SlideShare a Scribd company logo
Linear Programming
UNIT – I
OPERATION RESEARCH
Dr. Loveleen Kumar Bhagi
Associate Professor
School of Mechanical Engineering
LPU
BIG M Method
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
3
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
4
5
Operation Research Models
LPP Big M Method
Simplex method Big M method
6
Zmin= 6X+8Y
X+Y ≥ 10
2X +3Y ≥ 25
X +5Y ≥ 35
X, Y ≥ 0
Add slack Surplus
variable to convert
constraint equation into
equality
Z = 6X+8Y+0S1 − 0S2
− 0S3
X+Y−S1 =10
2X +3Y−S2 = 25
X +5Y − S3 = 35
X,Y, S1, S2, S3 ≥ 0
Operation Research Models
LPP Big M Method – Prob 7
7
Ibfs (Initial Basic Feasible Solution)
DV = 0
−S =10 ; −S2 = 25; − S3 = 35 0r
S = − 10 ; S2 = − 25; S3 = − 35 0r
Z = 6X+8Y+0S1 − 0S2 − 0S3
X+Y−S1 =10
2X +3Y−S2 = 25
X +5Y − S3 = 35
X,Y, S1, S2, S3 ≥ 0
Operation Research Models
LPP Big M Method – Prob 7
8
Ibfs (Initial Basic Feasible Solution)
DV = 0 and Surplus = 0
0 =10 ; 0 = 25; 0 = 35
Z = 6X+8Y+0S1 − 0S2 − 0S3
X+Y−S1 =10
2X +3Y−S2 = 25
X +5Y − S3 = 35
X,Y, S1, S2, S3 ≥ 0
Operation Research Models
LPP Big M Method – Prob 7
9
X+Y ≥ 10
2X +3Y ≥ 25
X +5Y ≥ 35
X, Y ≥ 0
Along with Surplus
variable add Artificial
Variable to convert
constraint equation into
equality
X+Y−S1 +A1 =10
2X +3Y−S2+A2 = 25
X +5Y − S3 +A3 = 35
X,Y, S1, S2, S3, A1, A2, A3
≥ 0
Operation Research Models
LPP Big M Method – Prob 7
Zmin =
6X+8Y+0S1+0S2+ 0S3+MA1+MA2+MA3
Zmin=
6X+8Y
10
Operation Research Models
LPP Big M Method – Prob 7
Zmin =
6X+8Y+0S1+0S2+ 0S3+MA1+MA2+MA3
Ibfs (Initial Basic Feasible Solution)
Put DV = 0 and Surplus variables = 0
A1=10 ;
A2= 25;
A3= 35
11
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M M
θ
X Y S1 S2 S3 A1 A2 A3 RHS
(b)
M
M
M
A1
A2
A3
10
25
35
12
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M M
θ
X Y S1 S2 S3 A1 A2 A3 RHS
(b)
M
M
M
A1
A2
A3
1
2
1
1
3
5
−1
0
0
0
−1
0
0
0
−1
1
0
0
0
1
0
0
0
1
10
25
35
13
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M M
θ
X Y S1 S2 S3 A
1
A
2
A3 RHS
(b)
M
M
M
A1
A2
A3
1
2
1
1
3
5
−1
0
0
0
−1
0
0
0
−1
1
0
0
0
1
0
0
0
1
10
25
35
Zj
4
M
9
M
−M −M −M M M M
M+2M+M = 4M
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
14
https://www.youtube.com/watch?v=tRNwz
Sr9IXg
IITM Srinivasan sir
15
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M M
θ
X Y S1 S2 S3 A
1
A
2
A3 RHS
(b)
M
M
M
A1
A2
A3
1
2
1
1
3
5
−1
0
0
0
−1
0
0
0
−1
1
0
0
0
1
0
0
0
1
10
25
35
10
25/3
7
Zj 4M 9M −M −M −M M M M
Zj− Cj 4M−
6
9M−
8
−M −M −M 0 0 0
Largest
positive
value Key Column:
decides incoming
Least
positive
Key
Row: decides
outgoing
variable
16
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M M
θ
X Y S1 S2 S3 A
1
A
2
A3 RHS
(b)
M
M
M
A1
A2
A3
1
2
1
1
3
5
−1
0
0
0
−1
0
0
0
−1
1
0
0
0
1
0
0
0
1
10
25
35
10
25/3
7
Zj 4M 9M −M −M −M M M M
Zj− Cj 4M−
6
9M−
8
−M −M −M 0 0 0
Key Column:
decides incoming
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
Largest
positive
value
17
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M M
θ
X Y S1 S2 S3 A
1
A
2
A3 RHS
(b)
M
M
M
A1
A2
A3
1
2
1
1
3
5
−1
0
0
0
−1
0
0
0
−1
1
0
0
0
1
0
0
0
1
10
25
35
10
25/3
7
Zj 4M 9M −M −M −M M M M
Zj− Cj 4M−
6
9M−
8
−M −M −M 0 0 0
18
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M M
θ
X Y S1 S2 S3 A
1
A
2
A3 RHS
(b)
M
M
M
A1
A2
A3
1
2
1
1
3
5
−1
0
0
0
−1
0
0
0
−1
1
0
0
0
1
0
0
0
1
10
25
35
10
25/3
7
Zj 4M 9M −M −M −M M M M
Zj− Cj 4M−
6
9M−
8
−M −M −M 0 0 0
19
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
θ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
1
2
1/5
1
3
1
−1
0
0
0
−1
0
0
0
−1/5
1
0
0
0
1
0
10
25
7
Zj
Zj− Cj
Modifie
d key
row
20
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
θ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
1
2
1/5
1
3
1
−1
0
0
0
−1
0
0
0
−1/5
1
0
0
0
1
0
10
25
7
Zj
Zj− Cj
Modifie
d key
row
21
Operation Research Models
LPP Big M Method – Prob 7
Old
Row
− KCE × MKR = NR
1 − 1 × 1/5 = 4/5
1 − 1 × 1 = 0
−1 − 1 × 0 = −1
0 − 1 × 0 = 0
0 − 1 × −1/5 = 1/5
1 − 1 × 0 1
0 − 1 × 0 0
10 − 1 × 7 = 3
22
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
θ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
4/5
2
1/5
0
3
1
−1
0
0
0
−1
0
1/5
0
−1/5
1
0
0
0
1
0
3
25
7
Zj
Zj− Cj
MKR
NR
23
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
θ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
4/5
2
1/5
0
3
1
−1
0
0
0
−1
0
1/5
0
−1/5
1
0
0
0
1
0
3
25
7
Zj
Zj− Cj
MKR
NR
OR
24
Operation Research Models
LPP Big M Method – Prob 7
Old
Row
− KCE × MKR = NR
2 − 3 × 1/5 = 7/5
3 − 3 × 1 = 0
0 − 3 × 0 = 0
−1 − 3 × 0 = −1
0 − 3 × −1/5 = 3/5
0 − 3 × 0 0
1 − 3 × 0 1
25 − 3 × 7 = 4
25
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
θ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
4/5
7/5
1/5
0
0
1
−1
0
0
0
−1
0
1/5
3/5
−1/5
1
0
0
0
1
0
3
4
7
Zj
Zj− Cj
MKR
NR
NR
26
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
θ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
4/5
7/5
1/5
0
0
1
−1
0
0
0
−1
0
1/5
3/5
−1/5
1
0
0
0
1
0
3
4
7
Zj 11𝑀
5
+
8
5
8 −M −M 4𝑀
5
−
8
5
M M
Zj− Cj
27
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
θ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
4/5
7/5
1/5
0
0
1
−1
0
0
0
−1
0
1/5
3/5
−1/5
1
0
0
0
1
0
3
4
7
Zj 11𝑀
5
+
8
5
8 −M −M 4𝑀
5
−
8
5
M M
Zj− Cj 11𝑀
5
+
38
5
0 −M −M 4𝑀
5
−
8
5
0 0
28
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
θ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
4/5
7/5
1/5
0
0
1
−1
0
0
0
−1
0
1/5
3/5
−1/5
1
0
0
0
1
0
3
4
7
Zj 11𝑀
5
+
8
5
8 −M −M 4𝑀
5
−
8
5
M M
Zj− Cj 11𝑀
5
+
38
5
0 −M −M 4𝑀
5
−
8
5
0 0
Key Column:
decides incoming
Largest
positive
value
29
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
θ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
4/5
7/5
1/5
0
0
1
−1
0
0
0
−1
0
1/5
3/5
−1/5
1
0
0
0
1
0
3
4
7
15/4
20/7
35
Zj 11𝑀
5
+
8
5
8 −M −M 4𝑀
5
−
8
5
M M
Zj− Cj 11𝑀
5
+
38
5
0 −M −M 4𝑀
5
−
8
5
0 0
Key Column:
decides incoming
Least
positive
Key
Row: decides
outgoing
variable
Largest
positive
value
30
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
θ
X Y S1 S2 S3 A
1
RHS
(b)
M
6
8
A1
X
Y
4/5
7/5
1/5
0
0
1
−1
0
0
0
−1
0
1/5
3/5
−1/5
1
0
0
3
4
7
15/4
20/7
35
Zj 11𝑀
5
+
8
5
8 −M −M 4𝑀
5
−
8
5
M
Zj− Cj 11𝑀
5
+
38
5
0 −M −M 4𝑀
5
−
8
5
0 0
31
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
θ
X Y S1 S2 S3 A
1
RHS
(b)
M
6
8
A1
X
Y
4/5
7/5
1/5
0
0
1
−1
0
0
0
−1
0
1/5
3/5
−1/5
1
0
0
3
4
7
Zj
Zj− Cj
32
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
θ
X Y S1 S2 S3 A
1
RHS
(b)
M
6
8
A1
X
Y
4/5
1
1/5
0
0
1
−1
0
0
0
−5/7
0
1/5
3/7
−1/5
1
0
0
3
20/7
7
Zj
Zj− Cj
MKR
33
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
θ
X Y S1 S2 S3 A
1
RHS
(b)
M
6
8
A1
X
Y
4/5
1
1/5
0
0
1
−1
0
0
0
−5/7
0
1/5
3/7
−1/5
1
0
0
3
20/7
7
Zj
Zj− Cj
MKR
34
Operation Research Models
LPP Big M Method – Prob 7
Old
Row
− KCE × MKR = NR
4/5 − 4/5 × 1 = 0
0 − 4/5 × 0 = 0
−1 − 4/5 × 0 = −1
0 − 4/5 × −5/7 = 4/7
1/5 − 4/5 × 3/7 = −1/7
1 − 4/5 × 0 = 1
3 − 4/5 × 20/7 = 5/7
35
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
θ
X Y S1 S2 S3 A
1
RHS
(b)
M
6
8
A
1
X
Y
0
1
1/5
0
0
1
−1
0
0
4/7
−5/7
0
−1/7
3/7
−1/5
1
0
0
5/7
20/7
7
Zj
Zj
− Cj
MKR
NR
36
Operation Research Models
LPP Big M Method – Prob 7
Old
Row
− KCE × MKR = NR
1/5 − 1/5 × 1 = 0
1 − 1/5 × 0 = 1
0 − 1/5 × 0 = 0
0 − 1/5 × −5/7 = 1/7
−1/5 − 1/5 × 3/7 = −2/7
0 − 1/5 × 0 = 0
7 − 1/5 × 20/7 = 45/7
37
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
θ
X Y S1 S2 S3 A1 RHS
(b)
M
6
8
A1
X
Y
0
1
0
0
0
1
−1
0
0
4/7
−5/7
1/7
−1/7
3/7
−2/7
1
0
0
5/7
20/7
45/7
Zj
Zj− Cj
MKR
NR
NR
38
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
θ
X Y S1 S2 S3 A1 RHS
(b)
M
6
8
A1
X
Y
0
1
0
0
0
1
−1
0
0
4/7
−5/7
1/7
−1/7
3/7
−2/7
1
0
0
5/7
20/7
45/7
Zj 6 8 −M
4𝑀
7
−
22
7
−
𝑀
7
+
2
7
M
Zj− Cj
MKR
NR
NR
39
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
θ
X Y S1 S2 S3 A1 RHS
(b)
M
6
8
A1
X
Y
0
1
0
0
0
1
−1
0
0
4/7
−5/7
1/7
−1/7
3/7
−2/7
1
0
0
5/7
20/7
45/7
Zj
6 8 −M
4𝑀
7
−
22
7
−
𝑀
7
+
2
7
M
Zj− Cj
0 0 −M 4𝑀
7
−
22
7
−
𝑀
7
+
2
7
0
Key Column: decides
incoming variable
Largest
positive
value
40
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
θ
X Y S1 S2 S3 A1 RHS
(b)
M
6
8
A1
X
Y
0
1
0
0
0
1
−
1
0
0
4/7
−5/7
1/7
−1/7
3/7
−2/7
1
0
0
5/7
20/7
45/7
5/4
−4
45
Zj
6 8 −M
4𝑀
7
−
22
7
−
𝑀
7
+
2
7
M
Zj− Cj
0 0 −M 4𝑀
7
−
22
7
−
𝑀
7
+
2
7
0
Key Column:
decides incoming
Largest
positive
value
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
41
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0
θ
X Y S1 S2 S3 RHS
(b)
0
6
8
S2
X
Y
0
1
0
0
0
1
−
1
0
0
4/7
−5/7
1/7
−1/7
3/7
−2/7
5/7
20/7
45/7
Zj
Zj− Cj
42
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0
θ
X Y S1 S2 S3 RHS
(b)
0
6
8
S2
X
Y
0
1
0
0
0
1
−
1
0
0
4/7
−5/7
1/7
−1/7
3/7
−2/7
5/7
20/7
45/7
Zj
Zj− Cj
43
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0
θ
X Y S1 S2 S3 RHS
(b)
0
6
8
S2
X
Y
0
1
0
0
0
1
−7/4
0
0
1
−5/7
1/7
−1/4
3/7
−2/7
5/4
20/7
45/7
Zj
Zj− Cj
MKR
44
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0
θ
X Y S1 S2 S3 RHS
(b)
0
6
8
S2
X
Y
0
1
0
0
0
1
−7/4
0
0
1
−5/7
1/7
−1/4
3/7
−2/7
5/4
20/7
45/7
Zj
Zj− Cj
MKR
OR
45
Operation Research Models
LPP Big M Method – Prob 7
Old
Row
− KCE × MKR = NR
1 − −5/7 × 0 = 1
0 − −5/7 × 0 = 0
0 − −5/7 × −7/4 = −5/4
−5/7 − −5/7 × 1 = 0
3/7 − −5/7 × −1/4 = 17/28
20/7 − −5/7 × 5/4 15/4
46
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0
θ
X Y S1 S2 S3 RHS
(b)
0
6
8
S2
X
Y
0
1
0
0
0
1
−7/4
−5/4
0
1
0
−1/4
17/28
−2/7
5/4
15/4
45/7
Zj
Zj− Cj
MKR
NR
47
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0
θ
X Y S1 S2 S3 RHS
(b)
0
6
8
S2
X
Y
0
1
0
0
0
1
−7/4
−5/4
0
1
0
1/7
−1/4
17/28
−2/7
5/4
15/4
45/7
Zj
Zj− Cj
MKR
NR
OR
48
Operation Research Models
LPP Big M Method – Prob 7
Old
Row
− KCE × MKR = NR
0 − 1/7 × 0 = 0
1 − 1/7 × 0 = 1
0 − 1/7 × −7/4 = 1/4
1/7 − 1/7 × 1 = 0
−2/7 − 1/7 × −1/4 = −1/4
45/7 − 1/7 × 5/4 = 25/4
49
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0
θ
X Y S1 S2 S3 RHS
(b)
0
6
8
S2
X
Y
0
1
0
0
0
1
−7/4
−5/4
1/4
1
0
0
−1/4
17/28
−1/4
5/4
15/4
25/4
Zj 6 8 −22/4 0 23/19
Zj− Cj
0 0 −22/4 0 23/19
MKR
NR
NR
50
𝑍𝑚𝑖𝑛=4𝑥1+𝑥2
3𝑥1+4𝑥2 ≥ 20
−𝑥1− 5𝑥2 ≤ −15
𝑥1, 𝑥2 ≥ 0
Operation Research Models
LPP Big M Method – Prob 8
51
𝑍𝑚𝑖𝑛=4𝑥1+𝑥2
3𝑥1+4𝑥2 ≥ 20
−𝑥1− 5𝑥2 ≤ −15
𝑥1, 𝑥2 ≥ 0
Operation Research Models
LPP Big M Method – Prob 8
−𝑥1− 5𝑥2 + 𝑆2 = −15
3𝑥1+4𝑥2 − 𝑆1 = 20
Add slack Surplus variable to convert
constraint equation into equality
Add slack Surplus variable to convert
constraint equation into equality
52
𝑍𝑚𝑖𝑛=4𝑥1+𝑥2
3𝑥1+4𝑥2 ≥ 20
−𝑥1− 5𝑥2 ≤ −15
𝑥1, 𝑥2 ≥ 0
Operation Research Models
LPP Big M Method – Prob 8
−𝑥1− 5𝑥2 + 𝑆2 = −15
3𝑥1+4𝑥2 − 𝑆1 = 20
Add slack Surplus variable to convert
constraint equation into equality
Add slack Surplus variable to convert
constraint equation into equality
Ibfs (Initial Basic Feasible Solution)
DV and Surplus variables = 0
0 = 20
𝑆2 = −15
53
𝑍𝑚𝑖𝑛=4𝑥1+𝑥2
3𝑥1+4𝑥2 ≥ 20
𝑥1+ 5𝑥2 ≥ 15
𝑥1, 𝑥2 ≥ 0
Operation Research Models
LPP Big M Method – Prob 8
54
𝑍𝑚𝑖𝑛=4𝑥1+𝑥2
3𝑥1+4𝑥2 ≥ 20
𝑥1+ 5𝑥2 ≥ 15
𝑥1, 𝑥2 ≥ 0
Operation Research Models
LPP Big M Method – Prob 8
𝑥1+ 5𝑥2 − 𝑆2 = −15
3𝑥1+4𝑥2 − 𝑆1 = 20
Add slack Surplus variable to convert
constraint equation into equality
55
𝑍𝑚𝑖𝑛=4𝑥1+𝑥2
3𝑥1+4𝑥2 ≥ 20
𝑥1+ 5𝑥2 ≥ 15
𝑥1, 𝑥2 ≥ 0
Operation Research Models
LPP Big M Method – Prob 8
𝑥1+ 5𝑥2 − 𝑆2 = 15
3𝑥1+4𝑥2 − 𝑆1 = 20
Add slack Surplus variable to convert
constraint equation into equality
Ibfs (Initial Basic Feasible Solution)
DV and Surplus variables = 0
0 = 20
0 = 15
𝑍𝑚𝑖𝑛=4𝑥1+𝑥2 + 0𝑆1 + 0𝑆2
56
𝒁𝒎𝒊𝒏=4𝒙𝟏+𝒙𝟐
3𝑥1+4𝑥2 ≥ 20
𝑥1+ 5𝑥2 ≥ 15
𝑥1, 𝑥2 ≥ 0
Operation Research Models
LPP Big M Method – Prob 8
Add slack Surplus variable to convert
constraint equation into equality
Ibfs (Initial Basic Feasible Solution)
DV and Surplus variables = 0
0 = 20 ⇒ 𝑎𝑑𝑑 𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐴1
0 = 15 ⇒ 𝑎𝑑𝑑 𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐴2
𝑍𝑚𝑖𝑛=4𝑥1+𝑥2 + 0𝑆1 + 0𝑆2
3𝑥1+4𝑥2 − 𝑆1 + A1 = 20
𝑥1+ 5𝑥2 − 𝑆2+A2 = 15
57
𝒁𝒎𝒊𝒏=4𝒙𝟏+𝒙𝟐
3𝑥1+4𝑥2 ≥ 20
𝑥1+ 5𝑥2 ≥ 15
𝑥1, 𝑥2 ≥ 0
Operation Research Models
LPP Big M Method – Prob 8
Add slack Surplus variable to convert
constraint equation into equality
𝑍𝑚𝑖𝑛=4𝑥1+𝑥2 + 0𝑆1 + 0𝑆2
3𝑥1+4𝑥2 − 𝑆1 + A1 = 20
𝑥1+ 5𝑥2 − 𝑆2+A2 = 15
Ibfs (Initial Basic Feasible Solution)
DV and Surplus variables = 0
𝐴1 = 20
𝐴2 = 15
58
𝒁𝒎𝒊𝒏=4𝒙𝟏+𝒙𝟐
3𝑥1+4𝑥2 ≥ 20
𝑥1+ 5𝑥2 ≥ 15
𝑥1, 𝑥2 ≥ 0
Operation Research Models
LPP Big M Method – Prob 8
Add slack Surplus variable to convert
constraint equation into equality
Sign of A1 & A2 𝑖𝑠 + or −
𝑣𝑒 𝑖𝑛 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑢𝑝𝑜𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚
𝑖. 𝑒. 𝑍𝑚𝑖𝑛 𝑜𝑟 𝑍𝑚𝑎𝑥
𝑍𝑚𝑖𝑛=4𝑥1+𝑥2 + 0𝑆1 + 0𝑆2
3𝑥1+4𝑥2 − 𝑆1 + A1 = 20
𝑥1+ 5𝑥2 − 𝑆2+A2 = 15
Ibfs (Initial Basic Feasible Solution)
DV and Surplus variables = 0
𝐴1 = 20
𝐴2 = 15
59
𝒁𝒎𝒊𝒏=4𝒙𝟏+𝒙𝟐
3𝑥1+4𝑥2 ≥ 20
𝑥1+ 5𝑥2 ≥ 15
𝑥1, 𝑥2 ≥ 0
Operation Research Models
LPP Big M Method – Prob 8
𝑥1+ 5𝑥2 − 𝑆2+A2 = 15
3𝑥1+4𝑥2 − 𝑆1 + A1 = 20
Add slack Surplus variable to convert
constraint equation into equality
Sign of A1 & A2 𝑖𝑠 + or −
𝑣𝑒 𝑖𝑛 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑢𝑝𝑜𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚
𝑖. 𝑒. 𝑍𝑚𝑖𝑛 𝑜𝑟 𝑍𝑚𝑎𝑥
𝑍𝑚𝑖𝑛 ⇒ MA1+MA2
𝑍𝑚𝑎𝑥 ⇒ −MA1−MA2
60
𝒁𝒎𝒊𝒏=4𝒙𝟏+𝒙𝟐
3𝑥1+4𝑥2 ≥ 20
𝑥1+ 5𝑥2 ≥ 15
𝑥1, 𝑥2 ≥ 0
Operation Research Models
LPP Big M Method – Prob 8
𝑥1+ 5𝑥2 − 𝑆2+A2 = 15
3𝑥1+4𝑥2 − 𝑆1 + A1 = 20
Add slack Surplus variable to convert
constraint equation into equality
Sign of A1 & A2 𝑖𝑠 + or −
𝑣𝑒 𝑖𝑛 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑢𝑝𝑜𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚
𝑖. 𝑒. 𝑍𝑚𝑖𝑛 𝑜𝑟 𝑍𝑚𝑎𝑥
𝑍𝑚𝑖𝑛=4𝑥1+𝑥2 + 0𝑆1 + 0𝑆2
+ MA1+MA2
Ibfs (Initial Basic Feasible Solution)
DV and Surplus variables = 0
𝐴1 = 20
𝐴2 = 15
61
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M M
θ
𝑥1 𝑥2 S1 S2 A
1
A
2
RHS
(b)
M
M
A1
A2
20
15
Zj
62
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M M
θ
𝑥1 𝑥2 S1 S2 A
1
A
2
RHS
(b)
M
M
A1
A2
3
1
4
5
−1
0
0
−1
1
0
0
1
20
15
Zj
63
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M M
θ
𝑥1 𝑥2 S1 S2 A
1
A
2
RHS
(b)
M
M
A1
A2
3
1
4
5
−1
0
0
−1
1
0
0
1
20
15
Zj
4
M
9
M
−M −M M M
64
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M M
θ
𝑥1 𝑥2 S1 S2 A
1
A
2
RHS
(b)
M
M
A1
A2
3
1
4
5
−1
0
0
−1
1
0
0
1
20
15
5
3
Zj
4M 9M −M −M M M
Zj−Cj 4M−4 9M−1 −M −M 0 0
Max
positive
value
Key Column:
decides incoming
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
65
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M
θ
𝑥1 𝑥2 S1 S2 A
1
RHS
(b)
M
1
A1
𝑥2
3
1
4
5
−1
0
0
−1
1
0
0
15
Zj
Zj−Cj
66
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M
θ
𝑥1 𝑥2 S1 S2 A
1
RHS
(b)
M
1
A1
𝑥2
3
1/5
4
1
−1
0
0
−1/5
1
0
20
15/5=3
Zj
Zj−Cj
Old Row
MKR
67
Operation Research Models
LPP Big M Method – Prob 8
Old
Row
− KCE × MKR = NR
3 − 4 × 1/5 = 11/5
4 − 4 × 1 = 0
−1 − 4 × 0 = −1
0 − 4 × −1/5 = 4/5
1 − 4 × 0 = 1
20 − 4 × 3 = 8
68
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M
θ
𝑥1 𝑥2 S1 S2 A
1
RHS
(b)
M
1
A1
𝑥2
11/5
1/5
0
1
−1
0
4/5
−1/5
1
0
8
3
Zj
Zj−Cj
New
Row
MKR
69
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M
θ
𝑥1 𝑥2 S1 S2 A
1
RHS
(b)
M
1
A1
𝑥2
11/5
1/5
0
1
−1
0
4/5
−1/5
1
0
8
3
Zj
11𝑀
5
+
1
5
1 −M 4𝑀
5
−
1
5
M
Zj−Cj
70
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M
θ
𝑥1 𝑥2 S1 S2 A
1
RHS
(b)
M
1
A1
𝑥2
11/5
1/5
0
1
−1
0
4/5
−1/5
1
0
8
3
Zj
11𝑀
5
+
1
5
1 −M 4𝑀
5
−
1
5
M
Zj−Cj
11𝑀 + 1 − 20
5
0 −M 4𝑀 − 1
5
0
71
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M
θ
𝑥1 𝑥2 S1 S2 A
1
RHS
(b)
M
1
A1
𝑥2
11/5
1/5
0
1
−1
0
4/5
−1/5
1
0
8
3
Zj
11𝑀
5
+
1
5
1 −M 4𝑀
5
−
1
5
M
Zj−Cj
11𝑀 − 19
5
0 −M 4𝑀 − 1
5
0
72
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M
θ
𝑥1 𝑥2 S1 S2 A
1
RHS
(b)
M
1
A
1
𝑥2
11/5
1/5
0
1
−1
0
4/5
−1/5
1
0
8
3
Zj
11𝑀
5
+
1
5
1 −M 4𝑀
5
−
1
5
M
Zj−Cj
11𝑀 − 19
5
0 −M 4𝑀 − 1
5
0
Max
positive
value Key Column:
decides incoming
73
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M
θ
𝑥1 𝑥2 S1 S2 A
1
RHS
(b)
M
1
A
1
𝑥2
11/5
1/5
0
1
−1
0
4/5
−1/5
1
0
8
3
40/11
15
Zj
11𝑀
5
+
1
5
1 −M 4𝑀
5
−
1
5
M
Zj−Cj
11𝑀 − 19
5
0 −M 4𝑀 − 1
5
0
Max
positive
value Key Column:
decides incoming
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
74
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
θ
𝑥1 𝑥2 S1 S2 RHS
(b)
4
1
𝑥1
𝑥2
11/5
1/5
0
1
−1
0
4/5
−1/5
8
3
40/11
15
Zj
Zj−Cj
75
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
θ
𝑥1 𝑥2 S1 S2 RHS
(b)
4
1
𝑥1
𝑥2
1
1/5
0
1
−5/11
0
4/11
−1/5
40/11
3
15
Zj
Zj−Cj
MKR
76
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
θ
𝑥1 𝑥2 S1 S2 RHS
(b)
4
1
𝑥1
𝑥2
1
1/5
0
1
−5/11
0
4/11
−1/5
40/11
3
15
Zj
Zj−Cj
Old Row
MKR
77
Operation Research Models
LPP Big M Method – Prob 8
Old Row − KCE × MKR = NR
1/5 − 1/5 × 1 = 0
1 − 1/5 × 0 = 1
0 − 1/5 × −5/11 = 1/11
−1/5 − 1/5 × 4/11 = −15/55 = −3/11
3 − 1/5 × 40/11 = 125/55 = 25/11
78
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
θ
𝑥1 𝑥2 S1 S2 RHS
(b)
4
1
𝑥1
𝑥2
1
0
0
1
−5/11
1/11
4/11
−3/11
40/11
25/11
15
Zj
Zj−Cj
New
Row
MKR
79
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
θ
𝑥1 𝑥2 S1 S2 RHS
(b)
4
1
𝑥1
𝑥2
1
0
0
1
−5/11
1/11
4/11
−3/11
40/11
25/11
15
Zj
4 1 −19/11 13/11
Zj−Cj 0 0 −19/11 13/11
Max
positive
value Key Column:
decides incoming
variable
80
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
θ
𝑥1 𝑥2 S1 S2 RHS
(b)
4
1
𝑥1
𝑥2
1
0
0
1
−5/11
1/11
4/11
−3/11
40/11
25/11
10
−
Zj
4 1 −19/11 13/11
Zj−Cj 0 0 −19/11 13/11
Max
positive
value Key Column:
decides incoming
variable
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
81
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
θ
𝑥1 𝑥2 S1 S2 RHS
(b)
0
1
S2
𝑥2
1
0
0
1
−5/11
1/11
4/11
−3/11
40/11
25/11
Zj
Zj−Cj
82
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
θ
𝑥1 𝑥2 S1 S2 RHS
(b)
0
1
S2
𝑥2
11/4
0
0
1
−5/4
1/11
1
−3/11
10
25/11
Zj
Zj−Cj
MKR
83
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
θ
𝑥1 𝑥2 S1 S2 RHS
(b)
0
1
S2
𝑥2
11/4
0
0
1
−5/4
1/11
1
−3/11
10
25/11
Zj
Zj−Cj
MKR
Old
Row
84
Operation Research Models
LPP Big M Method – Prob 8
Old Row − KCE × MKR = NR
0 − −3/11 × 11/4 = 3/4
1 − −3/11 × 0 = 1
1/11 − −3/11 × −5/4 = 1
11
−
3
11
×
5
4
=
1
11
−
15
44
= −
11
44
=−
1
4
−3/11 − −3/11 × 1 = 0
25/11 − −3/11 × 10 25
11
+
30
11
=
55
11
= 5
85
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
θ
𝑥1 𝑥2 S1 S2 RHS
(b)
0
1
S2
𝑥2
11/4
3/4
0
1
−5/4
−1/4
1
0
10
5
Zj
Zj−Cj
MKR
New
Row
86
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
θ
𝑥1 𝑥2 S1 S2 RHS
(b)
0
1
S2
𝑥2
11/4
3/4
0
1
−5/4
−1/4
1
0
10
5
Zj
3/4 1 −1/4 0
Zj−Cj
87
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
θ
𝑥1 𝑥2 S1 S2 RHS
(b)
0
1
S2
𝑥2
11/4
3/4
0
1
−5/4
−1/4
1
0
10
5
Zj
3/4 1 −1/4 0 5
Zj−Cj −13/4 0 −1/4 0
So, the optimal Solution we get without
𝑥1
The optimal Solution
𝑥1 = 0; 𝑥2 = 5 𝑎𝑛𝑑 𝑍𝑚𝑖𝑛= 4𝑥1+𝑥2= 4×0 + 5 = 5
88
𝑍𝑚𝑎𝑥 = 𝑥1+5𝑥2
3𝑥1+ 4𝑥2 ≤ 6
𝑥1+3𝑥2 ≥ 2
𝑥1, 𝑥2 ≥ 0
Operation Research Models
LPP Big M Method – Prob 9
89
Operation Research Models
LPP Big M Method – Prob 9
𝑥1+ 3𝑥2 − 𝑆2 + 𝐴1 = 2
𝑥1, 𝑥2, 𝑆1 , 𝑆2 , 𝐴1 ≥ 0
3𝑥1+4𝑥2 + 𝑆1 = 6
Add slack and Surplus variable to
convert constraint equation into equality
𝑍𝑚𝑎𝑥 = 𝑥1+5𝑥2
3𝑥1+ 4𝑥2 ≤ 6
𝑥1+3𝑥2 ≥ 2
𝑥1, 𝑥2 ≥ 0
90
Operation Research Models
LPP Big M Method – Prob 9
Ibfs (Initial Basic Feasible Solution)
DV and Surplus variables = 0
𝑆1 = 6
𝐴1 = 2
𝑍𝑚𝑎𝑥= 𝑥1+ 5𝑥2 + 0𝑆1 + 0𝑆2 − MA1
91
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0 −M
θ
𝑥1 𝑥2 S1 S2 A1 RHS (b)
0
−M
S1
A1
6
2
Zj
𝑍𝑚𝑎𝑥= 𝑥1+ 5𝑥2 + 0𝑆1 + 0𝑆2 − MA1
92
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0 −M
θ
𝑥1 𝑥2 S1 S2 A1 RHS (b)
0
−M
S1
A1
3
1
4
3
1
0
0
−1
0
1
6
2
Zj
𝑍𝑚𝑎𝑥= 𝑥1+ 5𝑥2 + 0𝑆1 + 0𝑆2 − MA1
93
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0 −M
θ
𝑥1 𝑥2 S1 S2 A1 RHS (b)
0
−M
S1
A1
3
1
4
3
1
0
0
−1
0
1
6
2
Zj
−M −3M 0 M −M
𝑍𝑚𝑎𝑥= 𝑥1+ 5𝑥2 + 0𝑆1 + 0𝑆2 − MA1
94
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0 −M
θ
𝑥1 𝑥2 S1 S2 A1 RHS (b)
0
−M
S1
A1
3
1
4
3
1
0
0
−1
0
1
6
2
Zj
−M −3M 0 M −M
Cj − Zj
1+M 5+3M 0 −M 0
𝑍𝑚𝑎𝑥= 𝑥1+ 5𝑥2 + 0𝑆1 + 0𝑆2 − MA1
95
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0 −M
θ
𝑥1 𝑥2 S1 S2 A1 RHS (b)
0
−M
S1
A1
3
1
4
3
1
0
0
−1
0
1
6
2
Zj
−M −3M 0 M −M
Cj − Zj
1+M 5+3M 0 −M 0
Max
positive
value
Key Column:
decides incoming
variable
96
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0 −M
θ =
𝒃
𝒂
𝑥1 𝑥2 S1 S2 A1 RHS
(b)
0
−M
S1
A1
3
1
4
3
1
0
0
−1
0
1
6
2
6/4 = 3/2
2/3
Zj
−M −3M 0 M −M
Cj − Zj
1+M 5+3M 0 −M 0
Max
positive
value
Key Column:
decides incoming
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
97
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
θ =
𝒃
𝒂
𝑥1 𝒙𝟐 S1 S2 RHS
(b)
0
5
S1
𝒙𝟐
3
1
4
3
1
0
0
−1
6
2
Zj
Cj − Zj
98
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
θ =
𝒃
𝒂
𝑥1 𝒙𝟐 S1 S2 RHS
(b)
0
5
S1
𝒙𝟐
3
1/3
4
1
1
0
0
−1/3
6
2/3
Zj
Cj − Zj
MKR
99
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
θ =
𝒃
𝒂
𝑥1 𝒙𝟐 S1 S2 RHS
(b)
0
5
S1
𝒙𝟐
3
1/3
4
1
1
0
0
−1/3
6
2/3
Zj
Cj − Zj
MKR
OR
100
Operation Research Models
LPP Big M Method – Prob 9
Old
Row
− KCE × MKR = NR
3 − 4 × 1/3 = 5/3
4 − 4 × 1 = 0
1 − 4 × 0 = 1
0 − 4 × −1/3 = 4/3
6 − 4 × 2/3 = 10/3
101
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
θ =
𝒃
𝒂
𝑥1 𝒙𝟐 S1 S2 RHS
(b)
0
5
S1
𝒙𝟐
5/3
1/3
0
1
1
0
4/3
−1/3
10/3
2/3
Zj
5/3 5 0 −5/3
Cj − Zj
−2/3 0 0 5/3
MKR
NR
Max
positive
value Key Column:
decides incoming
variable
102
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
θ =
𝒃
𝒂
𝑥1 𝒙𝟐 S1 S2 RHS
(b)
0
5
S1
𝒙𝟐
5/3
1/3
0
1
1
0
4/3
−1/3
10/3
2/3
5/2
−
Zj
5/3 5 0 −5/3
Cj − Zj
−2/3 0 0 5/3
Max
positive
value Key Column:
decides incoming
variable
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
103
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
θ =
𝒃
𝒂
𝑥1 𝒙𝟐 S1 S2 RHS
(b)
0
5
S2
𝒙𝟐
5/3
1/3
0
1
1
0
4/3
−1/3
10/3
2/3
5/2
−
Zj
5/3 5 0 −5/3
Cj − Zj
−2/3 0 0 5/3
104
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
θ =
𝒃
𝒂
𝑥1 𝒙𝟐 S1 S2 RHS
(b)
0
5
S2
𝒙𝟐
5/3
1/3
0
1
1
0
4/3
−1/3
10/3
2/3
5/2
−
Zj
5/3 5 0 −5/3
Cj − Zj
−2/3 0 0 5/3
105
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
θ =
𝒃
𝒂
𝑥1 𝒙𝟐 S1 S2 RHS
(b)
0
5
S2
𝒙𝟐
5/3
1/3
0
1
1
0
4/3
−1/3
10/3
2/3
Zj
Cj − Zj
106
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
θ =
𝒃
𝒂
𝑥1 𝒙𝟐 S1 S2 RHS
(b)
0
5
S2
𝒙𝟐
5/4
1/3
0
1
3/4
0
1
−1/3
5/2
2/3
Zj
Cj − Zj
MKR
107
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
θ =
𝒃
𝒂
𝑥1 𝒙𝟐 S1 S2 RHS
(b)
0
5
S2
𝒙𝟐
5/4
1/3
0
1
3/4
0
1
−1/3
5/2
2/3
Zj
Cj − Zj
MKR
OR
108
Operation Research Models
LPP Big M Method – Prob 9
Old
Row
− KCE × MKR = NR
1/3 − −1/3 × 5/4 = 3/4
1 − −1/3 × 0 = 1
0 − −1/3 × 3/4 = 1/4
−1/3 − −1/3 × 1 = 0
2/3 − −1/3 × 5/2 = 3/2
2
3
+
1
3
×
5
2
=
2
3
+
5
6
=
4 + 5
6
=
9
6
=
3
2
109
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
θ =
𝒃
𝒂
𝑥1 𝒙𝟐 S1 S2 RHS
(b)
0
5
S2
𝒙𝟐
5/4
3/4
0
1
3/4
1/4
1
0
5/2
3/2
Zj
Cj − Zj
MKR
NR
110
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
θ =
𝒃
𝒂
𝑥1 𝒙𝟐 S1 S2 RHS
(b)
0
5
S2
𝒙𝟐
5/4
3/4
0
1
3/4
1/4
1
0
5/2
3/2
Zj
15/4 5 5/4 0
Cj − Zj
−11/4 0 −5/4 0
MKR
NR
So, the optimal Solution we get without
𝑥1
The optimal Solution
𝑥1 = 0; 𝑥2 =
3
2
and 𝑍𝑚𝑎𝑥 = 𝑥1 + 5𝑥2 = 0 +
15
2
, 𝑍𝑚𝑎𝑥 =
15
2
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
111
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
112
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
113
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
114
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
115
There is no region that satisfies both the
constraints.
This LP is infeasible
Refer: Slide no. 97
Two Phase Method
117
Operation Research Models
LPP Two Phase Method
LPP using Graphical
Method
LPP using iteration Method
≤
inequality
= and ≥
inequality
Simplex
Method
Big M
Method
Two Phase
Method
118
Operation Research Models
LPP Two Phase Method
In Two Phase Method, the whole procedure of solving a linear
programming problem (LPP) involving artificial variables is
divided into two phases.
In phase I, we form a new objective function (Auxiliary
function) by assigning zero to all variable (slack and surplus
variables) and +1 or −1 to each of the artificial variables
𝑍𝑚𝑖𝑛 or 𝑍𝑚𝑎𝑥 . Then we try to eliminate the artificial variables
from the basis. The solution at the end of phase I serves as a
basic feasible solution for phase II.
In phase II, Auxiliary function is replaced by the original
objective function and the usual simplex algorithm is used to
find an optimal solution.
119
𝑍𝑚𝑖𝑛 = 𝑥1+𝑥2
2𝑥1+ 𝑥2 ≥ 4
𝑥1+7𝑥2 ≥ 7
𝑥1, 𝑥2 ≥ 0
Operation Research Models
LPP Two Phase Method – Prob 10
120
Operation Research Models
LPP Two Phase Method – Prob 10
𝑥1+ 7𝑥2 − 𝑆2 + 𝐴2 = 7
𝑥1, 𝑥2, 𝑆1 , 𝑆2 , 𝐴1 , 𝐴2 ≥ 0
2𝑥1+𝑥2 − 𝑆1 + 𝐴1 = 4
Add Surplus variable and artificial
variable to convert constraint equation
into equality
𝑍𝑚𝑖𝑛 = 𝑥1+𝑥2
2𝑥1+ 𝑥2 ≥ 4
𝑥1+7𝑥2 ≥ 7
𝑥1, 𝑥2 ≥ 0
Ibfs (Initial Basic Feasible Solution)
DV and Surplus variables = 0
𝐴1 = 4
𝐴2 = 7
𝑍𝑚𝑖𝑛= 0 × 𝑥1+ 0 × 𝑥2 + 0 × 𝑆1 + 0 × 𝑆2 + 1 × A1 + 1 × A2
Create Auxiliary
function
121
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1 1
θ
𝑥1 𝑥2 S1 S2 A1 A2 RHS (b)
1
1
A1
A2
4
7
Zj
𝑍𝑚𝑖𝑛= 0 × 𝑥1+ 0 × 𝑥2 + 0 × 𝑆1 + 0 × 𝑆2 + 1 × A1 + 1 × A2
122
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1 1
θ
𝑥1 𝑥2 S1 S2 A1 A2 RHS (b)
1
1
A1
A2
2
1
1
7
−1
0
0
−1
1
0
0
1
4
7
Zj
𝑍𝑚𝑖𝑛= 0 × 𝑥1+ 0 × 𝑥2 + 0 × 𝑆1 + 0 × 𝑆2 + 1 × A1 + 1 × A2
123
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1 1
θ
𝑥1 𝑥2 S1 S2 A1 A2 RHS (b)
1
1
A1
A2
2
1
1
7
−1
0
0
−1
1
0
0
1
4
7
Zj
3 8 −1 −1 1 1
124
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1 1
θ
𝑥1 𝑥2 S1 S2 A1 A2 RHS (b)
1
1
A1
A2
2
1
1
7
−1
0
0
−1
1
0
0
1
4
7
Zj
3 8 −1 −1 1 1
Zj−Cj
3 8 −1 −1 0 0
Max
positive
value Key Column:
decides incoming
125
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1 1
θ=
𝒃
𝒂
𝑥1 𝑥2 S1 S2 A1 A2 RHS (b)
1
1
A1
A2
2
1
1
7
−1
0
0
−1
1
0
0
1
4
7
4
1
Zj
3 8 −1 −1 1 1
Zj−Cj
3 8 −1 −1 0 0
Max
positive
value Key Column:
decides incoming
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
126
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1
θ=
𝒃
𝒂
𝑥1 𝑥2 S1 S2 A1 RHS (b)
1
0
A1
x2
2
1/7
1
1
−1
0
0
−1/7
1
0 1
Zj
Zj−Cj
127
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1
θ=
𝒃
𝒂
𝑥1 𝑥2 S1 S2 A1 RHS (b)
1
0
A1
x2
2
1/7
1
1
−1
0
0
−1/7
1
0
4
1
Zj
Zj−Cj
MKR
OR
128
Operation Research Models
LPP Big M Method – Prob 10
Old
Row
− KCE × MKR = NR
2 − 1 × 1/7 = 13/7
1 − 1 × 1 = 0
−1 − 1 × 0 = −1
0 − 1 × −1/7 = 1/7
1 − 1 × 0 = 1
4 − 1 × 1 = 3
129
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1
θ=
𝒃
𝒂
𝑥1 𝑥2 S1 S2 A1 RHS (b)
1
0
A1
x2
13/7
1/7
0
1
−1
0
1/7
−1/7
1
0
3
1
Zj
Zj−Cj
MKR
NR
130
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1
θ=
𝒃
𝒂
𝑥1 𝑥2 S1 S2 A1 RHS (b)
1
0
A1
x2
13/7
1/7
0
1
−1
0
1/7
−1/7
1
0
3
1
Zj
13/7 0 −1 1/7 1
Zj−Cj
13/7 0 −1 1/7 0
Max
positive
value Key Column:
decides incoming
131
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1
θ=
𝒃
𝒂
𝑥1 𝑥2 S1 S2 A1 RHS (b)
1
0
A1
x2
13/7
1/7
0
1
−1
0
1/7
−1/7
1
0
3
1
21/13
7
Zj
13/7 0 −1 1/7 1
Zj−Cj
13/7 0 −1 1/7 0
Max
positive
value Key Column:
decides incoming
132
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1
θ=
𝒃
𝒂
𝑥1 𝑥2 S1 S2 A1 RHS (b)
1
0
A1
x2
13/7
1/7
0
1
−1
0
1/7
−1/7
1
0
3
1
21/13
7
Zj
13/7 0 −1 1/7 1
Zj−Cj
13/7 0 −1 1/7 0
Max
positive
value Key Column:
decides incoming
Least
positive
Key
Element
133
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0
θ=
𝒃
𝒂
𝒙𝟏 𝑥2 S1 S2 RHS (b)
0
0
𝒙𝟏
𝑥2
13/7
1/7
0
1
−1
0
1/7
−1/7
3
1
21/13
7
Zj
13/7 0 −1 1/7
Zj−Cj
13/7 0 −1 1/7
134
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0
θ=
𝒃
𝒂
𝒙𝟏 𝑥2 S1 S2 RHS (b)
0
0
𝒙𝟏
𝑥2
1
1/7
0
1
−7/13
0
1/13
−1/7
21/13
1
7
Zj
Zj−Cj
MKR
135
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0
θ=
𝒃
𝒂
𝒙𝟏 𝑥2 S1 S2 RHS (b)
0
0
𝒙𝟏
𝑥2
1
1/7
0
1
−7/13
0
1/13
−1/7
21/13
1
7
Zj
Zj−Cj
MKR
OR
136
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0
θ=
𝒃
𝒂
𝒙𝟏 𝑥2 S1 S2 RHS (b)
1
1
𝒙𝟏
𝑥2
1
0
0
1
−7/13
1/13
1/13
−2/13
21/13
70/91
7
Zj
0 0 0 0
Zj−Cj
0 0 0 0
MKR
NR
137
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
1 1 0 0
θ=
𝒃
𝒂
𝒙𝟏 𝑥2 S1 S2 RHS (b)
1
1
𝒙𝟏
𝑥2
1
0
0
1
−7/13
1/13
1/13
−2/13
21/13
70/91
7
Zj
1 1 −6/13 −1/13
Zj−Cj
0 0 −6/13 −1/13
MKR
NR
The optimal Solution
𝑥1 =
21
13
; 𝑥2 =
70
90
=
10
13
and 𝑍𝑚𝑖𝑛 =
21
13
+
10
13
=
31
13
138
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
1 1 0 0
θ=
𝒃
𝒂
𝒙𝟏 𝑥2 S1 S2 RHS (b)
1
1
𝒙𝟏
𝑥2
1
0
0
1
−7/13
1/13
1/13
−2/13
21/13
70/91
7
Zj
1 1 −6/13 −1/13
Zj−Cj
0 0 −6/13 −1/13
MKR
NR
The optimal Solution
𝑥1 =
21
13
; 𝑥2 =
70
90
=
10
13
and 𝑍𝑚𝑖𝑛 =
21
13
+
10
13
=
31
13
MCQ
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
140
The objective function and constraints are functions of two types of variables,
_______________ variables and ____________ variables.
A. Positive and negative
B. Controllable and uncontrollable.
C. Strong and weak
D. None of the above
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
141
In graphical representation the bounded region is known as _________ region.
A. Solution
B. basic solution
C. feasible solution
D. optimal
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
142
The optimal value of the objective function for the following L.P.P.
Max z = 4X1 + 3X2
subject to
X1 + X2 ≤ 50
X1 + 2X2 ≤ 80
2X1 + X2 ≥ 20
X1, X2 ≥ 0
is
(a) 200
(b) 330
(c) 420
(d) 500
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
143
To formulate a problem for solution by the Simplex method, we must add artificial
variable to
(a) only equality constraints
(b) only LHS is greater than equal to RHS constraints
(c) both (a) and (b)
(d) None of the above
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
144
In graphical method of LPP, If at all there is a feasible solution (feasible area of polygon)
exists then, the feasible area region has an important property known as ____________in
geometry
a) convexity Property
b) Convex polygon
c) Both of the above
d) None of the above
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
145
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
146
https://www.aplustopper.com/section-
formula/

More Related Content

What's hot

Sensitivity analysis linear programming copy
Sensitivity analysis linear programming   copySensitivity analysis linear programming   copy
Sensitivity analysis linear programming copy
Kiran Jadhav
 
Procedure Of Simplex Method
Procedure Of Simplex MethodProcedure Of Simplex Method
Procedure Of Simplex Method
itsvineeth209
 
Simplex Method
Simplex MethodSimplex Method
Simplex Method
kzoe1996
 
Simplex method
Simplex methodSimplex method
Simplex method
Shiwani Gupta
 
Artificial variable technique big m method (1)
Artificial variable technique big m method (1)Artificial variable technique big m method (1)
Artificial variable technique big m method (1)
ਮਿਲਨਪ੍ਰੀਤ ਔਜਲਾ
 
LINEAR PROGRAMMING PROBLEMS.pptx
LINEAR PROGRAMMING PROBLEMS.pptxLINEAR PROGRAMMING PROBLEMS.pptx
LINEAR PROGRAMMING PROBLEMS.pptx
cidiorapalpha
 
Linear programming ppt
Linear programming pptLinear programming ppt
Linear programming ppt
Meenakshi Tripathi
 
Mba i qt unit-1.3_linear programming in om
Mba i qt unit-1.3_linear programming in omMba i qt unit-1.3_linear programming in om
Mba i qt unit-1.3_linear programming in om
Rai University
 
Duality
DualityDuality
Duality
Sachin MK
 
Duality in Linear Programming Problem
Duality in Linear Programming ProblemDuality in Linear Programming Problem
Duality in Linear Programming Problem
RAVI PRASAD K.J.
 
Simplex method: Slack, Surplus & Artificial variable
Simplex method:  Slack, Surplus & Artificial variableSimplex method:  Slack, Surplus & Artificial variable
Simplex method: Slack, Surplus & Artificial variable
DevyaneeDevyanee2007
 
Linear Programming
Linear ProgrammingLinear Programming
Linear Programming
Pulchowk Campus
 
Operations Research - The Dual Simplex Method
Operations Research - The Dual Simplex MethodOperations Research - The Dual Simplex Method
Operations Research - The Dual Simplex Method
Hisham Al Kurdi, EAVA, DMC-D-4K, HCCA-P, HCAA-D
 
NON LINEAR PROGRAMMING
NON LINEAR PROGRAMMING NON LINEAR PROGRAMMING
NON LINEAR PROGRAMMING
karishma gupta
 
Transportation Problem In Linear Programming
Transportation Problem In Linear ProgrammingTransportation Problem In Linear Programming
Transportation Problem In Linear Programming
Mirza Tanzida
 
Assignment problem
Assignment problemAssignment problem
Assignment problem
Anggy Herny Anggraeni
 
Simplex method
Simplex methodSimplex method
Simplex method
tatteya
 
simplex method
simplex methodsimplex method
simplex method
Dronak Sahu
 
Introduction to optimization technique
Introduction to optimization techniqueIntroduction to optimization technique
Introduction to optimization technique
KAMINISINGH963
 
Simplex algorithm
Simplex algorithmSimplex algorithm
Simplex algorithm
Khwaja Bilal Hassan
 

What's hot (20)

Sensitivity analysis linear programming copy
Sensitivity analysis linear programming   copySensitivity analysis linear programming   copy
Sensitivity analysis linear programming copy
 
Procedure Of Simplex Method
Procedure Of Simplex MethodProcedure Of Simplex Method
Procedure Of Simplex Method
 
Simplex Method
Simplex MethodSimplex Method
Simplex Method
 
Simplex method
Simplex methodSimplex method
Simplex method
 
Artificial variable technique big m method (1)
Artificial variable technique big m method (1)Artificial variable technique big m method (1)
Artificial variable technique big m method (1)
 
LINEAR PROGRAMMING PROBLEMS.pptx
LINEAR PROGRAMMING PROBLEMS.pptxLINEAR PROGRAMMING PROBLEMS.pptx
LINEAR PROGRAMMING PROBLEMS.pptx
 
Linear programming ppt
Linear programming pptLinear programming ppt
Linear programming ppt
 
Mba i qt unit-1.3_linear programming in om
Mba i qt unit-1.3_linear programming in omMba i qt unit-1.3_linear programming in om
Mba i qt unit-1.3_linear programming in om
 
Duality
DualityDuality
Duality
 
Duality in Linear Programming Problem
Duality in Linear Programming ProblemDuality in Linear Programming Problem
Duality in Linear Programming Problem
 
Simplex method: Slack, Surplus & Artificial variable
Simplex method:  Slack, Surplus & Artificial variableSimplex method:  Slack, Surplus & Artificial variable
Simplex method: Slack, Surplus & Artificial variable
 
Linear Programming
Linear ProgrammingLinear Programming
Linear Programming
 
Operations Research - The Dual Simplex Method
Operations Research - The Dual Simplex MethodOperations Research - The Dual Simplex Method
Operations Research - The Dual Simplex Method
 
NON LINEAR PROGRAMMING
NON LINEAR PROGRAMMING NON LINEAR PROGRAMMING
NON LINEAR PROGRAMMING
 
Transportation Problem In Linear Programming
Transportation Problem In Linear ProgrammingTransportation Problem In Linear Programming
Transportation Problem In Linear Programming
 
Assignment problem
Assignment problemAssignment problem
Assignment problem
 
Simplex method
Simplex methodSimplex method
Simplex method
 
simplex method
simplex methodsimplex method
simplex method
 
Introduction to optimization technique
Introduction to optimization techniqueIntroduction to optimization technique
Introduction to optimization technique
 
Simplex algorithm
Simplex algorithmSimplex algorithm
Simplex algorithm
 

Similar to Operation research unit 1: LPP Big M and Two Phase method

Chapter 6 indices
Chapter 6 indicesChapter 6 indices
Chapter 6 indices
Jasimah Puari
 
Linear models
Linear modelsLinear models
Linear models
FAO
 
Search for Diboson Resonances in CMS
Search for Diboson Resonances in CMSSearch for Diboson Resonances in CMS
Search for Diboson Resonances in CMS
Jose Cupertino Ruiz Vargas
 
Ch 07 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 07 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 07 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 07 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Chyi-Tsong Chen
 
12. Linear models
12. Linear models12. Linear models
12. Linear models
ExternalEvents
 
CHAPTER 7.pdfdjdjdjdjdjdjdjsjsjddhhdudsko
CHAPTER 7.pdfdjdjdjdjdjdjdjsjsjddhhdudskoCHAPTER 7.pdfdjdjdjdjdjdjdjsjsjddhhdudsko
CHAPTER 7.pdfdjdjdjdjdjdjdjsjsjddhhdudsko
SydneyJaydeanKhanyil
 
Robots, Small Molecules & R
Robots, Small Molecules & RRobots, Small Molecules & R
Robots, Small Molecules & R
Rajarshi Guha
 
MSE Part1-Chapter3
MSE Part1-Chapter3MSE Part1-Chapter3
MSE Part1-Chapter3
University of Tasmania
 
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
Bibhuti Prasad Nanda
 
SBMF
SBMFSBMF
Column Liquid Chromatography
Column Liquid Chromatography Column Liquid Chromatography
Column Liquid Chromatography
Saurabh Singh
 
International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER) International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER)
ijceronline
 
Application of recursive perturbation approach for multimodal optimization
Application of recursive perturbation approach for multimodal optimizationApplication of recursive perturbation approach for multimodal optimization
Application of recursive perturbation approach for multimodal optimization
Pranamesh Chakraborty
 
Computational tools for drug discovery
Computational tools for drug discoveryComputational tools for drug discovery
Computational tools for drug discovery
Eszter Szabó
 
Central tedancy & correlation project - 2
Central tedancy & correlation project - 2Central tedancy & correlation project - 2
Central tedancy & correlation project - 2
The Superior University, Lahore
 
Cold_Start_Reinforcement_Learning_with_Softmax_Policy_Gradient.pdf
Cold_Start_Reinforcement_Learning_with_Softmax_Policy_Gradient.pdfCold_Start_Reinforcement_Learning_with_Softmax_Policy_Gradient.pdf
Cold_Start_Reinforcement_Learning_with_Softmax_Policy_Gradient.pdf
Po-Chuan Chen
 
Grds international conference on pure and applied science (5)
Grds international conference on pure and applied science (5)Grds international conference on pure and applied science (5)
Grds international conference on pure and applied science (5)
Global R & D Services
 
Adaptive Constraint Handling and Success History Differential Evolution for C...
Adaptive Constraint Handling and Success History Differential Evolution for C...Adaptive Constraint Handling and Success History Differential Evolution for C...
Adaptive Constraint Handling and Success History Differential Evolution for C...
University of Maribor
 
Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan...
Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan...Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan...
Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan...
Owen (Chih-Hsuan) Chen
 

Similar to Operation research unit 1: LPP Big M and Two Phase method (19)

Chapter 6 indices
Chapter 6 indicesChapter 6 indices
Chapter 6 indices
 
Linear models
Linear modelsLinear models
Linear models
 
Search for Diboson Resonances in CMS
Search for Diboson Resonances in CMSSearch for Diboson Resonances in CMS
Search for Diboson Resonances in CMS
 
Ch 07 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 07 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片Ch 07 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
Ch 07 MATLAB Applications in Chemical Engineering_陳奇中教授教學投影片
 
12. Linear models
12. Linear models12. Linear models
12. Linear models
 
CHAPTER 7.pdfdjdjdjdjdjdjdjsjsjddhhdudsko
CHAPTER 7.pdfdjdjdjdjdjdjdjsjsjddhhdudskoCHAPTER 7.pdfdjdjdjdjdjdjdjsjsjddhhdudsko
CHAPTER 7.pdfdjdjdjdjdjdjdjsjsjddhhdudsko
 
Robots, Small Molecules & R
Robots, Small Molecules & RRobots, Small Molecules & R
Robots, Small Molecules & R
 
MSE Part1-Chapter3
MSE Part1-Chapter3MSE Part1-Chapter3
MSE Part1-Chapter3
 
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
 
SBMF
SBMFSBMF
SBMF
 
Column Liquid Chromatography
Column Liquid Chromatography Column Liquid Chromatography
Column Liquid Chromatography
 
International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER) International Journal of Computational Engineering Research (IJCER)
International Journal of Computational Engineering Research (IJCER)
 
Application of recursive perturbation approach for multimodal optimization
Application of recursive perturbation approach for multimodal optimizationApplication of recursive perturbation approach for multimodal optimization
Application of recursive perturbation approach for multimodal optimization
 
Computational tools for drug discovery
Computational tools for drug discoveryComputational tools for drug discovery
Computational tools for drug discovery
 
Central tedancy & correlation project - 2
Central tedancy & correlation project - 2Central tedancy & correlation project - 2
Central tedancy & correlation project - 2
 
Cold_Start_Reinforcement_Learning_with_Softmax_Policy_Gradient.pdf
Cold_Start_Reinforcement_Learning_with_Softmax_Policy_Gradient.pdfCold_Start_Reinforcement_Learning_with_Softmax_Policy_Gradient.pdf
Cold_Start_Reinforcement_Learning_with_Softmax_Policy_Gradient.pdf
 
Grds international conference on pure and applied science (5)
Grds international conference on pure and applied science (5)Grds international conference on pure and applied science (5)
Grds international conference on pure and applied science (5)
 
Adaptive Constraint Handling and Success History Differential Evolution for C...
Adaptive Constraint Handling and Success History Differential Evolution for C...Adaptive Constraint Handling and Success History Differential Evolution for C...
Adaptive Constraint Handling and Success History Differential Evolution for C...
 
Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan...
Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan...Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan...
Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan...
 

More from Dr. L K Bhagi

Rolling Contact Bearings
Rolling Contact BearingsRolling Contact Bearings
Rolling Contact Bearings
Dr. L K Bhagi
 
Operation research unit 3 Transportation problem
Operation research unit 3 Transportation problemOperation research unit 3 Transportation problem
Operation research unit 3 Transportation problem
Dr. L K Bhagi
 
Operation research unit 2 Duality and methods
Operation research unit 2 Duality and methodsOperation research unit 2 Duality and methods
Operation research unit 2 Duality and methods
Dr. L K Bhagi
 
Operation research unit1 introduction and lpp graphical and simplex method
Operation research unit1 introduction and lpp graphical and simplex methodOperation research unit1 introduction and lpp graphical and simplex method
Operation research unit1 introduction and lpp graphical and simplex method
Dr. L K Bhagi
 
MEC395 Measurement System Analysis (MSA)
MEC395 Measurement System Analysis (MSA)MEC395 Measurement System Analysis (MSA)
MEC395 Measurement System Analysis (MSA)
Dr. L K Bhagi
 
Unit 4 sheet metal operations part 1
Unit 4 sheet metal operations part 1Unit 4 sheet metal operations part 1
Unit 4 sheet metal operations part 1
Dr. L K Bhagi
 
Eco-industrial park and cleaner production
Eco-industrial park and cleaner productionEco-industrial park and cleaner production
Eco-industrial park and cleaner production
Dr. L K Bhagi
 
Gears mcq
Gears mcqGears mcq
Gears mcq
Dr. L K Bhagi
 
Unit 4 bevel gears
Unit 4 bevel gearsUnit 4 bevel gears
Unit 4 bevel gears
Dr. L K Bhagi
 
Unit 4 helical gear
Unit 4 helical gearUnit 4 helical gear
Unit 4 helical gear
Dr. L K Bhagi
 
Metal casting process part 2
Metal casting process part 2Metal casting process part 2
Metal casting process part 2
Dr. L K Bhagi
 
Metal casting process part 1
Metal casting process part 1Metal casting process part 1
Metal casting process part 1
Dr. L K Bhagi
 
Design of Flat belt, V belt and chain drives
Design of Flat belt, V belt and chain drivesDesign of Flat belt, V belt and chain drives
Design of Flat belt, V belt and chain drives
Dr. L K Bhagi
 
Springs - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-IISprings - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-II
Dr. L K Bhagi
 
General introduction to manufacturing processes
General introduction to manufacturing processesGeneral introduction to manufacturing processes
General introduction to manufacturing processes
Dr. L K Bhagi
 
sheet metal operations part 2
sheet metal operations part 2sheet metal operations part 2
sheet metal operations part 2
Dr. L K Bhagi
 
Sheet metal operations part 1
Sheet metal operations part 1Sheet metal operations part 1
Sheet metal operations part 1
Dr. L K Bhagi
 
Plastic processing
Plastic processing Plastic processing
Plastic processing
Dr. L K Bhagi
 

More from Dr. L K Bhagi (18)

Rolling Contact Bearings
Rolling Contact BearingsRolling Contact Bearings
Rolling Contact Bearings
 
Operation research unit 3 Transportation problem
Operation research unit 3 Transportation problemOperation research unit 3 Transportation problem
Operation research unit 3 Transportation problem
 
Operation research unit 2 Duality and methods
Operation research unit 2 Duality and methodsOperation research unit 2 Duality and methods
Operation research unit 2 Duality and methods
 
Operation research unit1 introduction and lpp graphical and simplex method
Operation research unit1 introduction and lpp graphical and simplex methodOperation research unit1 introduction and lpp graphical and simplex method
Operation research unit1 introduction and lpp graphical and simplex method
 
MEC395 Measurement System Analysis (MSA)
MEC395 Measurement System Analysis (MSA)MEC395 Measurement System Analysis (MSA)
MEC395 Measurement System Analysis (MSA)
 
Unit 4 sheet metal operations part 1
Unit 4 sheet metal operations part 1Unit 4 sheet metal operations part 1
Unit 4 sheet metal operations part 1
 
Eco-industrial park and cleaner production
Eco-industrial park and cleaner productionEco-industrial park and cleaner production
Eco-industrial park and cleaner production
 
Gears mcq
Gears mcqGears mcq
Gears mcq
 
Unit 4 bevel gears
Unit 4 bevel gearsUnit 4 bevel gears
Unit 4 bevel gears
 
Unit 4 helical gear
Unit 4 helical gearUnit 4 helical gear
Unit 4 helical gear
 
Metal casting process part 2
Metal casting process part 2Metal casting process part 2
Metal casting process part 2
 
Metal casting process part 1
Metal casting process part 1Metal casting process part 1
Metal casting process part 1
 
Design of Flat belt, V belt and chain drives
Design of Flat belt, V belt and chain drivesDesign of Flat belt, V belt and chain drives
Design of Flat belt, V belt and chain drives
 
Springs - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-IISprings - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-II
 
General introduction to manufacturing processes
General introduction to manufacturing processesGeneral introduction to manufacturing processes
General introduction to manufacturing processes
 
sheet metal operations part 2
sheet metal operations part 2sheet metal operations part 2
sheet metal operations part 2
 
Sheet metal operations part 1
Sheet metal operations part 1Sheet metal operations part 1
Sheet metal operations part 1
 
Plastic processing
Plastic processing Plastic processing
Plastic processing
 

Recently uploaded

How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
Celine George
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
National Information Standards Organization (NISO)
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
NgcHiNguyn25
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
Nicholas Montgomery
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
taiba qazi
 
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
IreneSebastianRueco1
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
RitikBhardwaj56
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
Nguyen Thanh Tu Collection
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
Priyankaranawat4
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
TechSoup
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
TechSoup
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
Priyankaranawat4
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
chanes7
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Dr. Vinod Kumar Kanvaria
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 

Recently uploaded (20)

How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
 
Life upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for studentLife upper-Intermediate B2 Workbook for student
Life upper-Intermediate B2 Workbook for student
 
writing about opinions about Australia the movie
writing about opinions about Australia the moviewriting about opinions about Australia the movie
writing about opinions about Australia the movie
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
 
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
RPMS TEMPLATE FOR SCHOOL YEAR 2023-2024 FOR TEACHER 1 TO TEACHER 3
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
 
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat  Leveraging AI for Diversity, Equity, and InclusionExecutive Directors Chat  Leveraging AI for Diversity, Equity, and Inclusion
Executive Directors Chat Leveraging AI for Diversity, Equity, and Inclusion
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
Exploiting Artificial Intelligence for Empowering Researchers and Faculty, In...
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 

Operation research unit 1: LPP Big M and Two Phase method

  • 1. Linear Programming UNIT – I OPERATION RESEARCH Dr. Loveleen Kumar Bhagi Associate Professor School of Mechanical Engineering LPU
  • 3. Dr. L K Bhagi, School of Mechanical Engineering, LPU 3
  • 4. Dr. L K Bhagi, School of Mechanical Engineering, LPU 4
  • 5. 5 Operation Research Models LPP Big M Method Simplex method Big M method
  • 6. 6 Zmin= 6X+8Y X+Y ≥ 10 2X +3Y ≥ 25 X +5Y ≥ 35 X, Y ≥ 0 Add slack Surplus variable to convert constraint equation into equality Z = 6X+8Y+0S1 − 0S2 − 0S3 X+Y−S1 =10 2X +3Y−S2 = 25 X +5Y − S3 = 35 X,Y, S1, S2, S3 ≥ 0 Operation Research Models LPP Big M Method – Prob 7
  • 7. 7 Ibfs (Initial Basic Feasible Solution) DV = 0 −S =10 ; −S2 = 25; − S3 = 35 0r S = − 10 ; S2 = − 25; S3 = − 35 0r Z = 6X+8Y+0S1 − 0S2 − 0S3 X+Y−S1 =10 2X +3Y−S2 = 25 X +5Y − S3 = 35 X,Y, S1, S2, S3 ≥ 0 Operation Research Models LPP Big M Method – Prob 7
  • 8. 8 Ibfs (Initial Basic Feasible Solution) DV = 0 and Surplus = 0 0 =10 ; 0 = 25; 0 = 35 Z = 6X+8Y+0S1 − 0S2 − 0S3 X+Y−S1 =10 2X +3Y−S2 = 25 X +5Y − S3 = 35 X,Y, S1, S2, S3 ≥ 0 Operation Research Models LPP Big M Method – Prob 7
  • 9. 9 X+Y ≥ 10 2X +3Y ≥ 25 X +5Y ≥ 35 X, Y ≥ 0 Along with Surplus variable add Artificial Variable to convert constraint equation into equality X+Y−S1 +A1 =10 2X +3Y−S2+A2 = 25 X +5Y − S3 +A3 = 35 X,Y, S1, S2, S3, A1, A2, A3 ≥ 0 Operation Research Models LPP Big M Method – Prob 7 Zmin = 6X+8Y+0S1+0S2+ 0S3+MA1+MA2+MA3 Zmin= 6X+8Y
  • 10. 10 Operation Research Models LPP Big M Method – Prob 7 Zmin = 6X+8Y+0S1+0S2+ 0S3+MA1+MA2+MA3 Ibfs (Initial Basic Feasible Solution) Put DV = 0 and Surplus variables = 0 A1=10 ; A2= 25; A3= 35
  • 11. 11 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M M θ X Y S1 S2 S3 A1 A2 A3 RHS (b) M M M A1 A2 A3 10 25 35
  • 12. 12 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M M θ X Y S1 S2 S3 A1 A2 A3 RHS (b) M M M A1 A2 A3 1 2 1 1 3 5 −1 0 0 0 −1 0 0 0 −1 1 0 0 0 1 0 0 0 1 10 25 35
  • 13. 13 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M M θ X Y S1 S2 S3 A 1 A 2 A3 RHS (b) M M M A1 A2 A3 1 2 1 1 3 5 −1 0 0 0 −1 0 0 0 −1 1 0 0 0 1 0 0 0 1 10 25 35 Zj 4 M 9 M −M −M −M M M M M+2M+M = 4M
  • 14. Dr. L K Bhagi, School of Mechanical Engineering, LPU 14 https://www.youtube.com/watch?v=tRNwz Sr9IXg IITM Srinivasan sir
  • 15. 15 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M M θ X Y S1 S2 S3 A 1 A 2 A3 RHS (b) M M M A1 A2 A3 1 2 1 1 3 5 −1 0 0 0 −1 0 0 0 −1 1 0 0 0 1 0 0 0 1 10 25 35 10 25/3 7 Zj 4M 9M −M −M −M M M M Zj− Cj 4M− 6 9M− 8 −M −M −M 0 0 0 Largest positive value Key Column: decides incoming Least positive Key Row: decides outgoing variable
  • 16. 16 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M M θ X Y S1 S2 S3 A 1 A 2 A3 RHS (b) M M M A1 A2 A3 1 2 1 1 3 5 −1 0 0 0 −1 0 0 0 −1 1 0 0 0 1 0 0 0 1 10 25 35 10 25/3 7 Zj 4M 9M −M −M −M M M M Zj− Cj 4M− 6 9M− 8 −M −M −M 0 0 0 Key Column: decides incoming Least positive Key Row: decides outgoing variable Key Element Largest positive value
  • 17. 17 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M M θ X Y S1 S2 S3 A 1 A 2 A3 RHS (b) M M M A1 A2 A3 1 2 1 1 3 5 −1 0 0 0 −1 0 0 0 −1 1 0 0 0 1 0 0 0 1 10 25 35 10 25/3 7 Zj 4M 9M −M −M −M M M M Zj− Cj 4M− 6 9M− 8 −M −M −M 0 0 0
  • 18. 18 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M M θ X Y S1 S2 S3 A 1 A 2 A3 RHS (b) M M M A1 A2 A3 1 2 1 1 3 5 −1 0 0 0 −1 0 0 0 −1 1 0 0 0 1 0 0 0 1 10 25 35 10 25/3 7 Zj 4M 9M −M −M −M M M M Zj− Cj 4M− 6 9M− 8 −M −M −M 0 0 0
  • 19. 19 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M θ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 1 2 1/5 1 3 1 −1 0 0 0 −1 0 0 0 −1/5 1 0 0 0 1 0 10 25 7 Zj Zj− Cj Modifie d key row
  • 20. 20 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M θ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 1 2 1/5 1 3 1 −1 0 0 0 −1 0 0 0 −1/5 1 0 0 0 1 0 10 25 7 Zj Zj− Cj Modifie d key row
  • 21. 21 Operation Research Models LPP Big M Method – Prob 7 Old Row − KCE × MKR = NR 1 − 1 × 1/5 = 4/5 1 − 1 × 1 = 0 −1 − 1 × 0 = −1 0 − 1 × 0 = 0 0 − 1 × −1/5 = 1/5 1 − 1 × 0 1 0 − 1 × 0 0 10 − 1 × 7 = 3
  • 22. 22 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M θ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 4/5 2 1/5 0 3 1 −1 0 0 0 −1 0 1/5 0 −1/5 1 0 0 0 1 0 3 25 7 Zj Zj− Cj MKR NR
  • 23. 23 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M θ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 4/5 2 1/5 0 3 1 −1 0 0 0 −1 0 1/5 0 −1/5 1 0 0 0 1 0 3 25 7 Zj Zj− Cj MKR NR OR
  • 24. 24 Operation Research Models LPP Big M Method – Prob 7 Old Row − KCE × MKR = NR 2 − 3 × 1/5 = 7/5 3 − 3 × 1 = 0 0 − 3 × 0 = 0 −1 − 3 × 0 = −1 0 − 3 × −1/5 = 3/5 0 − 3 × 0 0 1 − 3 × 0 1 25 − 3 × 7 = 4
  • 25. 25 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M θ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 4/5 7/5 1/5 0 0 1 −1 0 0 0 −1 0 1/5 3/5 −1/5 1 0 0 0 1 0 3 4 7 Zj Zj− Cj MKR NR NR
  • 26. 26 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M θ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 4/5 7/5 1/5 0 0 1 −1 0 0 0 −1 0 1/5 3/5 −1/5 1 0 0 0 1 0 3 4 7 Zj 11𝑀 5 + 8 5 8 −M −M 4𝑀 5 − 8 5 M M Zj− Cj
  • 27. 27 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M θ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 4/5 7/5 1/5 0 0 1 −1 0 0 0 −1 0 1/5 3/5 −1/5 1 0 0 0 1 0 3 4 7 Zj 11𝑀 5 + 8 5 8 −M −M 4𝑀 5 − 8 5 M M Zj− Cj 11𝑀 5 + 38 5 0 −M −M 4𝑀 5 − 8 5 0 0
  • 28. 28 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M θ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 4/5 7/5 1/5 0 0 1 −1 0 0 0 −1 0 1/5 3/5 −1/5 1 0 0 0 1 0 3 4 7 Zj 11𝑀 5 + 8 5 8 −M −M 4𝑀 5 − 8 5 M M Zj− Cj 11𝑀 5 + 38 5 0 −M −M 4𝑀 5 − 8 5 0 0 Key Column: decides incoming Largest positive value
  • 29. 29 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M θ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 4/5 7/5 1/5 0 0 1 −1 0 0 0 −1 0 1/5 3/5 −1/5 1 0 0 0 1 0 3 4 7 15/4 20/7 35 Zj 11𝑀 5 + 8 5 8 −M −M 4𝑀 5 − 8 5 M M Zj− Cj 11𝑀 5 + 38 5 0 −M −M 4𝑀 5 − 8 5 0 0 Key Column: decides incoming Least positive Key Row: decides outgoing variable Largest positive value
  • 30. 30 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M θ X Y S1 S2 S3 A 1 RHS (b) M 6 8 A1 X Y 4/5 7/5 1/5 0 0 1 −1 0 0 0 −1 0 1/5 3/5 −1/5 1 0 0 3 4 7 15/4 20/7 35 Zj 11𝑀 5 + 8 5 8 −M −M 4𝑀 5 − 8 5 M Zj− Cj 11𝑀 5 + 38 5 0 −M −M 4𝑀 5 − 8 5 0 0
  • 31. 31 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M θ X Y S1 S2 S3 A 1 RHS (b) M 6 8 A1 X Y 4/5 7/5 1/5 0 0 1 −1 0 0 0 −1 0 1/5 3/5 −1/5 1 0 0 3 4 7 Zj Zj− Cj
  • 32. 32 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M θ X Y S1 S2 S3 A 1 RHS (b) M 6 8 A1 X Y 4/5 1 1/5 0 0 1 −1 0 0 0 −5/7 0 1/5 3/7 −1/5 1 0 0 3 20/7 7 Zj Zj− Cj MKR
  • 33. 33 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M θ X Y S1 S2 S3 A 1 RHS (b) M 6 8 A1 X Y 4/5 1 1/5 0 0 1 −1 0 0 0 −5/7 0 1/5 3/7 −1/5 1 0 0 3 20/7 7 Zj Zj− Cj MKR
  • 34. 34 Operation Research Models LPP Big M Method – Prob 7 Old Row − KCE × MKR = NR 4/5 − 4/5 × 1 = 0 0 − 4/5 × 0 = 0 −1 − 4/5 × 0 = −1 0 − 4/5 × −5/7 = 4/7 1/5 − 4/5 × 3/7 = −1/7 1 − 4/5 × 0 = 1 3 − 4/5 × 20/7 = 5/7
  • 35. 35 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M θ X Y S1 S2 S3 A 1 RHS (b) M 6 8 A 1 X Y 0 1 1/5 0 0 1 −1 0 0 4/7 −5/7 0 −1/7 3/7 −1/5 1 0 0 5/7 20/7 7 Zj Zj − Cj MKR NR
  • 36. 36 Operation Research Models LPP Big M Method – Prob 7 Old Row − KCE × MKR = NR 1/5 − 1/5 × 1 = 0 1 − 1/5 × 0 = 1 0 − 1/5 × 0 = 0 0 − 1/5 × −5/7 = 1/7 −1/5 − 1/5 × 3/7 = −2/7 0 − 1/5 × 0 = 0 7 − 1/5 × 20/7 = 45/7
  • 37. 37 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M θ X Y S1 S2 S3 A1 RHS (b) M 6 8 A1 X Y 0 1 0 0 0 1 −1 0 0 4/7 −5/7 1/7 −1/7 3/7 −2/7 1 0 0 5/7 20/7 45/7 Zj Zj− Cj MKR NR NR
  • 38. 38 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M θ X Y S1 S2 S3 A1 RHS (b) M 6 8 A1 X Y 0 1 0 0 0 1 −1 0 0 4/7 −5/7 1/7 −1/7 3/7 −2/7 1 0 0 5/7 20/7 45/7 Zj 6 8 −M 4𝑀 7 − 22 7 − 𝑀 7 + 2 7 M Zj− Cj MKR NR NR
  • 39. 39 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M θ X Y S1 S2 S3 A1 RHS (b) M 6 8 A1 X Y 0 1 0 0 0 1 −1 0 0 4/7 −5/7 1/7 −1/7 3/7 −2/7 1 0 0 5/7 20/7 45/7 Zj 6 8 −M 4𝑀 7 − 22 7 − 𝑀 7 + 2 7 M Zj− Cj 0 0 −M 4𝑀 7 − 22 7 − 𝑀 7 + 2 7 0 Key Column: decides incoming variable Largest positive value
  • 40. 40 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M θ X Y S1 S2 S3 A1 RHS (b) M 6 8 A1 X Y 0 1 0 0 0 1 − 1 0 0 4/7 −5/7 1/7 −1/7 3/7 −2/7 1 0 0 5/7 20/7 45/7 5/4 −4 45 Zj 6 8 −M 4𝑀 7 − 22 7 − 𝑀 7 + 2 7 M Zj− Cj 0 0 −M 4𝑀 7 − 22 7 − 𝑀 7 + 2 7 0 Key Column: decides incoming Largest positive value Least positive Key Row: decides outgoing variable Key Element
  • 41. 41 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 θ X Y S1 S2 S3 RHS (b) 0 6 8 S2 X Y 0 1 0 0 0 1 − 1 0 0 4/7 −5/7 1/7 −1/7 3/7 −2/7 5/7 20/7 45/7 Zj Zj− Cj
  • 42. 42 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 θ X Y S1 S2 S3 RHS (b) 0 6 8 S2 X Y 0 1 0 0 0 1 − 1 0 0 4/7 −5/7 1/7 −1/7 3/7 −2/7 5/7 20/7 45/7 Zj Zj− Cj
  • 43. 43 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 θ X Y S1 S2 S3 RHS (b) 0 6 8 S2 X Y 0 1 0 0 0 1 −7/4 0 0 1 −5/7 1/7 −1/4 3/7 −2/7 5/4 20/7 45/7 Zj Zj− Cj MKR
  • 44. 44 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 θ X Y S1 S2 S3 RHS (b) 0 6 8 S2 X Y 0 1 0 0 0 1 −7/4 0 0 1 −5/7 1/7 −1/4 3/7 −2/7 5/4 20/7 45/7 Zj Zj− Cj MKR OR
  • 45. 45 Operation Research Models LPP Big M Method – Prob 7 Old Row − KCE × MKR = NR 1 − −5/7 × 0 = 1 0 − −5/7 × 0 = 0 0 − −5/7 × −7/4 = −5/4 −5/7 − −5/7 × 1 = 0 3/7 − −5/7 × −1/4 = 17/28 20/7 − −5/7 × 5/4 15/4
  • 46. 46 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 θ X Y S1 S2 S3 RHS (b) 0 6 8 S2 X Y 0 1 0 0 0 1 −7/4 −5/4 0 1 0 −1/4 17/28 −2/7 5/4 15/4 45/7 Zj Zj− Cj MKR NR
  • 47. 47 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 θ X Y S1 S2 S3 RHS (b) 0 6 8 S2 X Y 0 1 0 0 0 1 −7/4 −5/4 0 1 0 1/7 −1/4 17/28 −2/7 5/4 15/4 45/7 Zj Zj− Cj MKR NR OR
  • 48. 48 Operation Research Models LPP Big M Method – Prob 7 Old Row − KCE × MKR = NR 0 − 1/7 × 0 = 0 1 − 1/7 × 0 = 1 0 − 1/7 × −7/4 = 1/4 1/7 − 1/7 × 1 = 0 −2/7 − 1/7 × −1/4 = −1/4 45/7 − 1/7 × 5/4 = 25/4
  • 49. 49 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 θ X Y S1 S2 S3 RHS (b) 0 6 8 S2 X Y 0 1 0 0 0 1 −7/4 −5/4 1/4 1 0 0 −1/4 17/28 −1/4 5/4 15/4 25/4 Zj 6 8 −22/4 0 23/19 Zj− Cj 0 0 −22/4 0 23/19 MKR NR NR
  • 50. 50 𝑍𝑚𝑖𝑛=4𝑥1+𝑥2 3𝑥1+4𝑥2 ≥ 20 −𝑥1− 5𝑥2 ≤ −15 𝑥1, 𝑥2 ≥ 0 Operation Research Models LPP Big M Method – Prob 8
  • 51. 51 𝑍𝑚𝑖𝑛=4𝑥1+𝑥2 3𝑥1+4𝑥2 ≥ 20 −𝑥1− 5𝑥2 ≤ −15 𝑥1, 𝑥2 ≥ 0 Operation Research Models LPP Big M Method – Prob 8 −𝑥1− 5𝑥2 + 𝑆2 = −15 3𝑥1+4𝑥2 − 𝑆1 = 20 Add slack Surplus variable to convert constraint equation into equality Add slack Surplus variable to convert constraint equation into equality
  • 52. 52 𝑍𝑚𝑖𝑛=4𝑥1+𝑥2 3𝑥1+4𝑥2 ≥ 20 −𝑥1− 5𝑥2 ≤ −15 𝑥1, 𝑥2 ≥ 0 Operation Research Models LPP Big M Method – Prob 8 −𝑥1− 5𝑥2 + 𝑆2 = −15 3𝑥1+4𝑥2 − 𝑆1 = 20 Add slack Surplus variable to convert constraint equation into equality Add slack Surplus variable to convert constraint equation into equality Ibfs (Initial Basic Feasible Solution) DV and Surplus variables = 0 0 = 20 𝑆2 = −15
  • 53. 53 𝑍𝑚𝑖𝑛=4𝑥1+𝑥2 3𝑥1+4𝑥2 ≥ 20 𝑥1+ 5𝑥2 ≥ 15 𝑥1, 𝑥2 ≥ 0 Operation Research Models LPP Big M Method – Prob 8
  • 54. 54 𝑍𝑚𝑖𝑛=4𝑥1+𝑥2 3𝑥1+4𝑥2 ≥ 20 𝑥1+ 5𝑥2 ≥ 15 𝑥1, 𝑥2 ≥ 0 Operation Research Models LPP Big M Method – Prob 8 𝑥1+ 5𝑥2 − 𝑆2 = −15 3𝑥1+4𝑥2 − 𝑆1 = 20 Add slack Surplus variable to convert constraint equation into equality
  • 55. 55 𝑍𝑚𝑖𝑛=4𝑥1+𝑥2 3𝑥1+4𝑥2 ≥ 20 𝑥1+ 5𝑥2 ≥ 15 𝑥1, 𝑥2 ≥ 0 Operation Research Models LPP Big M Method – Prob 8 𝑥1+ 5𝑥2 − 𝑆2 = 15 3𝑥1+4𝑥2 − 𝑆1 = 20 Add slack Surplus variable to convert constraint equation into equality Ibfs (Initial Basic Feasible Solution) DV and Surplus variables = 0 0 = 20 0 = 15 𝑍𝑚𝑖𝑛=4𝑥1+𝑥2 + 0𝑆1 + 0𝑆2
  • 56. 56 𝒁𝒎𝒊𝒏=4𝒙𝟏+𝒙𝟐 3𝑥1+4𝑥2 ≥ 20 𝑥1+ 5𝑥2 ≥ 15 𝑥1, 𝑥2 ≥ 0 Operation Research Models LPP Big M Method – Prob 8 Add slack Surplus variable to convert constraint equation into equality Ibfs (Initial Basic Feasible Solution) DV and Surplus variables = 0 0 = 20 ⇒ 𝑎𝑑𝑑 𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐴1 0 = 15 ⇒ 𝑎𝑑𝑑 𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐴2 𝑍𝑚𝑖𝑛=4𝑥1+𝑥2 + 0𝑆1 + 0𝑆2 3𝑥1+4𝑥2 − 𝑆1 + A1 = 20 𝑥1+ 5𝑥2 − 𝑆2+A2 = 15
  • 57. 57 𝒁𝒎𝒊𝒏=4𝒙𝟏+𝒙𝟐 3𝑥1+4𝑥2 ≥ 20 𝑥1+ 5𝑥2 ≥ 15 𝑥1, 𝑥2 ≥ 0 Operation Research Models LPP Big M Method – Prob 8 Add slack Surplus variable to convert constraint equation into equality 𝑍𝑚𝑖𝑛=4𝑥1+𝑥2 + 0𝑆1 + 0𝑆2 3𝑥1+4𝑥2 − 𝑆1 + A1 = 20 𝑥1+ 5𝑥2 − 𝑆2+A2 = 15 Ibfs (Initial Basic Feasible Solution) DV and Surplus variables = 0 𝐴1 = 20 𝐴2 = 15
  • 58. 58 𝒁𝒎𝒊𝒏=4𝒙𝟏+𝒙𝟐 3𝑥1+4𝑥2 ≥ 20 𝑥1+ 5𝑥2 ≥ 15 𝑥1, 𝑥2 ≥ 0 Operation Research Models LPP Big M Method – Prob 8 Add slack Surplus variable to convert constraint equation into equality Sign of A1 & A2 𝑖𝑠 + or − 𝑣𝑒 𝑖𝑛 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑢𝑝𝑜𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖. 𝑒. 𝑍𝑚𝑖𝑛 𝑜𝑟 𝑍𝑚𝑎𝑥 𝑍𝑚𝑖𝑛=4𝑥1+𝑥2 + 0𝑆1 + 0𝑆2 3𝑥1+4𝑥2 − 𝑆1 + A1 = 20 𝑥1+ 5𝑥2 − 𝑆2+A2 = 15 Ibfs (Initial Basic Feasible Solution) DV and Surplus variables = 0 𝐴1 = 20 𝐴2 = 15
  • 59. 59 𝒁𝒎𝒊𝒏=4𝒙𝟏+𝒙𝟐 3𝑥1+4𝑥2 ≥ 20 𝑥1+ 5𝑥2 ≥ 15 𝑥1, 𝑥2 ≥ 0 Operation Research Models LPP Big M Method – Prob 8 𝑥1+ 5𝑥2 − 𝑆2+A2 = 15 3𝑥1+4𝑥2 − 𝑆1 + A1 = 20 Add slack Surplus variable to convert constraint equation into equality Sign of A1 & A2 𝑖𝑠 + or − 𝑣𝑒 𝑖𝑛 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑢𝑝𝑜𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖. 𝑒. 𝑍𝑚𝑖𝑛 𝑜𝑟 𝑍𝑚𝑎𝑥 𝑍𝑚𝑖𝑛 ⇒ MA1+MA2 𝑍𝑚𝑎𝑥 ⇒ −MA1−MA2
  • 60. 60 𝒁𝒎𝒊𝒏=4𝒙𝟏+𝒙𝟐 3𝑥1+4𝑥2 ≥ 20 𝑥1+ 5𝑥2 ≥ 15 𝑥1, 𝑥2 ≥ 0 Operation Research Models LPP Big M Method – Prob 8 𝑥1+ 5𝑥2 − 𝑆2+A2 = 15 3𝑥1+4𝑥2 − 𝑆1 + A1 = 20 Add slack Surplus variable to convert constraint equation into equality Sign of A1 & A2 𝑖𝑠 + or − 𝑣𝑒 𝑖𝑛 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑢𝑝𝑜𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖. 𝑒. 𝑍𝑚𝑖𝑛 𝑜𝑟 𝑍𝑚𝑎𝑥 𝑍𝑚𝑖𝑛=4𝑥1+𝑥2 + 0𝑆1 + 0𝑆2 + MA1+MA2 Ibfs (Initial Basic Feasible Solution) DV and Surplus variables = 0 𝐴1 = 20 𝐴2 = 15
  • 61. 61 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M M θ 𝑥1 𝑥2 S1 S2 A 1 A 2 RHS (b) M M A1 A2 20 15 Zj
  • 62. 62 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M M θ 𝑥1 𝑥2 S1 S2 A 1 A 2 RHS (b) M M A1 A2 3 1 4 5 −1 0 0 −1 1 0 0 1 20 15 Zj
  • 63. 63 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M M θ 𝑥1 𝑥2 S1 S2 A 1 A 2 RHS (b) M M A1 A2 3 1 4 5 −1 0 0 −1 1 0 0 1 20 15 Zj 4 M 9 M −M −M M M
  • 64. 64 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M M θ 𝑥1 𝑥2 S1 S2 A 1 A 2 RHS (b) M M A1 A2 3 1 4 5 −1 0 0 −1 1 0 0 1 20 15 5 3 Zj 4M 9M −M −M M M Zj−Cj 4M−4 9M−1 −M −M 0 0 Max positive value Key Column: decides incoming Least positive Key Row: decides outgoing variable Key Element
  • 65. 65 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M θ 𝑥1 𝑥2 S1 S2 A 1 RHS (b) M 1 A1 𝑥2 3 1 4 5 −1 0 0 −1 1 0 0 15 Zj Zj−Cj
  • 66. 66 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M θ 𝑥1 𝑥2 S1 S2 A 1 RHS (b) M 1 A1 𝑥2 3 1/5 4 1 −1 0 0 −1/5 1 0 20 15/5=3 Zj Zj−Cj Old Row MKR
  • 67. 67 Operation Research Models LPP Big M Method – Prob 8 Old Row − KCE × MKR = NR 3 − 4 × 1/5 = 11/5 4 − 4 × 1 = 0 −1 − 4 × 0 = −1 0 − 4 × −1/5 = 4/5 1 − 4 × 0 = 1 20 − 4 × 3 = 8
  • 68. 68 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M θ 𝑥1 𝑥2 S1 S2 A 1 RHS (b) M 1 A1 𝑥2 11/5 1/5 0 1 −1 0 4/5 −1/5 1 0 8 3 Zj Zj−Cj New Row MKR
  • 69. 69 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M θ 𝑥1 𝑥2 S1 S2 A 1 RHS (b) M 1 A1 𝑥2 11/5 1/5 0 1 −1 0 4/5 −1/5 1 0 8 3 Zj 11𝑀 5 + 1 5 1 −M 4𝑀 5 − 1 5 M Zj−Cj
  • 70. 70 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M θ 𝑥1 𝑥2 S1 S2 A 1 RHS (b) M 1 A1 𝑥2 11/5 1/5 0 1 −1 0 4/5 −1/5 1 0 8 3 Zj 11𝑀 5 + 1 5 1 −M 4𝑀 5 − 1 5 M Zj−Cj 11𝑀 + 1 − 20 5 0 −M 4𝑀 − 1 5 0
  • 71. 71 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M θ 𝑥1 𝑥2 S1 S2 A 1 RHS (b) M 1 A1 𝑥2 11/5 1/5 0 1 −1 0 4/5 −1/5 1 0 8 3 Zj 11𝑀 5 + 1 5 1 −M 4𝑀 5 − 1 5 M Zj−Cj 11𝑀 − 19 5 0 −M 4𝑀 − 1 5 0
  • 72. 72 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M θ 𝑥1 𝑥2 S1 S2 A 1 RHS (b) M 1 A 1 𝑥2 11/5 1/5 0 1 −1 0 4/5 −1/5 1 0 8 3 Zj 11𝑀 5 + 1 5 1 −M 4𝑀 5 − 1 5 M Zj−Cj 11𝑀 − 19 5 0 −M 4𝑀 − 1 5 0 Max positive value Key Column: decides incoming
  • 73. 73 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M θ 𝑥1 𝑥2 S1 S2 A 1 RHS (b) M 1 A 1 𝑥2 11/5 1/5 0 1 −1 0 4/5 −1/5 1 0 8 3 40/11 15 Zj 11𝑀 5 + 1 5 1 −M 4𝑀 5 − 1 5 M Zj−Cj 11𝑀 − 19 5 0 −M 4𝑀 − 1 5 0 Max positive value Key Column: decides incoming Least positive Key Row: decides outgoing variable Key Element
  • 74. 74 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 θ 𝑥1 𝑥2 S1 S2 RHS (b) 4 1 𝑥1 𝑥2 11/5 1/5 0 1 −1 0 4/5 −1/5 8 3 40/11 15 Zj Zj−Cj
  • 75. 75 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 θ 𝑥1 𝑥2 S1 S2 RHS (b) 4 1 𝑥1 𝑥2 1 1/5 0 1 −5/11 0 4/11 −1/5 40/11 3 15 Zj Zj−Cj MKR
  • 76. 76 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 θ 𝑥1 𝑥2 S1 S2 RHS (b) 4 1 𝑥1 𝑥2 1 1/5 0 1 −5/11 0 4/11 −1/5 40/11 3 15 Zj Zj−Cj Old Row MKR
  • 77. 77 Operation Research Models LPP Big M Method – Prob 8 Old Row − KCE × MKR = NR 1/5 − 1/5 × 1 = 0 1 − 1/5 × 0 = 1 0 − 1/5 × −5/11 = 1/11 −1/5 − 1/5 × 4/11 = −15/55 = −3/11 3 − 1/5 × 40/11 = 125/55 = 25/11
  • 78. 78 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 θ 𝑥1 𝑥2 S1 S2 RHS (b) 4 1 𝑥1 𝑥2 1 0 0 1 −5/11 1/11 4/11 −3/11 40/11 25/11 15 Zj Zj−Cj New Row MKR
  • 79. 79 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 θ 𝑥1 𝑥2 S1 S2 RHS (b) 4 1 𝑥1 𝑥2 1 0 0 1 −5/11 1/11 4/11 −3/11 40/11 25/11 15 Zj 4 1 −19/11 13/11 Zj−Cj 0 0 −19/11 13/11 Max positive value Key Column: decides incoming variable
  • 80. 80 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 θ 𝑥1 𝑥2 S1 S2 RHS (b) 4 1 𝑥1 𝑥2 1 0 0 1 −5/11 1/11 4/11 −3/11 40/11 25/11 10 − Zj 4 1 −19/11 13/11 Zj−Cj 0 0 −19/11 13/11 Max positive value Key Column: decides incoming variable Least positive Key Row: decides outgoing variable Key Element
  • 81. 81 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 θ 𝑥1 𝑥2 S1 S2 RHS (b) 0 1 S2 𝑥2 1 0 0 1 −5/11 1/11 4/11 −3/11 40/11 25/11 Zj Zj−Cj
  • 82. 82 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 θ 𝑥1 𝑥2 S1 S2 RHS (b) 0 1 S2 𝑥2 11/4 0 0 1 −5/4 1/11 1 −3/11 10 25/11 Zj Zj−Cj MKR
  • 83. 83 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 θ 𝑥1 𝑥2 S1 S2 RHS (b) 0 1 S2 𝑥2 11/4 0 0 1 −5/4 1/11 1 −3/11 10 25/11 Zj Zj−Cj MKR Old Row
  • 84. 84 Operation Research Models LPP Big M Method – Prob 8 Old Row − KCE × MKR = NR 0 − −3/11 × 11/4 = 3/4 1 − −3/11 × 0 = 1 1/11 − −3/11 × −5/4 = 1 11 − 3 11 × 5 4 = 1 11 − 15 44 = − 11 44 =− 1 4 −3/11 − −3/11 × 1 = 0 25/11 − −3/11 × 10 25 11 + 30 11 = 55 11 = 5
  • 85. 85 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 θ 𝑥1 𝑥2 S1 S2 RHS (b) 0 1 S2 𝑥2 11/4 3/4 0 1 −5/4 −1/4 1 0 10 5 Zj Zj−Cj MKR New Row
  • 86. 86 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 θ 𝑥1 𝑥2 S1 S2 RHS (b) 0 1 S2 𝑥2 11/4 3/4 0 1 −5/4 −1/4 1 0 10 5 Zj 3/4 1 −1/4 0 Zj−Cj
  • 87. 87 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 θ 𝑥1 𝑥2 S1 S2 RHS (b) 0 1 S2 𝑥2 11/4 3/4 0 1 −5/4 −1/4 1 0 10 5 Zj 3/4 1 −1/4 0 5 Zj−Cj −13/4 0 −1/4 0 So, the optimal Solution we get without 𝑥1 The optimal Solution 𝑥1 = 0; 𝑥2 = 5 𝑎𝑛𝑑 𝑍𝑚𝑖𝑛= 4𝑥1+𝑥2= 4×0 + 5 = 5
  • 88. 88 𝑍𝑚𝑎𝑥 = 𝑥1+5𝑥2 3𝑥1+ 4𝑥2 ≤ 6 𝑥1+3𝑥2 ≥ 2 𝑥1, 𝑥2 ≥ 0 Operation Research Models LPP Big M Method – Prob 9
  • 89. 89 Operation Research Models LPP Big M Method – Prob 9 𝑥1+ 3𝑥2 − 𝑆2 + 𝐴1 = 2 𝑥1, 𝑥2, 𝑆1 , 𝑆2 , 𝐴1 ≥ 0 3𝑥1+4𝑥2 + 𝑆1 = 6 Add slack and Surplus variable to convert constraint equation into equality 𝑍𝑚𝑎𝑥 = 𝑥1+5𝑥2 3𝑥1+ 4𝑥2 ≤ 6 𝑥1+3𝑥2 ≥ 2 𝑥1, 𝑥2 ≥ 0
  • 90. 90 Operation Research Models LPP Big M Method – Prob 9 Ibfs (Initial Basic Feasible Solution) DV and Surplus variables = 0 𝑆1 = 6 𝐴1 = 2 𝑍𝑚𝑎𝑥= 𝑥1+ 5𝑥2 + 0𝑆1 + 0𝑆2 − MA1
  • 91. 91 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 −M θ 𝑥1 𝑥2 S1 S2 A1 RHS (b) 0 −M S1 A1 6 2 Zj 𝑍𝑚𝑎𝑥= 𝑥1+ 5𝑥2 + 0𝑆1 + 0𝑆2 − MA1
  • 92. 92 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 −M θ 𝑥1 𝑥2 S1 S2 A1 RHS (b) 0 −M S1 A1 3 1 4 3 1 0 0 −1 0 1 6 2 Zj 𝑍𝑚𝑎𝑥= 𝑥1+ 5𝑥2 + 0𝑆1 + 0𝑆2 − MA1
  • 93. 93 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 −M θ 𝑥1 𝑥2 S1 S2 A1 RHS (b) 0 −M S1 A1 3 1 4 3 1 0 0 −1 0 1 6 2 Zj −M −3M 0 M −M 𝑍𝑚𝑎𝑥= 𝑥1+ 5𝑥2 + 0𝑆1 + 0𝑆2 − MA1
  • 94. 94 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 −M θ 𝑥1 𝑥2 S1 S2 A1 RHS (b) 0 −M S1 A1 3 1 4 3 1 0 0 −1 0 1 6 2 Zj −M −3M 0 M −M Cj − Zj 1+M 5+3M 0 −M 0 𝑍𝑚𝑎𝑥= 𝑥1+ 5𝑥2 + 0𝑆1 + 0𝑆2 − MA1
  • 95. 95 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 −M θ 𝑥1 𝑥2 S1 S2 A1 RHS (b) 0 −M S1 A1 3 1 4 3 1 0 0 −1 0 1 6 2 Zj −M −3M 0 M −M Cj − Zj 1+M 5+3M 0 −M 0 Max positive value Key Column: decides incoming variable
  • 96. 96 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 −M θ = 𝒃 𝒂 𝑥1 𝑥2 S1 S2 A1 RHS (b) 0 −M S1 A1 3 1 4 3 1 0 0 −1 0 1 6 2 6/4 = 3/2 2/3 Zj −M −3M 0 M −M Cj − Zj 1+M 5+3M 0 −M 0 Max positive value Key Column: decides incoming Least positive Key Row: decides outgoing variable Key Element Least positive Key Row: decides outgoing variable Key Element
  • 97. 97 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 θ = 𝒃 𝒂 𝑥1 𝒙𝟐 S1 S2 RHS (b) 0 5 S1 𝒙𝟐 3 1 4 3 1 0 0 −1 6 2 Zj Cj − Zj
  • 98. 98 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 θ = 𝒃 𝒂 𝑥1 𝒙𝟐 S1 S2 RHS (b) 0 5 S1 𝒙𝟐 3 1/3 4 1 1 0 0 −1/3 6 2/3 Zj Cj − Zj MKR
  • 99. 99 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 θ = 𝒃 𝒂 𝑥1 𝒙𝟐 S1 S2 RHS (b) 0 5 S1 𝒙𝟐 3 1/3 4 1 1 0 0 −1/3 6 2/3 Zj Cj − Zj MKR OR
  • 100. 100 Operation Research Models LPP Big M Method – Prob 9 Old Row − KCE × MKR = NR 3 − 4 × 1/3 = 5/3 4 − 4 × 1 = 0 1 − 4 × 0 = 1 0 − 4 × −1/3 = 4/3 6 − 4 × 2/3 = 10/3
  • 101. 101 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 θ = 𝒃 𝒂 𝑥1 𝒙𝟐 S1 S2 RHS (b) 0 5 S1 𝒙𝟐 5/3 1/3 0 1 1 0 4/3 −1/3 10/3 2/3 Zj 5/3 5 0 −5/3 Cj − Zj −2/3 0 0 5/3 MKR NR Max positive value Key Column: decides incoming variable
  • 102. 102 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 θ = 𝒃 𝒂 𝑥1 𝒙𝟐 S1 S2 RHS (b) 0 5 S1 𝒙𝟐 5/3 1/3 0 1 1 0 4/3 −1/3 10/3 2/3 5/2 − Zj 5/3 5 0 −5/3 Cj − Zj −2/3 0 0 5/3 Max positive value Key Column: decides incoming variable Least positive Key Row: decides outgoing variable Key Element
  • 103. 103 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 θ = 𝒃 𝒂 𝑥1 𝒙𝟐 S1 S2 RHS (b) 0 5 S2 𝒙𝟐 5/3 1/3 0 1 1 0 4/3 −1/3 10/3 2/3 5/2 − Zj 5/3 5 0 −5/3 Cj − Zj −2/3 0 0 5/3
  • 104. 104 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 θ = 𝒃 𝒂 𝑥1 𝒙𝟐 S1 S2 RHS (b) 0 5 S2 𝒙𝟐 5/3 1/3 0 1 1 0 4/3 −1/3 10/3 2/3 5/2 − Zj 5/3 5 0 −5/3 Cj − Zj −2/3 0 0 5/3
  • 105. 105 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 θ = 𝒃 𝒂 𝑥1 𝒙𝟐 S1 S2 RHS (b) 0 5 S2 𝒙𝟐 5/3 1/3 0 1 1 0 4/3 −1/3 10/3 2/3 Zj Cj − Zj
  • 106. 106 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 θ = 𝒃 𝒂 𝑥1 𝒙𝟐 S1 S2 RHS (b) 0 5 S2 𝒙𝟐 5/4 1/3 0 1 3/4 0 1 −1/3 5/2 2/3 Zj Cj − Zj MKR
  • 107. 107 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 θ = 𝒃 𝒂 𝑥1 𝒙𝟐 S1 S2 RHS (b) 0 5 S2 𝒙𝟐 5/4 1/3 0 1 3/4 0 1 −1/3 5/2 2/3 Zj Cj − Zj MKR OR
  • 108. 108 Operation Research Models LPP Big M Method – Prob 9 Old Row − KCE × MKR = NR 1/3 − −1/3 × 5/4 = 3/4 1 − −1/3 × 0 = 1 0 − −1/3 × 3/4 = 1/4 −1/3 − −1/3 × 1 = 0 2/3 − −1/3 × 5/2 = 3/2 2 3 + 1 3 × 5 2 = 2 3 + 5 6 = 4 + 5 6 = 9 6 = 3 2
  • 109. 109 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 θ = 𝒃 𝒂 𝑥1 𝒙𝟐 S1 S2 RHS (b) 0 5 S2 𝒙𝟐 5/4 3/4 0 1 3/4 1/4 1 0 5/2 3/2 Zj Cj − Zj MKR NR
  • 110. 110 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 θ = 𝒃 𝒂 𝑥1 𝒙𝟐 S1 S2 RHS (b) 0 5 S2 𝒙𝟐 5/4 3/4 0 1 3/4 1/4 1 0 5/2 3/2 Zj 15/4 5 5/4 0 Cj − Zj −11/4 0 −5/4 0 MKR NR So, the optimal Solution we get without 𝑥1 The optimal Solution 𝑥1 = 0; 𝑥2 = 3 2 and 𝑍𝑚𝑎𝑥 = 𝑥1 + 5𝑥2 = 0 + 15 2 , 𝑍𝑚𝑎𝑥 = 15 2
  • 111. Dr. L K Bhagi, School of Mechanical Engineering, LPU 111
  • 112. Dr. L K Bhagi, School of Mechanical Engineering, LPU 112
  • 113. Dr. L K Bhagi, School of Mechanical Engineering, LPU 113
  • 114. Dr. L K Bhagi, School of Mechanical Engineering, LPU 114
  • 115. Dr. L K Bhagi, School of Mechanical Engineering, LPU 115 There is no region that satisfies both the constraints. This LP is infeasible Refer: Slide no. 97
  • 117. 117 Operation Research Models LPP Two Phase Method LPP using Graphical Method LPP using iteration Method ≤ inequality = and ≥ inequality Simplex Method Big M Method Two Phase Method
  • 118. 118 Operation Research Models LPP Two Phase Method In Two Phase Method, the whole procedure of solving a linear programming problem (LPP) involving artificial variables is divided into two phases. In phase I, we form a new objective function (Auxiliary function) by assigning zero to all variable (slack and surplus variables) and +1 or −1 to each of the artificial variables 𝑍𝑚𝑖𝑛 or 𝑍𝑚𝑎𝑥 . Then we try to eliminate the artificial variables from the basis. The solution at the end of phase I serves as a basic feasible solution for phase II. In phase II, Auxiliary function is replaced by the original objective function and the usual simplex algorithm is used to find an optimal solution.
  • 119. 119 𝑍𝑚𝑖𝑛 = 𝑥1+𝑥2 2𝑥1+ 𝑥2 ≥ 4 𝑥1+7𝑥2 ≥ 7 𝑥1, 𝑥2 ≥ 0 Operation Research Models LPP Two Phase Method – Prob 10
  • 120. 120 Operation Research Models LPP Two Phase Method – Prob 10 𝑥1+ 7𝑥2 − 𝑆2 + 𝐴2 = 7 𝑥1, 𝑥2, 𝑆1 , 𝑆2 , 𝐴1 , 𝐴2 ≥ 0 2𝑥1+𝑥2 − 𝑆1 + 𝐴1 = 4 Add Surplus variable and artificial variable to convert constraint equation into equality 𝑍𝑚𝑖𝑛 = 𝑥1+𝑥2 2𝑥1+ 𝑥2 ≥ 4 𝑥1+7𝑥2 ≥ 7 𝑥1, 𝑥2 ≥ 0 Ibfs (Initial Basic Feasible Solution) DV and Surplus variables = 0 𝐴1 = 4 𝐴2 = 7 𝑍𝑚𝑖𝑛= 0 × 𝑥1+ 0 × 𝑥2 + 0 × 𝑆1 + 0 × 𝑆2 + 1 × A1 + 1 × A2 Create Auxiliary function
  • 121. 121 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 1 θ 𝑥1 𝑥2 S1 S2 A1 A2 RHS (b) 1 1 A1 A2 4 7 Zj 𝑍𝑚𝑖𝑛= 0 × 𝑥1+ 0 × 𝑥2 + 0 × 𝑆1 + 0 × 𝑆2 + 1 × A1 + 1 × A2
  • 122. 122 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 1 θ 𝑥1 𝑥2 S1 S2 A1 A2 RHS (b) 1 1 A1 A2 2 1 1 7 −1 0 0 −1 1 0 0 1 4 7 Zj 𝑍𝑚𝑖𝑛= 0 × 𝑥1+ 0 × 𝑥2 + 0 × 𝑆1 + 0 × 𝑆2 + 1 × A1 + 1 × A2
  • 123. 123 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 1 θ 𝑥1 𝑥2 S1 S2 A1 A2 RHS (b) 1 1 A1 A2 2 1 1 7 −1 0 0 −1 1 0 0 1 4 7 Zj 3 8 −1 −1 1 1
  • 124. 124 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 1 θ 𝑥1 𝑥2 S1 S2 A1 A2 RHS (b) 1 1 A1 A2 2 1 1 7 −1 0 0 −1 1 0 0 1 4 7 Zj 3 8 −1 −1 1 1 Zj−Cj 3 8 −1 −1 0 0 Max positive value Key Column: decides incoming
  • 125. 125 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 1 θ= 𝒃 𝒂 𝑥1 𝑥2 S1 S2 A1 A2 RHS (b) 1 1 A1 A2 2 1 1 7 −1 0 0 −1 1 0 0 1 4 7 4 1 Zj 3 8 −1 −1 1 1 Zj−Cj 3 8 −1 −1 0 0 Max positive value Key Column: decides incoming Least positive Key Row: decides outgoing variable Key Element
  • 126. 126 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 θ= 𝒃 𝒂 𝑥1 𝑥2 S1 S2 A1 RHS (b) 1 0 A1 x2 2 1/7 1 1 −1 0 0 −1/7 1 0 1 Zj Zj−Cj
  • 127. 127 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 θ= 𝒃 𝒂 𝑥1 𝑥2 S1 S2 A1 RHS (b) 1 0 A1 x2 2 1/7 1 1 −1 0 0 −1/7 1 0 4 1 Zj Zj−Cj MKR OR
  • 128. 128 Operation Research Models LPP Big M Method – Prob 10 Old Row − KCE × MKR = NR 2 − 1 × 1/7 = 13/7 1 − 1 × 1 = 0 −1 − 1 × 0 = −1 0 − 1 × −1/7 = 1/7 1 − 1 × 0 = 1 4 − 1 × 1 = 3
  • 129. 129 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 θ= 𝒃 𝒂 𝑥1 𝑥2 S1 S2 A1 RHS (b) 1 0 A1 x2 13/7 1/7 0 1 −1 0 1/7 −1/7 1 0 3 1 Zj Zj−Cj MKR NR
  • 130. 130 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 θ= 𝒃 𝒂 𝑥1 𝑥2 S1 S2 A1 RHS (b) 1 0 A1 x2 13/7 1/7 0 1 −1 0 1/7 −1/7 1 0 3 1 Zj 13/7 0 −1 1/7 1 Zj−Cj 13/7 0 −1 1/7 0 Max positive value Key Column: decides incoming
  • 131. 131 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 θ= 𝒃 𝒂 𝑥1 𝑥2 S1 S2 A1 RHS (b) 1 0 A1 x2 13/7 1/7 0 1 −1 0 1/7 −1/7 1 0 3 1 21/13 7 Zj 13/7 0 −1 1/7 1 Zj−Cj 13/7 0 −1 1/7 0 Max positive value Key Column: decides incoming
  • 132. 132 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 θ= 𝒃 𝒂 𝑥1 𝑥2 S1 S2 A1 RHS (b) 1 0 A1 x2 13/7 1/7 0 1 −1 0 1/7 −1/7 1 0 3 1 21/13 7 Zj 13/7 0 −1 1/7 1 Zj−Cj 13/7 0 −1 1/7 0 Max positive value Key Column: decides incoming Least positive Key Element
  • 133. 133 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 θ= 𝒃 𝒂 𝒙𝟏 𝑥2 S1 S2 RHS (b) 0 0 𝒙𝟏 𝑥2 13/7 1/7 0 1 −1 0 1/7 −1/7 3 1 21/13 7 Zj 13/7 0 −1 1/7 Zj−Cj 13/7 0 −1 1/7
  • 134. 134 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 θ= 𝒃 𝒂 𝒙𝟏 𝑥2 S1 S2 RHS (b) 0 0 𝒙𝟏 𝑥2 1 1/7 0 1 −7/13 0 1/13 −1/7 21/13 1 7 Zj Zj−Cj MKR
  • 135. 135 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 θ= 𝒃 𝒂 𝒙𝟏 𝑥2 S1 S2 RHS (b) 0 0 𝒙𝟏 𝑥2 1 1/7 0 1 −7/13 0 1/13 −1/7 21/13 1 7 Zj Zj−Cj MKR OR
  • 136. 136 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 θ= 𝒃 𝒂 𝒙𝟏 𝑥2 S1 S2 RHS (b) 1 1 𝒙𝟏 𝑥2 1 0 0 1 −7/13 1/13 1/13 −2/13 21/13 70/91 7 Zj 0 0 0 0 Zj−Cj 0 0 0 0 MKR NR
  • 137. 137 Operation Research Models LPP Two Phase Method – Prob 10 Cj 1 1 0 0 θ= 𝒃 𝒂 𝒙𝟏 𝑥2 S1 S2 RHS (b) 1 1 𝒙𝟏 𝑥2 1 0 0 1 −7/13 1/13 1/13 −2/13 21/13 70/91 7 Zj 1 1 −6/13 −1/13 Zj−Cj 0 0 −6/13 −1/13 MKR NR The optimal Solution 𝑥1 = 21 13 ; 𝑥2 = 70 90 = 10 13 and 𝑍𝑚𝑖𝑛 = 21 13 + 10 13 = 31 13
  • 138. 138 Operation Research Models LPP Two Phase Method – Prob 10 Cj 1 1 0 0 θ= 𝒃 𝒂 𝒙𝟏 𝑥2 S1 S2 RHS (b) 1 1 𝒙𝟏 𝑥2 1 0 0 1 −7/13 1/13 1/13 −2/13 21/13 70/91 7 Zj 1 1 −6/13 −1/13 Zj−Cj 0 0 −6/13 −1/13 MKR NR The optimal Solution 𝑥1 = 21 13 ; 𝑥2 = 70 90 = 10 13 and 𝑍𝑚𝑖𝑛 = 21 13 + 10 13 = 31 13
  • 139. MCQ
  • 140. Dr. L K Bhagi, School of Mechanical Engineering, LPU 140 The objective function and constraints are functions of two types of variables, _______________ variables and ____________ variables. A. Positive and negative B. Controllable and uncontrollable. C. Strong and weak D. None of the above
  • 141. Dr. L K Bhagi, School of Mechanical Engineering, LPU 141 In graphical representation the bounded region is known as _________ region. A. Solution B. basic solution C. feasible solution D. optimal
  • 142. Dr. L K Bhagi, School of Mechanical Engineering, LPU 142 The optimal value of the objective function for the following L.P.P. Max z = 4X1 + 3X2 subject to X1 + X2 ≤ 50 X1 + 2X2 ≤ 80 2X1 + X2 ≥ 20 X1, X2 ≥ 0 is (a) 200 (b) 330 (c) 420 (d) 500
  • 143. Dr. L K Bhagi, School of Mechanical Engineering, LPU 143 To formulate a problem for solution by the Simplex method, we must add artificial variable to (a) only equality constraints (b) only LHS is greater than equal to RHS constraints (c) both (a) and (b) (d) None of the above
  • 144. Dr. L K Bhagi, School of Mechanical Engineering, LPU 144 In graphical method of LPP, If at all there is a feasible solution (feasible area of polygon) exists then, the feasible area region has an important property known as ____________in geometry a) convexity Property b) Convex polygon c) Both of the above d) None of the above
  • 145. Dr. L K Bhagi, School of Mechanical Engineering, LPU 145
  • 146. Dr. L K Bhagi, School of Mechanical Engineering, LPU 146 https://www.aplustopper.com/section- formula/