PLEURAL
EFFUSION
PRESENTER: DR.GREESHMA
MD PEDIATRICS
Overview
• Introduction
• Classification
• Pathogenesis
• Etiology
• Clinical features
• Investigations
• Management
Introduction
• Pleural effusion is defined as abnormal accumulation of fluid in
the pleural space, i.e., the space between parietal and visceral
pleura
• The pleural space contains normally 0.3ml/kg body weight of
pleural fluid1. There is a continuous circulation of this fluid and
the lymphatic vessels can cope with several millilitres of extra
fluid per 24hours
• Fluid accumulates in the pleural cavity due to either altered
hydrostatic and oncotic pressures or altered permeability of the
pleura
Composition of pleural fluid
• Clear ultra filtrate of plasma
• Volume 0.3 mL/kg
• Cells/ mm3 1000 – 5000
• Mesothelial cells 60%
• Monocytes 30%
• Lymphocytes 5%
• PMN’s 5%
• Protein 1-2 g/dL
• LDH <50% plasma level(105-333IU/L)
• Glucose  plasma level(90-120)
• pH ≥ plasma level(7.6-7.64)
Classification
• Can be unilateral or bilateral and classified
A)Based on site
Apical
Interlobar
Sub-pulmonic
Mediastinal
B)Based on mechanism and type of pleural fluid
Transudative (alteration in hydrostatic and oncotic pressure)
Exudative (alteration in pleural permeability)
c) Based on mechanism and type of pleural fluid
formed
Pyogenic
Chylous
Haemothorax
Pseudochylous
Hydrothorax
Pathogenesis
• Increased vascular permeability allows migration of inflammatory
cells (neutrophils, lymphocytes, and eosinophils) into the pleural
space.
• The process is mediated by a number of cytokines such as
interleukin IL-1, IL-6, IL-8, tumour necrosis factor (TNF)-alpha and
platelet activating factor released by mesothelial cells lining the
pleural space. The result is the exudative stage of a pleural
effusion. This progresses to the fibro-purulent stage due to
increased fluid accumulation and bacterial invasion across the
damaged epithelium.
• Neutrophil migration occurs as well as activation of the
coagulation cascade leading to pro-coagulant activity and
decreased fibrinolysis. Deposition of fibrin in the pleural space
then leads to septation or loculation. The pleural fluid pH and
glucose level falls while LDH levels increase.
Etiology
• EXUDATIVE
 Infective: Pneumonia, Bronchiectasis, Pancreatitis, TB, Lung
abscess
 Collagen vascular disease: SLE, Rheumatoid arthritis, Polyarteritis
 Neoplastic: leukemias and lymphomas
 Uremia
 Drugs: Bromocriptine, amiodarone, nitofurantoin, dantrolene, INH,
PAS
 Postradiation
 Traumatic
• TRANSUDATIVE:
Renal cause: Nephrotic syndrome
Cardiac cause: Congestive cardiac failure
Hepatic cause: Hepatic failure
Nutritional: Protein energy malnutrition
Hypothyroidism
• PYOGENIC:
Lung abscess
Septicemia
Chest wall injuries
Rupture of oesophagus
Rupture of subphrenic abscess
Rupture of liver abscess
• CHYLOUS:
Trauma to thoracic duct
Tumour (mediastinal lymphoma)
Tuberculosis
Lymphatic obstruction
• HEMOTHORAX:
Chest wall injuries
Bleeding disorders
Neoplasms-leukemias, lymphoma, mesothelioma
Drugs-anticoagulants
Pulmonary infarction
• PSEUDOCHYLOUS:
Rheumatoid pleuritis
Tuberculosis or paragonimiasis(lung fluke infection)
• HYDROTHORAX:
Congestive heart failure
Hepatic & Renal failure
Clinical features
 Many patients have no symptoms due to the effusion when
effusion is small.
 Pleuritic chest pain is the usual symptom of pleural
inflammation.
 Irritation of the pleural surfaces may also result in a dry,
nonproductive cough.
 With larger effusions, dyspnea results from lung
Physical examination
Inspection:
 Absent or diminished movements of affected side
 Fullness of chest with bulging intercostal spaces
Palpation:
 Diminished breath sounds over the site of the effusion
 Decreased or absent tactile fremitus
Percussion:
 Stony dullness to percussion
Auscultation:
 Absence of breath sounds over the effusion
 Vocal resonance absent
 Signs of pneumonia like bronchial breathing, crackles etc.
Investigations
 Total and differential leucocyte counts
• Acute phase reactants-white cell count, total neutrophil
count, CRP, ESR, pro-calcitonin distinguish bacterial from
viral causes
 Radiological examination
• X-ray chest PA view done in erect position-a total of
300mL of fluid is needed to diagnose pleural effusion
clinically and radiologically
• Even 50mL of fluid can be demonstrated radiologically in
lateral decubitus
Findings
• Obliteration of cardiophrenic and costophrenic angles
• Loculated effusions
• Subpulmonic effusion-collection of fluid below the
diaphragm will lead to elevation of diaphragm, confirmed
by X-ray in lateral decubitus
• Lateral decubitus on side of effusion will show a shift in
the fluid level
• Tracheal and mediastinal shifts are seen in massive
effusion
 Ultrasonogram
Useful in differentiating between loculated pleural effusion and tumour
 CT Scan
Helpful if the effusion is minimal or loculated
 Pleural fluid aspiration (Thoracocentesis)
Diagnostic: Helps to differentiate between exudates and transudates
Therapeutic: Massive collection or rapid collection of pleural fluid
Severe respiratory distress
Suspected empyema
Massive mediastinal shift
Gross appearance
• Straw-coloured
• Blood stained
• Purulent
• Chylous
Transudate & Exudate
Features Transudates Exudates
Appearance Clear/Straw coloured Cloudy, purulent,
opalascent
Protein < 3g/100mL >3g/100mL
pH >7.2 <7.2
Glucose >40mg/dL <40mg/dL
LDH Low, <200IU/L High,>200IU/L
Cells <1000/mm3 >1000/mm3
lIGHT’S CRITERIA:
• Atleast one of the following criteria should be
satisfied to identify exudates:
Pleural fluid to serum total protein ratio- more than
0.5
Pleural fluid to serum LDH ratio- more than 0.6
Pleural fluid LDH- more than two-third of serum LDH
None of these criteria should be satisfied in a
transudative effusion
Roth’s criteria
• If serum-pleural fluid albumin gradient
is more than 1.2 it is transudate, else
exudate.
Pleural Fluid Biochemistry
• pH
• Glucose
• Lactate dehydrogenase(LDH)
• Sodium, potassium and calcium conc
• Amylase
• Adenosine deaminase
• Ratio of protein in pleural fluid to serum
• Ratio of LDH values in pleural fluid to serum
WBC Count
Predominant cell type(neutrophil, lymphocytes, eosinophils, red
blood cells)
Lymphocytosis- if >50% leucocytosis then suspect TB
Malignant cells
PLEURAL FLUID MICROBIOLOGY
Gram stain
Acid fast for AFB
Pleural fluid Culture
AFB Culture
PCR for TB
PLEURAL FLUID CYTOLOGY
 Pleural Biopsy
• Can be done at maximum dullness on percussion or
at a maximum thickening of pleura. Abram’s pleural
biopsy needle is used for biopsy
• Most helpful in evaluating for TB
• Limited utility for CA (40-50% positive)
Repeat cytology x 3
• Sarcoid, fungal: might be helpful
Other investigations
• Suspected TB
• Adenosine deaminase (> 50
IU/L)
• Beta2 - microglobulin
• Lysozyme III (> 20mcg/mL)
• PCR (Sens 100%, Spec
95%)
• AFB (smear 10-20%; cx 25-
50%)
• Suspected Rheumatoid
• Pleural RF
• Low glucose
• Suspected SLE
• Serum Complement
• Pleural ANA
• LE cells
• Suspected Pneumonia
• pH
• Suspected
Pancreatitis
• Pleural Amylase
LE CELL
TUBERCULOUS PLEURITIS
MULTINUCLEATED MACROPHAGES
Management
SUPPORTIVE TREATMENT
• Oxygen is necessary if SpO2 <92%
• Fluid therapy if child dehydrated or unable/unwilling
in drinking water
• Initiate IV antibiotics
• Analgesics and antipyretics
• Chest radiography & U/S
Medical
• Treat the cause
Pneumonia- initial blind antibiotic treatment
A) Following community acquired pneumonia
• Cefuroxime
• Co-amoxiclav
• Penicillin & flucloxacillin
• Amoxicillin & flucloxaxillin
• Clindamycin
B) Hospital acquired pneumonia
• Broader spectrum antibiotics that cover aerobic gram negative rods
• Tuberculosis- Category I treatment
2HRZE+4HRE
Prednisolone 1-2mg/kg orally 4-6weeks promotes
rapid absorption of the pleural fluid and prevents
fibrosis
• Congestive cardiac failure- treat with diuretics and
other anti-failure medications
Surgical
• Pleural fluid aspiration is done by using a wide bore
needle. If the fluid is thick and cannot be drained by a
needle, an intercostal drainage(under water seal) at the
most dependant part should be done.
• Indications
 Empyema
 Presence of causative organisms in the fluid
 Pleural fluid glucose <50mg/dL
 Pleural fluid pH <7.0
• Complications
• Pleural shock
• Introduction of infection
• Pneumothorax
• Pulmonary embolism
• Air embolism
• Acute pulmonary edema
• Injury to neovascular bundles
• Hydropneumothorax
Bibliography
• Nelson textbook of pediatrics 19Th edition
• British Thoracic Society

Pleural effusion

  • 1.
  • 2.
    Overview • Introduction • Classification •Pathogenesis • Etiology • Clinical features • Investigations • Management
  • 3.
    Introduction • Pleural effusionis defined as abnormal accumulation of fluid in the pleural space, i.e., the space between parietal and visceral pleura • The pleural space contains normally 0.3ml/kg body weight of pleural fluid1. There is a continuous circulation of this fluid and the lymphatic vessels can cope with several millilitres of extra fluid per 24hours • Fluid accumulates in the pleural cavity due to either altered hydrostatic and oncotic pressures or altered permeability of the pleura
  • 4.
    Composition of pleuralfluid • Clear ultra filtrate of plasma • Volume 0.3 mL/kg • Cells/ mm3 1000 – 5000 • Mesothelial cells 60% • Monocytes 30% • Lymphocytes 5% • PMN’s 5% • Protein 1-2 g/dL • LDH <50% plasma level(105-333IU/L) • Glucose  plasma level(90-120) • pH ≥ plasma level(7.6-7.64)
  • 5.
    Classification • Can beunilateral or bilateral and classified A)Based on site Apical Interlobar Sub-pulmonic Mediastinal B)Based on mechanism and type of pleural fluid Transudative (alteration in hydrostatic and oncotic pressure) Exudative (alteration in pleural permeability)
  • 6.
    c) Based onmechanism and type of pleural fluid formed Pyogenic Chylous Haemothorax Pseudochylous Hydrothorax
  • 7.
    Pathogenesis • Increased vascularpermeability allows migration of inflammatory cells (neutrophils, lymphocytes, and eosinophils) into the pleural space. • The process is mediated by a number of cytokines such as interleukin IL-1, IL-6, IL-8, tumour necrosis factor (TNF)-alpha and platelet activating factor released by mesothelial cells lining the pleural space. The result is the exudative stage of a pleural effusion. This progresses to the fibro-purulent stage due to increased fluid accumulation and bacterial invasion across the damaged epithelium. • Neutrophil migration occurs as well as activation of the coagulation cascade leading to pro-coagulant activity and decreased fibrinolysis. Deposition of fibrin in the pleural space then leads to septation or loculation. The pleural fluid pH and glucose level falls while LDH levels increase.
  • 8.
    Etiology • EXUDATIVE  Infective:Pneumonia, Bronchiectasis, Pancreatitis, TB, Lung abscess  Collagen vascular disease: SLE, Rheumatoid arthritis, Polyarteritis  Neoplastic: leukemias and lymphomas  Uremia  Drugs: Bromocriptine, amiodarone, nitofurantoin, dantrolene, INH, PAS  Postradiation  Traumatic
  • 9.
    • TRANSUDATIVE: Renal cause:Nephrotic syndrome Cardiac cause: Congestive cardiac failure Hepatic cause: Hepatic failure Nutritional: Protein energy malnutrition Hypothyroidism
  • 10.
    • PYOGENIC: Lung abscess Septicemia Chestwall injuries Rupture of oesophagus Rupture of subphrenic abscess Rupture of liver abscess
  • 11.
    • CHYLOUS: Trauma tothoracic duct Tumour (mediastinal lymphoma) Tuberculosis Lymphatic obstruction
  • 12.
    • HEMOTHORAX: Chest wallinjuries Bleeding disorders Neoplasms-leukemias, lymphoma, mesothelioma Drugs-anticoagulants Pulmonary infarction
  • 13.
    • PSEUDOCHYLOUS: Rheumatoid pleuritis Tuberculosisor paragonimiasis(lung fluke infection) • HYDROTHORAX: Congestive heart failure Hepatic & Renal failure
  • 14.
    Clinical features  Manypatients have no symptoms due to the effusion when effusion is small.  Pleuritic chest pain is the usual symptom of pleural inflammation.  Irritation of the pleural surfaces may also result in a dry, nonproductive cough.  With larger effusions, dyspnea results from lung
  • 15.
    Physical examination Inspection:  Absentor diminished movements of affected side  Fullness of chest with bulging intercostal spaces Palpation:  Diminished breath sounds over the site of the effusion  Decreased or absent tactile fremitus Percussion:  Stony dullness to percussion Auscultation:  Absence of breath sounds over the effusion  Vocal resonance absent  Signs of pneumonia like bronchial breathing, crackles etc.
  • 16.
    Investigations  Total anddifferential leucocyte counts • Acute phase reactants-white cell count, total neutrophil count, CRP, ESR, pro-calcitonin distinguish bacterial from viral causes  Radiological examination • X-ray chest PA view done in erect position-a total of 300mL of fluid is needed to diagnose pleural effusion clinically and radiologically • Even 50mL of fluid can be demonstrated radiologically in lateral decubitus
  • 17.
    Findings • Obliteration ofcardiophrenic and costophrenic angles • Loculated effusions • Subpulmonic effusion-collection of fluid below the diaphragm will lead to elevation of diaphragm, confirmed by X-ray in lateral decubitus • Lateral decubitus on side of effusion will show a shift in the fluid level • Tracheal and mediastinal shifts are seen in massive effusion
  • 19.
     Ultrasonogram Useful indifferentiating between loculated pleural effusion and tumour  CT Scan Helpful if the effusion is minimal or loculated  Pleural fluid aspiration (Thoracocentesis) Diagnostic: Helps to differentiate between exudates and transudates Therapeutic: Massive collection or rapid collection of pleural fluid Severe respiratory distress Suspected empyema Massive mediastinal shift
  • 20.
    Gross appearance • Straw-coloured •Blood stained • Purulent • Chylous
  • 21.
    Transudate & Exudate FeaturesTransudates Exudates Appearance Clear/Straw coloured Cloudy, purulent, opalascent Protein < 3g/100mL >3g/100mL pH >7.2 <7.2 Glucose >40mg/dL <40mg/dL LDH Low, <200IU/L High,>200IU/L Cells <1000/mm3 >1000/mm3
  • 22.
    lIGHT’S CRITERIA: • Atleastone of the following criteria should be satisfied to identify exudates: Pleural fluid to serum total protein ratio- more than 0.5 Pleural fluid to serum LDH ratio- more than 0.6 Pleural fluid LDH- more than two-third of serum LDH None of these criteria should be satisfied in a transudative effusion
  • 23.
    Roth’s criteria • Ifserum-pleural fluid albumin gradient is more than 1.2 it is transudate, else exudate.
  • 24.
    Pleural Fluid Biochemistry •pH • Glucose • Lactate dehydrogenase(LDH) • Sodium, potassium and calcium conc • Amylase • Adenosine deaminase • Ratio of protein in pleural fluid to serum • Ratio of LDH values in pleural fluid to serum
  • 25.
    WBC Count Predominant celltype(neutrophil, lymphocytes, eosinophils, red blood cells) Lymphocytosis- if >50% leucocytosis then suspect TB Malignant cells PLEURAL FLUID MICROBIOLOGY Gram stain Acid fast for AFB Pleural fluid Culture AFB Culture PCR for TB PLEURAL FLUID CYTOLOGY
  • 26.
     Pleural Biopsy •Can be done at maximum dullness on percussion or at a maximum thickening of pleura. Abram’s pleural biopsy needle is used for biopsy • Most helpful in evaluating for TB • Limited utility for CA (40-50% positive) Repeat cytology x 3 • Sarcoid, fungal: might be helpful
  • 27.
    Other investigations • SuspectedTB • Adenosine deaminase (> 50 IU/L) • Beta2 - microglobulin • Lysozyme III (> 20mcg/mL) • PCR (Sens 100%, Spec 95%) • AFB (smear 10-20%; cx 25- 50%) • Suspected Rheumatoid • Pleural RF • Low glucose • Suspected SLE • Serum Complement • Pleural ANA • LE cells • Suspected Pneumonia • pH • Suspected Pancreatitis • Pleural Amylase
  • 28.
  • 31.
    Management SUPPORTIVE TREATMENT • Oxygenis necessary if SpO2 <92% • Fluid therapy if child dehydrated or unable/unwilling in drinking water • Initiate IV antibiotics • Analgesics and antipyretics • Chest radiography & U/S
  • 32.
    Medical • Treat thecause Pneumonia- initial blind antibiotic treatment A) Following community acquired pneumonia • Cefuroxime • Co-amoxiclav • Penicillin & flucloxacillin • Amoxicillin & flucloxaxillin • Clindamycin B) Hospital acquired pneumonia • Broader spectrum antibiotics that cover aerobic gram negative rods
  • 33.
    • Tuberculosis- CategoryI treatment 2HRZE+4HRE Prednisolone 1-2mg/kg orally 4-6weeks promotes rapid absorption of the pleural fluid and prevents fibrosis • Congestive cardiac failure- treat with diuretics and other anti-failure medications
  • 34.
    Surgical • Pleural fluidaspiration is done by using a wide bore needle. If the fluid is thick and cannot be drained by a needle, an intercostal drainage(under water seal) at the most dependant part should be done. • Indications  Empyema  Presence of causative organisms in the fluid  Pleural fluid glucose <50mg/dL  Pleural fluid pH <7.0
  • 35.
    • Complications • Pleuralshock • Introduction of infection • Pneumothorax • Pulmonary embolism • Air embolism • Acute pulmonary edema • Injury to neovascular bundles • Hydropneumothorax
  • 37.
    Bibliography • Nelson textbookof pediatrics 19Th edition • British Thoracic Society