Rolle's theorem states that if a function is continuous on a closed interval and differentiable on the open interval with equal values at the endpoints, then the derivative is 0 for at least one value in the interval. The mean value theorems - Lagrange's and Cauchy's - generalize this idea, relating the average rate of change over an interval to the instantaneous rate at a point within the interval. Examples are provided to illustrate the theorems and exceptions that can occur when their conditions are not fully met.