The document discusses analyzing functions using calculus concepts like derivatives. It introduces analyzing functions to determine if they are increasing, decreasing, or constant on intervals based on the sign of the derivative. The sign of the derivative indicates whether the graph of the function has positive, negative, or zero slope at points, relating to whether the function is increasing, decreasing, or constant. It also introduces the concept of concavity, where the derivative indicates whether the curvature of the graph is upward (concave up) or downward (concave down) based on whether tangent lines have increasing or decreasing slopes. Examples are provided to demonstrate these concepts.