Dr. Deepa Chauhan
Numerical Integration
By
Dr. Deepa Chauhan
Associate Professor,
Applied Science & Humanities Department,
Axis Institute of Technology, Kanpur
Dr. Deepa Chauhan
Unit-III
Numerical Integration
Given a set of tabulated values of the integrand 𝑓(𝑥), to determine the value of ∫ 𝑓(𝑥)𝑑𝑥
𝑥𝑛
𝑥0
is called
numerical integration. We subdivide the given interval of integration into a large number of subintervals
of equal width h and replace the function tabulated at the points of subdivision by any one of the
interpolating polynomials.
Newton-Cote’s Quadrature Formula
Let 𝐼 = ∫ 𝑦𝑑𝑥
𝑏
𝑎
, where 𝑦 𝑡𝑎𝑘𝑒𝑠 𝑡ℎ𝑒 𝑣𝑎𝑢𝑒𝑠 𝑦0, 𝑦1,… … … , 𝑦𝑛 for 𝑥 = 𝑥0, 𝑥1, … … … , 𝑥𝑛
Let the interval of integration (a, b) be divided into n equal sub intervals, each of width ℎ =
𝑏−𝑎
𝑛
so that
𝑥0 = 𝑎, 𝑥1 = 𝑥0 + ℎ, 𝑥2 = 𝑥0 + 2ℎ, … … … , 𝑥𝑛 = 𝑥0 + 𝑛ℎ = 𝑏
𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑥0+𝑛ℎ
𝑥0
Since any 𝑥 is given by 𝑥 = 𝑥0 + 𝑟ℎ and 𝑑𝑥 = ℎ𝑑𝑟
𝐼 = ℎ ∫ 𝑓(𝑥0 + 𝑟ℎ)𝑑𝑟
𝑛
0
ℎ ∫ [𝑦0 + 𝑟∆𝑦0 +
𝑟 (𝑟 − 1)
2!
∆2
𝑦0 +
𝑟 (𝑟 − 1)(𝑟 − 2)
3!
∆3
𝑦0 + ⋯ … … … … … . ] 𝑑𝑟
𝑛
0
(By Newton’s forward interpolation formula)
= ℎ [𝑟𝑦0 +
𝑟2
2
∆𝑦0 +
1
2
(
𝑟3
3
−
𝑟2
2
) ∆2
𝑦0 +
1
6
(
𝑟4
4
− 𝑟3
+ 𝑟2
)∆3
𝑦0 + ⋯ … … … … … . ]
0
𝑛
= 𝑛ℎ [𝑦0 +
𝑛
2
∆𝑦0 +
𝑛 (2𝑛 − 3)
12
∆2
𝑦0 +
𝑛 (𝑛 − 2)2
24
∆3
𝑦0 + ⋯ … … … . ]
Then general quadrature formula is given by:
𝐼 = 𝑛ℎ [𝑦0 +
𝑛
2
∆𝑦0 +
𝑛 (2𝑛−3)
12
∆2
𝑦0 +
𝑛 (𝑛−2)2
24
∆3
𝑦0 + ⋯ … … … . ] (1)
This is also known as Newton-Cote’s Quadrature Formula
Dr. Deepa Chauhan
Trapezoidal Rule (n=1)
Putting n=1 in (1) and taking the curve through (𝑥0, 𝑦0) and (𝑥1, 𝑦1) as polynomial of degree one so that
differences of order higher than one vanish, we get
∫ 𝑓(𝑥)𝑑𝑥 =
ℎ
2
[(𝑦0 + 𝑦𝑛) + 2(𝑦1 + 𝑦2 + ⋯ … . . +𝑦𝑛−1)]
𝑥0+𝑛ℎ
𝑥0
Where ℎ =
𝑏−𝑎
𝑛
By increasing the number of subintervals, thereby making h very small, we can improve the accuracy of
the value of the given integral.
Example 1: Use Trapezoidal rule to evaluate ∫ 𝒙𝟑
𝒅𝒙
𝟏
𝟎
considering 5 sub-intervals.
Sol. Dividing the interval (0,1) into 5 equal parts, each of width ℎ =
𝑏−𝑎
𝑛
=
1−0
5
= 0.2
Here 𝑓(𝑥) = 𝑥3
𝑥: 0 0.2 0.4 0.6 0.8 1
𝑓(𝑥): 0 0.008 0.064 0.216 0.512 1
(𝑦0) 𝑦1 𝑦2 𝑦3 𝑦4 y5
By Trapezoidal rule
∫ 𝑥3
𝑑𝑥
1
0
=
ℎ
2
[(𝑦0 + 𝑦5) + 2(𝑦1 + 𝑦2 + 𝑦3 + 𝑦4)]
=
0.2
2
[(0 + 1) + 2(0.008 + 0.064 + 0.216 + 0.512)] = 0.26
Dr. Deepa Chauhan
Example 2: Use Trapezoidal rule to evaluate ∫
𝒅𝒙
𝟏+𝒙𝟐
𝟔
𝟎
.
Sol. Divide the interval (0, 6) into 6 equal parts each of width ℎ =
𝑏−𝑎
𝑛
=
6−0
6
= 1
Here 𝑓(𝑥) =
𝟏
𝟏+𝒙𝟐
𝑥: 0 1 2 3 4 5 6
𝑓(𝑥): 1 0.5 0.2 0.1 0.058 0.038 0.027
𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5
𝑦6
By Trapezoidal rule
∫
𝒅𝒙
𝟏 + 𝒙𝟐
𝟔
𝟎
=
ℎ
2
[(𝑦0 + 𝑦6) + 2(𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5)]
=
1
2
[(1 + 0.027) + 2(0.5 + 0.2 + 0.1 + 0.058 + 0.038] = 1.4095
Example 3: Evaluate using Trapezoidal rule ∫ 𝑡 𝑠𝑖𝑛𝑡 𝑑𝑡
𝜋
0
Sol. Divide the interval (0, 𝜋) into 4 equal parts each of width ℎ =
𝑏−𝑎
𝑛
=
𝜋−0
4
=
𝜋
4
= 0.785
Here 𝑓(𝑡) = 𝑡 𝑠𝑖𝑛𝑡
𝑡: 0
𝜋
4
𝜋
2
3𝜋
4
𝜋
In radian
𝑡: 0 0.785 1.57 2.355 3.14
𝑓(𝑡): 0 0.55485 1.56999 1.66722 0.005
∫ 𝑡 𝑠𝑖𝑛𝑡 𝑑𝑡
𝜋
0
=
ℎ
2
[(𝑦0 + 𝑦4) + 2(𝑦1 + 𝑦2 + 𝑦3)]
=
0.785
2
[(0 + 0.005) + 2(0.55485 + 1.56999 + 1.66722)] = 2.9787
Dr. Deepa Chauhan
Simpson’s One Third Rule
∫ 𝑓(𝑥)𝑑𝑥 =
ℎ
3
[(𝑦0 + 𝑦𝑛) + 4(𝑦1 + 𝑦3 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦2 + 𝑦4 + 𝑦6 … … . . +𝑦𝑛−2)]
𝑥0+𝑛ℎ
𝑥0
While using this formula, the given interval of integration must be divided into even number of sub-
intervals.
Example 4: Evaluate ∫ 𝑓(𝑥)𝑑𝑥
11
1
where f(x) is given by the following table, using a suitable integration
formula
x: 1 2 3 4 5 6 7 8 9 10 11
f(x): 543 512 501 489 453 400 352 310 250 172 95
𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 𝑦9 𝑦10
Sol. No of Sub-Intervals, n=10, ℎ =
𝑏−𝑎
𝑛
=
11−1
10
= 1, then by using Simpson’s 1/3rd
formula
∫ 𝑓(𝑥)𝑑𝑥 =
ℎ
3
[(𝑦0 + 𝑦𝑛) + 4(𝑦1 + 𝑦3 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦2 + 𝑦4 + 𝑦6 … … . . +𝑦𝑛−2)]
𝑥0+𝑛ℎ
𝑥0
∫ 𝑓(𝑥)𝑑𝑥
11
1
=
ℎ
3
[(𝑦0 + 𝑦10) + 4 (𝑦1 + 𝑦3 + 𝑦5 + 𝑦7 + 𝑦9) + 2(𝑦2 + 𝑦4 + 𝑦6 + 𝑦8 )]
=
1
3
[(543 + 95) + 4 (512 + 489 + 400 + 310 + 172) + 2(501 + 453 + 352 + 250 )]
= 3760.67
Dr. Deepa Chauhan
Example 5: Evaluate ∫ 𝑒−𝑥/2
𝑑𝑥
2
1
using 4 intervals.
Sol. No of Sub-Intervals, n=4, ℎ =
𝑏−𝑎
𝑛
=
2−1
4
= 0.25, here 𝑓(𝑥) = 𝑒−𝑥/2
The table of values is:
x: 1 1.25 1.50 1.75 2
f(x): 0.6065 0.5352 0.4724 0.4168 0.3678
𝑦0 𝑦1 𝑦2 𝑦3 𝑦4
Since we have four (even) subintervals, we’ll use Simpson’s 1/3rd
rule
∫ 𝑓(𝑥)𝑑𝑥 =
ℎ
3
[(𝑦0 + 𝑦𝑛) + 4(𝑦1 + 𝑦3 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦2 + 𝑦4 + 𝑦6 … … . . +𝑦𝑛−2)]
𝑥0+𝑛ℎ
𝑥0
∫ 𝑒−𝑥/2
𝑑𝑥
2
1
=
ℎ
3
[(𝑦0 + 𝑦4) + 4 (𝑦1 + 𝑦3) + 2(𝑦2 )]
=
0.25
3
[(0.6065 + 0.3678) + 4 (0.5352 + 0.4168) + 2(0.4724 )] = 0.4773
= 0.4773
Example 6: Evaluate ∫
𝑑𝑥
1+𝑥
1
0
by dividing the interval of integration into 8 equal parts.
Hence find 𝑙𝑜𝑔𝑒2 approximately.
Sol. No of Sub-Intervals, n=8, ℎ =
𝑏−𝑎
𝑛
=
1−0
8
=
1
8
= 0.125, 𝑓(𝑥) =
1
1+𝑥
x: 0 0.125 0.250 0.3750.5 0.625 0.75 0.875 1
f(x): 1 0.8888 0.8 0.7272 0.6666 0.6154 0.5714 0.5333 0.5
𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8
By Simpson’s 1/3rd
rule
∫ 𝑓(𝑥)𝑑𝑥 =
ℎ
3
[(𝑦0 + 𝑦𝑛) + 4(𝑦1 + 𝑦3 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦2 + 𝑦4 + 𝑦6 … … . . +𝑦𝑛−2)]
𝑥0+𝑛ℎ
𝑥0
Dr. Deepa Chauhan
∫
𝑑𝑥
1 + 𝑥
1
0
= 0.6932
Now ∫
𝑑𝑥
1+𝑥
1
0
= [𝑙𝑜𝑔𝑒(1 + 𝑥)]0
1
= 𝑙𝑜𝑔𝑒2
Therefore, 𝑙𝑜𝑔𝑒2 = 0.6932
Dr. Deepa Chauhan
Simpson’s Three Eighth (3/8th
) Rule
∫ 𝑓(𝑥)𝑑𝑥 =
3ℎ
8
[(𝑦0 + 𝑦𝑛) + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦3 + 𝑦6 + 𝑦9 + 𝑦12
𝑥0+𝑛ℎ
𝑥0
+ ⋯ … . . +𝑦𝑛−3)]
While using this formula, the given interval of integration must be divided into number of sub-intervals n,
should be taken as multiple of 3.
Example 7. Evaluate ∫
𝑑𝑥
1+𝑥2
1
0
using Simpson’s rule taking ℎ =
1
6
Sol. Here (𝑥) =
1
1+𝑥2 , ℎ =
1
6
x: 0
1
6
2
6
3
6
4
6
5
6
1
f(x): 1
36
37
9
10
4
5
9
13
36
61
1
2
𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6
Here number of subintervals=6=multiple of 3
By Simpson’s 3/8th
rule:
∫ 𝑓(𝑥)𝑑𝑥 =
3ℎ
8
[(𝑦0 + 𝑦𝑛) + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦3 + 𝑦6 + 𝑦9 + 𝑦12
𝑥0+𝑛ℎ
𝑥0
+ ⋯ … . . +𝑦𝑛−3)]
∫
𝑑𝑥
1 + 𝑥2
1
0
=
3ℎ
8
[(𝑦0 + 𝑦6) + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5) + 2 (𝑦3)]
=
3 ×
1
6
8
[(1 +
1
2
) + 3 (
36
37
+
9
10
+
9
13
+
36
61
) + 2 (
4
5
)] = 0.78539375
Dr. Deepa Chauhan
Example 8. Use Simpson’s rule for evaluating ∫ 𝑓(𝑥)𝑑𝑥
0.3
−0.6
from the table given below
x: -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
f(x): 4 2 5 3 -2 1 6 4 2 8
Sol. Here number of subinterval, n=9
By Using Simpson’s 3/8th
rule
∫ 𝑓(𝑥)𝑑𝑥
0.3
−0.6
= 2.475
Do Yourself.
Example 9. Find ∫
𝑒𝑥
1+𝑥
𝑑𝑥
6
0
approximately using Simpson’s 3/8th
rule on integration.
Sol. Here (𝑥) =
𝑒𝑥
1+𝑥
, Let number of subintervals, n=6, ℎ =
𝑏−𝑎
𝑛
=
6−0
6
= 1
x: 0 1 2 3 4 5 6
f(x): 1 1.3591 2.463 5.0213 10.9196 24.7355 57.6326
𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6
By Simpson’s 3/8th
rule:
∫ 𝑓(𝑥)𝑑𝑥 =
3ℎ
8
[(𝑦0 + 𝑦𝑛) + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦3 + 𝑦6 + 𝑦9 + 𝑦12
𝑥0+𝑛ℎ
𝑥0
+ ⋯ … . . +𝑦𝑛−3)]
∫
𝑒𝑥
1 + 𝑥
𝑑𝑥
6
0
=
3ℎ
8
[(𝑦0 + 𝑦6) + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5) + 2 (𝑦3)]
=
3
8
[(1 + 57.6326) + 3(1.3591 + 2.463 + 10.9196 + 24.7355) + 2 (5.0213)]
= 70.165205
Dr. Deepa Chauhan
Boole’ Rule
∫ 𝑓(𝑥)𝑑𝑥 =
2ℎ
45
[7𝑦0 + 32𝑦1 + 12𝑦2 + 32𝑦3 + 14𝑦4 + 32𝑦5 + 12𝑦6 + 32𝑦7 + 14𝑦8 + ⋯ … . ]
𝑥0+𝑛ℎ
𝑥0
While using this formula, the given interval of integration must be divided into multiple of 4.
Example 10: Evaluate ∫
𝑑𝑥
1+𝑥2
4
0
using Boole’s rule taking (a) h=1 (b) h=0.5. Compare the results with the
actual value and indicate the error in both.
Sol. (a) Dividing the given interval into 4 equal subintervals (h=1), the table is as below:
x: 0 1 2 3 4
f(x): 1 1/2 1/5 1/10 1/17
𝑦0 𝑦1 𝑦2 𝑦3 𝑦4
Using Boole’s rule
∫
𝑑𝑥
1 + 𝑥2
4
0
=
2ℎ
45
[7𝑦0 + 32𝑦1 + 12𝑦2 + 32𝑦3 + 14𝑦4 + ⋯ … . ] = 1.289412
(b) Dividing the given interval into 8 equal subintervals (h=0.5), the table is as below:
x: 0 0.5 1 1.5 2 2.5 3 3.5 4
f(x): 1 0.8 0.5 0.31 0.2 0.14 0.1 0.08 0.06
𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8
∫ 𝑓(𝑥)𝑑𝑥 =
2ℎ
45
[7𝑦0 + 32𝑦1 + 12𝑦2 + 32𝑦3 + 14𝑦4 + 32𝑦5 + 12𝑦6 + 32𝑦7 + 14𝑦8 + ⋯ … . ]
𝑥0+𝑛ℎ
𝑥0
Dr. Deepa Chauhan
∫
𝑑𝑥
1 + 𝑥2
4
0
=
2ℎ
45
[7𝑦0 + 32𝑦1 + 12𝑦2 + 32𝑦3 + 14𝑦4 + 32𝑦5 + 12𝑦6 + 32𝑦7 + 14𝑦8 + ⋯ … . ]
= 1.326373
Actual value is ∫
𝑑𝑥
1+𝑥2
4
0
= (𝑡𝑎𝑛−1
𝑥)0
4
= 𝑡𝑎𝑛−1
4 − 𝑡𝑎𝑛−1
1 = 0.5404195
Error in (a) result
= (
0.5404195 − 1.289412
0.5404195
) × 100 = −138.5946%
Error in (b) result
= (
0.5404195 − 1.326373
0.5404195
) × 100 = −145.415%
Dr. Deepa Chauhan
Weddle’s Rule
∫ 𝑓(𝑥)𝑑𝑥 =
3ℎ
10
[𝑦0 + 5𝑦1 + 𝑦2 + 6𝑦3 + 𝑦4 + 5𝑦5 + 2𝑦6 + 5𝑦7 + 𝑦8 + 6𝑦9 + 𝑦10 + 5𝑦11 + 𝑦12
𝑥0+𝑛ℎ
𝑥0
+ ⋯ … . ]
While using this formula, the given interval of integration must be divided into multiple of 6.
Example 11: Evaluate ∫ (𝑠𝑖𝑛𝑥 − log𝑒 𝑥 + 𝑒𝑥)
1.4
0.2
𝑑𝑥 taking n=12
Sol. Here 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 − log𝑒 𝑥 + 𝑒𝑥
, ℎ =
𝑏−𝑎
𝑛
=
1.4−0.2
12
= 0.1
We shall divide the given interval of integration into 12 equal parts so that
x f(x)
0.2 3.0295 y0
0.3 2.8495 y1
0.4 2.7975 y2
0.5 2.8213 y3
0.6 2.8976 y4
0.7 3.0147 y5
0.8 3.1661 y6
0.9 3.3483 y7
1 3.5598 y8
1.1 3.8001 y9
1.2 4.0698 y10
1.3 4.3705 y11
1.4 4.7042 y12
By Weddle’s rule:
∫ 𝑓(𝑥)𝑑𝑥 =
3ℎ
10
[𝑦0 + 5𝑦1 + 𝑦2 + 6𝑦3 + 𝑦4 + 5𝑦5 + 2𝑦6 + 5𝑦7 + 𝑦8 + 6𝑦9 + 𝑦10 + 5𝑦11 + 𝑦12
𝑥0+𝑛ℎ
𝑥0
+ ⋯ … . ]
∫ (𝑠𝑖𝑛𝑥 − log𝑒 𝑥 + 𝑒𝑥)
1.4
0.2
𝑑𝑥 = 4.050
Dr. Deepa Chauhan
Example 12. A train is moving at the speed of 30m/sec. suddenly breaks are applied. The speed of the
train per second after t seconds is given by
Time (t): 0 5 10 15 20 25 30 35 40 45
Speed (v): 30 24 19 16 13 11 10 8 7 5
𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 𝑦9
Apply Simpson’s rule to determine the distance covered by the train in 45 seconds.
Sol. If s meters is the distance covered in t seconds, then
𝑑𝑠
𝑑𝑡
= 𝑣
𝑑𝑠 = 𝑣 𝑑𝑡
𝑠 = ∫ 𝑣 𝑑𝑡
𝑡=45
𝑡=0
Since number of subintervals is 9 hence by using Simpson’s 3/8th
rule:
∫ 𝑣 𝑑𝑡
𝑡=45
𝑡=0
=
3ℎ
8
[(𝑦0 + 𝑦𝑛) + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦3 + 𝑦6 + 𝑦9 + 𝑦12
+ ⋯ … . . +𝑦𝑛−3)]
𝑠 = ∫ 𝑣 𝑑𝑡
𝑡=45
𝑡=0
=
3ℎ
8
[(𝑦0 + 𝑦9) + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5 + 𝑦7 + 𝑦8 … ) + 2 (𝑦3 + 𝑦6)]
=
3×5
8
[(30 + 5) + 3(24 + 19 + 13 + 11 + 8 + 7) + 2 (16 + 10)]
= 624.375 𝑚𝑒𝑡𝑟𝑒𝑠
Example 13. . A river is 80 m wide. The depth y of the river at a distance x from one bank is given by
the following table:
x: 0 10 20 30 40 50 60 70 80
y: 0 4 7 9 12 15 14 8 3
Dr. Deepa Chauhan
Find the approximate area of the cross-section of the river using Simpson’s rule.
Sol. The required area of cross-section of the river= ∫ 𝑦 𝑑𝑥
80
0
Here the number of subintervals is 8, then by using Simpson’s 1/3rd
rule
∫ 𝑓(𝑥)𝑑𝑥 =
ℎ
3
[(𝑦0 + 𝑦𝑛) + 4(𝑦1 + 𝑦3 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦2 + 𝑦4 + 𝑦6 … … . . +𝑦𝑛−2)]
𝑥0+𝑛ℎ
𝑥0
𝐴 = ∫ 𝑦 𝑑𝑥 =
80
0
ℎ
3
[(𝑦0 + 𝑦8) + 4(𝑦1 + 𝑦3 + 𝑦5 + 𝑦7) + 2 (𝑦2 + 𝑦4 + 𝑦6)]
=
10
3
[(0 + 3) + 4(4 + 9 + 15 + 8) + 2 (7 + 12 + 14)] = 710 𝑚2
Example 14. A solid is formed by rotating about x-axis, the lines x=0 and x=1 and a curve through the
points with the following coordinates
x: 0 0.25 0.5 0.75 1
y: 1 0.9896 0.9589 0.9089 0.8415
Estimate the volume of solid formed using Simpson’s rule.
Sol. If V is the volume of the solid formed, then
𝑉 = 𝜋 ∫ 𝑦2
𝑑𝑥
1
0
x: 0 0.25 0.5 0.75 1
y2
: 0 0.9793 0.9195 0.8261 0.7081
Here the number of subintervals is 4, then by using Simpson’s 1/3rd
rule
∫ 𝑓(𝑥)𝑑𝑥 =
ℎ
3
[(𝑦0 + 𝑦𝑛) + 4(𝑦1 + 𝑦3 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦2 + 𝑦4 + 𝑦6 … … . . +𝑦𝑛−2)]
𝑥0+𝑛ℎ
𝑥0
∫ 𝑦2
𝑑𝑥 =
1
0
ℎ
3
[(𝑦0 + 𝑦4) + 4(𝑦1 + 𝑦3) + 2 (𝑦2)]
=
0.25
3
[(0 + 0.7081) + 4(0.9793 + 0.8261) + 2(0.9195)] = 0.8140
𝑉 = 𝜋 ∫ 𝑦2
𝑑𝑥 = 𝜋 × 0.8140 = 2.5561 𝑠𝑞. 𝑢𝑛𝑖𝑡𝑠
1
0

Numerical integration

  • 1.
    Dr. Deepa Chauhan NumericalIntegration By Dr. Deepa Chauhan Associate Professor, Applied Science & Humanities Department, Axis Institute of Technology, Kanpur
  • 2.
    Dr. Deepa Chauhan Unit-III NumericalIntegration Given a set of tabulated values of the integrand 𝑓(𝑥), to determine the value of ∫ 𝑓(𝑥)𝑑𝑥 𝑥𝑛 𝑥0 is called numerical integration. We subdivide the given interval of integration into a large number of subintervals of equal width h and replace the function tabulated at the points of subdivision by any one of the interpolating polynomials. Newton-Cote’s Quadrature Formula Let 𝐼 = ∫ 𝑦𝑑𝑥 𝑏 𝑎 , where 𝑦 𝑡𝑎𝑘𝑒𝑠 𝑡ℎ𝑒 𝑣𝑎𝑢𝑒𝑠 𝑦0, 𝑦1,… … … , 𝑦𝑛 for 𝑥 = 𝑥0, 𝑥1, … … … , 𝑥𝑛 Let the interval of integration (a, b) be divided into n equal sub intervals, each of width ℎ = 𝑏−𝑎 𝑛 so that 𝑥0 = 𝑎, 𝑥1 = 𝑥0 + ℎ, 𝑥2 = 𝑥0 + 2ℎ, … … … , 𝑥𝑛 = 𝑥0 + 𝑛ℎ = 𝑏 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥 𝑥0+𝑛ℎ 𝑥0 Since any 𝑥 is given by 𝑥 = 𝑥0 + 𝑟ℎ and 𝑑𝑥 = ℎ𝑑𝑟 𝐼 = ℎ ∫ 𝑓(𝑥0 + 𝑟ℎ)𝑑𝑟 𝑛 0 ℎ ∫ [𝑦0 + 𝑟∆𝑦0 + 𝑟 (𝑟 − 1) 2! ∆2 𝑦0 + 𝑟 (𝑟 − 1)(𝑟 − 2) 3! ∆3 𝑦0 + ⋯ … … … … … . ] 𝑑𝑟 𝑛 0 (By Newton’s forward interpolation formula) = ℎ [𝑟𝑦0 + 𝑟2 2 ∆𝑦0 + 1 2 ( 𝑟3 3 − 𝑟2 2 ) ∆2 𝑦0 + 1 6 ( 𝑟4 4 − 𝑟3 + 𝑟2 )∆3 𝑦0 + ⋯ … … … … … . ] 0 𝑛 = 𝑛ℎ [𝑦0 + 𝑛 2 ∆𝑦0 + 𝑛 (2𝑛 − 3) 12 ∆2 𝑦0 + 𝑛 (𝑛 − 2)2 24 ∆3 𝑦0 + ⋯ … … … . ] Then general quadrature formula is given by: 𝐼 = 𝑛ℎ [𝑦0 + 𝑛 2 ∆𝑦0 + 𝑛 (2𝑛−3) 12 ∆2 𝑦0 + 𝑛 (𝑛−2)2 24 ∆3 𝑦0 + ⋯ … … … . ] (1) This is also known as Newton-Cote’s Quadrature Formula
  • 3.
    Dr. Deepa Chauhan TrapezoidalRule (n=1) Putting n=1 in (1) and taking the curve through (𝑥0, 𝑦0) and (𝑥1, 𝑦1) as polynomial of degree one so that differences of order higher than one vanish, we get ∫ 𝑓(𝑥)𝑑𝑥 = ℎ 2 [(𝑦0 + 𝑦𝑛) + 2(𝑦1 + 𝑦2 + ⋯ … . . +𝑦𝑛−1)] 𝑥0+𝑛ℎ 𝑥0 Where ℎ = 𝑏−𝑎 𝑛 By increasing the number of subintervals, thereby making h very small, we can improve the accuracy of the value of the given integral. Example 1: Use Trapezoidal rule to evaluate ∫ 𝒙𝟑 𝒅𝒙 𝟏 𝟎 considering 5 sub-intervals. Sol. Dividing the interval (0,1) into 5 equal parts, each of width ℎ = 𝑏−𝑎 𝑛 = 1−0 5 = 0.2 Here 𝑓(𝑥) = 𝑥3 𝑥: 0 0.2 0.4 0.6 0.8 1 𝑓(𝑥): 0 0.008 0.064 0.216 0.512 1 (𝑦0) 𝑦1 𝑦2 𝑦3 𝑦4 y5 By Trapezoidal rule ∫ 𝑥3 𝑑𝑥 1 0 = ℎ 2 [(𝑦0 + 𝑦5) + 2(𝑦1 + 𝑦2 + 𝑦3 + 𝑦4)] = 0.2 2 [(0 + 1) + 2(0.008 + 0.064 + 0.216 + 0.512)] = 0.26
  • 4.
    Dr. Deepa Chauhan Example2: Use Trapezoidal rule to evaluate ∫ 𝒅𝒙 𝟏+𝒙𝟐 𝟔 𝟎 . Sol. Divide the interval (0, 6) into 6 equal parts each of width ℎ = 𝑏−𝑎 𝑛 = 6−0 6 = 1 Here 𝑓(𝑥) = 𝟏 𝟏+𝒙𝟐 𝑥: 0 1 2 3 4 5 6 𝑓(𝑥): 1 0.5 0.2 0.1 0.058 0.038 0.027 𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 By Trapezoidal rule ∫ 𝒅𝒙 𝟏 + 𝒙𝟐 𝟔 𝟎 = ℎ 2 [(𝑦0 + 𝑦6) + 2(𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5)] = 1 2 [(1 + 0.027) + 2(0.5 + 0.2 + 0.1 + 0.058 + 0.038] = 1.4095 Example 3: Evaluate using Trapezoidal rule ∫ 𝑡 𝑠𝑖𝑛𝑡 𝑑𝑡 𝜋 0 Sol. Divide the interval (0, 𝜋) into 4 equal parts each of width ℎ = 𝑏−𝑎 𝑛 = 𝜋−0 4 = 𝜋 4 = 0.785 Here 𝑓(𝑡) = 𝑡 𝑠𝑖𝑛𝑡 𝑡: 0 𝜋 4 𝜋 2 3𝜋 4 𝜋 In radian 𝑡: 0 0.785 1.57 2.355 3.14 𝑓(𝑡): 0 0.55485 1.56999 1.66722 0.005 ∫ 𝑡 𝑠𝑖𝑛𝑡 𝑑𝑡 𝜋 0 = ℎ 2 [(𝑦0 + 𝑦4) + 2(𝑦1 + 𝑦2 + 𝑦3)] = 0.785 2 [(0 + 0.005) + 2(0.55485 + 1.56999 + 1.66722)] = 2.9787
  • 5.
    Dr. Deepa Chauhan Simpson’sOne Third Rule ∫ 𝑓(𝑥)𝑑𝑥 = ℎ 3 [(𝑦0 + 𝑦𝑛) + 4(𝑦1 + 𝑦3 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦2 + 𝑦4 + 𝑦6 … … . . +𝑦𝑛−2)] 𝑥0+𝑛ℎ 𝑥0 While using this formula, the given interval of integration must be divided into even number of sub- intervals. Example 4: Evaluate ∫ 𝑓(𝑥)𝑑𝑥 11 1 where f(x) is given by the following table, using a suitable integration formula x: 1 2 3 4 5 6 7 8 9 10 11 f(x): 543 512 501 489 453 400 352 310 250 172 95 𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 𝑦9 𝑦10 Sol. No of Sub-Intervals, n=10, ℎ = 𝑏−𝑎 𝑛 = 11−1 10 = 1, then by using Simpson’s 1/3rd formula ∫ 𝑓(𝑥)𝑑𝑥 = ℎ 3 [(𝑦0 + 𝑦𝑛) + 4(𝑦1 + 𝑦3 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦2 + 𝑦4 + 𝑦6 … … . . +𝑦𝑛−2)] 𝑥0+𝑛ℎ 𝑥0 ∫ 𝑓(𝑥)𝑑𝑥 11 1 = ℎ 3 [(𝑦0 + 𝑦10) + 4 (𝑦1 + 𝑦3 + 𝑦5 + 𝑦7 + 𝑦9) + 2(𝑦2 + 𝑦4 + 𝑦6 + 𝑦8 )] = 1 3 [(543 + 95) + 4 (512 + 489 + 400 + 310 + 172) + 2(501 + 453 + 352 + 250 )] = 3760.67
  • 6.
    Dr. Deepa Chauhan Example5: Evaluate ∫ 𝑒−𝑥/2 𝑑𝑥 2 1 using 4 intervals. Sol. No of Sub-Intervals, n=4, ℎ = 𝑏−𝑎 𝑛 = 2−1 4 = 0.25, here 𝑓(𝑥) = 𝑒−𝑥/2 The table of values is: x: 1 1.25 1.50 1.75 2 f(x): 0.6065 0.5352 0.4724 0.4168 0.3678 𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 Since we have four (even) subintervals, we’ll use Simpson’s 1/3rd rule ∫ 𝑓(𝑥)𝑑𝑥 = ℎ 3 [(𝑦0 + 𝑦𝑛) + 4(𝑦1 + 𝑦3 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦2 + 𝑦4 + 𝑦6 … … . . +𝑦𝑛−2)] 𝑥0+𝑛ℎ 𝑥0 ∫ 𝑒−𝑥/2 𝑑𝑥 2 1 = ℎ 3 [(𝑦0 + 𝑦4) + 4 (𝑦1 + 𝑦3) + 2(𝑦2 )] = 0.25 3 [(0.6065 + 0.3678) + 4 (0.5352 + 0.4168) + 2(0.4724 )] = 0.4773 = 0.4773 Example 6: Evaluate ∫ 𝑑𝑥 1+𝑥 1 0 by dividing the interval of integration into 8 equal parts. Hence find 𝑙𝑜𝑔𝑒2 approximately. Sol. No of Sub-Intervals, n=8, ℎ = 𝑏−𝑎 𝑛 = 1−0 8 = 1 8 = 0.125, 𝑓(𝑥) = 1 1+𝑥 x: 0 0.125 0.250 0.3750.5 0.625 0.75 0.875 1 f(x): 1 0.8888 0.8 0.7272 0.6666 0.6154 0.5714 0.5333 0.5 𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 By Simpson’s 1/3rd rule ∫ 𝑓(𝑥)𝑑𝑥 = ℎ 3 [(𝑦0 + 𝑦𝑛) + 4(𝑦1 + 𝑦3 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦2 + 𝑦4 + 𝑦6 … … . . +𝑦𝑛−2)] 𝑥0+𝑛ℎ 𝑥0
  • 7.
    Dr. Deepa Chauhan ∫ 𝑑𝑥 1+ 𝑥 1 0 = 0.6932 Now ∫ 𝑑𝑥 1+𝑥 1 0 = [𝑙𝑜𝑔𝑒(1 + 𝑥)]0 1 = 𝑙𝑜𝑔𝑒2 Therefore, 𝑙𝑜𝑔𝑒2 = 0.6932
  • 8.
    Dr. Deepa Chauhan Simpson’sThree Eighth (3/8th ) Rule ∫ 𝑓(𝑥)𝑑𝑥 = 3ℎ 8 [(𝑦0 + 𝑦𝑛) + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦3 + 𝑦6 + 𝑦9 + 𝑦12 𝑥0+𝑛ℎ 𝑥0 + ⋯ … . . +𝑦𝑛−3)] While using this formula, the given interval of integration must be divided into number of sub-intervals n, should be taken as multiple of 3. Example 7. Evaluate ∫ 𝑑𝑥 1+𝑥2 1 0 using Simpson’s rule taking ℎ = 1 6 Sol. Here (𝑥) = 1 1+𝑥2 , ℎ = 1 6 x: 0 1 6 2 6 3 6 4 6 5 6 1 f(x): 1 36 37 9 10 4 5 9 13 36 61 1 2 𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 Here number of subintervals=6=multiple of 3 By Simpson’s 3/8th rule: ∫ 𝑓(𝑥)𝑑𝑥 = 3ℎ 8 [(𝑦0 + 𝑦𝑛) + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦3 + 𝑦6 + 𝑦9 + 𝑦12 𝑥0+𝑛ℎ 𝑥0 + ⋯ … . . +𝑦𝑛−3)] ∫ 𝑑𝑥 1 + 𝑥2 1 0 = 3ℎ 8 [(𝑦0 + 𝑦6) + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5) + 2 (𝑦3)] = 3 × 1 6 8 [(1 + 1 2 ) + 3 ( 36 37 + 9 10 + 9 13 + 36 61 ) + 2 ( 4 5 )] = 0.78539375
  • 9.
    Dr. Deepa Chauhan Example8. Use Simpson’s rule for evaluating ∫ 𝑓(𝑥)𝑑𝑥 0.3 −0.6 from the table given below x: -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 f(x): 4 2 5 3 -2 1 6 4 2 8 Sol. Here number of subinterval, n=9 By Using Simpson’s 3/8th rule ∫ 𝑓(𝑥)𝑑𝑥 0.3 −0.6 = 2.475 Do Yourself. Example 9. Find ∫ 𝑒𝑥 1+𝑥 𝑑𝑥 6 0 approximately using Simpson’s 3/8th rule on integration. Sol. Here (𝑥) = 𝑒𝑥 1+𝑥 , Let number of subintervals, n=6, ℎ = 𝑏−𝑎 𝑛 = 6−0 6 = 1 x: 0 1 2 3 4 5 6 f(x): 1 1.3591 2.463 5.0213 10.9196 24.7355 57.6326 𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 By Simpson’s 3/8th rule: ∫ 𝑓(𝑥)𝑑𝑥 = 3ℎ 8 [(𝑦0 + 𝑦𝑛) + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦3 + 𝑦6 + 𝑦9 + 𝑦12 𝑥0+𝑛ℎ 𝑥0 + ⋯ … . . +𝑦𝑛−3)] ∫ 𝑒𝑥 1 + 𝑥 𝑑𝑥 6 0 = 3ℎ 8 [(𝑦0 + 𝑦6) + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5) + 2 (𝑦3)] = 3 8 [(1 + 57.6326) + 3(1.3591 + 2.463 + 10.9196 + 24.7355) + 2 (5.0213)] = 70.165205
  • 10.
    Dr. Deepa Chauhan Boole’Rule ∫ 𝑓(𝑥)𝑑𝑥 = 2ℎ 45 [7𝑦0 + 32𝑦1 + 12𝑦2 + 32𝑦3 + 14𝑦4 + 32𝑦5 + 12𝑦6 + 32𝑦7 + 14𝑦8 + ⋯ … . ] 𝑥0+𝑛ℎ 𝑥0 While using this formula, the given interval of integration must be divided into multiple of 4. Example 10: Evaluate ∫ 𝑑𝑥 1+𝑥2 4 0 using Boole’s rule taking (a) h=1 (b) h=0.5. Compare the results with the actual value and indicate the error in both. Sol. (a) Dividing the given interval into 4 equal subintervals (h=1), the table is as below: x: 0 1 2 3 4 f(x): 1 1/2 1/5 1/10 1/17 𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 Using Boole’s rule ∫ 𝑑𝑥 1 + 𝑥2 4 0 = 2ℎ 45 [7𝑦0 + 32𝑦1 + 12𝑦2 + 32𝑦3 + 14𝑦4 + ⋯ … . ] = 1.289412 (b) Dividing the given interval into 8 equal subintervals (h=0.5), the table is as below: x: 0 0.5 1 1.5 2 2.5 3 3.5 4 f(x): 1 0.8 0.5 0.31 0.2 0.14 0.1 0.08 0.06 𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 ∫ 𝑓(𝑥)𝑑𝑥 = 2ℎ 45 [7𝑦0 + 32𝑦1 + 12𝑦2 + 32𝑦3 + 14𝑦4 + 32𝑦5 + 12𝑦6 + 32𝑦7 + 14𝑦8 + ⋯ … . ] 𝑥0+𝑛ℎ 𝑥0
  • 11.
    Dr. Deepa Chauhan ∫ 𝑑𝑥 1+ 𝑥2 4 0 = 2ℎ 45 [7𝑦0 + 32𝑦1 + 12𝑦2 + 32𝑦3 + 14𝑦4 + 32𝑦5 + 12𝑦6 + 32𝑦7 + 14𝑦8 + ⋯ … . ] = 1.326373 Actual value is ∫ 𝑑𝑥 1+𝑥2 4 0 = (𝑡𝑎𝑛−1 𝑥)0 4 = 𝑡𝑎𝑛−1 4 − 𝑡𝑎𝑛−1 1 = 0.5404195 Error in (a) result = ( 0.5404195 − 1.289412 0.5404195 ) × 100 = −138.5946% Error in (b) result = ( 0.5404195 − 1.326373 0.5404195 ) × 100 = −145.415%
  • 12.
    Dr. Deepa Chauhan Weddle’sRule ∫ 𝑓(𝑥)𝑑𝑥 = 3ℎ 10 [𝑦0 + 5𝑦1 + 𝑦2 + 6𝑦3 + 𝑦4 + 5𝑦5 + 2𝑦6 + 5𝑦7 + 𝑦8 + 6𝑦9 + 𝑦10 + 5𝑦11 + 𝑦12 𝑥0+𝑛ℎ 𝑥0 + ⋯ … . ] While using this formula, the given interval of integration must be divided into multiple of 6. Example 11: Evaluate ∫ (𝑠𝑖𝑛𝑥 − log𝑒 𝑥 + 𝑒𝑥) 1.4 0.2 𝑑𝑥 taking n=12 Sol. Here 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 − log𝑒 𝑥 + 𝑒𝑥 , ℎ = 𝑏−𝑎 𝑛 = 1.4−0.2 12 = 0.1 We shall divide the given interval of integration into 12 equal parts so that x f(x) 0.2 3.0295 y0 0.3 2.8495 y1 0.4 2.7975 y2 0.5 2.8213 y3 0.6 2.8976 y4 0.7 3.0147 y5 0.8 3.1661 y6 0.9 3.3483 y7 1 3.5598 y8 1.1 3.8001 y9 1.2 4.0698 y10 1.3 4.3705 y11 1.4 4.7042 y12 By Weddle’s rule: ∫ 𝑓(𝑥)𝑑𝑥 = 3ℎ 10 [𝑦0 + 5𝑦1 + 𝑦2 + 6𝑦3 + 𝑦4 + 5𝑦5 + 2𝑦6 + 5𝑦7 + 𝑦8 + 6𝑦9 + 𝑦10 + 5𝑦11 + 𝑦12 𝑥0+𝑛ℎ 𝑥0 + ⋯ … . ] ∫ (𝑠𝑖𝑛𝑥 − log𝑒 𝑥 + 𝑒𝑥) 1.4 0.2 𝑑𝑥 = 4.050
  • 13.
    Dr. Deepa Chauhan Example12. A train is moving at the speed of 30m/sec. suddenly breaks are applied. The speed of the train per second after t seconds is given by Time (t): 0 5 10 15 20 25 30 35 40 45 Speed (v): 30 24 19 16 13 11 10 8 7 5 𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 𝑦9 Apply Simpson’s rule to determine the distance covered by the train in 45 seconds. Sol. If s meters is the distance covered in t seconds, then 𝑑𝑠 𝑑𝑡 = 𝑣 𝑑𝑠 = 𝑣 𝑑𝑡 𝑠 = ∫ 𝑣 𝑑𝑡 𝑡=45 𝑡=0 Since number of subintervals is 9 hence by using Simpson’s 3/8th rule: ∫ 𝑣 𝑑𝑡 𝑡=45 𝑡=0 = 3ℎ 8 [(𝑦0 + 𝑦𝑛) + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦3 + 𝑦6 + 𝑦9 + 𝑦12 + ⋯ … . . +𝑦𝑛−3)] 𝑠 = ∫ 𝑣 𝑑𝑡 𝑡=45 𝑡=0 = 3ℎ 8 [(𝑦0 + 𝑦9) + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5 + 𝑦7 + 𝑦8 … ) + 2 (𝑦3 + 𝑦6)] = 3×5 8 [(30 + 5) + 3(24 + 19 + 13 + 11 + 8 + 7) + 2 (16 + 10)] = 624.375 𝑚𝑒𝑡𝑟𝑒𝑠 Example 13. . A river is 80 m wide. The depth y of the river at a distance x from one bank is given by the following table: x: 0 10 20 30 40 50 60 70 80 y: 0 4 7 9 12 15 14 8 3
  • 14.
    Dr. Deepa Chauhan Findthe approximate area of the cross-section of the river using Simpson’s rule. Sol. The required area of cross-section of the river= ∫ 𝑦 𝑑𝑥 80 0 Here the number of subintervals is 8, then by using Simpson’s 1/3rd rule ∫ 𝑓(𝑥)𝑑𝑥 = ℎ 3 [(𝑦0 + 𝑦𝑛) + 4(𝑦1 + 𝑦3 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦2 + 𝑦4 + 𝑦6 … … . . +𝑦𝑛−2)] 𝑥0+𝑛ℎ 𝑥0 𝐴 = ∫ 𝑦 𝑑𝑥 = 80 0 ℎ 3 [(𝑦0 + 𝑦8) + 4(𝑦1 + 𝑦3 + 𝑦5 + 𝑦7) + 2 (𝑦2 + 𝑦4 + 𝑦6)] = 10 3 [(0 + 3) + 4(4 + 9 + 15 + 8) + 2 (7 + 12 + 14)] = 710 𝑚2 Example 14. A solid is formed by rotating about x-axis, the lines x=0 and x=1 and a curve through the points with the following coordinates x: 0 0.25 0.5 0.75 1 y: 1 0.9896 0.9589 0.9089 0.8415 Estimate the volume of solid formed using Simpson’s rule. Sol. If V is the volume of the solid formed, then 𝑉 = 𝜋 ∫ 𝑦2 𝑑𝑥 1 0 x: 0 0.25 0.5 0.75 1 y2 : 0 0.9793 0.9195 0.8261 0.7081 Here the number of subintervals is 4, then by using Simpson’s 1/3rd rule ∫ 𝑓(𝑥)𝑑𝑥 = ℎ 3 [(𝑦0 + 𝑦𝑛) + 4(𝑦1 + 𝑦3 + 𝑦5 … … . . +𝑦𝑛−1) + 2 (𝑦2 + 𝑦4 + 𝑦6 … … . . +𝑦𝑛−2)] 𝑥0+𝑛ℎ 𝑥0 ∫ 𝑦2 𝑑𝑥 = 1 0 ℎ 3 [(𝑦0 + 𝑦4) + 4(𝑦1 + 𝑦3) + 2 (𝑦2)] = 0.25 3 [(0 + 0.7081) + 4(0.9793 + 0.8261) + 2(0.9195)] = 0.8140 𝑉 = 𝜋 ∫ 𝑦2 𝑑𝑥 = 𝜋 × 0.8140 = 2.5561 𝑠𝑞. 𝑢𝑛𝑖𝑡𝑠 1 0