO
Real Imaging Systems
Departures from the idealized conditions of Gaussian Optics in a real Optical System are
called Aberrations
 00 ,0, zxP  Object
 0,0,0O Center of ExP
 gg zxP ,0,' Gaussian Image
gzz  Gaussian Image plane
The aberrated image of P in
the Gaussian Image plane is
 gii zyxP ,,"
Define the Reference Gaussian
Sphere having the center at P’
and passing through O:
022222
 gg zzxxzyx
P” is the intersection of rays normal to the
Aberrated Wavefront that passes trough point
O (OP” is a Chief Ray).
Choose any point on the Aberrated Wavefront. The Ray
intersects the Reference Gaussian Sphere at Q (x, y, z).
Q "PQ
Object
Gaussian
Image
planeExit
Pupil
(ExP)
Optics
 00 ,0, zxP   zyxQ ,,
 gg zxP ,0,'
 gii zyxP ,,"
iy
iz
Reference
Gaussian
Sphere
center P'
Aberrated
Wavefront
center P"
 0,0,0O
gz
y
x Q
z
Gaussian
Image
Aberrated
Image
ChiefRay
Chief
Ray
Optical Aberration
Aberrations (continue – 3)
104
SOLO
Real Imaging Systems
Object
Gaussian
Image
planeExit
Pupil
(ExP)
Optics
 00 ,0, zxP   zyxQ ,,
 gg zxP ,0,'
 gii zyxP ,,"
iy
iz
Reference
Gaussian
Sphere
center P'
Aberrated
Wavefront
center P"
 0,0,0O
gz
y
x Q
z
Gaussian
Image
Aberrated
Image
ChiefRay
Chief
Ray
Choose any point on the Aberrated Wavefront. The Ray
intersects the Reference Gaussian Sphere at Q (x, y, z).
Q "PQ
   QPVQPVW ,, 
By definition of the wavefront, the
optical path length of the ray starting
at the object P and ending at
is identical to that of the Chief Ray
ending at O.
Q
Therefore the Wave Aberration is defined as
the difference in the optical paths from P to Q
V (P,Q) to that from P to  QPVQ ,,
Define the Optical Path from
P(x0,0,-z0) to Q (x,y,z) as:  
 
 


zyxQ
zxP
raydnQPV
,,
,0, 00
:,
Since by definition:    OPVQPV ,, 
            zyxQWOzxPVzyxQzxPVW ,,0,0,0,,0,,,,,0, 0000 
Since Q (x,y,z) is constraint on the Reference Guidance Sphere:
we can assume that z is a function of x and y, and
022222
 gg zzxxzyx
            0,0,0,,0,,,,,,0,, 0000 OzxPVyxzyxQzxPVyxW 
Optical Aberration
Aberrations (continue – 4)
105
SOLO
Real Imaging Systems
Object
Gaussian
Image
planeExit
Pupil
(ExP)
Optics
 00 ,0, zxP   zyxQ ,,
 gg zxP ,0,'
 gii zyxP ,,"
iy
iz
Reference
Gaussian
Sphere
center P'
Aberrated
Wavefront
center P"
 0,0,0O
gz
y
x Q
z
Gaussian
Image
Aberrated
Image
ChiefRay
Chief
Ray
Given the Wave Aberration function W (x,y)
the Gaussian Image P’(xg,0,zg)
of P and the point Q (x,y,z)
on the Reference Guidance Sphere
we want to find the point P”(xi,yi,zg)
022222
 gg zzxxzyx
            0,0,0,,0,,,,,,0,, 0000 OzxPVyxzyxQzxPVyxW 
Solution:
         
Q
x
z
z
yxzyxQPV
x
yxzyxQPV
x
yxW









 ,,,,,,,,,
 
       2/1222
,,
,,
zzyyxx
zzyyxx
n
z
V
y
V
x
V
gii
gii














Compute relative to Q by differentiating relative to x:022222
 gg zzxxzyx
Q
x
z


       gi
g
g
gi xx
R
n
zz
xx
zz
R
n
xx
R
n
x
yxW






'''
,  
x
yxW
n
R
xx gi



,'
In the same way:
 
y
yxW
n
R
yi



,'
The ray from Q to P” is given by (see ):
Forward to
a 2nd way
Optical Aberration
Aberrations (continue – 5)
106
SOLO
Real Imaging Systems
Defocus Aberration
Consider an optical system for which the
object P, the Gaussian image P’ and the
aberrated image P” are on the Optical Axis.
The Gaussian Reference Sphere passing through
O (center of ExP) has the center at P’.
The Aberrated Wavefront Sphere passing through
O (center of ExP) has the center at P”.
Consider a ray ( on the Aberrated
Wavefront Sphere) that intersects the Gaussian
Reference Sphere at Q, that is at a distance r
from the Optical Axis.
Q"PQ
    UBBnQQnQQVrW cos/, The Wave Aberration is defined as
     


  12
22
1
22
2
cos
'"'"
cos
RRrRrR
U
n
PPBPPB
U
n
rW
Reference
Sphere
center at P2
O
QQ
"P'P
Aberrated
Wavefront
center at P1
Exit
Pupil
(ExP)
B
r 1R
2R
B
U
Gaussian
image
plane
Optical
Axis
R
Image
plane
Optical Aberration
107
SOLO
Real Imaging Systems
Defocus Aberration (continue – 1)
Reference
Sphere
center at P2
O
QQ
"P'P
Aberrated
Wavefront
center at P1
Exit
Pupil
(ExP)
B
r 1R
2R
B
U
Gaussian
image
plane
Optical
Axis
R
Image
plane
Let make the following assumptions:
     


  12
22
1
22
2
cos
'"'"
cos
RRrRrR
U
n
PPBPPB
U
n
rW
21,1cos RRrU 
   
 



















































4
1111
2
82
1
82
1
'"'"
cos
4
3
2
3
1
2
21
124
1
4
2
1
2
14
2
4
2
2
2
2
r
RR
r
RR
n
RR
R
r
R
r
R
R
r
R
r
Rn
PPBPPB
U
n
rW
1
1682
11
32
 x
xxx
x 
Assume: RRRRRR  2112 &
  2
2
2
r
R
Rn
rW

we have: Δ R is called the Longitudinal Defocus.
Optical Aberration
108
SOLO
Real Imaging Systems
Defocus Aberration (continue – 2)
For a circular exit pupil of radius a we have:
  22
2
#
8
 dA
f
Rn
W 


a
R
f
2
:# F number:
Define: a
r
:
Therefore
Where is the peak value of the
Defocus Aberration
2
#
8
:
f
Rn
Ad


Reference
Sphere
center at P2
O
QQ
"P'P
Aberrated
Wavefront
center at P1
Exit
Pupil
(ExP)
B
r 1R
2R
B
U
Gaussian
image
plane
Optical
Axis
R
Image
plane
a
Optical Aberration
109
http://129.7.217.162/VOI/WavefrontCongress/2006/presentations/1ROORDAprincip.pdf
   22
, yxAyxW d 
Optical Aberration
Wave Aberration: Defocus
SOLO
Real Imaging Systems
Defocus Aberration (continue – 3)
110http://129.7.217.162/VOI/WavefrontCongress/2006/presentations/1ROORDAprincip.pdf
Optical Aberration
Wavefront Errors for Defocus
111
SOLO
Real Imaging Systems
Wavefront Tilt Aberration
Reference
Sphere
centered at P1
O
 zyxQ ,,Q
1P
Abrrrated
Wavefront
center at P2
Exit
Pupil
(ExP)
B
r
B
U
ix
2P

Gaussian
image
plane
Tangential
plane
1R
R
R
Assume an optical system that has one ore more
optical elements tilted and/or decentered.
The object P is on the Optical Axes (OA), therefore
the Gaussian image P1 is also on OA. Therefore the
Gaussian Reference Sphere that passes trough ExP
center O has it’s center at P1. P2 is the aberrated
image on the Gaussian image plane (that contains
P1) is a distance xi from OA. The Aberrated
Wavefront that passes through O has it’s center at
P2. Therefore for small P1P2 the two surfaces are
tilted by an angle β.
Consider the ray where:2QPQ
 zyxQ ,, on the Gaussian Reference Sphere 02 1
222
 xRzyx
Q on the Aberrated Wavefront Sphere centered at P2 and radius R.
cos1 RR 
 12 ,0, RxP i the aberrated image
 RRxi  sin
    sin,cos, rryx 
Optical Aberration
112
SOLO
Real Imaging Systems
Wavefront Tilt Aberration (continue – 1)
Reference
Sphere
centered at P1
O
 zyxQ ,,Q
1P
Abrrrated
Wavefront
center at P2
Exit
Pupil
(ExP)
B
r
B
U
ix
2P

Gaussian
image
plane
Tangential
plane
1R
R
R
We have
x
W
n
R
Rxi


 
    QQnQQVrW  ,
The Wave Aberration is
n
x
W



 cos
0
rnxnxd
x
W
W
x



 
For a circular exit pupil of radius a we have:
a
r
:
   coscos, 1BanW 
where:
anB :1
Optical Aberration
113
SOLO
Real Imaging Systems
Departures from the idealized conditions of Gaussian Optics in a real Optical System are
called Aberrations
Monochromatic Aberrations
Chromatic Aberrations
• Monochromatic Aberrations
Departures from the first order theory are embodied
in the five primary aberrations
1. Spherical Aberrations
2. Coma
3. Astigmatism
4. Field Curvature
5. Distortion
This classification was done in 1857
by Philipp Ludwig von Seidel (1821 – 1896)
• Chromatic Aberrations
1. Axial Chromatic Aberration
2. Lateral Chromatic Aberration
Optical Aberration
114
SOLO
Real Imaging Systems
Optical Aberration
115
SOLO
Real Imaging Systems
Optical Aberration
116
SOLO
Real Imaging Systems
Optical Aberration
117
SOLO
Real Imaging Systems
Seidel Aberrations
Consider a spherical surface of radius R, with an object P0 and the image P0’ on the
Optical Axis.
n
'n
CB
R
0P '0P
 ,rQ
0V
r
z
 s
's
Chief Ray
General Ray
AS
Enp
Exp
The Chief Ray is P0 V0 P0’ and a
General Ray P0 Q P0’.
The Wave Aberration is defined as
the difference in the optical path
lengths between a General Ray and
the Chief Ray.
         snsnQPnQPnPVPQPPrW  '''''' 00000000
On-Axis Point Object
The aperture stop AS, entrance pupil EnP,
and exit pupil ExP are located at the
refracting surface.
Optical Aberration
118
SOLO
Real Imaging Systems
Seidel Aberrations (continue – 1)
n
'n
CB
R
0P '0P
 ,rQ
0V
r
z
 s
's
Chief Ray
General Ray
AS
Enp
Exp








 2
2
22
11
R
r
RrRRz
Define:
  2
2
11
2
2
R
r
xxf
R
r
x


    2/1
1
2
1
'

 xxf
    2/3
1
4
1
"

 xxf     2/5
1
8
3
'"

 xxf
Develop f (x) in a Taylor series            0"'
6
0"
2
0'
1
0
32
f
x
f
x
f
x
fxf
1
1682
11
32
 x
xxx
x 
Rr
R
r
R
r
R
r
R
r
Rz 








 5
6
3
42
2
2
1682
11
On Axis Point Object
From the Figure:
  222
rzRR  02 22
 rRzz
Optical Aberration
119
SOLO
Real Imaging Systems
Seidel Aberrations (continue – 2)
n
'n
CB
R
0P '0P
 ,rQ
0V
r
z
 s
's
Chief Ray
General Ray
AS
Enp
Exp
From the Figure:
    
     2/1
2
2/12
2
2/12222/122
0
212
2
22





 



z
s
sR
sszsR
rsszzrszQP
rzRz
   














2
4
2
2
1
1682
11
2
1
1
32
z
s
sR
z
s
sR
s
x
xxx
x
   



























2
3
42
4
2
3
42
2
82
822
1
82
1
3
42
R
r
R
r
s
sR
R
r
R
r
s
sR
s
R
r
R
r
z
   


























 4
2
2
22/122
0
11
8
111
8
111
2
1
r
sRssRR
r
sR
srszQP
   


























 4
2
2
22/122
0
1
'
1
'8
11
'
1
8
11
'
1
2
1
''' r
RssRsR
r
Rs
srzsPQ
In the same way:
On Axis Point Object
Optical Aberration
120
SOLO
Real Imaging Systems
Seidel Aberrations (continue – 3)
n
'n
CB
R
0P '0P
 ,rQ
0V
r
z
 s
's
Chief Ray
General Ray
AS
Enp
Exp



























 4
2
2
2
0
11
8
111
8
111
2
1
r
sRssRR
r
sR
sQP



























 4
2
2
2
0
1
'
1
'8
11
'
1
8
11
'
1
2
1
'' r
RssRsR
r
Rs
sPQ
Therefore:
     
4
22
2
42
000
11
'
11
'
'
8
1
82
'
'
'
''''
r
sRs
n
sRs
n
R
rr
R
nn
s
n
s
n
snsnQPnQPnrW































 


Since P0’ is the Gaussian image of P0 we have
  R
nn
s
n
s
n 



'
'
'
and:
  44
22
0
11
'
11
'
'
8
1
rar
sRs
n
sRs
n
rW S





















On Axis Point Object
Optical Aberration
121
SOLO
Real Imaging Systems
Seidel Aberrations (continue – 4)
Off-Axis Point Object
Consider the spherical surface of radius R, with an object P and its Gaussian image P’
outside the Optical Axis.
The aperture stop AS, entrance pupil EnP, and
exit pupil ExP are located at the refracting surface.
Using
''~ 00 CPPCPP 
the transverse magnification
   
s
n
s
n
nn
s
s
n
s
n
nn
s
Rs
Rs
h
h
Mt












'
'
'
'
'
'
'
''
 sn
sn
nn
s
s
nn
nn
s
s
nn
Mt





'
'
'
'
'
'
'
'
n
'n
CB
R
0P
'0P
 ,rQ
0V
r
z
 s
's
Chief Ray
GeneralRay
AS
Enp
Exp
'P
Undeviated Ray
P
 h
'h

V
Optical Aberration
122
SOLO
Real Imaging Systems
Seidel Aberrations (continue – 5)
Off-Axis Point Object
The Wave Aberration is defined as the difference
in the optical path lengths between the General
Ray and the Undeviated Ray.
     
         
 4
0
4
0 ''''
''
VVVQa
PVPPPVPVPPQP
PVPPQPQW
S 


For the approximately similar triangles VV0C and CP0’P’ we have:
CP
CV
PP
VV
''' 0
0
0
0
 ''
'
''
'
0
0
0
0 hbh
Rs
R
PP
CP
CV
VV 


Rs
R
b


'
:





















22
11
'
11
'
'
8
1
sRs
n
sRs
n
aS
n
'n
CB
R
0P
'0P
 ,rQ
0V
r
z
 s
's
Chief Ray
GeneralRay
AS
Enp
Exp
'P
Undeviated Ray
P
 h
'h

V
Optical Aberration
123
SOLO
Real Imaging Systems
Seidel Aberrations (continue – 6)
Off-Axis Point Object
Wave Aberration.
       4
0
4
'' VVVQaPVPPQPQW S 
Define the polar coordinate (r,θ) of the projection of Q in the plane of exit pupil, with
V0 at the origin.
 cos'2'cos2 222
0
2
0
2
2
hbrhbrVVrVVrVQ 
'0
hbVV 
       
  442222
4
0
4
'cos'2'
''
hbhbrhbra
VVVQaPVPPQPQW
S
S



    cos'4'2cos'4cos'4';, 33222222234
rhbrhbrhbrhbrahrW S

P
r 'y
'x
n
'n
CB
R
0P
'0P
 ,rQ
0V
r
z
 s
's
Chief Ray
GeneralRay
AS
Enp
Exp
'P
Undeviated Ray
P
 h
'h

V
Optical Aberration
124
SOLO
Real Imaging Systems
Seidel Aberrations (continue – 7)
General Optical Systems
   cos''cos'cos'';, 33222222234
rhbCrhbCrhbCrhbCrChrW DiFCAsCoSp 
A General Optical Systems has more than on Reflecting or
Refracting surface. The image of one surface acts as an
object for the next surface, therefore the aberration is additive.
We must address the aberration in the plane of the exit pupil, since the rays follow
straight lines from the plane of the exit pupil.
The general Wave Aberration Function is:
1. Spherical Aberrations CoefficientSp
C
2. Coma CoefficientCoC
3. Astigmatism CoefficientAsC
4. Field Curvature CoefficientFCC
5. Distortion CoefficientDiC
where:
n
'n
C O
0P
'0P
 ,rQ
0V
r
 s
's
Chief Ray
GeneralRay
Exit Pupil
Exp
'P
Undeviated Ray
P
 h
'h

~
Optical Aberration
125
Spherical Aberations
B
4
1

r
4
4
1
rBW 
O
W
( a )
Coma
cos' 3
rhFW 
W
'hF
O
( b )
r

Astigmatism
cos' 22
rhCW 
W
( c )

2
'hC
O
r
Curvature of Field
2
'
2
1
hD
r
22
'
2
1
rhDW 
O
W
( d )
Distortion
3
'hE
cos'3
rhEW 
W
( e )
r
O

SOLO
Real Imaging Systems
Seidel Aberrations (continue – 8)
   cos''cos'cos'';, 32222234
rhCrhCrhCrhCrChrW DiFCAsCoSp 
Optical Aberration
126
OpticsSOLO
Real Imaging Systems – Aberrations (continue – 1)
1. Spherical Aberrations
Longitudinal variation of focus with aperture (the distance of the parallel rays from the
Optical Axis.
n 'n
C
A
F’
R
Paraxial
Focus
Spherical
Aberration
127
SOLO
Real Imaging Systems
Graphical Explanation of Coma Blur
1
1
2
2
3
3
4
4
Optical Axis
1
Meridional
(Tangential)
Plane
P
Image
Plane
Tangential
Rays 1
O
Lens
A Tangential Rays 1
Chief Ray
1
1
1
2
2
3
3
4
4
Optical Axis
1
Sagittal
Plane
P
Image
Plane
Sagittal
Rays 2
O
Lens
A
2
Sagittal Rays 2
Chief Ray
2
1
1
2
2
3
3
4
4
Optical Axis
1
P
Image
Plane
Skew
Rays 3
O
Lens
A
2
3
Skew Rays 3
Chief Ray
3
1
1
2
2
3
3
4
4
Optical Axis
1
P
Image
Plane
Skew
Rays 4
O
Lens
A
2
3
4
Skew Rays 4
Chief Ray
4
2. Coma
Optical Aberration
128
SOLO
Real Imaging Systems
1
2
3 4
P
Image
Plane
O
SC
SC
ST CC 3
Coma Blur Spot Shape
Tangential
Coma
Sagittal
Coma
1
1
2
2
3
3
4
4
Optical Axis
1
P
Image
Plane
O
Lens
A
2
3
4
Coma Image Pattern
Chief Ray
Tangential
Plane
Sagittal
Plane
Graphical Explanation of Coma Blur (continue – 1)
2. Coma (continue – 1)
Optical Aberration
1
'1 24
'4 '2
3
'3
0

60
1
Corresponding
points on 11
1
33
4
4
2
2
'1
'1
'2
'2
'3'3
'4
'4
0
Points on lens
'1
1
1
'1
S
P,O
129
OpticsSOLO
Real Imaging Systems – Aberrations (continue – 3)
3. Astigmatism
Meridional
plane
Sagittal
plane
Primary
image
Secondary
image
Circle of least
confusion
Object
point
Optical
System
Chief
ray
SF
TF
Ray in
Sagittal plane
Ray in
Meridional plane
130
SOLO
Real Imaging Systems – Aberrations
4. Field Curvature
  222
'';, rhbChrW FCFC

Optical Aberration
131
4. Field Curvature
SOLO Optical Aberration
132
SOLO
Real Imaging Systems – Aberrations
5. Distortion
 
xhbC
rhbChrW
Di
DiDi
33
33
'
cos'';,

 
Optical Aberration
   cos''cos'cos'';, 33222222234
rhbCrhbCrhbCrhbCrChrW DiFCAsCoSp 
The general Wave Aberration Function is:
Consider only the Distorsion
Wave Aberration Function
n
'n
C O '0
P
 ,rQ
0
V
r
General Ray
Exit Pupil
Exp
'P
Undeviated Ray
'h

~
Image
Plane
'L
Chief Ray
n
    0
';,
'
'
&
'
''';,
'
' 33





y
hyxW
n
L
yC
n
Lhb
x
hyxW
n
L
x iDii
Meridional
plane
Sagittal
plane
Object
point
Optical
System
Chief
ray
Ray in
Sagittal plane
Ray in
Meridional plane
Optical
axis
Optical
axis
gx
ix
We can see that the Distortion
Aberration is only in the object
Meridional (Tangential) Plane.
133
SOLO
Real Imaging Systems – Aberrations (continue – 5)
5. Distortion  
xhbC
rhbChrW
Di
DiDi
33
33
'
cos'';,

 
Optical Aberration
    0
';,
'
'
&
'
''';,
'
' 33





y
hyxW
n
L
yC
n
Lhb
x
hyxW
n
L
x iDii
Object
points
Optical
System
Chief
ray
Optical
axis
Optical
axis
1g
x
1ix
0

0r
0x
0y
5g
x
5i
x
Gaussian
image
Distorted
image
4g
x
4i
x
1 2
3
4 5
Tangential
plane # 4
Let take instead of a point image, a line (multiple image points).
Distortion
3
'hE
cos'3
rhEW 
W
( e )
r
O

For each point we have a different tangential
plane and therefore a different x.
  '
2/122
hyx 
To obtain the image we must substitute
    2/1222/122
sin&cos
yx
y
yx
x



 
and we get:
   
 
 23
3
2/122
2/322
3
2/322
3
'
'
'
'
cos
'
'
yxxC
n
Lb
yx
x
yxC
n
Lb
yxC
n
Lb
x DiDiDii


 
   
 
 32
3
2/122
2/322
3
2/322
3
'
'
'
'
sin
'
'
yyxC
n
Lb
yx
y
yxC
n
Lb
yxC
n
Lb
y DiDiDii


 
134
SOLO
Real Imaging Systems – Aberrations (continue – 5)
5. Distortion  
xhbC
rhbChrW
Di
DiDi
33
33
'
cos'';,

 
Optical Aberration
Object
points
Optical
System
Chief
ray
Optical
axis
Optical
axis
1g
x
1ix
0

0r
0x
0y
5g
x
5i
x
Gaussian
image
Distorted
image
4g
x
4i
x
1 2
3
4 5
Tangential
plane # 4
Now consider a line object that yields a
paraxial image x =a (see Figure).
   
 
 23
3
2/122
2/322
3
2/322
3
'
'
'
'
cos
'
'
yxxC
n
Lb
yx
x
yxC
n
Lb
yxC
n
Lb
x DiDiDii


 
   
 
 32
3
2/122
2/322
3
2/322
3
'
'
'
'
sin
'
'
yyxC
n
Lb
yx
y
yxC
n
Lb
yxC
n
Lb
y DiDiDii


 
 23
3
'
'
yaaC
n
Lb
x Dii 
 32
3
'
'
yyaC
n
Lb
y Dii 
135
SOLO
Real Imaging Systems – Aberrations (continue – 5)
5. Distortion
   cos'';, 33
rhbChrW DiDi

Optical Aberration
   cos''cos'cos'';, 33222222234
rhbCrhbCrhbCrhbCrChrW DiFCAsCoSp 
The general Wave Aberration Function is:
Consider only the Distorsion
Wave Aberration Function
Distortion
3
'hE
cos'3
rhEW 
W
( e )
r
O

n
'n
C O '0
P
 ,rQ
0
V
r
General Ray
Exit Pupil
Exp
'P
Undeviated Ray
'h

~
Image
Plane
'L
Chief Ray
n
136
SOLO Optics
Chester Moor Hall (1704 – 1771) designed in secrecy the achromatic lens.
He experienced with different kinds of glass until he found in 1729 a combination of
convex component formed from crown glass with a concave component formed from
flint glass, but he didn’t request for a patent.
http://microscopy.fsu.edu/optics/timeline/people/dollond.html
In 1750 John Dollond learned from George Bass on Hall achromatic lens and designed
his own lenses, build some telescopes and urged by his son
Peter (1739 – 1820) applied for a patent.
Born & Wolf,”Principles of Optics”, 5th Ed.,p.176
Chromatic Aberration
In 1733 he built several telescopes with apertures of 2.5” and 20”. To keep secrecy
Hall ordered the two components from different opticians in London, but they
subcontract the same glass grinder named George Bass, who, on finding that both
Lenses were from the same customer and had one radius in common, placed them
in contact and saw that the image is free of color.
The other London opticians objected and
took the case to court, bringing Moore-Hall
as a witness. The court agree that Moore-
Hall was the inventor, but the judge Lord
Camden, ruled in favor of Dollond saying:”It
is not the person who locked up his invention
in the scritoire that ought to profit by a
patent for such invention, but he who
brought it forth for the benefit of the public”
137
SOLO Optics
Chromatic Aberration
Longitudinal
Chromatic
Aberration
Blue
Focal
Point
Red
Focal
Point
Lateral
Chromatic
Aberration
Red
Focal
Point
Chromatic Aberrations arise in
Polychromatic IR Systems because
the material index n is actually
a function of frequency. Rays at
different frequencies will traverse
an optical system along different paths.
138
SOLO Optics
Chromatic Aberration
1R 121' RRR 
'2R
Crown
Flint
1n 2n
139
SOLO Optics
Chromatic Aberration
Every piece of glass will separate white light into a spectrum
given the appropriate angle. This is called dispersion. Some
types of glasses such as flint glasses have a high level of
dispersion and are great for making prisms. Crown glass
produces less dispersion for light entering the same angle as
flint, and is much more suited for lenses. Chromatic aberration
occurs when the shorter wavelength light (blue) is bent more
than the longer wavelength (red). So a lens that suffers from
chromatic aberration will have a different focal length for
each color
To make an achromat, two lenses are put together to work as a
group called a doublet. A positive (convex) lens made of high
quality crown glass is combined with a weaker negative
(concave) lens that is made of flint glass. The result is that the
positive lens controls the focal length of the doublet, while the
negative lens is the aberration control. The negative lens is of
much weaker strength than the positive, but has higher
dispersion. This brings the blue and the red light back together
(B). However, the green light remains uncorrected (A),
producing a secondary spectrum consisting of the green and
blue-red rays. The distance between the green focal point and
the blue-red focal point indicates the quality of the achromat.
Typically, most achromats yield about 75 to 80 % of their
numerical aperture with practical resolution
140
SOLO Optics
Chromatic Aberration
In addition, to the correction for the chromatic aberration the
achromat is corrected for spherical aberration, but just for green
light. The Illustration shows how the green light is corrected to a
single focal length (A), while the blue-red (purple) is still
uncorrected with respect to spherical aberration. This illustrates
the fact that spherical aberration has to be corrected for each color,
called spherochromatism. The effect of the blue and red
spherochromatism failure is minimized by the fact that human
perception of the blue and red color is very weak with respect to
green, especially in dim light. So the color halos will be hardly
noticeable. However, in photomicroscopy, the film is much more
sensitive to blue light, which would produce a fuzzy image. So
achromats that are used for photography will have a green filter
placed in the optical path.
141
SOLO Optics
Chromatic Aberration
As the optician's understanding of optical aberrations improved
they were able to engineer achromats with shorter and shorter
secondary spectrums. They were able to do this by using special
types of glass call flourite. If the two spectra are brought very
close together the lens is said to be a semi-apochromat or flour.
However, to finally get the two spectra to merge, a third optical
element is needed. The resulting triplet is called an apochromat.
These lenses are at the pinnacle of the optical family, and their
quality and price reflect that. The apochromat lenses are
corrected for chromatic aberration in all three colors of light and
corrected for spherical aberration in red and blue. Unlike the
achromat the green light has the least amount of correction,
though it is still very good. The beauty of the apochromat is that
virtually the entire numerical aperture is corrected, resulting in a
resolution that achieves what is theoretically possible as predicted
by Abbe equation.
142
SOLO Optics
Chromatic Aberration
With two lenses (n1, f1), (n2,f2) separated by a distance
d we found
2121
111
ff
d
fff
 1n
1f
d
2f
2
n
Let use     222111 1/1&1/1   nfnf
We have
        22112211 1111
1
  nndnn
f
nF – blue index produced by hydrogen
wavelength 486.1 nm.
nC – red index produced by hydrogen
wavelength 656.3 nm.
nd – yellow index produced by helium
wavelength 587.6 nm.
Assume that for two colors red and blue we have fR = fB
       
        22112211
22112211
1111
1111
1




FFFF
CCCC
nndnn
nndnn
f
143
SOLO Optics
Chromatic Aberration
Let analyze the case d = 0 (the two lenses are in contact)
nd – yellow index produced by helium
wavelength 587.6 nm.
We have
        22112211 1111
1
  FFCC nnnn
f
 
 
 
 1
1
1
1
1
2
1
2
2
1






F
F
C
C
n
n
n
n

  
 CF
CF
nn
nn
11
22
2
1





For the yellow light (roughly the midway between
the blue and red extremes) the compound lens will
have the focus fY:
   
YY f
d
f
d
Y
nn
f
21 /1
22
/1
11 11
1
   
  Y
Y
d
d
f
f
n
n
1
2
1
2
2
1
1
1





 
 
 
 
   
   1/
1/
1
1
111
222
2
1
11
22
1
2








dCF
dCF
d
d
CF
CF
Y
Y
nnn
nnn
n
n
nn
nn
f
f
144
SOLO Optics
Chromatic Aberration
   
   1/
1/
111
222
1
2



dCF
dCF
Y
Y
nnn
nnn
f
f
The quantities are called
Dispersive Powers of the two materials forming the lenses.
 
 
 
 1
&
1 2
22
1
11




d
CF
d
CF
n
nn
n
nn
Their inverses are called
V-numbers or Abbe numbers.
 
 
 
 CF
d
CF
d
nn
n
V
nn
n
V
22
2
2
11
1
1
1
&
1






145
OpticsSOLO
To define glass we need to know more than one index of refraction.
In general we choose the indexes of refraction of three colors:
nF – blue index produced by hydrogen
wavelength 486.1 nm.
nC – red index produced by hydrogen
wavelength 656.3 nm.
nd – yellow index produced by helium
wavelength 587.6 nm.
Define:
nF – nC - mean dispersion
CF
d
nn
n
v



1
- Abbe’s Number or v value or V-number
Crowns: glasses of low dispersion (nF – nC small and V-number above 55)
Flints: glasses of high dispersion (nF – nC high and V-number bellow 50)
Fraunhofer
line
color Wavelength
(nm)
Spectacle Crown
C - 1
Extra Dense Flint
EDF - 3
F
d
C
Blue
Yellow
Red
486.1
587.6
656.3
1.5293
1.5230
1.5204
1.7378
1.7200
1.7130V - number
58.8 29.0
146
OpticsSOLO
Refractive indices and Abbe’s numbers of various glass materials
147
OpticsSOLO
Camera Lenses
Hecht, “Optics”
Addison Wesley,
4th Ed., 2002,
pp.218
148
OpticsSOLO
Camera
Lenses
Born & Wolfe, “Principle of Optics”,
Pergamon Press, 5th Ed., pp.236-237
149Raymond A. Applegate, OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect
vision”, University of Houston, TX, USA
Optics
150
Optics
151Raymond A. Applegate, OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect
vision”, University of Houston, TX, USA
Optics
152Raymond A. Applegate, OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect
vision”, University of Houston, TX, USA
Optics
153
SOLO Optics
Zernike’s Polynomials
In 1934 Frits Zernike introduces a complete set of orthonormal polynomials
to describe aberration of any complexity.
        m
N
m
n
m
n
m
nN YRaZZ  ,,
,2,1
2
813
min 







 
 N
N
Integern
    







 

oddN
evenN
msign
Nnn
Integernm
1
1
4
212
min2
Each polynomial of the Zernike set is a product of
three terms.
where
 






012
01
mifn
mifn
a
m
n
     
     
 
sn
mn
s
s
m
n
smnsmns
sn
R 2
2/
0 !2/!2/!
!1 


 

 
 









oddisNandmif
evenisNandmif
mif
Y
m
N
0sin
0cos
01


radial index
meridional
index
154
SOLO Optics
Zernike’s Polynomials
Properties of Zernike’s Polynomials.
   
n m
m
n
m
n ZCW  ,,
W (ρ,θ) – Waveform Aberration
Cn
m (ρ,θ) – Aberration coefficient (weight)
Zn
m (ρ,θ) – Zernike basis function (mode)
     mallnallforZZMean
m
n
m
n 00,,  1
   mnallforZVariance
m
n ,1, 2
3 Zernike’s Polynomials are mutually orthogonal, meaning that they are independent
of each other mathematically. The practical advantage of the orthogonality is that
we can determine the amount of defocus, or astimagtism, or any other Zernike mode
occurring in an aberration function without having to worry about the presence of
the other modes.
4 The aberration coefficients of a Zernike expansion are analogous to the Fourier
coefficients of a Fourier expansion.
          















n m
m
n
n m
m
n
m
n
m
n CZZCMeanWVariance
2
2
,,, 
   
  '
1
0
'
12
1
nn
m
n
m
n
n
dRR 

   '0
2
0
1'coscos mmm
dmm 


155
SOLO Optics
Zernike’s Polynomials
In 1934 Frits Zernike introduces a complete set of orthonormal polynomials
to describe aberration of any complexity.
Astigmatism
 4,4,,2 22
 ayax
Coma1
 3,5,,2 2
 axax
Coma2
 4,4,,2 2
 ayax
Spherical &
Defocus
   3,5,,3.12 22
 aa
36 Zernikes
Geounyoung Yoon, “Aberration Theory”
156
Surface of Revolution Stereogram
Zernike Polynomials
http://www.optics.arizona.edu/jcwyant/
Optics
157
SOLO Optics
Zernike’s Polynomials
   
mastigmatis
defocus
tilty
tiltx
piston
YRamnN
m
N
m
n
m
n

452sin6225
1123024
sin4113
cos4112
111001
2
2









sphericalbalanced
shamrock
shamrock
comaxbalanced
comaybalanced
mastigmatis
)(116650411
3cos83310
3sin8339
)(cos238138
)(sin238137
902cos6226
24
3
3
2
2
2









 
clover
clover




4sin104415
4cos104414
2sin34102413
2cos34102412
4
4
24
24



158
SOLO Optics
Zernike’s Polynomials
In 1934 Frits Zernike introduces a complete set of orthonormal polynomials
to describe aberration of any complexity.
159
Zernike’s PolynomialsSOLO Optics
160
SOLO Optics
Zernike’s Decomposition
Geounyoung Yoon, “Aberration Theory”
161
Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley
SOLO
Zernike’s Polynomials
Optics
162
Zernike’s Polynomials
SOLO Optics
163
Zernike’s Polynomials
SOLO
Raymond A. Applegate, OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect
vision”, University of Houston, TX, USA
Optics
164
Zernike’s Polynomials
SOLO
Raymond A. Applegate, OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect
vision”, University of Houston, TX, USA
Optics
165
Zernike’s Polynomials
SOLO
Raymond A. Applegate, OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect
vision”, University of Houston, TX, USA
Optics
166
Zernike’s Polynomials
SOLO
Raymond A. Applegate, OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect
vision”, University of Houston, TX, USA
Optics
167
Zernike’s Polynomials
SOLO
Raymond A. Applegate, OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect
vision”, University of Houston, TX, USA
Optics
168
Zernike’s Polynomials
SOLO
Raymond A. Applegate, OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect
vision”, University of Houston, TX, USA
Optics
169
SOLO Optics
170
SOLO Optics
171
SOLO Optics
172
SOLO Optics
173
SOLO Optics
174
SOLO
Raymond A. Applegate, OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect
vision”, University of Houston, TX, USA
Optics
175
SOLO
Raymond A. Applegate, OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect
vision”, University of Houston, TX, USA
Optics
176
SOLO Optics
177
Tilt (n=1, m=1)  0cos  
The wavefront: Contour plot and 3D
The spot diagram in the focal plane
SOLO Optics
178
Defocus (n=2, m=0) 2

The wavefront: Contour plot and 3D
The spot diagram in the focal plane
The hole in the center of the figures is in
the optical element.
SOLO Optics
179
Coma (n=3, m=1)
SOLO Optics
180
InterferenceSOLO
Interference of Two Monochromatic Waves
Given two waves ( ω = constant ):
          tUtiAtAtu 111111
ReexpRecos  
where the corresponding phasors, are defined as:
    111
exp:   tiAtU
The two waves interfere to give:
         
      



tAtUtU
tAtAtututu
cosRe
coscos
21
221121
          tUtiAtAtu 222222
ReexpRecos  
    222
exp:   tiAtU
1U
2U
21
UUU 
12 
 1221
2
2
2
1
212211
cos2
2
 


AAAA
UUUUUUUA
2U
 











2211
22111
2121
2
2
2
1
coscos
sinsin
tan
cos2




AA
AA
AAAAA
The Phasor summation
is identical to
Vector summation
See full development in P.P.
“Interference”
181
InterferenceSOLO
Interference of Many Monochromatic Waves
Given two waves ( ω = constant ):
          tUtiAtAtu 111111
ReexpRecos  
The N waves interfere to give:
       
         

tAtUtUtU
tutututu
N
N
cosRe 21
21


          tUtiAtAtu 222222
ReexpRecos  
1U
NUUUU  21
1
2


2
U
NU
N
The Phasor summation is identical to Vector summation
          tUtiAtAtu NNNNNN
ReexpRecos  
182
InterferenceSOLO
Interference of Monochromatic Waves
Given two electromagnetic monochromatic ( ω = constant ) waves:
              trErktirErktrEtrE ,ReexpRecos, 1111110111110111

 
              trErktirErktrEtrE ,ReexpRecos, 2222220222220222

 
where the corresponding phasors, are defined as:
      11110111
exp:,   rktirEtrE

      22220222
exp:,   rktirEtrE

1S
2S
P
1r

2r

2211 1
2
:&1
2
: rkrk






At the point P the two waves interfere to give:
             
    trEtrE
rktrErktrEtrEtrEtrE
,,Re
coscos,,,
2211
2222021111012211



 
The Irradiance at the point P is given by:
       trHtrHtrEtrEI ,,,,
 
 
183
InterferenceSOLO
Interference of Monochromatic Waves
1S
2S
P
1r

2r

The Irradiance at the point P is given by:
             
               trEtrEtrEtrEtrEtrEtrEtrE
trEtrEtrEtrEtrEtrEI
,,,,,,,,
,,,,,,
1122221122221111
22112211








       10110111111
,, rErEtrEtrEI




       20220222222
,, rErEtrEtrEI




       
         
         
          
       21112221211122202101
211122211122202101
111101222202
222202111101
1122221112
cos2cos2
expexp
expexp
expexp
,,,,











rkrkIIrkrkrErE
rkrkirkrkirErE
rktirErktirE
rktirErktirE
trEtrEtrEtrEI





 21112221211221 cos2   rkrkIIIIIIII

184
InterferenceSOLO
Interference of Monochromatic Waves
1S
2S
P
1r

2r

The maximum Irradiance at the point P is given by:


,2,1,0&22 2111222121max  mmrkrkIIIII 
The minimum Irradiance at the point P is given by:
  

,2,1,0&122 2111222121min  mmrkrkIIIII 
2211 1
2
:&1
2
: rkrk






Since
,2,1,0&
2
2 21
122121max


 mmrrIIIII 


  ,2,1,0&
2
12
2
2 21
122121min


 mmrrIIIII




The Visibility of the fringes is defined as:
21
21
minmax
minmax
2
:
II
II
II
II
V





185
InterferenceSOLO
Billet’s Split Lens
Meslin’s Experiment
Two Basic Classes of Interferometers
• Division of Wavefront (portion of the primary wavefront are used either
directly as sources to emit secondary waves or in conjunction with optical
devices to product virtual sources of secondary waves.
The primary and secondary waves recombine and interfere)
• Division of Amplitude (the primary wave itself is divided into two waves,
which travel different paths before recombining and interfering)
Beamsplitter
Diffraction
Young’s Experiment
Fresnel’s Double Mirror
Fresnel’s Bi-prism
Lloyd’’s Mirror (1834) mirror
186
InterferenceSOLO
187
Wavefront-Splitting InterferometerSOLO
Young’s Experiment
1
r
2r
s
a
y
2S
1
S
P
OS 'O
a
 o
Young passed sun light through a pinhole,
which become the primare source, obtained
a spatially coherent beam through two
identically illuminated apertures. The two
apertures acted as two coherent sources
producing a system of alternating bright and
dark bands of interference fringes.
Given a point P on the screen at distances
r1 and r2 from apertures S1 and S2,
respectively. We have
The path difference is:
2
2
2
22
2
2
2
11
22
zy
a
sPSrzy
a
sPSr 












     
s
a
y
s
z
s
ay
s
z
s
ay
s
zy
a
szy
a
srr
ays








































2
2
2
2
2
2
2
2
2/
2
2
22
2
2
12
2/
2
1
1
2/
2
1
1
22
http://homepage.univie.ac.at/Franz.Embacher/KinderUni2005/waves.gif
2S
1S
y
z
188
SOLO
Young’s Experiment (continue – 1)
s
a
yrr
sa
 12
The bright fringes are obtained when:
,2,1,012  mmrr 
,2,1,0  mm
s
a
y 
The distance between two consecutive
bright fringes is:
  
a
s
a
s
m
a
s
myyy mm   11
The dark fringes are obtained when:
,2,1,0
2
12  mmrr


  ,2,1,0
2
12  mm
s
a
y

λ - wavelength
The Intensity at point P is:
      










s
ya
IrrkIrkrkIIIII
k
syarr
III





2
0
/2
/
1202111222121 cos4cos12cos2
12
021
21

1
r
2r
s
a
y
2S
1
S
P
OS 'O
a
 o
http://homepage.univie.ac.at/Franz.Embacher/KinderUni2005/waves.gif
Wavefront-Splitting Interferometer
Classes of Interferometers
189
SOLO
http://info.uibk.ac.at//c/c7/c704/museum/en/details/optics/fresnel.html
University of Innsbruck
Fresnel’s Double Mirror consists of
two planar mirrors inclined to each
other at a very small angle δ.
S
P
R
Screen
Schield
Mirror 2
C

s
Mirror 1
Slit
SC
Wavefront-Splitting Interferometer
Augustin Jean
Fresnel
1788-1827
Fresnel’s Double Mirror (1819*)
190
SOLO
Fresnel’s Double Mirror (continue – 1)
Fresnel’s Double Mirror consists of
two planar mirrors inclined to each
other at a very small angle δ.
The slit S image of the first mirror
is S1 and of the second mirror is S2.
The points S, S1 and S2 determine
a plane normal to both planar mirrors
that intersects them at a point C (on
the intersection line of the two mirrors)
We have: RCSCSSC  21
 21 SSS
Since is normal to the first mirror
and is normal to second mirror,
we have:
1
SS
2
SS
Also:  22 2121 SSSSCS
a
1
S
2S
S
R
R
R
Screen
Schield
Mirror 2
C




s
Mirror 1
SC
IC
We will arrange a planar screen perpendicular to the normal from
point C to line, , that also bisects the angle .aSS 21
221  SCSCCI
– is the distance between line and the screen.21
SSSI
CCs 
A shield is introduced to prevent the waveform to travel straight from slit S to screen.
Wavefront-Splitting Interferometer
191
SOLO
Fresnel’s Double Mirror (continue – 2)
From the slit S a cylindrical waveform
is reflected by one side of the mirror at
point A and reaches the screen at point
P, while an other cylindrical waveform
is reflected by the other side of the mirror
at point B and interferes with the first at
the point P on the screen.
Because of the reflection:
BSSBASSA 21
& 
Therefore we have:
111
rPSAPASAPSA 
222
rPSBPBSBPSB 
a
1
S
2S
S
A
B
P
R
R
R
Screen
Schield
Mirror 2
C




s
2
r
1
r
Mirror 1
y
SC
IC
where: – is the distance between line and the screen.21
SSSI
CCs 
PCySSa S
 &21
2
2
2
22
2
2
2
11
22
zy
a
sPSrzy
a
sPSr 












Wavefront-Splitting Interferometer
192
S
P
R
Screen
Schield
Mirror2
C

s
Mirror1
Slit
S
C
y
z
SOLO
Fresnel’s Double Mirror (continue – 3)
We have:
The path difference is:
The bright fringes are obtained when:
  
a
s
a
s
m
a
s
myyy mm   11
a
1
S
2S
S
A
B
P
R
R
R
Screen
Schield
Mirror 2
C




s
2
r
1
r
Mirror 1
y
SC
IC
S
A
B
P
R
Screen
Schield
Mirror2
C

s
Mirror1
Slit
S
C
y
z
S
A
B
P
R
Screen
Schield
Mirror2
C

s
Mirror1
Slit
y
S
C
z
P
2
2
2
22
2
2
2
11
22
zy
a
sPSrzy
a
sPSr 












     
s
a
y
s
z
s
ay
s
z
s
ay
s
zy
a
szy
a
srr
ays








































2
2
2
2
2
2
2
2
2/
2
2
22
2
2
12
2/
2
1
1
2/
2
1
1
22
Wavefront-Splitting Interferometer
,2,1,0&
2
21
12


 mmrr 


Since the distance between two
consecutive bright fringes is:
21  
Classes of Interferometers
193
SOLO
Fresnel’s Double Prism
The Fresnel’s Double Prism or Bi-prism
consists of two thin prisms joined at their
bases. A singlr cylindrical wave emerge from
a slit. The top part of the wave-front is
Refracted downward, and the lower segment
is refracted upward. In the region of
superposition interference occurs.
Screen
Bi-prism
Slit
y
z

s
a
2
S
1S
O
S 'O
a
o
1
i
d
i - incident angle
 - dispersion angle
 - prism angle
From the Figure we can see that two
virtual sources S1 and S2 exists. Let a
be the distance between them.
From the Figure
  


ddd
a i
ii
1
1
sintan
2



where
θi – ray incident angle
δ – ray dispersion (deviation) angle
d – distance slit to bi-prism vertex
α – prism angle
  
   





1sin
sincossinsinsin
1
1
1
1
1
2/1221








nn
n
n
ii
iii
ii
See δ development
Wavefront-Splitting Interferometer
194
SOLO
Dispersive Prisms


2i1i
1t


 11 ti  
2t
 22 it  
   2211 itti  
21 it  
  21 ti
202 sinsin ti nn  Snell’s Law
10 n
    1
1
2
1
2
sinsinsinsin tit
nn   
     11
21
11
1
2 sincossin1sinsinsincoscossinsin ttttt nn   
Snell’s Law 110 sinsin ti nn  
11 sin
1
sin it
n
 
10 n
  1
2/1
1
221
2
sincossinsinsin iit
n   
     
1
2/1
1
221
1
sincossinsinsin iii
n
The ray deviation angle is
Optics - Prisms
195
SOLO
Fresnel’s Double Prism (continue – 1)
From the Figure we found that the distance a
between virtual sources S1 and S2 is:
  


ddd
a i
ii
1
1
sintan
2



  
   





1sin
sincossinsinsin
1
1
1
1
1
2/1221








nn
n
n
ii
iii
ii
See δ development
 12  nda
s
a
y
2
S
1
S P
OS 'O
a
 o
1
 - prism angle
1r
2r
Screen
Bi-prism
Slit
y
z
Consider two rays starting from the slit S that
pass the bi-prism and interfere on the screen
at P. We can assume that they are strait lines
starting at the virtual source S1 and S2, and
having optical paths r1 and r2, respectively.
2
2
2
22
2
2
2
11
22
zy
a
sPSrzy
a
sPSr 












Wavefront-Splitting Interferometer

s
a
2
S
1S
O
S 'O
a

o

1
i
d
i - incident angle
 - dispersion angle
 - prism angle
196
SOLO
Fresnel’s Double Prism (continue – 2)
 12  nda
s
a
y
2
S
1
S P
OS 'O
a
 o
1
 - prism angle
1r
2r
d
Screen
Bi-prism
Slit
y
z
2
2
2
22
2
2
2
11
22
zy
a
sPSrzy
a
sPSr 












The path difference is:
The bright fringes are obtained when:
  
a
s
a
s
m
a
s
myyy mm   11
     
s
a
y
s
z
s
ay
s
z
s
ay
s
zy
a
szy
a
srr
ays








































2
2
2
2
2
2
2
2
2/
2
2
22
2
2
12
2/
2
1
1
2/
2
1
1
22
We have:
Wavefront-Splitting Interferometer
,2,1,0&
2
21
12


 mmrr 


Since the distance between two
consecutive bright fringes is:
21  
Classes of Interferometers
197
SOLO
Lloyd’s Mirror Interferometer
The Lloyd’s planar mirror is perpendicular
to the planar screen. A cylindrical waveform
from the slit S is reflected by the mirror and
interferes at the screen with the portion of the
wave that proceeds directly to the screen. Screen
Plane Mirror
Slit
y
z
From the Figure we can see that a
virtual source S1, that is symmetric relative
to mirror plane exists. The slit, parallel to
mirror plane, is at the same distance, a/2,
from the mirror plane as it’s virtual image.
Wavefront-Splitting Interferometer
sa
y
1S
P
O
S
o

1r
2r2/a
2/a
Planar Mirror
Screen
Screen
Plane Mirror
Slit
y
z
Consider two rays starting from the slit S, one
proceeding directly to the screen and the other
reflected by the mirror and interfere on the screen
at P. We can assume that they are strait lines
starting at S and at the the virtual source S1, and
having optical paths r1 and r2, respectively.
2
2
2
12
2
2
2
1
22
zy
a
sPSrzy
a
sPSr 












Humphrey Lloyd
1800-1881
198
SOLO
Lloyd’s Mirror Interferometer (continue – 1)
Wavefront-Splitting Interferometer
sa
y
1S
P
O
S
o

1r
2r2/a
2/a
Planar Mirror
Screen
Screen
Plane Mirror
Slit
y
z
The path difference is:
The bright fringes are obtained when:
The distance between two consecutive bright fringes is:
  
a
s
a
s
m
a
s
myyy mm   11
     
s
a
y
s
z
s
ay
s
z
s
ay
s
zy
a
szy
a
srr
ays








































2
2
2
2
2
2
2
2
2/
2
2
22
2
2
12
2/
2
1
1
2/
2
1
1
22
We have:
2
2
2
12
2
2
2
1
22
zy
a
sPSrzy
a
sPSr 












,2,1,0&
2
21
12


 mmrr 


Classes of Interferometers
199
Stokes Treatment of Reflection and RefractionSOLO
An other treatment of reflection and refraction was given by Sir George Stokes.
iE0 iE0
tE i0
rE i0
ii
t
(a)
 rrE i0
  '0 ttE i rE i0
tE i0
  '0 rtE i
 trE i0
i i
tt
(c)
iE0
tE i0
rE i0
i i
t
(b)
Suppose we have an incident wave of amplitude E0i
reaching the boundary of two media (where n1 = ni
and n2 = nt) at an angle θ1. The amplitudes of the
reflected and transmitted (refracted) waves are, E0i·r
and E0i·t, respectively (see Fig. a). Here r (θ1) and
t (θ2) are the reflection and transmission coefficients.
According to Fermat’s Principle the situation where the rays
direction is reversed (see Fig. b) is also permissible. Therefore we
have two incident rays E0i·r in media with refraction index n1 and
E0i·t in media with refraction index n2.
E0i·r is reflected, in media with refraction index n1, to obtain a wave
with amplitude (E0i·r )·t and refracted, in media with refraction index
n2, to obtain a wave with amplitude (E0i·r )·r (see Fig. c).
E0i·t is reflected, in media with refraction index n2, to obtain a wave
with amplitude (E0i·t )·r’ and refracted, in media with refraction index
n1, to obtain a wave with amplitude (E0i·t )·t’ (see Fig. c).
θ1 and θ2 are related by Snell’s Law: 2211 sinsin  nn 
200
Stokes Treatment of Reflection and RefractionSOLO
An other treatment of reflection and refraction was given by Sir George Stokes.
iE0 iE0
tE i0
rE i0
ii
t
(a)
 rrE i0
  '0 ttE i rE i0
tE i0
  '0 rtE i
 trE i0
i i
tt
(c)
iE0
tE i0
rE i0
i i
t
(b)
To have Fig. c identical to Fig. b the following conditions
must be satisfied:
        iii ErrEttE 0110120 '  
        0' 220210   rtEtrE ii
Hence:
       
   12
1112
'
1'


rr
rrtt


Stokes relations
θ1 and θ2 are related by Snell’s Law: 2211 sinsin  nn 
Let check that Fresnel Equation do satisfy Stokes relations
 
2211
11
2
coscos
cos221




nn
n
t




2112
11
||
coscos
cos221


nn
n
t



 
2211
2211
1
coscos
coscos21




nn
nn
r





 
2112
2112
1||
coscos
coscos21




nn
nn
r




Parallel Interfaces
201
SOLO
Optical Path Length Difference: Parallel Interfaces
Two-Beam Interference: Parallel Interfaces
We have a point source and a dielectric slab
that performs a double reflection giving two
coherent rays (1) and (2). Using a lens the two
rays interfere at lens focus.
'D
1

1

1 2

2

d
C
B
D
1
n
2n
1n
Point
source
Image
1
2
Dielectric
slab
We consider a dielectric slab that has low
reflectivity at each interface: r,r’<<1
Assume an incident ray that at point B is
   tiABEi exp
For the reflected ray (1) we have at point D
  








0
1
22
'2
exp'



BDn
tiADE
For the reflected ray (2) we have at point D’. DD’ is normal two ray (2) so that both rays
travel the same optical paths until interference.
   







 

0
2
11
2
exp



CDBCn
tiADE
Amplitude Split Interferometers
202
SOLO
Optical Path Length Difference: Parallel Interfaces (continue – 1)
Two-Beam Interference: Parallel Interfaces
To compute the amplitudes A1 and A2 we
will use :
'D
1

1

1 2

2

d
C
B
D
1
n
2n
1n
Point
source
Image
1
2
Dielectric
slab
2

2
1
     2211 ''  rAA 
 12 rAA 
Using Stokes relations:
where:
   11 , r - reflectivity and transitivity at B
 2' r - reflectivity at C
 2'  - transitivity at D from slab to air
   12'  rr 
     
 
11'
1
1
2
21
1
2




r
r
       12211 ''  rArAA 
we obtain:
 12 rAA 
The minus sign shows that is an additional phase delay of π between ray (1)
at point D and ray (2) at point D’.
Amplitude Split Interferometers
203
SOLO
Optical Path Length Difference: Parallel Interfaces (continue – 2)
Two-Beam Interference: Parallel Interfaces
'D
1

1

1 2

2

d
C
B
D
1
n
2n
1n
Point
source
Image
1
2
Dielectric
slab
    








0
1
12
'2
exp'



BDn
tirADE
     










 



0
2
11
2
exp
CDBCn
tirADE
2cos/ dCDBC 
From the Figure we obtain:
12 sintan2' dBD 
The phase difference at interference is:
   


  BDnCDBCn 12
0
21
2
2
2
2
2
sinsin
1
2
2
1121
cos
sin
sin
cos
sin
sintan
2211







nnn
nn 

  








 




















 2
0
2
2
2
2
2
0
121
2
2
0
21 cos
4
sin1
cos
22
sintan
cos
2
2 ndnd
n
n
d
Amplitude Split Interferometers
204
SOLO
Optical Path Length Difference: Parallel Interfaces (continue – 3)
Two-Beam Interference: Parallel Interfaces
'D
1

1

1 2

2

d
C
B
D
1
n
2n
1n
Point
source
Image
1
2
Dielectric
slab
     212 exp'   tirADE
     111 exp   tirADE



  2
0
2
21 cos
4 nd
The Intensity at the interference is:
 
     
 2/sin4
cos12cos12
cos2
2
0
0210
2111222121
021
122



I
II
rkrkIIIII
III
rkrk







where
2
0
2
cos
4
: 



nd

 1
22
021 ~ rAIII 
Amplitude Split Interferometers
205
InterferenceSOLO
Haidinger Fringes
1846
Wilhelm Karl,
Ritter von Haidinger
1795 - 1871
Lens
Beam-
splitter
Extended
Sources
Viewing
Screen
Dielectric
film
Black
background
Circular
fringes
Haidinger Fringes are the type of interference pattern that
results with an extended source where partial reflections
occur from a plane-parallel dielectric slab.
206
SOLO
Haidinger Interference Fringes
Two-Beam Interference: Parallel Interfaces
We have:
1
1
2
2

d
1n
2n
1n
Extended
source
Focal
plane
1P 2P
1
Dielectric
slab
Beam
splitter
Lens

f
x
Haidinger Fringes are the type of interference pattern that
results with an extended source where partial reflections
occur from a plane-parallel dielectric slab.
Wilhelm Karl,
Ritter von Haidinger
1795 - 1871
Amplitude Split Interferometers
207
InterferenceSOLO
Fizeau Fringes (1862)
Spacer
Beam-
splitter
Extended
Sources
Viewing
ScreenDielectric
film
Fizeau
fringes
x

1
n
fn
2n
Reference
Test Surface
Test Surface
Reference
Beam Slitter
Eye
Source

x
208
InterferenceSOLO
Fizeau Fringes (1862)
Spacer
Beam-
splitter
Extended
Sources
Viewing
ScreenDielectric
film
Fizeau
fringes
x

1
n
fn
2n
Reference
Test Surface
209
InterferenceSOLO
Newton Fringes
Colllimator
Lens
Beam-
splitter Point
Source
Viewing
Screen
Optical
flat
Circular
fringes
Black
Surface
210
Gas RefrectometerSOLO
S
1S
2S
2T
1T
f
1C
2
C
D
D
1C 2C
E
Rayleigh's Interferometer
t
To measure the refractive index of a gas we can use any
interferometer that splits the source ray in two coherent
rays passing through the tubes T1 and T2 filed with the gas.
When the pressure of the gas is changed in on of the tube a
difference in the refraction index occurs, the optical paths of
the two rays change and the fringe system, viewed at the
eyepiece E, changes.
A count of the fringes as they moved
provides a measurement of optical path
change, therefore of the refractive
index.
Jamin, Mack-Zehnder or Reyleigh’s
interferometers can be used..
S
2T
1
T 1C
2
C
D
D
1C 2
C
E
1G
2
G
1
2
Jamin's Interferometer
t
S
1
T
E
1M
2
G
1
2
Mach-Zehnder
Interferometer
2
M
3M
4
M
2T
t
  
mtntTpn ag

1
,
  tmTpng
/1, 
The index of refraction of the gas is given by the Lorenz-
Lorentz formula (1890/1)
  








2
1
2
3
1, 2
2
n
nVN
Tpng
Reyleigh’s
Interferometer
Jamin’s
Interferometer
211
Field and linear interferometers
InterferenceSOLO
Double-Slit Interferometer
Fourier-transform Interferometer
Astronomical Interferometer/Michelson Stellar Interferometer
Mireau Interferometer (also known as a Mireau objective) (microscopy)
Multi-Beam Interferometer (microscopy)
Watson Interferometer (microscopy)
Linnik Interferometer (microscopy)
Diffraction-Grating Interferometer (white light)
White-light Interferometer (see also Optical coherence tomography)
Shear Interferometer (lateral and radial)
http://en.wikipedia.org/wiki/List_of_types_of_interferometers
Michelson Interferometer
Mach-Zehnder Interferometer
Fabry-Perot Interferometer
Sagnac Interferometer
Gires-Tournois Etalon
212
Field and linear interferometers
InterferenceSOLO
Moire Interferometer (see Moire pattern)
Holographic Interferometer
Near-field Interferometer
Fringes of Equal Chromatic Order Inteferometer (FECO)
Fresnel Interferometer (e.g. Fresnel biprism, Fresnel mirror or Lloyd's mirror)
Polarization Interferometer (see also Babinet-Soleil compensator)
Newton Interferometer (see Newton's rings)
Cyclic Interferometer
Point Diffraction Interferometer
White-light Scatterplate Interferometer (white-light) (microscopy)
Phase-shifting Interferometer
Wedge Interferometer
Schlieren Interferometer (phase-shifting)
Talbot Lau Interferometer
http://en.wikipedia.org/wiki/List_of_types_of_interferometers
Fizeau Interferometer
Rayleigh Interferometer
Twyman-Green Interferometer
213
Intensity and nonlinear interferometers
InterferenceSOLO
http://en.wikipedia.org/wiki/List_of_types_of_interferometers
Intensity Interferometer
Intensity Optical Correlator
Frequency-Resolved Optical Gating (FROG)
Spectral Phase Interferometry for Direct Electric-field Reconstruction (SPIDER)
Quantum optics interferometers
Hong-Ou-Mandel Interferometer (HOM) (see Leonard Mandel)
Interferometers outside optics
Francon Interferometer
Atom Interferometer
Ramsey Interferometer
Mini Grail Interferometer
Hanbury-Brown Twiss Interferometer
214
SOLO
References
M. Born, E. Wolf, “Principles of Optics”, Pergamon Press,6th Ed., 1980
E. Hecht, A. Zajac, “Optics”, Addison-Wesley, 1979
C.C. Davis, “Lasers and Electro-Optics”, Cambridge University Press, 1996
G.R. Fowles, “Introduction to Modern Optics”,2nd Ed., Dover, 1975
M.V.Klein, T.E. Furtak, “Optics”, 2nd Ed., John Wiley & Sons, 1986
W.C.Elmore, M.A. Heald, “Physics of Waves”, Dover Publications, 1969
J. Lekner, “Theory of Reflection of Electromagnetic and Particle Waves”,
Martinus Nijhoff Publishers, 1987
F.A. Jenkins, H.E. White, “Fundamentals of Optics”, 4th Ed., McGraw-Hill, 1976
Optics
215
SOLO
References
[1] M. Born, E. Wolf, “Principle of Optics – Electromagnetic Theory of Propagation,
Interference and Diffraction of Light”, 6th Ed., Pergamon Press, 1980,
[2] C.C. Davis, “Laser and Electro-Optics”, Cambridge University Press, 1996,
Optics
216
SOLO
References
Foundation of Geometrical Optics
[3] E.Hecht, A. Zajac, “Optics ”, 3th Ed., Addison Wesley Publishing Company, 1997,
[4] M.V. Klein, T.E. Furtak, “Optics ”, 2nd Ed., John Wiley & Sons, 1986
217
SOLO
References Optics Polarization
A. Yariv, P. Yeh, “Optical Waves in Crystals”, John Wiley & Sons, 1984
M. Born, E. Wolf, “Principles of Optics”, Pergamon Press,6th Ed., 1980
E. Hecht, A. Zajac, “Optics”, Addison-Wesley, 1979, Ch.8
C.C. Davis, “Lasers and Electro-Optics”, Cambridge University Press, 1996
G.R. Fowles, “Introduction to Modern Optics”,2nd Ed., Dover, 1975, Ch.2
M.V.Klein, T.E. Furtak, “Optics”, 2nd Ed., John Wiley & Sons, 1986
http://en.wikipedia.org/wiki/Polarization
W.C.Elmore, M.A. Heald, “Physics of Waves”, Dover Publications, 1969
E. Collett, “Polarization Light in Fiber Optics”, PolaWave Group, 2003
W. Swindell, Ed., “Polarization Light”, Benchmark Papers in Optics, V.1,
Dowden, Hutchinson & Ross, Inc., 1975
http://www.enzim.hu/~szia/cddemo/edemo0.htm (Andras Szilagyi)
Optics
218
SOLO
References
Optics
1. Waldman, G., Wootton, J., “Electro-Optical Systems Performance Modeling”,
Artech House, Boston, London, 1993
2. Wolfe, W.L., Zissis, G.J., “The Infrared Handbook”, IRIA Center,
Environmental Research Institute of Michigan, Office of Naval Research, 1978
3. “The Infrared & Electro-Optical Systems Handbook”, Vol. 1-7
4. Spiro, I.J., Schlessinger, M., “The Infrared Technology Fundamentals”,
Marcel Dekker, Inc., 1989
Table of Content
January 5, 2015 219
SOLO
Technion
Israeli Institute of Technology
1964 – 1968 BSc EE
1968 – 1971 MSc EE
Israeli Air Force
1970 – 1974
RAFAEL
Israeli Armament Development Authority
1974 – 2013
Stanford University
1983 – 1986 PhD AA

Optics part ii

  • 1.
    1 OPTICS Part II SOLO HERMELIN Updated:16.01.10http://www.solohermelin.com
  • 2.
    2 Table of Content SOLOOPTICS Maxwell’s Equations Boundary Conditions Electromagnatic Wave Equations Monochromatic Planar Wave Equations Spherical Waveforms Cylindrical Waveforms Energy and Momentum Electrical Dipole (Hertzian Dipole) Radiation Reflections and Refractions Laws Development Using the Electromagnetic Approach IR Radiometric Quantities Physical Laws of Radiometry Geometrical Optics Foundation of Geometrical Optics – Derivation of Eikonal Equation The Light Rays and the Intensity Law of Geometrical Optics The Three Laws of Geometrical Optics Fermat’s Principle (1657) O P T I C S P a r t I
  • 3.
    3 Table of Content(continue) SOLO OPTICS Plane-Parallel Plate Prisms Lens Definitions Derivation of Gaussian Formula for a Single Spherical Surface Lens Using Fermat’s Principle Derivation of Gaussian Formula for a Single Spherical Surface Lens Using Snell’s Law Derivation of Lens Makers’ Formula First Order, Paraxial or Gaussian Optics Ray Tracing Matrix Formulation O P T I C S P a r t I
  • 4.
    4 Table of Content(continue) SOLO OPTICS Optical Diffraction Fresnel – Huygens’ Diffraction Theory Complementary Apertures. Babinet Principle Rayleigh-Sommerfeld Diffraction Formula Extensions of Fresnel-Kirchhoff Diffraction Theory Phase Approximations – Fresnel (Near-Field) Approximation Phase Approximations – Fraunhofer (Near-Field) Approximation Fresnel and Fraunhofer Diffraction Approximations Fraunhofer Diffraction and the Fourier Transform Fraunhofer Diffraction Approximations Examples Resolution of Optical Systems Optical Transfer Function (OTF) Point Spread Function (PSF) Modulation Transfer Function (MTF) Phase Transfer Function (PTF) Relations between Wave Aberration, Point Spread Function and Modulation Transfer Function Other Metrics that define Image Quality – Srahl Ratio Other Metrics that define Image Quality - Pickering Scale Other Metrics that define Image Quality – Atmospheric Turbulence Fresnel Diffraction Approximations Examples
  • 5.
  • 6.
    6 Optical DiffractionSOLO Augustin Jean Fresnel 1788-1827 In1818 Fresnel, by using Huygens’ concept of secondary wavelets and Young’s explanation of interface, developed the diffraction theory of scalar waves. P 0P Q 1x 0x 1y 0y   Fr  Sr    r  O '  Screen Image plane Source plane 0O 1O Sn1   - Screen Aperture Sn1 - normal to Screen FrPP  0 SrQP  0 rQP   From a source P0 at a distance from a aperture a spherical wavelet propagates toward the aperture:    Srktj S source Q e r A tU   ' '  According to Huygens Principle second wavelets will start at the aperture and will add at the image point P.                   dre rr A Kdre r U KtU rrktj S sourcerkttjQ P S 2/2/' ',',   where:  ',K obliquity or inclination factor    SSS nrnr 11cos&11cos' 11            0',0 max0',0   K K Obliquity factor and π/2 phase were introduced by Fresnel to explain experiences results. Fresnel Diffraction Formula Fresnel took in consideration the phase of each wavelet to obtain: Fresnel – Huygens’ Diffraction Theory Fresnel –Kirchoff Diffraction Formula See full development in P.P. “Diffraction” Table of Content
  • 7.
    7 SOLO Fresnel-Kirchhoff Diffraction Theory In1882 Gustav Kirchhoff, using mathematical foundation, succeeded to show that the amplitude and phases ascribed to the wavelets by Fresnel, by enhancing the Huyghen’s Principle, were a consequence of the wave nature of light. HBED    & For an Homogeneous, Linear and Isotropic Medium where are constant scalars, we have , t E t D H t t H t B E ED HB                           Since we have also tt      t D H      t B E      For Source less Medium                               0& 0 2 2 2 DED EEE t E E       02 2 2     t E E    Maxwell Equations are   eJ t D HA        mBGM   )(   mJ t B EF          eDGE   James C. Maxwell (1831-1879) Gustav Robert Kirchhoff 1824-1887 Optical Diffraction
  • 8.
    8 SOLO Fresnel-Kirchhoff Diffraction Theory 0 1 2 2 2 2         U tv Scalar Differential Wave Equation For a monochromatic wave of frequency f ( ω = 2πf ) a solution is:               tjPjPUPtPUtPU  expexpRecos,  Define the phasor       PjPUPU  exp U v U tv 2 2 2 2 2 1         2 2  v f v k   022  UkPhasor Scalar Differential Wave Equation This is the Scalar Helmholtz Differential Equation Hermann von Helmholtz 1821-1894 Boundary Conditions for the Helmholtz Differential Equation: • Dirichlet (U given on the boundary) • Neumann (dU/dn given on the boundary) Johann Peter Gustav Lejeune Dirichlet 1805-1859 Franz Neumann 1798-1895  1 0 11 2 2 2 2 2 2 2 2 2             vE tvt E v E    Vector Differential Wave Equation Optical Diffraction
  • 9.
    9 To find thesolution of the Scalar Helmholtz Differential Equation we need to use the following: • Scalar Green’s Identity       SV dSGUUGdVGUUG 22 • Green’s Function     SF SF FS rr rrkj rrG       exp ; This Green’s Function is a particular solution of the following Helmholtz Non-homogeneous Differential Equation:      SFFSFSS rrrrGkrrG   4;; 22 SOLO Fresnel-Kirchhoff Diffraction Theory provided that and are continuous in volume V UUU 2 ,,  GGG 2 ,,  Free-Space Green’s Function  n i iSS 1  iS nS dV dSnS  1 V Fr  Sr  F 0r SF rrr   PositionSourcerS  PositionFieldrF    022  Uk Scalar Helmholtz Differential Equation Optical Diffraction
  • 10.
    10 SOLO • Scalar Green’sIdentities       SV dSGUUGdVGUUG 22 Let start from the Gauss’ Divergence Theorem    SV dSAdVA  Karl Friederich Gauss 1777-1855 where is any vector field (function of position and time) continuous and differentiable in the volume V bounded by the enclosed surface S. Let define . A  UGA     UGUGUGA 2   Then        S Gauss VV dSUGdVUGUGdVUG 2        S Gauss VV dSGUdVGUUGdVGU 2 Subtracting the second equation from the first we obtain First Green’s Identity Second Green’s Identity We have GEORGE GREEN 1793-1841 Fresnel-Kirchhoff Diffraction Theory To find a general solution of the Scalar Helmoltz Differential Equation we need to use the  n i iSS 1  iS nS dV dSn  1 V Fr  Sr  F 0r SF rrr   If we interchange with we obtainG U Optical Diffraction
  • 11.
    11 Integral Theorem ofHelmholtz and Kirchhoff       F V sF V SS rUdVUrrUGkUGkdVGUUG   442222   Using:      SFFSFSS rrrrGkrrG   4;; 22  n i iSS 1  iS nS dV dSnS  1 V Fr  Sr  F 0r SF rrr   PositionSourcerS  PositionFieldrF  SOLO Fresnel-Kirchhoff Diffraction Theory     0,22  SFS rrUk  From the left side of the Second Scalar Green’s Identity we have:                 SS SS dS n G U n U GdSGUUG     SF SF FS rr rrkj rrG       exp ;Using: we obtain:                                  S SF SF SF SF F dS rr rrkj n U n U rr rrkj rU      expexp 4 1  This is the Integral Theorem of Helmholtz and Kirchhoff that enables to calculate as function of the values of and on the enclosed surface S.nU  /UU Note: This Theorem was developed first by H. von Helmholtz in acoustics. Hermann von Helmholtz 1821-1894 Gustav Robert Kirchhoff 1824-1887 From the right side of the Second Scalar Green’s Identity, using we have:dS n U dSnUdSU SSS     1 Scalar Helmholtz Differential Equation Optical Diffraction
  • 12.
    12 Sommerfeld Radiation Conditions SOLO Fresnel-KirchhoffDiffraction Theory                              SS S F dS n G U n U G dS n G U n U GrU 1 4 1 4 1    P Fr  Sr  r   1S S R Screen Aperture d  Sn1  Sn1 since the condition that the previous integral be finite is:     R Rkj rrG SFS exp ;    Consider the surface of integration  SSS 1 1S - on the screen S - hemisphere with radius R   Gkj R Rkj R kj n G          exp1                        dRUkj n U GdS n G U n U G S 2   1 exp limlim   R Rkj RGR RR 0lim           Ukj n U R R This is Sommerfeld Radiation Conditions  - on the aperture Optical Diffraction
  • 13.
    13 is known asoptical disturbance. Being a scalar quantity, it cannot accurately represent an electromagnetic field. However, the square of this scalar quantity can be regarded as a measure of the irradiance at a given point. U Sommerfeld Radiation Conditions (continue) SOLO Fresnel-Kirchhoff Diffraction Theory                              SS S F dS n G U n U G dS n G U n U GrU 1 4 1 4 1    0lim           Ukj n U R R This is Sommerfeld Radiation Conditions This implies that: 0 4 1             S dS n G U n U G  and the Integral of Helmholtz and Kirchhoff becomes:                1 4 1 S F dS n G U n U GrU   P Fr  Sr  r   1S S R Screen Aperture d Sn1  Sn1 0P Q Arnold Johannes Wilhelm Sommerfeld 1868 - 1951 Optical Diffraction
  • 14.
    14 The Kirchhoff BoundaryConditions SOLO Fresnel-Kirchhoff Diffraction Theory Kirchhoff assumed the following boundary conditions:                dS n G U n U GrU F 4 1 1. The field distribution and its derivative , across the aperture , are the same as in the absence of the screen. U nU  /  2. On the shadowed part of the screen and0 1 S U 0/ 1  S nU The Integral of Helmholtz and Kirchhoff becomes: The field at point P is the superposition of the aperture values 0 U 0/   nU Note: Moreover, mathematically the condition implies0/&0 11  SS nUU 0/&0   nUU However, if the dimensions of the aperture are large relative to the wavelength λ, the integral agrees well with the experiment. P Fr  Sr  r   1S S R Screen Aperture 0P 0,0 1 1     S S n U U     n U U , Q  Sn1  Sn1 S  Kirchhoff boundary conditions are not physical since the presence of the screen changes field values on the aperture and on the screen. Optical Diffraction
  • 15.
    15 Fresnel-Kirchhoff Diffraction Formula SOLO Fresnel-KirchhoffDiffraction Theory                dS n G U n U GrU F 4 1 The Integral of Helmholtz and Kirchhoff: Assume that the aperture is illuminated by a single spherical wave:     S Ssource S r rkjA rU exp                                   SS S Ssource S S S Ssource SSSS S nr r rkjA r kj n r rkjA nrU n rU 11 exp1 1 exp 1       SF SF FS rr rrkj rrG       exp ;                                      S S SF SF S rrr SFSS FS nr r rkj r kj n rr rrkj nrrG n rrG SF 11 exp1 1 exp 1, ,      P Fr  Sr  r   1S S R Screen Aperture 0P 0,0 1 1     S S n U U     n U U , Q  Sn1  Sn1 S  Optical Diffraction
  • 16.
    16 Fresnel-Kirchhoff Diffraction Formula SOLO Fresnel-KirchhoffDiffraction Theory                dS n G U n U GrU F 4 1 The Integral of Helmholtz and Kirchhoff: Assume that the aperture is illuminated by a single spherical wave, and: Srr,               SS S SsourceS nr r rkjA j n rU 11 exp2        r rkj rrG FS exp ;                 S FS nr r rkj j n rrG 11 exp2,    Srr k 1 , 12                                            dS nrnr rr rrkjA jrU SSS s ssource F 2 1111 exp       S Ssource S r rkjA rU exp   P Fr  Sr  r   1S S R Screen Aperture 0P 0,0 1 1     S S n U U     n U U , Q  Sn1  Sn1 S  Optical Diffraction
  • 17.
    17 Fresnel-Kirchhoff Diffraction Formula SOLO Fresnel-KirchhoffDiffraction Theory                                                                   dSK rr rrkj A dS nrnr rr rrkjA jrU S s s source SSS s ssource F     , 2 exp 2 1111 exp                                  SSSS S SSS S nrnr nrnr K 11cos&11cos 2 coscos 2 1111 ,    1. Obliquity or Inclination Factor:     0,0&10,0   SS KK 2. Additional phase π/2 3. The amplitude is scaled by the factor 1/λ (not found in Fresnel derivation) P Fr  Sr  r   1S S R Screen Aperture 0P 0,0 1 1     S S n U U     n U U , Q  Sn1  Sn1 S  We recovered Fresnel Diffraction Formula with: Optical Diffraction
  • 18.
    18 Reciprocity Theorem ofHelmholtz SOLO Fresnel-Kirchhoff Diffraction Theory                                                                   dSK rr rrkj A dS nrnr rr rrkjA jrU S s s source SSS s ssource F     , 2 exp 2 1111 exp We can see that the Fresnel-Kirchhoff Diffraction Formula is symmetrical with respect to r and rS, i.e. point source and observation point. Therefore we can interchange them and obtain the same relation. This result is called Reciprocity Theorem of Helmholtz. P Fr  Sr  r   1S S R Screen Aperture 0P 0,0 1 1     S S n U U     n U U , Q  Sn1  Sn1 S  Hermann von Helmholtz 1821-1894 Note: This is similar to Lorentz’s Reciprocity Theorem in Electromagnetism. Optical Diffraction
  • 19.
    19 Huygens-Fresnel Principle SOLO Fresnel-Kirchhoff DiffractionTheory                           dSK rr rrkj A rU S s s source F    , 2 exp  The Fresnel Diffraction Formula can be rewritten as:         dS r rkj QVrU F exp where:     s s S source r rkj K A QV         2 exp ,    The interpretation of this formula is that each point of a wavefront can be considered as the center of a secondary spherical wave, and those secondary spherical waves interfere to result in the total field, is known as the Huygens-Fresnel Principle. P Fr  Sr  r   1S S R Screen Aperture 0P 0,0 1 1     S S n U U     n U U , Q  Sn1  Sn1 S  Table of Content Optical Diffraction
  • 20.
    20 SOLO Consider a diffractingaperture Σ. Suppose that the aperture is divided into two portions Σ 1 and Σ 2 such that Σ = Σ1 + Σ2. The two aperture Σ1 and Σ2 are said to be complementary. Complementary Apertures. Babinet Principle From the Fresnel Diffraction Formula:                     21 dS r rkj QVdS r rkj QV dS r rkj QVrU F expexp exp P Fr  1Sr  1 r  2 1S Screen Apertures 0P 1 Q Sn1 2Sr  2r 1 2Q We can see that the result is the added effect of all complimentary apertures. This is known as Babinet Principle. The result can be very helpful when Σ is a very complicated aperture, that can be decomposed in a few simple apertures. Table of Content Optical Diffraction
  • 21.
    21 SOLO The Kirchhoff DiffractionFormula is an approximation since for zero field and normal derivative on any finite surface the field is zero everywhere. This was pointed out by Poincare in 1892 and by Sommerfeld in 1894. The first rigorous solution of a diffraction problem was given by Sommerfeld in 1896 for a two-dimensional case of a planar wave incident on an infinitesimally thin, perfectly conducting half plane. This solution is not given here. Arnold Johannes Wilhelm Sommerfeld 1868 - 1951 Jules Henri Poincaré 1854-1912 Sommerfeld, A. : “Mathematische Theorie der Diffraction”, Math. Ann., 47:317, 1896 translated in english as “Optics, Lectures on Theoretical Physics”, vol. IV, Academic Press Inc., New York, 1954 Rayleigh-Sommerfeld Diffraction Formula Optical Diffraction
  • 22.
    22 SOLO Rayleigh-Sommerfeld Diffraction Formula Letstart from the Helmholtz and Kirchhoff Integral: P Fr  Sr  r   1S S R Screen Aperture 0P 0,0 1 1     S S n U U     n U U , Q  Sn1  Sn1 S  0'PFr'          SSSSS nnrrr 112'                 1 4 1 S F dS n G U n U GrU   Suppose that the Scalar Green Function is generated not only by P0 located at , but also by a point P’0 located symmetric relative to the screen at         SSSSS nnrrr 112'  Sr  G       SF SF SF SF SF rr rrkj rr rrkj rrG ' 'expexp ,_                  SF SF SF SF SF rr rrkj rr rrkj rrG ' 'expexp ,            or: We have 11 ,, ' SSFSSF rrrr             SSSFSSSF nrrnrr 1'1 11 ,,  0 1,   S G   011 exp1 2 11 ,, _                         S S S nr r rkj r kj n G 0 1,      S n G  0 exp 2 1 1 , ,          S S r rkj G Optical Diffraction
  • 23.
    23 SOLO Rayleigh-Sommerfeld Diffraction Formula 1.Start from the Helmholtz and Kirchhoff Integral: P Fr  Sr  r   1S S R Screen Aperture 0P 0,0 1 1     S S n U U     n U U , Q  Sn1  Sn1 S  0'PFr'          SSSSS nnrrr 112'                 1 4 1 S F dS n G U n U GrU         SF SF SF SF SF rr rrkj rr rrkj rrG ' 'expexp ,_           Choose 0 1,   S G   011 exp1 2 11 ,, _                         S S S nr r rkj r kj n G On the shadowed part of the screen and0 1 S U 0/ 1  S nU                             dSnr r rkj rU j dS n G UrU SS k r kj F 11 exp 4 1 /2 1 _    This is Rayleigh-Sommerfeld Diffraction Formula of the first kind SF rrr   Arnold Johannes Wilhelm Sommerfeld 1868 - 1951     S Ssource S r rkjA UrU exp    John William Strutt Lord Rayleigh (1842-1919)                dSnr r rkj r rkjAj rU S S Ssource F 11 expexp   we obtain: Optical Diffraction
  • 24.
    24 SOLO Rayleigh-Sommerfeld Diffraction Formula 2.Start from the Helmholtz and Kirchhoff Integral: P Fr  Sr  r   1S S R Screen Aperture 0P 0,0 1 1     S S n U U     n U U , Q  Sn1  Sn1 S  0'PFr'          SSSSS nnrrr 112'                 1 4 1 S F dS n G U n U GrU         SF SF SF SF SF rr rrkj rr rrkj rrG ' 'expexp ,            Choose On the shadowed part of the screen and0 1 S U 0/ 1  S nU SF rrr  0 1,      S n G  0 exp 2 1 1 , ,          S S r rkj G                   dS n U r rkj dS n U GrU F exp 2 1 4 1       S Ssource S r rkjA UrU exp                  SS S SsourceS nr r rkjA j n rU 11 exp2                   dSnr r rkj r rkjAj rU SS S Ssource F 11 expexp   For we obtain: This is Rayleigh-Sommerfeld Diffraction Formula of the second kind Table of Content Optical Diffraction
  • 25.
    25 P 0P Q 1x 0x 1y 0y   Sr'  Sr    r  O S Screen Image plane Source plane 0O 1O Sn1   - Screen Aperture Sn1 - normal to Screen 1r 0r  SSS rn cos11  cos11  rnS z Sn1 'r  Fr  FrPP  0 SrQP  0 rQP   SrOP '0   '1 rOO   SOLO          dS r rkj r rkjAj rU S S Ssource F 2 coscosexpexp    Start with Fresnel-Kirchhoff (or Rayleigh-Sommerfeld) Diffraction Formula 1. If the inclination factor is nearly constant over the aperture   constKK S  , Extensions of Fresnel-Kirchhoff Diffraction Theory         dS r rkj r rkjAKj rU S Ssource F expexp           dS r rkj rU Kj rU SF exp  2. Replace the incident point source wavefront with a general waveform   S S r rkjexp  Sinc rU  3. Characterize the aperture by a transfer function τ to model amplitude or phase changes due to optic system           dS r rkj rrU j rU SSF exp   Table of Content Optical Diffraction
  • 26.
    26 SOLO Phase Approximations –Fresnel (Near-Field) Approximation Fresnel Approximation or Near Field Approximation can be used when aperture dimensions are comparable to distance to source rS or image r.          dS r rkj r rkjAj rU S S Ssource F 2 coscosexpexp    Start with Fresnel-Kirchhoff Diffraction Formula If the inclination factor is nearly constant over the aperture   constKK S  ,              dS r rkj rU Kj dS r rkj r rkjAKj rU S S Ssource F expexpexp   P Q 1x 1y     r  O  Screen Image plane 1O Sn1  1r  z Sn1 'r  rQP   '1 rOO   P 0P Q 1x 0x 1y 0y   Sr'  Sr    r  O S  Screen Image plane Source plane 0O 1O Sn1   - Screen Aperture Sn1 - normal to Screen 1r 0r  SSS rn cos11  cos11  rnS z Sn1 'r  Fr        1 ''2 ' ' 1''2' ' 2 2 1 2 1 2 11 2/1 2 2 1 2/1 11 0 1 2 1                           r r k r r r r r rrrrrrr rrr x x                                    '2 exp ' 'expexp 2 1 r r kj r rkj r rkj         2 max 2 1 2 1 ' '2 exp ' 'exp rrk dS r r kjrU r rkjKj rU SF                   Augustin Jean Fresnel 1788-1827 Optical Diffraction
  • 27.
    27 SOLO Phase Approximations –Fraunhofer (Near-Field) Approximation Fraunhofer Approximation or Far Field Approximation can be used when aperture dimensions are very small comparable to distance to source rS or image r.          dS r rkj r rkjAj rU S S Ssource F 2 coscosexpexp    Start with Fresnel-Kirchhoff Diffraction Formula If the inclination factor is nearly constant over the aperture   constKK S  ,              dS r rkj rU Kj dS r rkj r rkjAKj rU S S Ssource F expexpexp   P Q 1x 1y     r  O  Screen Image plane 1O Sn1  1r  z Sn1 'r  rQP   '1 rOO   P 0P Q 1x 0x 1y 0y   Sr'  Sr    r  O S  Screen Image plane Source plane 0O 1O Sn1   - Screen Aperture Sn1 - normal to Screen 1r 0r  SSS rn cos11  cos11  rnS z Sn1 'r  Fr              ' exp ' 'expexp 1 r r kj r rkj r rkj           2 max 22 1 1 ' 2 ' exp ' 'exp rr k dS r r kjrU r rkjKj rU SF                      1 '2' ' '2' ' ' 2 1''2' ' 2 22 11 2 22 11 2 11 2/1 2 2 1 2 1 2/1 11 0 1 2 1                           r rk r r r r r r r r r rr rrrrrrr rrr x x              Optical Diffraction
  • 28.
    28 0P Q 0x 0y  Sr'  Sr    O S ScreenSource plane 0O  Sn10r  SrQP  0 S rOP '0   SOLO Fresnel andFraunhofer Diffraction Approximations Fresnel Approximations at the Source                                   S S SS S S xx x SS S S SSS SS r r rr r r rr r r rrr rr '2 '1 '2' ' ' '' ' 21' '2' ' 2 282 11 2/12 2 2/122 2                         S S S S S S S r r kjrkj r rkj r rkj '2 '1 exp'1exp ' 'expexp 2 2       S S r rkj ' 'exp    Srkj '1exp            S S r r kj '2 '1 exp 2 2   Spherical wave centered at P0. Lowest order approximation to the phase of a spherical wavefront Planar wave propagating in directionSr'1 P 0P Q 1x 0x 1y 0y   Sr'  Sr    r  O S  Screen Image plane Source plane 0O 1O Sn1   - Screen Aperture Sn1 - normal to Screen 1r 0r  SSS rn cos11  cos11  rnS z Sn1 'r  Fr  Optical Diffraction
  • 29.
    29 SOLO Fresnel and FraunhoferDiffraction Approximations P Q 1x 1y     r  O  Screen Image plane 1O Sn1  1r  z Sn1 'r  rQP   '1 rOO                                         ''2 ' ' 2 1' '2' ' 1 22 1 2 11 2/1 2 2 1 2 1 2/1 11 0 1 2 1 r r r r r r rr r rrrrrr rrr x x                                                        ' exp '2 exp '2 exp ' 'expexp 1 22 1 r r kj r kj r r kj r rkj r rkj   Fresnel Approximations at the Image plane P 0P Q 1x 0x 1y 0y   Sr'  Sr    r  O S  Screen Image plane Source plane 0O 1O Sn1   - Screen Aperture Sn1 - normal to Screen 1r 0r  SSS rn cos11  cos11  rnS z Sn1 'r  Fr    ' 'exp r rkj     '1exp rkj            '2 '1 exp 2 2 r r kj   Spherical wave centered at O. Lowest order approximation to the phase of a spherical wavefront Planar wave propagating in direction'1r Optical Diffraction
  • 30.
    30 SOLO Fresnel and FraunhoferDiffraction Approximations (1st way)            dS r rkj r rkjAj rU SK S S Ssource F        , 2 coscosexpexp Fresnel Approximation                                            dS r rrr r r kjrrkjrrkj rr rrkjKAj rU S S S S Ssource F '2 '1 '2 '1 exp'1'1exp'1exp '' ''exp 2 1 2 1 2 2 1      Fraunhofer Approximation      1 '2 '1 '2 '12 2 1 2 1 2 2     S S k r rrr r r     or S MAX rr ',' 2                 dSrrkjrrkj rr rrkjKAj rU S S Ssource F    '1'1exp'1exp '' ''exp 1 If     1 '2 '1 '2 '1 exp 2 1 2 1 2 2                         S S r rrr r r kj   we obtain Augustin Jean Fresnel 1788-1827   constKK S  , Start with '1'1 rrq S   P 0P Q 1x 0x 1y 0y   Sr'  Sr    r  O S  Screen Image plane Source plane 0O 1O Sn1   - Screen Aperture Sn1 - normal to Screen 1r 0r  SSS rn cos11  cos11  rnS z Sn1 'r  Fr  FrPP  0 SrQP  0 rQP   SrOP '0   '1 rOO   Optical Diffraction
  • 31.
    31 SOLO Fresnel and FraunhoferDiffraction Approximations (2nd way) Fresnel Approximation                      dS r rr kjrrU r rkjj rU SSF '2 exp ' 'exp 11      Fraunhofer Approximation    '1 '2 2 max 2 1 22 1 2 r r r r k        If we obtain Augustin Jean Fresnel 1788-1827 Start with           dS r rkj rrU j rU SSF exp   - aperture optical transfer function Sr   - disturbance at the aperture SrU                        dS r r kjrrU r rkjj rU SSF ' exp ' 'exp 1                                          ' exp '2 exp ' 'expexp 1 2 1 2 r r kj r r kj r rkj r rkj   P Q 1x 1y     r  O  Screen Image plane 1O Sn1  1r  z Sn1 'r  rQP   '1 rOO      1' rrr                                       2 11 2/1 2 11 2/1 11 0 1 2 '2 1' ' 1''2' r rr r r rr rrrrrrr                                    dS r r kj r r kjrrU r rkjj rU SSF ' exp '2 exp ' 'exp 1 2 1 2                                        '2' ' ' 2 1''2' 22 11 2 112/1 2 2 1 2 1 2/1 11 0 1 2 r r r r r r rr rrrrrrr x x   Optical Diffraction
  • 32.
    32 SOLO Fresnel and FraunhoferDiffraction Approximations Augustin Jean Fresnel 1788-1827 1x 1y  max D Screen 1O 1r  z  2 D R  Fresnel Region Fraunhofer Region  2 D R  R  O    '1 '2 2 max 2 1 22 1 2 r r r r k         Fraunhofer Approximation If Optical Diffraction
  • 33.
    33 SOLO Fraunhofer Diffraction andthe Fourier Transform                       dS r r kjrrU r rkjj rU SSF ' exp ' 'exp 1          11 1 ' 2 ' yx rr r k                               ddyx r jrrU r rkjj rU SSF 11 ' 2 exp ' 'exp  The integral is the two dimensional Fourier Transform of the field within the aperture    SS rrU                 fFTddkkjfkkF yxyx   exp, 2 1 :, 2           SSF rrUFT r rkjj rU    2 2 ' 'exp Therefore P 0P Q 1x 0x 1y 0y   Sr'  Sr    r  O S  Screen Image plane Source plane 0O 1O Sn1   - Screen Aperture Sn1 - normal to Screen 1r 0r  SSS rn cos11  cos11  rnS z Sn1 'r  Fr  FrPP  0 SrQP  0 rQP   SrOP '0   '1 rOO   Two Dimensional Fourier Transform Optical Diffraction
  • 34.
    34 SOLO Fraunhofer Diffraction ApproximationsExamples Rectangular Aperture P Q 1x 1y     r  O  Screen Image plane 1O Sn1 1r  z Sn1 'r 1 2 1 2                                                   1 1 1 1 11 0 2 11 2 10 ' 2 exp ' 2 exp '2 'exp ' exp ' exp '2 exp ' 'exp                 dy r jdx r j r rkjUkj dd r y kj r x kj r r kj r rkjUj rU k F           elsevere U rrU SS 0 & 21110    For a Rectangular Aperture Therefore                             dS r r kjrrU r r kj r rkjj rU SSF ' exp '2 exp ' 'exp 1 2 1                                                11 11 1 1 1111 1 ' 2 ' 2 sin 2 ' 2 ' 2 exp ' 2 exp ' 2 exp 1 1                     x r x r x r j x r jx r j dx r j                                           11 11 1 1 1111 1 ' 2 ' 2 sin 2 ' 2 ' 2 exp ' 2 exp ' 2 exp 1 1                     y r y r y r j y r jy r j dy r j                                   11 11 11 11 4/ 11 0 ' 2 ' 2 sin ' 2 ' 2 sin ' 'exp2              y r y r x r x r r rkjUkj rU A F  Optical Diffraction
  • 35.
    35 SOLO Fraunhofer Diffraction ApproximationsExamples Rectangular Aperture (continue – 1) Since U stands for scalar field intensity (E or H), the irradiance I is given by where < > is the time average and * is the complex conjugate.                                  11 11 11 11 0 ' 2 ' 2 sin ' 2 ' 2 sin ' 'exp8              y r y r x r x r Ar rkjUkj rU F         FFF rUrUrI  ~ Therefore     2 11 11 2 2 11 11 2 ' 2 ' 2 sin ' 2 ' 2 sin 0                                          y r y r x r x r IrI F  I (0) is the irradiance at O1 (x1 = y1 = 0). Hecht pg.466 Optical Diffraction
  • 36.
    36 SOLO Fraunhofer Diffraction ApproximationsExamples Single Slit Aperture Let substitute in the rectangular aperture ξ1 → 0 where < > is the time average and * is the complex conjugate.                                  11 11 11 11 0 ' 2 ' 2 sin ' 2 ' 2 sin ' 'exp8              y r y r x r x r Ar rkjUkj rU F         FFF rUrUrI  ~ Therefore     2 11 11 2 ' 2 ' 2 sin 0                      y r y r IrI F  I (0) is the irradiance at O1 (x1 = y1 = 0). to obtain the single (vertical) slit diffraction                    11 11 0 ' 2 ' 2 sin ' 'exp2        y r y r Ar rkjUkj rU FSLITSINGLE  Since U stands for scalar field intensity (E or H), the irradiance I is given by Hecht, pg. 453 Hecht, pg. 456 Optical Diffraction
  • 37.
    37 SOLO Fraunhofer Diffraction ApproximationsExamples Single Slit Aperture (continue)     2 11 11 2 ' 2 ' 2 sin 0                      y r y r IrI F  I (0) is the irradiance at O1 (x1 = y1 = 0). Hecht, pg. 456 Hecht 455 Define: 11 ' 2 :      y r     2 2 sin 0    II  The extremum of I (β) is obtained from:       0 sincossin2 0 3        I d Id The results are given by: minimum,3,2,0sin   maximum tan The solutions can be obtained graphically as shown in the figure and are: ,4707.3,4590.2,4303.1   Optical Diffraction
  • 38.
    38 SOLO Fraunhofer Diffraction ApproximationsExamples Double Slit Aperture                                                        d r x kjd r x kj r r kj r rkjUj rU ba ba ba ba F 2/ 2/ 1 2/ 2/ 1 2 10 ' exp ' exp '2 exp ' 'exp P Q 1x 1y     r  O  Screen Image plane 1O Sn1 1r  z Sn1 'r  1 b b a                            dS r r kjrrU r r kj r rkjj rU SSF ' exp '2 exp ' 'exp 1 2 1                                                                 ax r j bx r bx r b x r j bax r jbax r j dx r j ba ba 1 1 1 1 112/ 2/ 1 ' exp ' ' sin 1 ' 2 ' exp ' exp ' 2 exp                                                                           ax r j bx r bx r b x r j bax r jbax r j dx r j ba ba 1 1 1 1 112/ 2/ 1 ' exp ' ' sin 1 ' 2 ' exp ' exp ' 2 exp                                                ax r bx r bx r br r kj r rkjUj rU F 1 1 12 10 ' cos ' ' sin 2 '2 exp ' 'exp                                   ax r bx r bx r IrI F 1 2 2 1 1 2 ' cos ' ' sin 0               FFF rUrUrI  ~                  elsevere babababaU rrU SS 0 2/2/&2/2/0    Optical Diffraction
  • 39.
    39 SOLO Fraunhofer Diffraction ApproximationsExamples Double Slit Aperture (continue -= 1) Hecht p.458                2 2 2 12 2 1 12 cos sin 0 ' cos ' ' sin 0 I a r x b r x b r x IrI F                        P Q 1x 1y     r  O  Screen Image plane 1O Sn1 1r  z Sn1 'r  1 b b a The factor (sin β/ β)2 that was previously found as the distribution function for a single slit is here the envelope for the interference fringes given by the term cos2γ. Bright fringes occur for γ = 0,±π ,±2π,… The angular separation between fringes is Δγ = π. Optical Diffraction
  • 40.
    40 Hecht 459 SOLO Fraunhofer DiffractionApproximations Examples Double Slit Aperture (continue – 2) Optical Diffraction
  • 41.
    41 SOLO Fraunhofer Diffraction ApproximationsExamples Multiple Slit Aperture P 1y r  Image plane 1O 1r  Q     O  Screen  Sn1 'r  b b a a b b a b a The Aperture consists of a large number N of identical parallel slits of width b and separation a.                                   1 0 2/ 2/ 1 2 10 ' exp '2 exp ' 'exp N k bak bak F d r x kj r r kj r rkjUj rU                                 dS r r kjrrU r r kj r rkjj rU SSF ' exp '2 exp ' 'exp 1 2 1                                                                     akx r j bx r bx r b x r j b kax r j b kax r j dx r j bka bka 1 1 1 1 112/ 2/ 1 ' 2 exp ' ' sin 1 ' 2 2' 2 exp 2' 2 exp ' 2 exp                                                                                                                                           ax r aNx r bx r bx r br r kj r rkjUj ax r j aNx r j bx r bx r br r kj r rkjUj akx r j bx r bx r br r kj r rkjUj rU N k F 1 1 1 12 10 1 1 1 12 10 1 0 1 1 12 10 ' sin ' sin ' ' sin 1 '2 exp ' 'exp ' 2 exp1 ' 2 exp1 ' ' sin 1 '2 exp ' 'exp ' 2 exp ' ' sin 1 '2 exp ' 'exp                                    elsevere NkbkabkaU rrU SS 0 1,,1,02/2/0    Optical Diffraction
  • 42.
    42 SOLO Fraunhofer Diffraction ApproximationsExamples Multiple Slit Aperture (continue – 1) P 1y r  Image plane 1O 1r  Q     O  Screen  Sn1 'r  b b a a b b a b a The Aperture consists of a large number N of identical parallel slits of width b and separation a.                                        ax r aNx r bx r bx r br r kj r rkjUj rU F 1 1 1 12 10 ' sin ' sin ' ' sin 1 '2 exp ' 'exp                             22 2 2 2 1 22 1 2 2 1 1 2 sin sinsin 0 ' sin ' sin ' ' sin 0 N N I ax r N aNx r bx r bx r IrI F                                       FFF rUrUrI  ~ Optical Diffraction
  • 43.
    43 SOLO Fraunhofer Diffraction ApproximationsExamples Multiple Slit Aperture (continue – 2) Hecht p.462 Hecht p.463                   22 2 2 2 1 22 1 2 2 1 1 2 sin sinsin 0 ' sin ' sin ' ' sin 0 N N I ax r N aNx r bx r bx r IrI F                                Optical Diffraction
  • 44.
    44 SOLO Fraunhofer Diffraction ApproximationsExamples Multiple Slit Aperture (continue – 2)                   22 2 2 2 1 22 1 2 2 1 1 2 sin sinsin 0 ' sin ' sin ' ' sin 0 N N I ax r N aNx r bx r bx r IrI F                                Sears p.222 Hecht p. 462 Sears p.236 Interference Irradiation for 1, 2, 3 and 4 slits as function of observation angle. Diffraction Pattern for 1, 2, 3, 4 and 5 slits. Optical Diffraction
  • 45.
    45 SOLO Resolution of OpticalSystems According to Huygens-Fresnel Principle, a differential area dS, within an optical Aperture, may be envisioned as being covered with coherent secondary point sources. z y   Z Y  R  q  sincos  yz  sincos qYqZ Differential area dS, coordinates Image , coordinates  dddS    dSe r E dE rktiA          The spherical wave that propagates from dS to Image is where           22/122/1222 /1/21 RZzYyRRZzYyRzZyYXr    2/1222 ZYXR                 RkaqJkaqRe R E ddee R E dSee R E dEE RktiA a RkpqiRktiA Aperture RzZyYkiRktiA Aperture // 1 0 2 0 cos//                                The spherical wave at Image, for a Circular Aperture, is Optical Diffraction
  • 46.
    46 SOLO Resolution of OpticalSystems z y   Z Y  R  q      RkaqJkaqRe R E E RktiA // 1          where           2 0 cos 2 dve i uJ vuvmi m m Bessel Function (of the first kind) E. Hecht, “Optics” The spherical wave at Image, for a Circular Aperture, is Optical Diffraction
  • 47.
    47 SOLO Resolution of OpticalSystems z y   Z Y  R  q Irradiance     EEHEHESI EH    2 1 2 1 2 1             2 1 2 1 2 22 / /2 0 / /22 2 1               Rkaq RkaqJ I Rkaq RkaqJ R aE EEI A        Daaak RkaquuJ n Rq      22.1 2 22.1 2 83.383.3 sin83.3/0 sin/ 11   D nnn   44.22  E. Hecht, “Optics” Circular Aperture Optical Diffraction
  • 48.
    48 SOLO Resolution of OpticalSystems z y   Z Y  R  qDistribution of Energy in the Diffraction Pattern at the Focus of a Perfect Circular Lens E. Hecht, “Optics” Ring f/(λf#) Peak Energy in ring Illumination (%) Central max 0 1 83.9 1st dark ring 1.22 0 1st bright ring 1.64 0.017 7.1 2nd dark 2.24 0 2nd bright 2.66 0.0041 2.8 3rd dark 3.24 0 3rd bright 3.70 0.0016 1.5 4th dark 4.24 0 4th bright 4.74 0.00078 1.0 5th dark 5.24 0 Optical Diffraction
  • 49.
    49 SOLO Fraunhofer Diffraction ApproximationsExamples Circular Aperture Hecht p.469 Optical Diffraction
  • 50.
    50 SOLO Resolution of OpticalSystemsAiry Rings In 1835, Sir George Biddell Airy, developed the formula for diffraction pattern, of an image of a point source in an aberration-free optical system, using the wave theory. E. Hecht, “Optics” Optical Diffraction
  • 51.
    51 SOLO Resolution of OpticalSystems E. Hecht, “Optics” Optical Diffraction
  • 52.
    52 Rayleigh’s Criterion (1902) Theimages are said to be just resolved when the center of one Airy Disk falls on the first minimum of the Airy pattern of the other image. The minimum resolvable angular separation or angular limit is: D nnn   44.22  Sparrow’s Criterion At the Rayleigh’s limit there is a central minimum Or saddle point between adjacent peaks. Decreasing the distance between the two point sources cause the central dip to grow shallower and ultimately to disappear. The angular separation corresponding to that configuration is the Sparrow’s Limit. SOLO Resolution of Optical Systems Optical Diffraction
  • 53.
    53 Resolution – DiffractionLimit Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley Optical Diffraction
  • 54.
    54 Diffraction limit toresolution of two close point-object images: best resolution is possible when the two are of near equal, optimum intensity. As the two PSF merge closer, the intensity deep between them rapidly diminishes. At the center separation of half the Airy disc diameter - 1.22λ/D radians (138/D in arc seconds, for λ=0.55μ and the aperture diameter D in mm), known as Rayleigh limit - the deep is at nearly 3/4 of the peak intensity. Reducing the separation to λ/D (113.4/D in arc seconds for D in mm, or 4.466/D for D in inches, both for λ=0.55μ) brings the intensity deep only ~4% bellow the peak. This is the conventional diffraction resolution limit, nearly identical to the empirical double star resolution limit, known as Dawes' limit. With even slight further reduction in the separation, the contrast deep disappears, and the two spurious discs merge together. The separation at which the intensity flattens at the top is called Sparrow's limit, given by 107/D for D in mm, and 4.2/D for D in inches (λ=0.55μ). Optical Diffraction
  • 55.
    55 SOLO Fresnel Diffraction ApproximationsExamples Rectangular Aperture                      dS r rr kjrrU r rkjj rU SSF '2 exp ' 'exp 11      define Augustin Jean Fresnel 1788-1827 P Q 1x 1y     r  O  Screen Image plane 1O Sn1 1r  z Sn1 'r 1 2 1 2                                                 2 1 2 1 ' 2 2 exp ' 2 2 exp '2 'exp '2 exp '2 exp ' 'exp 2 1 2 10 2 2 1 2 10                 d r y jd r x j r rkjUkj dd r y kj r x kj r rkjUj rU k F           elsevere U rrU SS 0 & 21110    For a Rectangular Aperture         d r d r x ' 2 ' 2 : 2 12                    2 1 2 1 2 2 1 2 exp 2 ' ' 2 2 exp          dj r d r x j    212111 ' 2 & ' 2       x r x r Therefore         d r d r y ' 2 ' 2 : 2 12       212111 ' 2 & ' 2       y r y r                 2 1 2 1 2 2 1 2 exp 2 ' ' 2 2 exp          dj r d r y j Optical Diffraction
  • 56.
    56 SOLO Fresnel Diffraction ApproximationsExamples Rectangular Aperture (continue – 1) Augustin Jean Fresnel 1788-1827 P Q 1x 1y     r  O  Screen Image plane 1O Sn1 1r  z Sn1 'r 1 2 1 2                                         2 1 2 1 2 1 2 1 220 2 1 2 10 2 exp 2 exp 2 'exp ' 2 2 exp ' 2 2 exp ' 'exp                    djdj rkjUj d r y jd r x j r rkjUj rU F  Define Fresnel Integrals                             0 2 0 2 2 sin: 2 cos: dS dC      SjCdj       0 2 2 exp               2 1 2 1 2 'exp0      SjCSjC rkjUj rU F   Using the Fresnel Integrals we can write     5.0 SC Optical Diffraction
  • 57.
    57 SOLO Fresnel Diffraction ApproximationsExamples Rectangular Aperture (continue – 2) Augustin Jean Fresnel 1788-1827 Hecht p.499 Optical Diffraction
  • 58.
    58 SOLO Fresnel Diffraction ApproximationsExamples Augustin Jean Fresnel 1788-1827 P Q 1x 1y     r  O  Screen Image plane 1O Sn1 1r  z Sn1 'r 1 2 1 2 Optical Diffraction
  • 59.
    59 SOLO Fresnel Diffraction ApproximationsExamples Cornu Spiral Fresnel Integrals are defined as                   uu duuuSduuuC 0 2 0 2 2 sin:& 2 cos:     uSjuCduuj u       0 2 2 exp      5.0 SC Marie Alfred Cornu professor at the École Polytechnique in Paris established a graphical approach, for calculating intensities in Fresnel diffraction integrals. The Cornu Spiral is defined as the plot of S (u) versus C (u) duuSd duuCd               2 2 2 sin 2 cos       duSdCd  22 Therefore u may be thought as measuring arc length along the spiral. “Méthode nouvelle pour la discussion des problèmes de diffraction dans le cas d’une onde cylindrique”, J.Phys.3 (1874), 5-15,44-52 Optical Diffraction
  • 60.
    60 SOLO Fresnel Diffraction ApproximationsExamples Cornu Spiral (continue – 1)                   uu duuuSduuuC 0 2 0 2 2 sin:& 2 cos:     uSjuCduuj u       0 2 2 exp      5.0 SC The Cornu Spiral is defined as the plot of S (u) versus C (u) duuSdduuCd              22 2 sin& 2 cos      duSdCd  22                     2 2 2 2 tan 2 cos 2 sin u u u Cd Sd    Therefore every point on the curve makes the angle with the real ( C ) axis. 2 2 u  The radius of curvature of Cornu Spiral is The tangent vector of Cornu Spiral is SuCuT 1 2 sin1 2 cos 22                   u SuCuu udTdSdCdTd    1 1 2 cos1 2 sin 1 / 1 / 1 22 22                         showing that the curve spirals toward the limit points.        2 1 2 2 cos u u duu         2 1 2 2 sin u u duu         2 1 2 2 exp u u duuj  Table of Content Optical Diffraction
  • 61.
    61 SOLO Fresnel Diffraction ApproximationsExamples Augustin Jean Fresnel 1788-1827 Circular Aperture Hecht p.491 Hecht p.492 Optical Diffraction
  • 62.
    62 SOLO Fresnel Diffraction ApproximationsExamples Augustin Jean Fresnel 1788-1827 Circular Obstacles Optical Diffraction
  • 63.
    63 SOLO Fresnel Diffraction ApproximationsExamples Augustin Jean Fresnel 1788-1827 Fresnel Zone Plate Optical Diffraction
  • 64.
    64 SOLO Fresnel Diffraction ApproximationsExamples Augustin Jean Fresnel 1788-1827 Fresnel Diffraction by a Slit Hecht p.504 a Fresnel Diffraction Hecht p.504 b Optical Diffraction
  • 65.
    65 SOLO Fresnel Diffraction ApproximationsExamples Augustin Jean Fresnel 1788-1827 Semi-Infinite Opaque Screen Hecht p.506 a Hecht p.506 Optical Diffraction
  • 66.
    66 SOLO Fresnel Diffraction ApproximationsExamples Augustin Jean Fresnel 1788-1827 Semi-Infinite Opaque Screen Hecht p.506 a Hecht p.507 Optical Diffraction
  • 67.
  • 68.
    68 Point Spread Function(PSF) The Point Spread Function, or PSF, is the image that an Optical System forms of a Point Source. The PSF is the most fundamental object, and forms the basis for any complex object. PSF is the analogous to Impulse Response Function in electronics.    2 , yxPFTPSF  The PSF for a perfect optical system (with no aberration) is the Airy disc, which is the Fraunhofer diffraction pattern for a circular pupil. SOLO Optics
  • 69.
    69 Point Spread Function(PSF) As the pupil size gets larger, the Airy disc gets smaller. SOLO Optics
  • 70.
    70 Convolution     yxIyxOyxPSF ,,,          yxIyxOFTyxPSFFTFT ,,,1  Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley SOLO Optics
  • 71.
    71 Modulation Transfer Function(MTF) Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley SOLO Optics
  • 72.
    72 Modulation Transfer Function(MTF) The Modulation Transfer Function (MTF) indicates the ability of an Optical System to reproduce various levels of details (spatial frequencies) from the object to image. Its units are the ratio of image contrast over the object contrast as a function of spatial frequency.   3.57 a fcutoff Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley SOLO Optics
  • 73.
    73 Modulation Transfer Function(MTF) Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley SOLO Optics
  • 74.
    74 Phase Transfer Function(PTF) • PTF contains information about asymmetry in PSF • PTF contains information about contrast reversals (spurious resolution) Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley SOLO Optics
  • 75.
    75 Relations between WaveAberration, Point Spread Function and Modulation Transfer Function • The Point Spread Function (PSF) is the Fourier Transform (FT) of the pupil function • The Modulation Transfer Function (MTF) is the amplitude component of the FT of the PSF • The Phase Transfer Function (PTF) is the phase component of the FT of the PSF • The Optical Transfer Function (OTF) composed of MTF and PTF can also be computed as the autocorrelation of the pupil function.               yxWi eyxPFTyxPSF , 2 ,,        iiyx yxPSFFTAmplitudeffMTF ,,       iiyx yxPSFFTPhaseffPTF ,,        yxyxyx ffPTFiffMTFffOTF ,exp,,  SOLO Optics
  • 76.
    76 Relations between WaveAberration, Point Spread Function and Modulation Transfer Function             yxWi eFTyxPSF , 2 ,        iiyx yxPSFFTAmplitudeffMTF ,,       iiyx yxPSFFTPhaseffPTF ,,  Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”, University of California, Berkley SOLO Optics Ideal Optical System
  • 77.
    77 Relations between WaveAberration, Point Spread Function and Modulation Transfer Function             yxWi eFTyxPSF , 2 ,        iiyx yxPSFFTAmplitudeffMTF ,,       iiyx yxPSFFTPhaseffPTF ,,  Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”, University of California, Berkley SOLO Optics Real Optical System
  • 78.
    78 Relations between WaveAberration, Point Spread Function and Modulation Transfer Function             yxWi eFTyxPSF , 2 ,        iiyx yxPSFFTAmplitudeffMTF ,,       iiyx yxPSFFTPhaseffPTF ,,  Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”, University of California, Berkley SOLO Optics Real Optical System
  • 79.
    79 FIGURE : PSFand MTF for nominal wavefront errors of selected aberrations resulting in ~0.80 Strehl (~1/14 wave RMS), and the error doubled. (a) the effect of 1/4 and 1/2 wave P-V wavefront error of defocus on the PSF intensity distribution (left) and image contrast (right). Doubling the error nearly halves the peak diffraction intensity, but the average contrast loss nearly triples (evident from the peak PSF intensity). (b) 1/4 and 1/2 wave P-V of spherical aberration. While the peak PSF intensity change is nearly identical to that of defocus, wider energy spread away from the disc results in more of an effect at mid- to high- frequency range. Central disc at 1/2 wave P-V becomes larger, and less well defined. The 1/2 wave curve indicates ~20% lower actual cutoff frequency in field conditions. http://www.telescope-optics.net/ SOLO Optics
  • 80.
    80 FIGURE : PSFand MTF for nominal wavefront errors of selected aberrations resulting in ~0.80 Strehl (~1/14 wave RMS), and the error doubled. (c) 0.42 and 0.84 wave P-V wavefront error of coma. Both, intensity distribution (PSF) and contrast transfer change with the orientation angle, due to the asymmetric character of aberration. The worst effect is along the axis of aberration (red), or length-wise with respect to the blur (0 and π orientation angle), and the least is in the orientation perpendicular to it (green). (d) 0.37 and 0.74 wave P-V of astigmatism. Due to the tighter energy spread, there is less of a contrast loss with larger, but more with small details, compared to previous wavefront errors. Contrast is best along the axis of aberration (red), falling to the minimum (green) at every 45° (π/4), and raising back to its peak at every 90°. The PSF is deceiving here: since it is for a linear angular orientation, the energy spread is lowest for the contrast minima. http://www.telescope-optics.net/ SOLO Optics
  • 81.
    81 (e) Turned downedge effect on the PSF and MTF. The P-V errors for 95% zone are 2.5 and 5 waves as needed for the initial 0.80 Strehl (the RMS is similarly out of proportion). Lost energy is more evenly spread out, and the central disc becomes enlarged. Odd but expected TE property - due to the relatively small area of the wavefront affected - is that further increase beyond 0.80 Strehl error level does almost no additional damage. f) The effect of ~1/14 and ~1/7 wave RMS wavefront error of roughness, resulting in the peak intensity and contrast drop similar to those with other aberrations. Due to the random nature of the aberration, its nominal P-V wavefront error can vary significantly for a given RMS error and image quality level. Shown is the medium- scale roughness ("primary ripple" or "dog biscuit", in amateur mirror makers' jargon) effect. (g) 0.37 and 0.74 wave P-V of wavefront error caused by pinching having the typical 3-sided symmetry (trefoil). The aberration is radially asymmetric, with the degree of pattern deformation varying between the maxima (red MTF line, for the pupil angle θ=0, 2π/3, 4π/3), and minima (green line, for θ=π/3, π, 5π/3); (the blue line is for a perfect aperture). Other forms do occur, with or without some form of symmetry. FIGURE : PSF and MTF for nominal wavefront errors of selected aberrations resulting in ~0.80 Strehl (~1/14 wave RMS), and the error doubled.
  • 82.
    82 h) 0.7 and1.4 wave P-V wavefront error caused by tube currents starting at the upper 30% of the tube radius. The energy spreads mainly in the orientation of wavefront deformation (red PSF line, to the left). Similarly to the TE, further increase in the nominal error beyond a certain level has relatively small effect Contrast and resolution for the orthogonal to it pattern orientation are as good as perfect (green MTF line). (i) Near-average PSF/MTF effect of ~1/14 and ~1/7 wave RMS wavefront error of atmospheric turbulence. The atmosphere caused error fluctuates constantly, and so do image contrast and resolution level. Larger seeing errors (1/7 wave RMS is rather common with medium-to-large apertures) result in a drop of contrast in the mid- and high- frequency range to near-zero level. FIGURE : PSF and MTF for nominal wavefront errors of selected aberrations resulting in ~0.80 Strehl (~1/14 wave RMS), and the error doubled. http://www.telescope-optics.net/ SOLO Optics
  • 83.
    83 Other Metrics thatdefine Image Quality Strehl Ratio Strehl, Karl 1895, Aplanatische und fehlerhafte Abbildung im Fernrohr, Zeitschrift für Instrumentenkunde 15 (Oct.), 362-370. Dr. Karl Strehl 1864 -1940 One of the most frequently used optical terms in both, professional and amateur circles is the Strehl ratio. It is the simplest meaningful way of expressing the effect of wavefront aberrations on image quality. By definition, Strehl ratio - introduced by Dr. Karl Strehl at the end of 19th century - is the ratio of peak diffraction intensities of an aberrated vs. perfect wavefront. The ratio indicates image quality in presence of wavefront aberrations; often times, it is used to define the maximum acceptable level of wavefront aberration for general observing - so-called diffraction-limited level - conventionally set at 0.80 Strehl. SOLO Optics
  • 84.
    84 The Strehl ratiois the ratio of the irradiance at the center of the reference sphere to the irradiance in the absence of aberration. Irradiance is the square of the complex field amplitude u 0 E E Strehl  2 uE   dxdyyxWjUu )),(2exp(0  Other Metrics that define Image Quality Strehl Ratio Expectation Notation   dxdy dxdyyxu uu ),( SOLO Optics
  • 85.
    85 Derivation of StrehlApproximation  2 0 21 W E E Strehl  ),(2 0 yxWj eUu     22 0 ),(2 2 1 ),(21 yxWyxWjUu     2 0 2 00 ),(2 2 1 ),(2 yxWUyxWUjUu   series expansion     2 0 22 0 2 0 ),(2),(2 yxWEyxWEEE   multiply by complex conjugate 2222 ),(),(),(),( yxWyxWyxWyxWW  wavefront variance: SOLO Optics
  • 86.
    86  2 0 21 W E E Strehl 22 2 ),(),( yxWyxWWWW  where W is the wavefront variance:  2 2 W eStrehl  Another approximation for the Strehl ratio is Strehl Approximation Diffraction Limit 8.0Strehl A system is diffraction-limited when the Strehl ratio is greater than or equal to 0.8 Maréchal’s criterion: This implies that the rms wavefront error is less than /13.3 or that the total wavefront error is less than about /4. SOLO Optics
  • 87.
    87 Other Metrics thatdefine Image Quality Strehl Ratio dl eye H H RatioStrehl  Austin Roorda, “Review of Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley SOLO Optics
  • 88.
    88 Other Metrics thatdefine Image Quality Strehl Ratio   2m n Crms when rms is small  2 2 2 1 rmsStrehl          SOLO Optics
  • 89.
    89 Other Metrics thatdefine Image Quality FIGURE 34: Pickering's seeing scale uses 10 levels to categorize seeing quality, with the level 1 being the worst and level 10 near-perfect. Its seeing description corresponding to the numerical seeing levels are: 1-2 "very poor", 3 "poor to very poor", 4 "poor", 5 "fair", 6 "fair to good" 7 "good", 8 "good to excellent", 9 "excellent" and 10 "perfect". Diffraction-limited seeing error level (~0.8 Strehl) is between 8 and 9. Pickering 1 Pickering 2 Pickering 3 Pickering 4 Pickering 5 Pickering 6 Pickering 7 Pickering 9 Pickering 10Pickering 8 William H. Pickering (1858-1938) SOLO Optics
  • 90.
    90 Other Metrics thatdefine Image Quality FIGURE: Illustration of a point source (stellar) image degradation caused by atmospheric turbulence. The left column shows best possible average seeing error in 2 arc seconds seeing (ro~70mm @ 550nm) for four aperture sizes. The errors are generated according to Eq.53-54, with the 2" aperture error having only the roughness component (Eq.54), and larger apertures having the tilt component added at a rate of 20% for every next level of the aperture size, as a rough approximation of its increasing contribution to the total error (the way it is handled by the human eye is pretty much uncharted territory). The two columns to the right show one possible range of error fluctuation, between half and double the average error. The best possible average RMS seeing error is approximately 0.05, 0.1, 0.2 and 0.4 wave, from top to bottom (the effect would be identical if the aperture was kept constant, and ro reduced). The smallest aperture is nearly unaffected most of the time. The 4" is already mainly bellow "diffraction-limited", while the 8" has very little chance of ever reaching it, even for brief periods of time. The 16" is, evidently, affected the most. The D/ro ratio for its x2 error level is over 10, resulting in clearly developed speckle structure. Note that the magnification shown is over 1000x per inch of aperture, or roughly 10 to 50 times more than practical limits for 2"-16" aperture range, respectively. At given nominal magnification, actual (apparent) blur size would be smaller inversely to the aperture size. It would bring the x2 blur in the 16" close to that in 2" aperture (but it is obvious how a further deterioration in seeing quality would affect the 16" more). Eugène Michel Antoniadi (1870 –, 1944) The scale, invented by Eugène Antoniadi, a Greek astronomer, is on a 5 point system, with one being the best seeing conditions and 5 being worst. The actual definitions are as follows: I. Perfect seeing, without a quiver. II. Slight quivering of the image with moments of calm lasting several seconds. III. Moderate seeing with larger air tremors that blur the image. IV. Poor seeing, constant troublesome undulations of the image. V. Very bad seeing, hardly stable enough to allow a rough sketch to be made. Image Degradation Caused by Atmospheric Turbulence SOLO Optics
  • 91.
    91     iiyx yxPSFFTAmplitudeffMTF ,,              yxWi eFTyxPSF , 2 ,   Point Spread Function SOLO Optics
  • 92.
    92            yxWi eFTyxPSF , 2 ,        iiyx yxPSFFTAmplitudeffMTF ,,  Point Spread Function SOLO Optics
  • 93.
    93     iiyx yxPSFFTAmplitudeffMTF ,,              yxWi eFTyxPSF , 2 ,   Point Spread Function SOLO Optics
  • 94.
    94 SOLO converging beam = spherical wavefront parallelbeam = plane wavefront Image Plane Ideal Optics ideal wavefront parallel beam = plane wavefront Image Plane Non-ideal Optics defocused wavefront ideal wavefrontparallel beam = plane wavefront Image Plane Non-ideal Optics aberrated beam = iregular wavefront diverging beam = spherical wavefront aberrated beam = irregular wavefront Image Plane Non-ideal Optics ideal wavefront Optical Aberration See full development in P.P. “Optical Aberration”
  • 95.
    95 SOLO converging beam = spherical wavefront parallelbeam = plane wavefront Image Plane Ideal Optics P' Optical Aberration converging beam = spherical wavefront Image Plane Ideal Optics diverging beam = spherical wavefront P P' An Ideal Optical System can be defined by one of the three different and equivalent ways: All the rays emerging from a point source P, situated at a finite or infinite distance from the Optical System, will intersect at a common point P’, on the Image Plane. 1 All the rays emerging from a point source P will travel the same Optical Path to reach the image point P’. 2 The wavefront of light, focused by the Optical System on the Image Plane, has a perfectly spherical shape, with the center at the Image point P. 3 Ideal Optical System
  • 96.
    96 SOLO ideal wavefrontparallel beam = planewavefront Image Plane Non-ideal Optics aberrated beam = iregular wavefront diverging beam = spherical wavefront aberrated beam = irregular wavefront Image Plane Non-ideal Optics ideal wavefront Optical Aberration Real Optical System An Aberrated Optical System can be defined by one of the three different and equivalent ways: The rays emerging from a point source P, situated at a finite or infinite distance from the Optical System, do not intersect at a common point P’, on the Image Plane. 1 The rays emerging from a point source P will not travel the same Optical Path to reach the Image Plane 2 The wavefront of light, focused by the Optical System on the Image Plane, is not spherical. 3
  • 97.
    97 Optical Aberration W(x,y) is the path deviation between the distorted and reference Wavefront. SOLO Optical Aberration
  • 98.
    98 SOLO Optical Aberration Displayof Optical Aberration W (x,y) Rays Deviation1 Optical Path Length Difference2 wavefront shape W (x,y)3 x y x x y  yxW , y  yxW , Red circle denotes the pupile margin. Arrows shows how each ray is deviated as it emerges from the pupil plane. Each of the vectors indicates the the local slope of W (x,y). The aberration W (x,y) is represented in x,y plane by color contours. Wavefront Error Optical Distance Errors Ray Errors The Wavefront error agrees with Optical Path Length Difference, But has opposite sign because a long (short) optical path causes phase retardation (advancement). Aberration Type: Negative vertical coma Reference
  • 99.
    99 SOLO Optical Aberration Displayof Optical Aberration W (x,y) Advanced phase <= Short optical path Retarded phase <= Long optical path Reference Ectasia x y y  yxW , x x y  yxW , Ray Errors Optical Distance Errors Wavefront Error
  • 100.
    100 Optical AberrationSOLO Real ImagingSystems Start from the idealized conditions of Gaussian Optics. Object Gaussian Image planeExit Pupil (ExP) Optics  00 ,0, zxP   gg zxP ,0,' iz gz y x z Gaussian Image  zyxQ ,,  0,0,0O n We have an Ideal Optical System with the center of the Exit Pupil (ExP) at point O (0,0,0). The Optical Axis (OA) passes through O in the z direction. Normal to OA we defined the Cartezian coordinates x,y. (x,z) is the tangential (meridional) plane and (y,z) the sagittal plane defined by P and OA.  00 ,0, zxP  Object  0,0,0O Center of ExP  gg zxP ,0,' Gaussian Image gzz  Gaussian Image plane 'POP Chief Ray 'PQP General Ray  zyxQ ,, The Gaussian Image is obtained from rays starting at the Object P that passing through the Optics intersect at P’.   ':' QPnPQnPQPpathOptical  General Ray Aberrations
  • 101.
    101 SOLO Real Imaging Systems 'POPChief Ray 'PQP General Ray  zyxQ ,, For an idealized system all the optical paths are equal.   ':' QPnPQnPQPpathOptical  General Ray     '' '' OPnPOnPOP QPnPQnPQP                 2/1222/12 0 2 0 2/1222 2/12 0 22 0 gg gg zxnzxn zzyxxn zzyxxn    Object Gaussian Image planeExit Pupil (ExP) Optics  00 ,0, zxP   gg zxP ,0,' iz gz y x z Gaussian Image  zyxQ ,,  0,0,0O n Optical Aberration Aberrations (continue – 1)
  • 102.
    102 SOLO Real Imaging Systems Object Gaussian Image planeExit Pupil (ExP) Optics 00 ,0, zxP   gg zxP ,0,' iz Gaussian Spherical Waves center P gz y x z Gaussian Image  zyxQ ,,  0,0,0O Gaussian Spherical Waves center P' For homogeneous media (n = constant) the velocity of light is constant, therefore the rays starting/arriving from/to a point are perpendicular to the spherical wavefronts. Optical paths from P:      2/12 0 22 0),( zzyxxnQPV       2/1222 )',( gg zzyxxnPQV  Optical paths to P’: Rays from P:              2/12 0 22 0 00 ,,),( ˆ , 1 zzyxx zzzyyxxx QPV n s zyxQP       Rays to P’:              2/1222 ,,)',( ˆ ', 1 gg gg zyxPQ zzyxx zzzyyxxx PQV n s       Optical Aberration Aberrations (continue – 2)
  • 103.
    103 SOLO Real Imaging Systems Departuresfrom the idealized conditions of Gaussian Optics in a real Optical System are called Aberrations  00 ,0, zxP  Object  0,0,0O Center of ExP  gg zxP ,0,' Gaussian Image gzz  Gaussian Image plane The aberrated image of P in the Gaussian Image plane is  gii zyxP ,," Define the Reference Gaussian Sphere having the center at P’ and passing through O: 022222  gg zzxxzyx P” is the intersection of rays normal to the Aberrated Wavefront that passes trough point O (OP” is a Chief Ray). Choose any point on the Aberrated Wavefront. The Ray intersects the Reference Gaussian Sphere at Q (x, y, z). Q "PQ Object Gaussian Image planeExit Pupil (ExP) Optics  00 ,0, zxP   zyxQ ,,  gg zxP ,0,'  gii zyxP ,," iy iz Reference Gaussian Sphere center P' Aberrated Wavefront center P"  0,0,0O gz y x Q z Gaussian Image Aberrated Image ChiefRay Chief Ray Optical Aberration Aberrations (continue – 3)
  • 104.
    104 SOLO Real Imaging Systems Object Gaussian Image planeExit Pupil (ExP) Optics 00 ,0, zxP   zyxQ ,,  gg zxP ,0,'  gii zyxP ,," iy iz Reference Gaussian Sphere center P' Aberrated Wavefront center P"  0,0,0O gz y x Q z Gaussian Image Aberrated Image ChiefRay Chief Ray Choose any point on the Aberrated Wavefront. The Ray intersects the Reference Gaussian Sphere at Q (x, y, z). Q "PQ    QPVQPVW ,,  By definition of the wavefront, the optical path length of the ray starting at the object P and ending at is identical to that of the Chief Ray ending at O. Q Therefore the Wave Aberration is defined as the difference in the optical paths from P to Q V (P,Q) to that from P to  QPVQ ,, Define the Optical Path from P(x0,0,-z0) to Q (x,y,z) as:         zyxQ zxP raydnQPV ,, ,0, 00 :, Since by definition:    OPVQPV ,,              zyxQWOzxPVzyxQzxPVW ,,0,0,0,,0,,,,,0, 0000  Since Q (x,y,z) is constraint on the Reference Guidance Sphere: we can assume that z is a function of x and y, and 022222  gg zzxxzyx             0,0,0,,0,,,,,,0,, 0000 OzxPVyxzyxQzxPVyxW  Optical Aberration Aberrations (continue – 4)
  • 105.
    105 SOLO Real Imaging Systems Object Gaussian Image planeExit Pupil (ExP) Optics 00 ,0, zxP   zyxQ ,,  gg zxP ,0,'  gii zyxP ,," iy iz Reference Gaussian Sphere center P' Aberrated Wavefront center P"  0,0,0O gz y x Q z Gaussian Image Aberrated Image ChiefRay Chief Ray Given the Wave Aberration function W (x,y) the Gaussian Image P’(xg,0,zg) of P and the point Q (x,y,z) on the Reference Guidance Sphere we want to find the point P”(xi,yi,zg) 022222  gg zzxxzyx             0,0,0,,0,,,,,,0,, 0000 OzxPVyxzyxQzxPVyxW  Solution:           Q x z z yxzyxQPV x yxzyxQPV x yxW           ,,,,,,,,,          2/1222 ,, ,, zzyyxx zzyyxx n z V y V x V gii gii               Compute relative to Q by differentiating relative to x:022222  gg zzxxzyx Q x z          gi g g gi xx R n zz xx zz R n xx R n x yxW       ''' ,   x yxW n R xx gi    ,' In the same way:   y yxW n R yi    ,' The ray from Q to P” is given by (see ): Forward to a 2nd way Optical Aberration Aberrations (continue – 5)
  • 106.
    106 SOLO Real Imaging Systems DefocusAberration Consider an optical system for which the object P, the Gaussian image P’ and the aberrated image P” are on the Optical Axis. The Gaussian Reference Sphere passing through O (center of ExP) has the center at P’. The Aberrated Wavefront Sphere passing through O (center of ExP) has the center at P”. Consider a ray ( on the Aberrated Wavefront Sphere) that intersects the Gaussian Reference Sphere at Q, that is at a distance r from the Optical Axis. Q"PQ     UBBnQQnQQVrW cos/, The Wave Aberration is defined as           12 22 1 22 2 cos '"'" cos RRrRrR U n PPBPPB U n rW Reference Sphere center at P2 O QQ "P'P Aberrated Wavefront center at P1 Exit Pupil (ExP) B r 1R 2R B U Gaussian image plane Optical Axis R Image plane Optical Aberration
  • 107.
    107 SOLO Real Imaging Systems DefocusAberration (continue – 1) Reference Sphere center at P2 O QQ "P'P Aberrated Wavefront center at P1 Exit Pupil (ExP) B r 1R 2R B U Gaussian image plane Optical Axis R Image plane Let make the following assumptions:           12 22 1 22 2 cos '"'" cos RRrRrR U n PPBPPB U n rW 21,1cos RRrU                                                           4 1111 2 82 1 82 1 '"'" cos 4 3 2 3 1 2 21 124 1 4 2 1 2 14 2 4 2 2 2 2 r RR r RR n RR R r R r R R r R r Rn PPBPPB U n rW 1 1682 11 32  x xxx x  Assume: RRRRRR  2112 &   2 2 2 r R Rn rW  we have: Δ R is called the Longitudinal Defocus. Optical Aberration
  • 108.
    108 SOLO Real Imaging Systems DefocusAberration (continue – 2) For a circular exit pupil of radius a we have:   22 2 # 8  dA f Rn W    a R f 2 :# F number: Define: a r : Therefore Where is the peak value of the Defocus Aberration 2 # 8 : f Rn Ad   Reference Sphere center at P2 O QQ "P'P Aberrated Wavefront center at P1 Exit Pupil (ExP) B r 1R 2R B U Gaussian image plane Optical Axis R Image plane a Optical Aberration
  • 109.
    109 http://129.7.217.162/VOI/WavefrontCongress/2006/presentations/1ROORDAprincip.pdf   22 , yxAyxW d  Optical Aberration Wave Aberration: Defocus SOLO Real Imaging Systems Defocus Aberration (continue – 3)
  • 110.
  • 111.
    111 SOLO Real Imaging Systems WavefrontTilt Aberration Reference Sphere centered at P1 O  zyxQ ,,Q 1P Abrrrated Wavefront center at P2 Exit Pupil (ExP) B r B U ix 2P  Gaussian image plane Tangential plane 1R R R Assume an optical system that has one ore more optical elements tilted and/or decentered. The object P is on the Optical Axes (OA), therefore the Gaussian image P1 is also on OA. Therefore the Gaussian Reference Sphere that passes trough ExP center O has it’s center at P1. P2 is the aberrated image on the Gaussian image plane (that contains P1) is a distance xi from OA. The Aberrated Wavefront that passes through O has it’s center at P2. Therefore for small P1P2 the two surfaces are tilted by an angle β. Consider the ray where:2QPQ  zyxQ ,, on the Gaussian Reference Sphere 02 1 222  xRzyx Q on the Aberrated Wavefront Sphere centered at P2 and radius R. cos1 RR   12 ,0, RxP i the aberrated image  RRxi  sin     sin,cos, rryx  Optical Aberration
  • 112.
    112 SOLO Real Imaging Systems WavefrontTilt Aberration (continue – 1) Reference Sphere centered at P1 O  zyxQ ,,Q 1P Abrrrated Wavefront center at P2 Exit Pupil (ExP) B r B U ix 2P  Gaussian image plane Tangential plane 1R R R We have x W n R Rxi         QQnQQVrW  , The Wave Aberration is n x W     cos 0 rnxnxd x W W x      For a circular exit pupil of radius a we have: a r :    coscos, 1BanW  where: anB :1 Optical Aberration
  • 113.
    113 SOLO Real Imaging Systems Departuresfrom the idealized conditions of Gaussian Optics in a real Optical System are called Aberrations Monochromatic Aberrations Chromatic Aberrations • Monochromatic Aberrations Departures from the first order theory are embodied in the five primary aberrations 1. Spherical Aberrations 2. Coma 3. Astigmatism 4. Field Curvature 5. Distortion This classification was done in 1857 by Philipp Ludwig von Seidel (1821 – 1896) • Chromatic Aberrations 1. Axial Chromatic Aberration 2. Lateral Chromatic Aberration Optical Aberration
  • 114.
  • 115.
  • 116.
  • 117.
    117 SOLO Real Imaging Systems SeidelAberrations Consider a spherical surface of radius R, with an object P0 and the image P0’ on the Optical Axis. n 'n CB R 0P '0P  ,rQ 0V r z  s 's Chief Ray General Ray AS Enp Exp The Chief Ray is P0 V0 P0’ and a General Ray P0 Q P0’. The Wave Aberration is defined as the difference in the optical path lengths between a General Ray and the Chief Ray.          snsnQPnQPnPVPQPPrW  '''''' 00000000 On-Axis Point Object The aperture stop AS, entrance pupil EnP, and exit pupil ExP are located at the refracting surface. Optical Aberration
  • 118.
    118 SOLO Real Imaging Systems SeidelAberrations (continue – 1) n 'n CB R 0P '0P  ,rQ 0V r z  s 's Chief Ray General Ray AS Enp Exp          2 2 22 11 R r RrRRz Define:   2 2 11 2 2 R r xxf R r x       2/1 1 2 1 '   xxf     2/3 1 4 1 "   xxf     2/5 1 8 3 '"   xxf Develop f (x) in a Taylor series            0"' 6 0" 2 0' 1 0 32 f x f x f x fxf 1 1682 11 32  x xxx x  Rr R r R r R r R r Rz           5 6 3 42 2 2 1682 11 On Axis Point Object From the Figure:   222 rzRR  02 22  rRzz Optical Aberration
  • 119.
    119 SOLO Real Imaging Systems SeidelAberrations (continue – 2) n 'n CB R 0P '0P  ,rQ 0V r z  s 's Chief Ray General Ray AS Enp Exp From the Figure:           2/1 2 2/12 2 2/12222/122 0 212 2 22           z s sR sszsR rsszzrszQP rzRz                   2 4 2 2 1 1682 11 2 1 1 32 z s sR z s sR s x xxx x                                2 3 42 4 2 3 42 2 82 822 1 82 1 3 42 R r R r s sR R r R r s sR s R r R r z                                4 2 2 22/122 0 11 8 111 8 111 2 1 r sRssRR r sR srszQP                                4 2 2 22/122 0 1 ' 1 '8 11 ' 1 8 11 ' 1 2 1 ''' r RssRsR r Rs srzsPQ In the same way: On Axis Point Object Optical Aberration
  • 120.
    120 SOLO Real Imaging Systems SeidelAberrations (continue – 3) n 'n CB R 0P '0P  ,rQ 0V r z  s 's Chief Ray General Ray AS Enp Exp                             4 2 2 2 0 11 8 111 8 111 2 1 r sRssRR r sR sQP                             4 2 2 2 0 1 ' 1 '8 11 ' 1 8 11 ' 1 2 1 '' r RssRsR r Rs sPQ Therefore:       4 22 2 42 000 11 ' 11 ' ' 8 1 82 ' ' ' '''' r sRs n sRs n R rr R nn s n s n snsnQPnQPnrW                                    Since P0’ is the Gaussian image of P0 we have   R nn s n s n     ' ' ' and:   44 22 0 11 ' 11 ' ' 8 1 rar sRs n sRs n rW S                      On Axis Point Object Optical Aberration
  • 121.
    121 SOLO Real Imaging Systems SeidelAberrations (continue – 4) Off-Axis Point Object Consider the spherical surface of radius R, with an object P and its Gaussian image P’ outside the Optical Axis. The aperture stop AS, entrance pupil EnP, and exit pupil ExP are located at the refracting surface. Using ''~ 00 CPPCPP  the transverse magnification     s n s n nn s s n s n nn s Rs Rs h h Mt             ' ' ' ' ' ' ' ''  sn sn nn s s nn nn s s nn Mt      ' ' ' ' ' ' ' ' n 'n CB R 0P '0P  ,rQ 0V r z  s 's Chief Ray GeneralRay AS Enp Exp 'P Undeviated Ray P  h 'h  V Optical Aberration
  • 122.
    122 SOLO Real Imaging Systems SeidelAberrations (continue – 5) Off-Axis Point Object The Wave Aberration is defined as the difference in the optical path lengths between the General Ray and the Undeviated Ray.                  4 0 4 0 '''' '' VVVQa PVPPPVPVPPQP PVPPQPQW S    For the approximately similar triangles VV0C and CP0’P’ we have: CP CV PP VV ''' 0 0 0 0  '' ' '' ' 0 0 0 0 hbh Rs R PP CP CV VV    Rs R b   ' :                      22 11 ' 11 ' ' 8 1 sRs n sRs n aS n 'n CB R 0P '0P  ,rQ 0V r z  s 's Chief Ray GeneralRay AS Enp Exp 'P Undeviated Ray P  h 'h  V Optical Aberration
  • 123.
    123 SOLO Real Imaging Systems SeidelAberrations (continue – 6) Off-Axis Point Object Wave Aberration.        4 0 4 '' VVVQaPVPPQPQW S  Define the polar coordinate (r,θ) of the projection of Q in the plane of exit pupil, with V0 at the origin.  cos'2'cos2 222 0 2 0 2 2 hbrhbrVVrVVrVQ  '0 hbVV            442222 4 0 4 'cos'2' '' hbhbrhbra VVVQaPVPPQPQW S S        cos'4'2cos'4cos'4';, 33222222234 rhbrhbrhbrhbrahrW S  P r 'y 'x n 'n CB R 0P '0P  ,rQ 0V r z  s 's Chief Ray GeneralRay AS Enp Exp 'P Undeviated Ray P  h 'h  V Optical Aberration
  • 124.
    124 SOLO Real Imaging Systems SeidelAberrations (continue – 7) General Optical Systems    cos''cos'cos'';, 33222222234 rhbCrhbCrhbCrhbCrChrW DiFCAsCoSp  A General Optical Systems has more than on Reflecting or Refracting surface. The image of one surface acts as an object for the next surface, therefore the aberration is additive. We must address the aberration in the plane of the exit pupil, since the rays follow straight lines from the plane of the exit pupil. The general Wave Aberration Function is: 1. Spherical Aberrations CoefficientSp C 2. Coma CoefficientCoC 3. Astigmatism CoefficientAsC 4. Field Curvature CoefficientFCC 5. Distortion CoefficientDiC where: n 'n C O 0P '0P  ,rQ 0V r  s 's Chief Ray GeneralRay Exit Pupil Exp 'P Undeviated Ray P  h 'h  ~ Optical Aberration
  • 125.
    125 Spherical Aberations B 4 1  r 4 4 1 rBW  O W (a ) Coma cos' 3 rhFW  W 'hF O ( b ) r  Astigmatism cos' 22 rhCW  W ( c )  2 'hC O r Curvature of Field 2 ' 2 1 hD r 22 ' 2 1 rhDW  O W ( d ) Distortion 3 'hE cos'3 rhEW  W ( e ) r O  SOLO Real Imaging Systems Seidel Aberrations (continue – 8)    cos''cos'cos'';, 32222234 rhCrhCrhCrhCrChrW DiFCAsCoSp  Optical Aberration
  • 126.
    126 OpticsSOLO Real Imaging Systems– Aberrations (continue – 1) 1. Spherical Aberrations Longitudinal variation of focus with aperture (the distance of the parallel rays from the Optical Axis. n 'n C A F’ R Paraxial Focus Spherical Aberration
  • 127.
    127 SOLO Real Imaging Systems GraphicalExplanation of Coma Blur 1 1 2 2 3 3 4 4 Optical Axis 1 Meridional (Tangential) Plane P Image Plane Tangential Rays 1 O Lens A Tangential Rays 1 Chief Ray 1 1 1 2 2 3 3 4 4 Optical Axis 1 Sagittal Plane P Image Plane Sagittal Rays 2 O Lens A 2 Sagittal Rays 2 Chief Ray 2 1 1 2 2 3 3 4 4 Optical Axis 1 P Image Plane Skew Rays 3 O Lens A 2 3 Skew Rays 3 Chief Ray 3 1 1 2 2 3 3 4 4 Optical Axis 1 P Image Plane Skew Rays 4 O Lens A 2 3 4 Skew Rays 4 Chief Ray 4 2. Coma Optical Aberration
  • 128.
    128 SOLO Real Imaging Systems 1 2 34 P Image Plane O SC SC ST CC 3 Coma Blur Spot Shape Tangential Coma Sagittal Coma 1 1 2 2 3 3 4 4 Optical Axis 1 P Image Plane O Lens A 2 3 4 Coma Image Pattern Chief Ray Tangential Plane Sagittal Plane Graphical Explanation of Coma Blur (continue – 1) 2. Coma (continue – 1) Optical Aberration 1 '1 24 '4 '2 3 '3 0  60 1 Corresponding points on 11 1 33 4 4 2 2 '1 '1 '2 '2 '3'3 '4 '4 0 Points on lens '1 1 1 '1 S P,O
  • 129.
    129 OpticsSOLO Real Imaging Systems– Aberrations (continue – 3) 3. Astigmatism Meridional plane Sagittal plane Primary image Secondary image Circle of least confusion Object point Optical System Chief ray SF TF Ray in Sagittal plane Ray in Meridional plane
  • 130.
    130 SOLO Real Imaging Systems– Aberrations 4. Field Curvature   222 '';, rhbChrW FCFC  Optical Aberration
  • 131.
    131 4. Field Curvature SOLOOptical Aberration
  • 132.
    132 SOLO Real Imaging Systems– Aberrations 5. Distortion   xhbC rhbChrW Di DiDi 33 33 ' cos'';,    Optical Aberration    cos''cos'cos'';, 33222222234 rhbCrhbCrhbCrhbCrChrW DiFCAsCoSp  The general Wave Aberration Function is: Consider only the Distorsion Wave Aberration Function n 'n C O '0 P  ,rQ 0 V r General Ray Exit Pupil Exp 'P Undeviated Ray 'h  ~ Image Plane 'L Chief Ray n     0 ';, ' ' & ' ''';, ' ' 33      y hyxW n L yC n Lhb x hyxW n L x iDii Meridional plane Sagittal plane Object point Optical System Chief ray Ray in Sagittal plane Ray in Meridional plane Optical axis Optical axis gx ix We can see that the Distortion Aberration is only in the object Meridional (Tangential) Plane.
  • 133.
    133 SOLO Real Imaging Systems– Aberrations (continue – 5) 5. Distortion   xhbC rhbChrW Di DiDi 33 33 ' cos'';,    Optical Aberration     0 ';, ' ' & ' ''';, ' ' 33      y hyxW n L yC n Lhb x hyxW n L x iDii Object points Optical System Chief ray Optical axis Optical axis 1g x 1ix 0  0r 0x 0y 5g x 5i x Gaussian image Distorted image 4g x 4i x 1 2 3 4 5 Tangential plane # 4 Let take instead of a point image, a line (multiple image points). Distortion 3 'hE cos'3 rhEW  W ( e ) r O  For each point we have a different tangential plane and therefore a different x.   ' 2/122 hyx  To obtain the image we must substitute     2/1222/122 sin&cos yx y yx x      and we get:        23 3 2/122 2/322 3 2/322 3 ' ' ' ' cos ' ' yxxC n Lb yx x yxC n Lb yxC n Lb x DiDiDii            32 3 2/122 2/322 3 2/322 3 ' ' ' ' sin ' ' yyxC n Lb yx y yxC n Lb yxC n Lb y DiDiDii    
  • 134.
    134 SOLO Real Imaging Systems– Aberrations (continue – 5) 5. Distortion   xhbC rhbChrW Di DiDi 33 33 ' cos'';,    Optical Aberration Object points Optical System Chief ray Optical axis Optical axis 1g x 1ix 0  0r 0x 0y 5g x 5i x Gaussian image Distorted image 4g x 4i x 1 2 3 4 5 Tangential plane # 4 Now consider a line object that yields a paraxial image x =a (see Figure).        23 3 2/122 2/322 3 2/322 3 ' ' ' ' cos ' ' yxxC n Lb yx x yxC n Lb yxC n Lb x DiDiDii            32 3 2/122 2/322 3 2/322 3 ' ' ' ' sin ' ' yyxC n Lb yx y yxC n Lb yxC n Lb y DiDiDii      23 3 ' ' yaaC n Lb x Dii   32 3 ' ' yyaC n Lb y Dii 
  • 135.
    135 SOLO Real Imaging Systems– Aberrations (continue – 5) 5. Distortion    cos'';, 33 rhbChrW DiDi  Optical Aberration    cos''cos'cos'';, 33222222234 rhbCrhbCrhbCrhbCrChrW DiFCAsCoSp  The general Wave Aberration Function is: Consider only the Distorsion Wave Aberration Function Distortion 3 'hE cos'3 rhEW  W ( e ) r O  n 'n C O '0 P  ,rQ 0 V r General Ray Exit Pupil Exp 'P Undeviated Ray 'h  ~ Image Plane 'L Chief Ray n
  • 136.
    136 SOLO Optics Chester MoorHall (1704 – 1771) designed in secrecy the achromatic lens. He experienced with different kinds of glass until he found in 1729 a combination of convex component formed from crown glass with a concave component formed from flint glass, but he didn’t request for a patent. http://microscopy.fsu.edu/optics/timeline/people/dollond.html In 1750 John Dollond learned from George Bass on Hall achromatic lens and designed his own lenses, build some telescopes and urged by his son Peter (1739 – 1820) applied for a patent. Born & Wolf,”Principles of Optics”, 5th Ed.,p.176 Chromatic Aberration In 1733 he built several telescopes with apertures of 2.5” and 20”. To keep secrecy Hall ordered the two components from different opticians in London, but they subcontract the same glass grinder named George Bass, who, on finding that both Lenses were from the same customer and had one radius in common, placed them in contact and saw that the image is free of color. The other London opticians objected and took the case to court, bringing Moore-Hall as a witness. The court agree that Moore- Hall was the inventor, but the judge Lord Camden, ruled in favor of Dollond saying:”It is not the person who locked up his invention in the scritoire that ought to profit by a patent for such invention, but he who brought it forth for the benefit of the public”
  • 137.
    137 SOLO Optics Chromatic Aberration Longitudinal Chromatic Aberration Blue Focal Point Red Focal Point Lateral Chromatic Aberration Red Focal Point ChromaticAberrations arise in Polychromatic IR Systems because the material index n is actually a function of frequency. Rays at different frequencies will traverse an optical system along different paths.
  • 138.
    138 SOLO Optics Chromatic Aberration 1R121' RRR  '2R Crown Flint 1n 2n
  • 139.
    139 SOLO Optics Chromatic Aberration Everypiece of glass will separate white light into a spectrum given the appropriate angle. This is called dispersion. Some types of glasses such as flint glasses have a high level of dispersion and are great for making prisms. Crown glass produces less dispersion for light entering the same angle as flint, and is much more suited for lenses. Chromatic aberration occurs when the shorter wavelength light (blue) is bent more than the longer wavelength (red). So a lens that suffers from chromatic aberration will have a different focal length for each color To make an achromat, two lenses are put together to work as a group called a doublet. A positive (convex) lens made of high quality crown glass is combined with a weaker negative (concave) lens that is made of flint glass. The result is that the positive lens controls the focal length of the doublet, while the negative lens is the aberration control. The negative lens is of much weaker strength than the positive, but has higher dispersion. This brings the blue and the red light back together (B). However, the green light remains uncorrected (A), producing a secondary spectrum consisting of the green and blue-red rays. The distance between the green focal point and the blue-red focal point indicates the quality of the achromat. Typically, most achromats yield about 75 to 80 % of their numerical aperture with practical resolution
  • 140.
    140 SOLO Optics Chromatic Aberration Inaddition, to the correction for the chromatic aberration the achromat is corrected for spherical aberration, but just for green light. The Illustration shows how the green light is corrected to a single focal length (A), while the blue-red (purple) is still uncorrected with respect to spherical aberration. This illustrates the fact that spherical aberration has to be corrected for each color, called spherochromatism. The effect of the blue and red spherochromatism failure is minimized by the fact that human perception of the blue and red color is very weak with respect to green, especially in dim light. So the color halos will be hardly noticeable. However, in photomicroscopy, the film is much more sensitive to blue light, which would produce a fuzzy image. So achromats that are used for photography will have a green filter placed in the optical path.
  • 141.
    141 SOLO Optics Chromatic Aberration Asthe optician's understanding of optical aberrations improved they were able to engineer achromats with shorter and shorter secondary spectrums. They were able to do this by using special types of glass call flourite. If the two spectra are brought very close together the lens is said to be a semi-apochromat or flour. However, to finally get the two spectra to merge, a third optical element is needed. The resulting triplet is called an apochromat. These lenses are at the pinnacle of the optical family, and their quality and price reflect that. The apochromat lenses are corrected for chromatic aberration in all three colors of light and corrected for spherical aberration in red and blue. Unlike the achromat the green light has the least amount of correction, though it is still very good. The beauty of the apochromat is that virtually the entire numerical aperture is corrected, resulting in a resolution that achieves what is theoretically possible as predicted by Abbe equation.
  • 142.
    142 SOLO Optics Chromatic Aberration Withtwo lenses (n1, f1), (n2,f2) separated by a distance d we found 2121 111 ff d fff  1n 1f d 2f 2 n Let use     222111 1/1&1/1   nfnf We have         22112211 1111 1   nndnn f nF – blue index produced by hydrogen wavelength 486.1 nm. nC – red index produced by hydrogen wavelength 656.3 nm. nd – yellow index produced by helium wavelength 587.6 nm. Assume that for two colors red and blue we have fR = fB                 22112211 22112211 1111 1111 1     FFFF CCCC nndnn nndnn f
  • 143.
    143 SOLO Optics Chromatic Aberration Letanalyze the case d = 0 (the two lenses are in contact) nd – yellow index produced by helium wavelength 587.6 nm. We have         22112211 1111 1   FFCC nnnn f        1 1 1 1 1 2 1 2 2 1       F F C C n n n n      CF CF nn nn 11 22 2 1      For the yellow light (roughly the midway between the blue and red extremes) the compound lens will have the focus fY:     YY f d f d Y nn f 21 /1 22 /1 11 11 1       Y Y d d f f n n 1 2 1 2 2 1 1 1                     1/ 1/ 1 1 111 222 2 1 11 22 1 2         dCF dCF d d CF CF Y Y nnn nnn n n nn nn f f
  • 144.
    144 SOLO Optics Chromatic Aberration       1/ 1/ 111 222 1 2    dCF dCF Y Y nnn nnn f f The quantities are called Dispersive Powers of the two materials forming the lenses.        1 & 1 2 22 1 11     d CF d CF n nn n nn Their inverses are called V-numbers or Abbe numbers.        CF d CF d nn n V nn n V 22 2 2 11 1 1 1 & 1      
  • 145.
    145 OpticsSOLO To define glasswe need to know more than one index of refraction. In general we choose the indexes of refraction of three colors: nF – blue index produced by hydrogen wavelength 486.1 nm. nC – red index produced by hydrogen wavelength 656.3 nm. nd – yellow index produced by helium wavelength 587.6 nm. Define: nF – nC - mean dispersion CF d nn n v    1 - Abbe’s Number or v value or V-number Crowns: glasses of low dispersion (nF – nC small and V-number above 55) Flints: glasses of high dispersion (nF – nC high and V-number bellow 50) Fraunhofer line color Wavelength (nm) Spectacle Crown C - 1 Extra Dense Flint EDF - 3 F d C Blue Yellow Red 486.1 587.6 656.3 1.5293 1.5230 1.5204 1.7378 1.7200 1.7130V - number 58.8 29.0
  • 146.
    146 OpticsSOLO Refractive indices andAbbe’s numbers of various glass materials
  • 147.
  • 148.
    148 OpticsSOLO Camera Lenses Born & Wolfe,“Principle of Optics”, Pergamon Press, 5th Ed., pp.236-237
  • 149.
    149Raymond A. Applegate,OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect vision”, University of Houston, TX, USA Optics
  • 150.
  • 151.
    151Raymond A. Applegate,OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect vision”, University of Houston, TX, USA Optics
  • 152.
    152Raymond A. Applegate,OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect vision”, University of Houston, TX, USA Optics
  • 153.
    153 SOLO Optics Zernike’s Polynomials In1934 Frits Zernike introduces a complete set of orthonormal polynomials to describe aberration of any complexity.         m N m n m n m nN YRaZZ  ,, ,2,1 2 813 min            N N Integern                oddN evenN msign Nnn Integernm 1 1 4 212 min2 Each polynomial of the Zernike set is a product of three terms. where         012 01 mifn mifn a m n               sn mn s s m n smnsmns sn R 2 2/ 0 !2/!2/! !1                    oddisNandmif evenisNandmif mif Y m N 0sin 0cos 01   radial index meridional index
  • 154.
    154 SOLO Optics Zernike’s Polynomials Propertiesof Zernike’s Polynomials.     n m m n m n ZCW  ,, W (ρ,θ) – Waveform Aberration Cn m (ρ,θ) – Aberration coefficient (weight) Zn m (ρ,θ) – Zernike basis function (mode)      mallnallforZZMean m n m n 00,,  1    mnallforZVariance m n ,1, 2 3 Zernike’s Polynomials are mutually orthogonal, meaning that they are independent of each other mathematically. The practical advantage of the orthogonality is that we can determine the amount of defocus, or astimagtism, or any other Zernike mode occurring in an aberration function without having to worry about the presence of the other modes. 4 The aberration coefficients of a Zernike expansion are analogous to the Fourier coefficients of a Fourier expansion.                           n m m n n m m n m n m n CZZCMeanWVariance 2 2 ,,,        ' 1 0 ' 12 1 nn m n m n n dRR      '0 2 0 1'coscos mmm dmm   
  • 155.
    155 SOLO Optics Zernike’s Polynomials In1934 Frits Zernike introduces a complete set of orthonormal polynomials to describe aberration of any complexity. Astigmatism  4,4,,2 22  ayax Coma1  3,5,,2 2  axax Coma2  4,4,,2 2  ayax Spherical & Defocus    3,5,,3.12 22  aa 36 Zernikes Geounyoung Yoon, “Aberration Theory”
  • 156.
    156 Surface of RevolutionStereogram Zernike Polynomials http://www.optics.arizona.edu/jcwyant/ Optics
  • 157.
    157 SOLO Optics Zernike’s Polynomials    mastigmatis defocus tilty tiltx piston YRamnN m N m n m n  452sin6225 1123024 sin4113 cos4112 111001 2 2          sphericalbalanced shamrock shamrock comaxbalanced comaybalanced mastigmatis )(116650411 3cos83310 3sin8339 )(cos238138 )(sin238137 902cos6226 24 3 3 2 2 2            clover clover     4sin104415 4cos104414 2sin34102413 2cos34102412 4 4 24 24   
  • 158.
    158 SOLO Optics Zernike’s Polynomials In1934 Frits Zernike introduces a complete set of orthonormal polynomials to describe aberration of any complexity.
  • 159.
  • 160.
  • 161.
    161 Austin Roorda, “Reviewof Basic Principles in Optics, Wavefront and Wavefront Error”,University of California, Berkley SOLO Zernike’s Polynomials Optics
  • 162.
  • 163.
    163 Zernike’s Polynomials SOLO Raymond A.Applegate, OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect vision”, University of Houston, TX, USA Optics
  • 164.
    164 Zernike’s Polynomials SOLO Raymond A.Applegate, OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect vision”, University of Houston, TX, USA Optics
  • 165.
    165 Zernike’s Polynomials SOLO Raymond A.Applegate, OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect vision”, University of Houston, TX, USA Optics
  • 166.
    166 Zernike’s Polynomials SOLO Raymond A.Applegate, OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect vision”, University of Houston, TX, USA Optics
  • 167.
    167 Zernike’s Polynomials SOLO Raymond A.Applegate, OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect vision”, University of Houston, TX, USA Optics
  • 168.
    168 Zernike’s Polynomials SOLO Raymond A.Applegate, OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect vision”, University of Houston, TX, USA Optics
  • 169.
  • 170.
  • 171.
  • 172.
  • 173.
  • 174.
    174 SOLO Raymond A. Applegate,OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect vision”, University of Houston, TX, USA Optics
  • 175.
    175 SOLO Raymond A. Applegate,OD, PhD, “Aberration and Visual Performance: Part I: How aberrations affect vision”, University of Houston, TX, USA Optics
  • 176.
  • 177.
    177 Tilt (n=1, m=1) 0cos   The wavefront: Contour plot and 3D The spot diagram in the focal plane SOLO Optics
  • 178.
    178 Defocus (n=2, m=0)2  The wavefront: Contour plot and 3D The spot diagram in the focal plane The hole in the center of the figures is in the optical element. SOLO Optics
  • 179.
  • 180.
    180 InterferenceSOLO Interference of TwoMonochromatic Waves Given two waves ( ω = constant ):           tUtiAtAtu 111111 ReexpRecos   where the corresponding phasors, are defined as:     111 exp:   tiAtU The two waves interfere to give:                     tAtUtU tAtAtututu cosRe coscos 21 221121           tUtiAtAtu 222222 ReexpRecos       222 exp:   tiAtU 1U 2U 21 UUU  12   1221 2 2 2 1 212211 cos2 2     AAAA UUUUUUUA 2U              2211 22111 2121 2 2 2 1 coscos sinsin tan cos2     AA AA AAAAA The Phasor summation is identical to Vector summation See full development in P.P. “Interference”
  • 181.
    181 InterferenceSOLO Interference of ManyMonochromatic Waves Given two waves ( ω = constant ):           tUtiAtAtu 111111 ReexpRecos   The N waves interfere to give:                    tAtUtUtU tutututu N N cosRe 21 21             tUtiAtAtu 222222 ReexpRecos   1U NUUUU  21 1 2   2 U NU N The Phasor summation is identical to Vector summation           tUtiAtAtu NNNNNN ReexpRecos  
  • 182.
    182 InterferenceSOLO Interference of MonochromaticWaves Given two electromagnetic monochromatic ( ω = constant ) waves:               trErktirErktrEtrE ,ReexpRecos, 1111110111110111                  trErktirErktrEtrE ,ReexpRecos, 2222220222220222    where the corresponding phasors, are defined as:       11110111 exp:,   rktirEtrE        22220222 exp:,   rktirEtrE  1S 2S P 1r  2r  2211 1 2 :&1 2 : rkrk       At the point P the two waves interfere to give:                   trEtrE rktrErktrEtrEtrEtrE ,,Re coscos,,, 2211 2222021111012211      The Irradiance at the point P is given by:        trHtrHtrEtrEI ,,,,    
  • 183.
    183 InterferenceSOLO Interference of MonochromaticWaves 1S 2S P 1r  2r  The Irradiance at the point P is given by:                              trEtrEtrEtrEtrEtrEtrEtrE trEtrEtrEtrEtrEtrEI ,,,,,,,, ,,,,,, 1122221122221111 22112211                10110111111 ,, rErEtrEtrEI            20220222222 ,, rErEtrEtrEI                                                   21112221211122202101 211122211122202101 111101222202 222202111101 1122221112 cos2cos2 expexp expexp expexp ,,,,            rkrkIIrkrkrErE rkrkirkrkirErE rktirErktirE rktirErktirE trEtrEtrEtrEI       21112221211221 cos2   rkrkIIIIIIII 
  • 184.
    184 InterferenceSOLO Interference of MonochromaticWaves 1S 2S P 1r  2r  The maximum Irradiance at the point P is given by:   ,2,1,0&22 2111222121max  mmrkrkIIIII  The minimum Irradiance at the point P is given by:     ,2,1,0&122 2111222121min  mmrkrkIIIII  2211 1 2 :&1 2 : rkrk       Since ,2,1,0& 2 2 21 122121max    mmrrIIIII      ,2,1,0& 2 12 2 2 21 122121min    mmrrIIIII     The Visibility of the fringes is defined as: 21 21 minmax minmax 2 : II II II II V     
  • 185.
    185 InterferenceSOLO Billet’s Split Lens Meslin’sExperiment Two Basic Classes of Interferometers • Division of Wavefront (portion of the primary wavefront are used either directly as sources to emit secondary waves or in conjunction with optical devices to product virtual sources of secondary waves. The primary and secondary waves recombine and interfere) • Division of Amplitude (the primary wave itself is divided into two waves, which travel different paths before recombining and interfering) Beamsplitter Diffraction Young’s Experiment Fresnel’s Double Mirror Fresnel’s Bi-prism Lloyd’’s Mirror (1834) mirror
  • 186.
  • 187.
    187 Wavefront-Splitting InterferometerSOLO Young’s Experiment 1 r 2r s a y 2S 1 S P OS'O a  o Young passed sun light through a pinhole, which become the primare source, obtained a spatially coherent beam through two identically illuminated apertures. The two apertures acted as two coherent sources producing a system of alternating bright and dark bands of interference fringes. Given a point P on the screen at distances r1 and r2 from apertures S1 and S2, respectively. We have The path difference is: 2 2 2 22 2 2 2 11 22 zy a sPSrzy a sPSr                    s a y s z s ay s z s ay s zy a szy a srr ays                                         2 2 2 2 2 2 2 2 2/ 2 2 22 2 2 12 2/ 2 1 1 2/ 2 1 1 22 http://homepage.univie.ac.at/Franz.Embacher/KinderUni2005/waves.gif 2S 1S y z
  • 188.
    188 SOLO Young’s Experiment (continue– 1) s a yrr sa  12 The bright fringes are obtained when: ,2,1,012  mmrr  ,2,1,0  mm s a y  The distance between two consecutive bright fringes is:    a s a s m a s myyy mm   11 The dark fringes are obtained when: ,2,1,0 2 12  mmrr     ,2,1,0 2 12  mm s a y  λ - wavelength The Intensity at point P is:                  s ya IrrkIrkrkIIIII k syarr III      2 0 /2 / 1202111222121 cos4cos12cos2 12 021 21  1 r 2r s a y 2S 1 S P OS 'O a  o http://homepage.univie.ac.at/Franz.Embacher/KinderUni2005/waves.gif Wavefront-Splitting Interferometer Classes of Interferometers
  • 189.
    189 SOLO http://info.uibk.ac.at//c/c7/c704/museum/en/details/optics/fresnel.html University of Innsbruck Fresnel’sDouble Mirror consists of two planar mirrors inclined to each other at a very small angle δ. S P R Screen Schield Mirror 2 C  s Mirror 1 Slit SC Wavefront-Splitting Interferometer Augustin Jean Fresnel 1788-1827 Fresnel’s Double Mirror (1819*)
  • 190.
    190 SOLO Fresnel’s Double Mirror(continue – 1) Fresnel’s Double Mirror consists of two planar mirrors inclined to each other at a very small angle δ. The slit S image of the first mirror is S1 and of the second mirror is S2. The points S, S1 and S2 determine a plane normal to both planar mirrors that intersects them at a point C (on the intersection line of the two mirrors) We have: RCSCSSC  21  21 SSS Since is normal to the first mirror and is normal to second mirror, we have: 1 SS 2 SS Also:  22 2121 SSSSCS a 1 S 2S S R R R Screen Schield Mirror 2 C     s Mirror 1 SC IC We will arrange a planar screen perpendicular to the normal from point C to line, , that also bisects the angle .aSS 21 221  SCSCCI – is the distance between line and the screen.21 SSSI CCs  A shield is introduced to prevent the waveform to travel straight from slit S to screen. Wavefront-Splitting Interferometer
  • 191.
    191 SOLO Fresnel’s Double Mirror(continue – 2) From the slit S a cylindrical waveform is reflected by one side of the mirror at point A and reaches the screen at point P, while an other cylindrical waveform is reflected by the other side of the mirror at point B and interferes with the first at the point P on the screen. Because of the reflection: BSSBASSA 21 &  Therefore we have: 111 rPSAPASAPSA  222 rPSBPBSBPSB  a 1 S 2S S A B P R R R Screen Schield Mirror 2 C     s 2 r 1 r Mirror 1 y SC IC where: – is the distance between line and the screen.21 SSSI CCs  PCySSa S  &21 2 2 2 22 2 2 2 11 22 zy a sPSrzy a sPSr              Wavefront-Splitting Interferometer
  • 192.
    192 S P R Screen Schield Mirror2 C  s Mirror1 Slit S C y z SOLO Fresnel’s Double Mirror(continue – 3) We have: The path difference is: The bright fringes are obtained when:    a s a s m a s myyy mm   11 a 1 S 2S S A B P R R R Screen Schield Mirror 2 C     s 2 r 1 r Mirror 1 y SC IC S A B P R Screen Schield Mirror2 C  s Mirror1 Slit S C y z S A B P R Screen Schield Mirror2 C  s Mirror1 Slit y S C z P 2 2 2 22 2 2 2 11 22 zy a sPSrzy a sPSr                    s a y s z s ay s z s ay s zy a szy a srr ays                                         2 2 2 2 2 2 2 2 2/ 2 2 22 2 2 12 2/ 2 1 1 2/ 2 1 1 22 Wavefront-Splitting Interferometer ,2,1,0& 2 21 12    mmrr    Since the distance between two consecutive bright fringes is: 21   Classes of Interferometers
  • 193.
    193 SOLO Fresnel’s Double Prism TheFresnel’s Double Prism or Bi-prism consists of two thin prisms joined at their bases. A singlr cylindrical wave emerge from a slit. The top part of the wave-front is Refracted downward, and the lower segment is refracted upward. In the region of superposition interference occurs. Screen Bi-prism Slit y z  s a 2 S 1S O S 'O a o 1 i d i - incident angle  - dispersion angle  - prism angle From the Figure we can see that two virtual sources S1 and S2 exists. Let a be the distance between them. From the Figure      ddd a i ii 1 1 sintan 2    where θi – ray incident angle δ – ray dispersion (deviation) angle d – distance slit to bi-prism vertex α – prism angle             1sin sincossinsinsin 1 1 1 1 1 2/1221         nn n n ii iii ii See δ development Wavefront-Splitting Interferometer
  • 194.
    194 SOLO Dispersive Prisms   2i1i 1t    11ti   2t  22 it      2211 itti   21 it     21 ti 202 sinsin ti nn  Snell’s Law 10 n     1 1 2 1 2 sinsinsinsin tit nn         11 21 11 1 2 sincossin1sinsinsincoscossinsin ttttt nn    Snell’s Law 110 sinsin ti nn   11 sin 1 sin it n   10 n   1 2/1 1 221 2 sincossinsinsin iit n          1 2/1 1 221 1 sincossinsinsin iii n The ray deviation angle is Optics - Prisms
  • 195.
    195 SOLO Fresnel’s Double Prism(continue – 1) From the Figure we found that the distance a between virtual sources S1 and S2 is:      ddd a i ii 1 1 sintan 2                1sin sincossinsinsin 1 1 1 1 1 2/1221         nn n n ii iii ii See δ development  12  nda s a y 2 S 1 S P OS 'O a  o 1  - prism angle 1r 2r Screen Bi-prism Slit y z Consider two rays starting from the slit S that pass the bi-prism and interfere on the screen at P. We can assume that they are strait lines starting at the virtual source S1 and S2, and having optical paths r1 and r2, respectively. 2 2 2 22 2 2 2 11 22 zy a sPSrzy a sPSr              Wavefront-Splitting Interferometer  s a 2 S 1S O S 'O a  o  1 i d i - incident angle  - dispersion angle  - prism angle
  • 196.
    196 SOLO Fresnel’s Double Prism(continue – 2)  12  nda s a y 2 S 1 S P OS 'O a  o 1  - prism angle 1r 2r d Screen Bi-prism Slit y z 2 2 2 22 2 2 2 11 22 zy a sPSrzy a sPSr              The path difference is: The bright fringes are obtained when:    a s a s m a s myyy mm   11       s a y s z s ay s z s ay s zy a szy a srr ays                                         2 2 2 2 2 2 2 2 2/ 2 2 22 2 2 12 2/ 2 1 1 2/ 2 1 1 22 We have: Wavefront-Splitting Interferometer ,2,1,0& 2 21 12    mmrr    Since the distance between two consecutive bright fringes is: 21   Classes of Interferometers
  • 197.
    197 SOLO Lloyd’s Mirror Interferometer TheLloyd’s planar mirror is perpendicular to the planar screen. A cylindrical waveform from the slit S is reflected by the mirror and interferes at the screen with the portion of the wave that proceeds directly to the screen. Screen Plane Mirror Slit y z From the Figure we can see that a virtual source S1, that is symmetric relative to mirror plane exists. The slit, parallel to mirror plane, is at the same distance, a/2, from the mirror plane as it’s virtual image. Wavefront-Splitting Interferometer sa y 1S P O S o  1r 2r2/a 2/a Planar Mirror Screen Screen Plane Mirror Slit y z Consider two rays starting from the slit S, one proceeding directly to the screen and the other reflected by the mirror and interfere on the screen at P. We can assume that they are strait lines starting at S and at the the virtual source S1, and having optical paths r1 and r2, respectively. 2 2 2 12 2 2 2 1 22 zy a sPSrzy a sPSr              Humphrey Lloyd 1800-1881
  • 198.
    198 SOLO Lloyd’s Mirror Interferometer(continue – 1) Wavefront-Splitting Interferometer sa y 1S P O S o  1r 2r2/a 2/a Planar Mirror Screen Screen Plane Mirror Slit y z The path difference is: The bright fringes are obtained when: The distance between two consecutive bright fringes is:    a s a s m a s myyy mm   11       s a y s z s ay s z s ay s zy a szy a srr ays                                         2 2 2 2 2 2 2 2 2/ 2 2 22 2 2 12 2/ 2 1 1 2/ 2 1 1 22 We have: 2 2 2 12 2 2 2 1 22 zy a sPSrzy a sPSr              ,2,1,0& 2 21 12    mmrr    Classes of Interferometers
  • 199.
    199 Stokes Treatment ofReflection and RefractionSOLO An other treatment of reflection and refraction was given by Sir George Stokes. iE0 iE0 tE i0 rE i0 ii t (a)  rrE i0   '0 ttE i rE i0 tE i0   '0 rtE i  trE i0 i i tt (c) iE0 tE i0 rE i0 i i t (b) Suppose we have an incident wave of amplitude E0i reaching the boundary of two media (where n1 = ni and n2 = nt) at an angle θ1. The amplitudes of the reflected and transmitted (refracted) waves are, E0i·r and E0i·t, respectively (see Fig. a). Here r (θ1) and t (θ2) are the reflection and transmission coefficients. According to Fermat’s Principle the situation where the rays direction is reversed (see Fig. b) is also permissible. Therefore we have two incident rays E0i·r in media with refraction index n1 and E0i·t in media with refraction index n2. E0i·r is reflected, in media with refraction index n1, to obtain a wave with amplitude (E0i·r )·t and refracted, in media with refraction index n2, to obtain a wave with amplitude (E0i·r )·r (see Fig. c). E0i·t is reflected, in media with refraction index n2, to obtain a wave with amplitude (E0i·t )·r’ and refracted, in media with refraction index n1, to obtain a wave with amplitude (E0i·t )·t’ (see Fig. c). θ1 and θ2 are related by Snell’s Law: 2211 sinsin  nn 
  • 200.
    200 Stokes Treatment ofReflection and RefractionSOLO An other treatment of reflection and refraction was given by Sir George Stokes. iE0 iE0 tE i0 rE i0 ii t (a)  rrE i0   '0 ttE i rE i0 tE i0   '0 rtE i  trE i0 i i tt (c) iE0 tE i0 rE i0 i i t (b) To have Fig. c identical to Fig. b the following conditions must be satisfied:         iii ErrEttE 0110120 '           0' 220210   rtEtrE ii Hence:            12 1112 ' 1'   rr rrtt   Stokes relations θ1 and θ2 are related by Snell’s Law: 2211 sinsin  nn  Let check that Fresnel Equation do satisfy Stokes relations   2211 11 2 coscos cos221     nn n t     2112 11 || coscos cos221   nn n t      2211 2211 1 coscos coscos21     nn nn r        2112 2112 1|| coscos coscos21     nn nn r     Parallel Interfaces
  • 201.
    201 SOLO Optical Path LengthDifference: Parallel Interfaces Two-Beam Interference: Parallel Interfaces We have a point source and a dielectric slab that performs a double reflection giving two coherent rays (1) and (2). Using a lens the two rays interfere at lens focus. 'D 1  1  1 2  2  d C B D 1 n 2n 1n Point source Image 1 2 Dielectric slab We consider a dielectric slab that has low reflectivity at each interface: r,r’<<1 Assume an incident ray that at point B is    tiABEi exp For the reflected ray (1) we have at point D            0 1 22 '2 exp'    BDn tiADE For the reflected ray (2) we have at point D’. DD’ is normal two ray (2) so that both rays travel the same optical paths until interference.               0 2 11 2 exp    CDBCn tiADE Amplitude Split Interferometers
  • 202.
    202 SOLO Optical Path LengthDifference: Parallel Interfaces (continue – 1) Two-Beam Interference: Parallel Interfaces To compute the amplitudes A1 and A2 we will use : 'D 1  1  1 2  2  d C B D 1 n 2n 1n Point source Image 1 2 Dielectric slab 2  2 1      2211 ''  rAA   12 rAA  Using Stokes relations: where:    11 , r - reflectivity and transitivity at B  2' r - reflectivity at C  2'  - transitivity at D from slab to air    12'  rr          11' 1 1 2 21 1 2     r r        12211 ''  rArAA  we obtain:  12 rAA  The minus sign shows that is an additional phase delay of π between ray (1) at point D and ray (2) at point D’. Amplitude Split Interferometers
  • 203.
    203 SOLO Optical Path LengthDifference: Parallel Interfaces (continue – 2) Two-Beam Interference: Parallel Interfaces 'D 1  1  1 2  2  d C B D 1 n 2n 1n Point source Image 1 2 Dielectric slab              0 1 12 '2 exp'    BDn tirADE                      0 2 11 2 exp CDBCn tirADE 2cos/ dCDBC  From the Figure we obtain: 12 sintan2' dBD  The phase difference at interference is:         BDnCDBCn 12 0 21 2 2 2 2 2 sinsin 1 2 2 1121 cos sin sin cos sin sintan 2211        nnn nn                                     2 0 2 2 2 2 2 0 121 2 2 0 21 cos 4 sin1 cos 22 sintan cos 2 2 ndnd n n d Amplitude Split Interferometers
  • 204.
    204 SOLO Optical Path LengthDifference: Parallel Interfaces (continue – 3) Two-Beam Interference: Parallel Interfaces 'D 1  1  1 2  2  d C B D 1 n 2n 1n Point source Image 1 2 Dielectric slab      212 exp'   tirADE      111 exp   tirADE      2 0 2 21 cos 4 nd The Intensity at the interference is:          2/sin4 cos12cos12 cos2 2 0 0210 2111222121 021 122    I II rkrkIIIII III rkrk        where 2 0 2 cos 4 :     nd   1 22 021 ~ rAIII  Amplitude Split Interferometers
  • 205.
    205 InterferenceSOLO Haidinger Fringes 1846 Wilhelm Karl, Rittervon Haidinger 1795 - 1871 Lens Beam- splitter Extended Sources Viewing Screen Dielectric film Black background Circular fringes Haidinger Fringes are the type of interference pattern that results with an extended source where partial reflections occur from a plane-parallel dielectric slab.
  • 206.
    206 SOLO Haidinger Interference Fringes Two-BeamInterference: Parallel Interfaces We have: 1 1 2 2  d 1n 2n 1n Extended source Focal plane 1P 2P 1 Dielectric slab Beam splitter Lens  f x Haidinger Fringes are the type of interference pattern that results with an extended source where partial reflections occur from a plane-parallel dielectric slab. Wilhelm Karl, Ritter von Haidinger 1795 - 1871 Amplitude Split Interferometers
  • 207.
  • 208.
  • 209.
  • 210.
    210 Gas RefrectometerSOLO S 1S 2S 2T 1T f 1C 2 C D D 1C 2C E Rayleigh'sInterferometer t To measure the refractive index of a gas we can use any interferometer that splits the source ray in two coherent rays passing through the tubes T1 and T2 filed with the gas. When the pressure of the gas is changed in on of the tube a difference in the refraction index occurs, the optical paths of the two rays change and the fringe system, viewed at the eyepiece E, changes. A count of the fringes as they moved provides a measurement of optical path change, therefore of the refractive index. Jamin, Mack-Zehnder or Reyleigh’s interferometers can be used.. S 2T 1 T 1C 2 C D D 1C 2 C E 1G 2 G 1 2 Jamin's Interferometer t S 1 T E 1M 2 G 1 2 Mach-Zehnder Interferometer 2 M 3M 4 M 2T t    mtntTpn ag  1 ,   tmTpng /1,  The index of refraction of the gas is given by the Lorenz- Lorentz formula (1890/1)            2 1 2 3 1, 2 2 n nVN Tpng Reyleigh’s Interferometer Jamin’s Interferometer
  • 211.
    211 Field and linearinterferometers InterferenceSOLO Double-Slit Interferometer Fourier-transform Interferometer Astronomical Interferometer/Michelson Stellar Interferometer Mireau Interferometer (also known as a Mireau objective) (microscopy) Multi-Beam Interferometer (microscopy) Watson Interferometer (microscopy) Linnik Interferometer (microscopy) Diffraction-Grating Interferometer (white light) White-light Interferometer (see also Optical coherence tomography) Shear Interferometer (lateral and radial) http://en.wikipedia.org/wiki/List_of_types_of_interferometers Michelson Interferometer Mach-Zehnder Interferometer Fabry-Perot Interferometer Sagnac Interferometer Gires-Tournois Etalon
  • 212.
    212 Field and linearinterferometers InterferenceSOLO Moire Interferometer (see Moire pattern) Holographic Interferometer Near-field Interferometer Fringes of Equal Chromatic Order Inteferometer (FECO) Fresnel Interferometer (e.g. Fresnel biprism, Fresnel mirror or Lloyd's mirror) Polarization Interferometer (see also Babinet-Soleil compensator) Newton Interferometer (see Newton's rings) Cyclic Interferometer Point Diffraction Interferometer White-light Scatterplate Interferometer (white-light) (microscopy) Phase-shifting Interferometer Wedge Interferometer Schlieren Interferometer (phase-shifting) Talbot Lau Interferometer http://en.wikipedia.org/wiki/List_of_types_of_interferometers Fizeau Interferometer Rayleigh Interferometer Twyman-Green Interferometer
  • 213.
    213 Intensity and nonlinearinterferometers InterferenceSOLO http://en.wikipedia.org/wiki/List_of_types_of_interferometers Intensity Interferometer Intensity Optical Correlator Frequency-Resolved Optical Gating (FROG) Spectral Phase Interferometry for Direct Electric-field Reconstruction (SPIDER) Quantum optics interferometers Hong-Ou-Mandel Interferometer (HOM) (see Leonard Mandel) Interferometers outside optics Francon Interferometer Atom Interferometer Ramsey Interferometer Mini Grail Interferometer Hanbury-Brown Twiss Interferometer
  • 214.
    214 SOLO References M. Born, E.Wolf, “Principles of Optics”, Pergamon Press,6th Ed., 1980 E. Hecht, A. Zajac, “Optics”, Addison-Wesley, 1979 C.C. Davis, “Lasers and Electro-Optics”, Cambridge University Press, 1996 G.R. Fowles, “Introduction to Modern Optics”,2nd Ed., Dover, 1975 M.V.Klein, T.E. Furtak, “Optics”, 2nd Ed., John Wiley & Sons, 1986 W.C.Elmore, M.A. Heald, “Physics of Waves”, Dover Publications, 1969 J. Lekner, “Theory of Reflection of Electromagnetic and Particle Waves”, Martinus Nijhoff Publishers, 1987 F.A. Jenkins, H.E. White, “Fundamentals of Optics”, 4th Ed., McGraw-Hill, 1976 Optics
  • 215.
    215 SOLO References [1] M. Born,E. Wolf, “Principle of Optics – Electromagnetic Theory of Propagation, Interference and Diffraction of Light”, 6th Ed., Pergamon Press, 1980, [2] C.C. Davis, “Laser and Electro-Optics”, Cambridge University Press, 1996, Optics
  • 216.
    216 SOLO References Foundation of GeometricalOptics [3] E.Hecht, A. Zajac, “Optics ”, 3th Ed., Addison Wesley Publishing Company, 1997, [4] M.V. Klein, T.E. Furtak, “Optics ”, 2nd Ed., John Wiley & Sons, 1986
  • 217.
    217 SOLO References Optics Polarization A.Yariv, P. Yeh, “Optical Waves in Crystals”, John Wiley & Sons, 1984 M. Born, E. Wolf, “Principles of Optics”, Pergamon Press,6th Ed., 1980 E. Hecht, A. Zajac, “Optics”, Addison-Wesley, 1979, Ch.8 C.C. Davis, “Lasers and Electro-Optics”, Cambridge University Press, 1996 G.R. Fowles, “Introduction to Modern Optics”,2nd Ed., Dover, 1975, Ch.2 M.V.Klein, T.E. Furtak, “Optics”, 2nd Ed., John Wiley & Sons, 1986 http://en.wikipedia.org/wiki/Polarization W.C.Elmore, M.A. Heald, “Physics of Waves”, Dover Publications, 1969 E. Collett, “Polarization Light in Fiber Optics”, PolaWave Group, 2003 W. Swindell, Ed., “Polarization Light”, Benchmark Papers in Optics, V.1, Dowden, Hutchinson & Ross, Inc., 1975 http://www.enzim.hu/~szia/cddemo/edemo0.htm (Andras Szilagyi) Optics
  • 218.
    218 SOLO References Optics 1. Waldman, G.,Wootton, J., “Electro-Optical Systems Performance Modeling”, Artech House, Boston, London, 1993 2. Wolfe, W.L., Zissis, G.J., “The Infrared Handbook”, IRIA Center, Environmental Research Institute of Michigan, Office of Naval Research, 1978 3. “The Infrared & Electro-Optical Systems Handbook”, Vol. 1-7 4. Spiro, I.J., Schlessinger, M., “The Infrared Technology Fundamentals”, Marcel Dekker, Inc., 1989 Table of Content
  • 219.
    January 5, 2015219 SOLO Technion Israeli Institute of Technology 1964 – 1968 BSc EE 1968 – 1971 MSc EE Israeli Air Force 1970 – 1974 RAFAEL Israeli Armament Development Authority 1974 – 2013 Stanford University 1983 – 1986 PhD AA