SlideShare a Scribd company logo
MATHS  MATHS  
PRESENTATIONPRESENTATION
GROUP MEMBERS : DRISHTI (1838)
VANDANA (1831)
DIMPY(1833)
 Operations with Matrices
 Properties of Matrix Operations
 The Inverse of a Matrix
MATRICES
 Matrix:
A=[ aij ]=
[
a11 a12 a13 ⋯ a1n
a21 a22 a23 ⋯ a2n
a31 a32 a33 ⋯ a3n
⋮ ⋮ ⋮ ⋮
am1 am2 am3 ⋯ amn
]m×n
∈ M m×n
(i, j)-th entry: aij
row: m
column: n
size: m×n
 i-th row vector
ri=[ai1 ai2 ⋯ ain ]
 j-th column vector
c j=
[
c1j
c2j
⋮
cmj
]
row matrix
column matrix
 Square matrix: m = n
 Diagonal matrix:
A=diag (d1 ,d2 ,⋯ ,dn) =
[
d1 0 … 0
0 d2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ dn
]∈M n×n
 Trace:
If A=[aij ]n×n
Then Tr ( A )=a11 +a22 +⋯+ann
Ex:
A=[1 2 3
4 5 6 ] =
[r1
r2
]
=[c1 c2 c3 ]
r1=[1 2 3 ], r2=[4 5 6 ]
c1=[1
4], c2=[2
5], c3=[3
6]
A=[1 2 3
4 5 6 ]
⇒
⇒
If A=[aij ]m×n , B=[bij ]m×n
 Equal matrix:
Then A=B if and only if aij =bij ∀ 1≤i≤m, 1≤ j≤n
 Ex 1: (Equal matrix)
A=[1 2
3 4 ] B=[a b
c d ]
If A=B
Then a=1, b=2, c=3, d=4
 Matrix addition:
If A=[aij ]m×n , B=[bij ]m×n
Then A+B=[ aij ]m×n +[ bij ]m×n=[ aij +bij ]m×n
 Ex 2: (Matrix addition)
[−1 2
0 1 ]+[ 1 3
−1 2 ]=[−1+1 2+3
0−1 1+2 ]=[0 5
−1 3 ]
[1
−3
−2]+
[−1
3
2 ]=
[1−1
−3+3
−2+2] =
[0
0
0]
 Matrix subtraction:
A−B=A+(−1)B
 Scalar multiplication:
If A=[aij ]m×n , c: scalar
 Ex 3: (Scalar multiplication and matrix subtraction)
A=
[1 2 4
−3 0 −1
2 1 2 ] B=
[2 0 0
1 −4 3
−1 3 2 ]
Find (a) 3A, (b) –B, (c) 3A – B
Then cA=[caij ]m×n
(a)
3A=3
[1 2 4
−3 0 −1
2 1 2 ]
(b)
−B=(−1)
[2 0 0
1 −4 3
−1 3 2 ]
(c)
3A−B=
[3 6 12
−9 0 −3
6 3 6 ]−
[2 0 0
1 −4 3
−1 3 2 ]
Sol:
=
[3 6 12
−9 0 −3
6 3 6 ]=
[
3(1) 3(2) 3(4)
3(−3) 3(0) 3(−1)
3(2) 3(1) 3(2) ]
=
[−2 0 0
−1 4 −3
1 −3 −2 ]
=
[ 1 6 12
−10 4 −6
7 0 4 ]
 Matrix multiplication:
If A=[aij ]m×n , B=[bij ]n× p
Then AB=[ aij ]m×n [bij ]n× p=[cij ]m×p
cij=∑
k=1
n
aik bkj =ai1 b1j +ai2 b2j+⋯+ain bnj
where
 Notes: (1) A+B = B+A, (2)AB≠BA
Size of AB
[
a11 a12 ⋯ a1n
⋮ ⋮ ⋮
ai1 ai2 ⋯ ain
⋮
an1
⋮
an2
⋯
⋮
ann
][
b11 ⋯ b1j ⋯ b1n
b21 ⋮ b2j ⋯ b2n
⋮ ⋮ ⋮ ⋮
bn1 ⋯ bnj ⋯ bnn
]=
[ci1 ci2 ⋯ cij ⋯ cin
]
A=
[−1 3
4 −2
5 0 ] B=[−3 2
−4 1 ]
 Ex 4: (Find AB)
Sol:
AB=
[
(−1)(−3)+(3)(−4) (−1)(2)+(3)(1)
(4)(−3)+(−2)(−4) (4)(2)+(−2)(1)
(5)(−3)+(0)(−4) (5)(2)+(0)(1) ]
=
[−9 1
−4 6
−15 10 ]
 Matrix form of a system of linear
equations:
{
a11 x1 +a12 x2+⋯+a1n xn =b1
a21 x1 +a22 x2+⋯+a2n xn =b2
⋮
am1 x1 +am2 x2+⋯+amn xn =bm
}=
=
=
A x b
m linear equations
Single matrix equation
Ax =b
m×nn×1 m×1[
a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋮ ⋮
am1 am2 ⋯ amn
][
x1
x2
⋮
xn
]=
[
b1
b2
⋮
bm
]
⇓
 Partitioned matrices:
A=
[
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
]=
[A11 A12
A21 A22
]
submatrix
A=
[
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
]=
[
r1
r2
r3
]
A=
[
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
]=[c1 c2 c3 c4 ]
 Three basic matrix operators:
(1) matrix addition
(2) scalar multiplication
(3) matrix multiplication
 Zero matrix: 0m×n
 Identity matrix of order n: I n
Then (1) A+B = B + A
(2) A + ( B + C ) = ( A + B ) + C
(3) ( cd ) A = c ( dA )
(4) 1A = A
(5) c( A+B ) = cA + cB
(6) ( c+d ) A = cA + dA
If A,B,C ∈M m×n , c,d :scalar
 Properties of matrix addition and scalar multiplication:
If A∈Mm×n , c :scalar
Then (1) A+0m×n =A
(2) A+(− A)=0m×n
(3) cA=0m×n ⇒ c= 0 or A= 0m× n
 Notes:
(1) 0m×n: the additive identity for the set of all m×n matrices
(2) –A: the additive inverse of A
 Properties of zero matrices:
If A=
[
a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋮ ⋮
am1 am2 ⋯ amn
]∈M m×n
Then AT
=
[
a11 a21 ⋯ am1
a12 a22 ⋯ am2
⋮ ⋮ ⋮ ⋮
a1n a2n ⋯ amn
]∈ M n×m
 Transpose of a matrix :
Transpose is the interchange of rows and columns of a
given matrix.
A=[2
8] (b) A=
[1 2 3
4 5 6
7 8 9 ] (c
)
A=
[0 1
2 4
1 −1]
Sol: (a)
A=[2
8] ⇒ A
T
=[2 8 ]
(b)
A=
[1 2 3
4 5 6
7 8 9 ] ⇒ AT
=
[1 4 7
2 5 8
3 6 9 ](c
)
A=
[0 1
2 4
1 −1] ⇒ AT
=[0 2 1
1 4 −1]
(a)
 Ex 8: (Find the transpose of the following matrix)
(1) ( A
T
)
T
=A
(2 ) ( A+B)
T
=A
T
+B
T
(3) (cA)T
=c ( AT
)
(4 ) ( AB )
T
=B
T
A
T
 Properties of transposes
A square matrix A is symmetric if A = AT
 Ex:
If A=
[1 2 3
a 4 5
b c 6 ] is symmetric, find a, b, c?
A square matrix A is skew-symmetric if AT
= –A
 Skew-symmetric matrix:
Sol:
A=
[1 2 3
a 4 5
b c 6 ] AT
=
[1 a b
2 4 c
3 5 6 ] a= 2,b= 3,c= 5
A=A
T
⇒
 Symmetric matrix:
If A=
[0 1 2
a 0 3
b c 0 ] is a skew-symmetric, find a, b, c?

Note:
AAT
is symmetric
Pf: (AAT
)T
=( AT
)T
AT
=AAT
AA∴
T
is symmetric
Sol:
A=
[0 1 2
a 0 3
b c 0 ] −AT
=
[0 −a −b
−1 0 −c
−2 −3 0 ]
A=−A
T
a=−1,b=−2,c=−3⇒
 Ex:
ab = ba (Commutative law for multiplication)
(1)If m≠ p, then AB is defined ,BA is undefined .
(3)If m=p=n,then AB∈M m×m ,BA∈ M m×m
(2)If m=p, m≠n, then AB∈M m×m ,BA∈ M n×n (Sizes are not the
same)
(Sizes are the same, but matrices are not equal)
 Real number:
 Matrix:
AB≠BA
m×nn× p
Three
situations:
A=[1 3
2 −1] B=[2 −1
0 2 ]
Sol:
AB=[1 3
2 −1 ][2 −1
0 2 ]=[2 5
4 −4 ]
 Note: AB≠BA
BA=[2 −1
0 2 ][1 3
2 −1]=[0 7
4 −2 ]
 Ex 4:
Sow that AB and BA are not equal for the matrices.
and
(Cancellation is not
valid)
ac=bc, c≠0
⇒ a=b (Cancellation law)
 Matrix:
AC=BC C ≠0
(1) If C is invertible, then A = B
 Real number:
A≠B(2) If C is not invertible, then
26
/61
A=[1 3
0 1 ], B=[2 4
2 3 ], C=[ 1 −2
−1 2 ]
Sol:
AC=[1 3
0 1 ][ 1 −2
−1 2 ]=[−2 4
−1 2 ]
So AC=BC
But A≠B
BC=[2 4
2 3 ][ 1 −2
−1 2 ]=[−2 4
−1 2 ]
 Ex 5: (An example in which cancellation is not valid)
Show that AC=BC
Elementary Linear Algebra: Section 2.2, p.65
A∈M n×n
If there exists a matrix B∈ M n× n such that AB=BA=In ,

Note:
A matrix that does not have an inverse is called
noninvertible (or singular).
Consider
Then (1) A is invertible (or nonsingular)
(2) B is the inverse of A
 Inverse matrix:
If B and C are both inverses of the matrix A, then B = C.
Pf: AB=I
C (AB)=CI
(CA)B=C
IB=C
B=C
Consequently, the inverse of a matrix is unique.

Notes:(1) The inverse of A is denoted by A
−1
(2) AA
−1
=A
−1
A=I
 Thm 2.7: (The inverse of a matrix is unique)
[A ∣ I ]⃗Gauss-Jordan Elimination [I ∣ A−1
]
 Ex 2: (Find the inverse of the matrix)
A=[ 1 4
−1 −3 ]
Sol:
AX=I
[ 1 4
−1 −3 ][x11 x12
x21 x22
]=[1 0
0 1 ]
[ x11+4x21 x12+4x22
−x11−3x21 −x12−3x22
]=[1 0
0 1 ]
 Find the inverse of a matrix by Gauss-Jordan
Elimination:
(1)⇒[ 1 4 ⋮ 1
−1 −3 ⋮ 0 ]⃗
r12
(1)
, r21
(−4)
[1 0 ⋮ −3
0 1 ⋮ 1 ]
(2)⇒[1 4 ⋮ 0
−1 −3 ⋮ 1 ]⃗
r12
(1)
, r21
(−4)
[1 0 ⋮ −4
0 1 ⋮ 1 ]
⇒ x11=−3, x21=1
⇒ x12=−4, x22=1
X=A−1
=
[x11 x12
x21 x22
]=[−3 −4
1 1 ] ( AX=I=AA-1
)
Thus
⇒
x11 + 4x21 1
−x11 − 3x21 0
(1)
x12 + 4x22 0
−x12 − 3x22 1
(2)
⃗r12
(1)
,r
21
(−4)
[1 0 ⋮ −3 −4
0 1 ⋮ 1 1 ]¿ A I I A−1
¿¿¿
If A can’t be row reduced to I, then A is singular.
 Note:
A=
[1 −1 0
1 0 −1
−6 2 3 ]
⃗R2−R1
[1 −1 0 ⋮ 1 0 0
0 1 −1 ⋮ −1 1 0
−6 2 3 ⋮ 0 0 1]
Sol:
[A ⋮ I ] =
[1 −1 0
1 0 −1
−6 2 3
⋮
⋮
⋮
1 0 0
0 1 0
0 0 1 ]
⃗R3+6R1
[1 −1 0
0 1 −1
0 −4 3
⋮
⋮
⋮
1 0 0
−1 1 0
6 0 1 ]
⃗−R3
[1 −1 0 ⋮ 1 0 0
0 1 −1 ⋮ −1 1 0
0 0 1 ⋮ −2 −4 −1 ]⃗R3+4R2
[1 −1 0 ⋮ 1 0 0
0 1 −1 ⋮ −1 1 0
0 0 −1 ⋮ 2 4 1 ]
 Ex 3: (Find the inverse of the following matrix)
⃗R2+R3
[1 −1 0 ⋮ 1 0 0
0 1 0 ⋮ −3 −3 −1
0 0 1 ⋮ −2 −4 −1 ] ⃗R1+R2
[1 0 0 ⋮ −2 −3 −1
0 1 0 ⋮ −3 −3 −1
0 0 1 ⋮ −1 −4 −1 ]
So the matrix A is invertible, and its inverse is
A−1
=
[−2 −3 −1
−3 −3 −1
−2 −4 −1 ]
= [I ⋮ A−1
]
 Check:
AA−1
=A−1
A=I
(1) A
0
=I
(2) A
k
=AA⋯A⏟
k factors
(k> 0)
(3) Ar
⋅As
=Ar+s
r,s:integers
( A
r
)
s
=A
rs
(4) D=
[
d1 0 ⋯ 0
0 d2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ dn
]⇒ Dk
=
[
d1
k
0 ⋯ 0
0 d2
k
⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ dn
k ]
 Power of a square matrix:
If A is an invertible matrix, k is a positive integer, and c is a scalar
not equal to zero, then
(1) A
−1
is invertible and ( A
−1
)
−1
=A
(2) Ak
is invertible and ( Ak
)−1
=A−1
A−1
⋯A−1
⏟
k factors
=( A−1
)k
=A−k
(3) c A is invertible and (cA)−1
=
1
c
A−1
,c≠0
(4)A
T
is invertible and ( A
T
)
−1
=(A
−1
)
T
 Thm 2.8 : (Properties of inverse matrices)
 Thm 2.9: (The inverse of a product)
If A and B are invertible matrices of size n, then AB is invertible and
(AB)
−1
=B
−1
A
−1
If AB is invertible, then its inverse is unique.
So (AB)−1
=B−1
A−1
Pf:
(AB)(B−1
A−1
)=A( BB−1
) A−1
=A(I )A−1
=( AI) A−1
=AA−1
=I
(B
−1
A
−1
)( AB)=B
−1
( A
−1
A)B=B
−1
(I )B=B
−1
( IB)=B
−1
B=I

Note:
(A1 A2 A3⋯An )
−1
=An
−1
⋯A3
−1
A2
−1
A1
−1
 Thm 2.10 (Cancellation properties)
If C is an invertible matrix, then the following properties hold:
(1) If AC=BC, then A=B (Right cancellation property)
(2) If CA=CB, then A=B (Left cancellation property)
Pf:
AC=BC
(AC )C−1
=(BC)C−1
A(CC−1
)=B(CC−1
)
AI=BI
A=B
(C is invertible, so C
-1
exists)

Note:If C is not invertible, then cancellation is not valid.
 Thm 2.11: (Systems of equations with unique solutions)
If A is an invertible matrix, then the system of linear equations
Ax = b has a unique solution given by
x=A
−1
b
Pf:
( A is nonsingular)
Ax=b
A−1
Ax=A−1
b
Ix=A−1
b
x=A−1
b
This solution is unique.
If x1 and x2 were two solutions of equation Ax=b .
then Ax1 =b=Ax2
⇒ x1=x2 (Left cancellation property)

More Related Content

What's hot

Introduction to Matrices
Introduction to MatricesIntroduction to Matrices
Introduction to Matrices
holmsted
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matrices
Student
 
the inverse of the matrix
the inverse of the matrixthe inverse of the matrix
the inverse of the matrix
Елена Доброштан
 
Determinants
DeterminantsDeterminants
Determinants
Joey Valdriz
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equations
saahil kshatriya
 
Introduction of matrices
Introduction of matricesIntroduction of matrices
Introduction of matrices
Shakehand with Life
 
MATRICES
MATRICESMATRICES
MATRICES
faijmsk
 
Determinants
DeterminantsDeterminants
Determinants
Rivan001
 
Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimension
ATUL KUMAR YADAV
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
Kum Visal
 
Matrices
MatricesMatrices
Matrices
Nadeem Uddin
 
Determinants - Mathematics
Determinants - MathematicsDeterminants - Mathematics
Determinants - Mathematics
Drishti Bhalla
 
MATRICES
MATRICESMATRICES
Matrix algebra
Matrix algebraMatrix algebra
Matrix algebra
Arjuna Senanayake
 
MATRICES AND ITS TYPE
MATRICES AND ITS TYPEMATRICES AND ITS TYPE
MATRICES AND ITS TYPE
Himanshu Negi
 
Metric space
Metric spaceMetric space
Metric space
NaliniSPatil
 
Matrix.
Matrix.Matrix.
Matrix.
Awais Bakshy
 
Matrix basic operations
Matrix basic operationsMatrix basic operations
Matrix basic operations
Jessica Garcia
 
Matrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for BusinessMatrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for Business
Khan Tanjeel Ahmed
 
Ppt on matrices and Determinants
Ppt on matrices and DeterminantsPpt on matrices and Determinants
Ppt on matrices and Determinants
NirmalaSolapur
 

What's hot (20)

Introduction to Matrices
Introduction to MatricesIntroduction to Matrices
Introduction to Matrices
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matrices
 
the inverse of the matrix
the inverse of the matrixthe inverse of the matrix
the inverse of the matrix
 
Determinants
DeterminantsDeterminants
Determinants
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equations
 
Introduction of matrices
Introduction of matricesIntroduction of matrices
Introduction of matrices
 
MATRICES
MATRICESMATRICES
MATRICES
 
Determinants
DeterminantsDeterminants
Determinants
 
Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimension
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 
Matrices
MatricesMatrices
Matrices
 
Determinants - Mathematics
Determinants - MathematicsDeterminants - Mathematics
Determinants - Mathematics
 
MATRICES
MATRICESMATRICES
MATRICES
 
Matrix algebra
Matrix algebraMatrix algebra
Matrix algebra
 
MATRICES AND ITS TYPE
MATRICES AND ITS TYPEMATRICES AND ITS TYPE
MATRICES AND ITS TYPE
 
Metric space
Metric spaceMetric space
Metric space
 
Matrix.
Matrix.Matrix.
Matrix.
 
Matrix basic operations
Matrix basic operationsMatrix basic operations
Matrix basic operations
 
Matrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for BusinessMatrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for Business
 
Ppt on matrices and Determinants
Ppt on matrices and DeterminantsPpt on matrices and Determinants
Ppt on matrices and Determinants
 

Similar to Matrices - Mathematics

Metrix[1]
Metrix[1]Metrix[1]
Metrix[1]
Aon Narinchoti
 
GATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraGATE Preparation : Matrix Algebra
GATE Preparation : Matrix Algebra
ParthDave57
 
Lemh104
Lemh104Lemh104
Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)
shamimakamili
 
Matrices
MatricesMatrices
Matrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxMatrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptx
jyotidighole2
 
Determinants
DeterminantsDeterminants
Determinants
Seyid Kadher
 
Matrices & Determinants.pdf
Matrices & Determinants.pdfMatrices & Determinants.pdf
Matrices & Determinants.pdf
SUCCESSSCIENCEACADEM
 
1565 matrix01-ppt
1565 matrix01-ppt1565 matrix01-ppt
1565 matrix01-ppt
Dr Fereidoun Dejahang
 
Appendix B Matrices And Determinants
Appendix B  Matrices And DeterminantsAppendix B  Matrices And Determinants
Appendix B Matrices And Determinants
Angie Miller
 
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
Rai University
 
For the following matrices, determine a cot of basis vectors for the.pdf
For the following matrices, determine a cot of basis vectors for  the.pdfFor the following matrices, determine a cot of basis vectors for  the.pdf
For the following matrices, determine a cot of basis vectors for the.pdf
eyebolloptics
 
Capitulo 1, 7ma edición
Capitulo 1, 7ma ediciónCapitulo 1, 7ma edición
Capitulo 1, 7ma edición
Sohar Carr
 
Matrices & Determinants Lecture-3.pdf
Matrices & Determinants Lecture-3.pdfMatrices & Determinants Lecture-3.pdf
Matrices & Determinants Lecture-3.pdf
FACTOPEDIA4
 
Matrix
MatrixMatrix
Matrix
Seyid Kadher
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
HebaEng
 
Form 5 Additional Maths Note
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths Note
Chek Wei Tan
 
Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integral
Kamel Attar
 
Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)
KarunaGupta1982
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XII
indu thakur
 

Similar to Matrices - Mathematics (20)

Metrix[1]
Metrix[1]Metrix[1]
Metrix[1]
 
GATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraGATE Preparation : Matrix Algebra
GATE Preparation : Matrix Algebra
 
Lemh104
Lemh104Lemh104
Lemh104
 
Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)
 
Matrices
MatricesMatrices
Matrices
 
Matrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptxMatrices its types & Rank of matrix.pptx
Matrices its types & Rank of matrix.pptx
 
Determinants
DeterminantsDeterminants
Determinants
 
Matrices & Determinants.pdf
Matrices & Determinants.pdfMatrices & Determinants.pdf
Matrices & Determinants.pdf
 
1565 matrix01-ppt
1565 matrix01-ppt1565 matrix01-ppt
1565 matrix01-ppt
 
Appendix B Matrices And Determinants
Appendix B  Matrices And DeterminantsAppendix B  Matrices And Determinants
Appendix B Matrices And Determinants
 
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
 
For the following matrices, determine a cot of basis vectors for the.pdf
For the following matrices, determine a cot of basis vectors for  the.pdfFor the following matrices, determine a cot of basis vectors for  the.pdf
For the following matrices, determine a cot of basis vectors for the.pdf
 
Capitulo 1, 7ma edición
Capitulo 1, 7ma ediciónCapitulo 1, 7ma edición
Capitulo 1, 7ma edición
 
Matrices & Determinants Lecture-3.pdf
Matrices & Determinants Lecture-3.pdfMatrices & Determinants Lecture-3.pdf
Matrices & Determinants Lecture-3.pdf
 
Matrix
MatrixMatrix
Matrix
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
Form 5 Additional Maths Note
Form 5 Additional Maths NoteForm 5 Additional Maths Note
Form 5 Additional Maths Note
 
Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integral
 
Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)
 
Assignments for class XII
Assignments for class XIIAssignments for class XII
Assignments for class XII
 

More from Drishti Bhalla

Propositions - Discrete Structures
Propositions - Discrete Structures Propositions - Discrete Structures
Propositions - Discrete Structures
Drishti Bhalla
 
Physical Layer Numericals - Data Communication & Networking
Physical Layer  Numericals - Data Communication & NetworkingPhysical Layer  Numericals - Data Communication & Networking
Physical Layer Numericals - Data Communication & Networking
Drishti Bhalla
 
Holy Rivers - Hindi
Holy Rivers - HindiHoly Rivers - Hindi
Holy Rivers - Hindi
Drishti Bhalla
 
Mid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer GraphicsMid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer Graphics
Drishti Bhalla
 
Unix Memory Management - Operating Systems
Unix Memory Management - Operating SystemsUnix Memory Management - Operating Systems
Unix Memory Management - Operating Systems
Drishti Bhalla
 
Collections Api - Java
Collections Api - JavaCollections Api - Java
Collections Api - Java
Drishti Bhalla
 
Airline Reservation System - Software Engineering
Airline Reservation System - Software EngineeringAirline Reservation System - Software Engineering
Airline Reservation System - Software Engineering
Drishti Bhalla
 
Performance Management and Feedback - SHRM
Performance Management and Feedback - SHRMPerformance Management and Feedback - SHRM
Performance Management and Feedback - SHRM
Drishti Bhalla
 
Computer System Architecture - BUN instruction
Computer System Architecture - BUN instructionComputer System Architecture - BUN instruction
Computer System Architecture - BUN instruction
Drishti Bhalla
 
King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4
Drishti Bhalla
 
Information Technology - System Threats
Information Technology - System ThreatsInformation Technology - System Threats
Information Technology - System Threats
Drishti Bhalla
 
Software Metrics - Software Engineering
Software Metrics - Software EngineeringSoftware Metrics - Software Engineering
Software Metrics - Software Engineering
Drishti Bhalla
 
Binary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of AlgorithmsBinary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of Algorithms
Drishti Bhalla
 
CNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of ComputationCNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of Computation
Drishti Bhalla
 
Fd & Normalization - Database Management System
Fd & Normalization - Database Management SystemFd & Normalization - Database Management System
Fd & Normalization - Database Management System
Drishti Bhalla
 

More from Drishti Bhalla (15)

Propositions - Discrete Structures
Propositions - Discrete Structures Propositions - Discrete Structures
Propositions - Discrete Structures
 
Physical Layer Numericals - Data Communication & Networking
Physical Layer  Numericals - Data Communication & NetworkingPhysical Layer  Numericals - Data Communication & Networking
Physical Layer Numericals - Data Communication & Networking
 
Holy Rivers - Hindi
Holy Rivers - HindiHoly Rivers - Hindi
Holy Rivers - Hindi
 
Mid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer GraphicsMid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer Graphics
 
Unix Memory Management - Operating Systems
Unix Memory Management - Operating SystemsUnix Memory Management - Operating Systems
Unix Memory Management - Operating Systems
 
Collections Api - Java
Collections Api - JavaCollections Api - Java
Collections Api - Java
 
Airline Reservation System - Software Engineering
Airline Reservation System - Software EngineeringAirline Reservation System - Software Engineering
Airline Reservation System - Software Engineering
 
Performance Management and Feedback - SHRM
Performance Management and Feedback - SHRMPerformance Management and Feedback - SHRM
Performance Management and Feedback - SHRM
 
Computer System Architecture - BUN instruction
Computer System Architecture - BUN instructionComputer System Architecture - BUN instruction
Computer System Architecture - BUN instruction
 
King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4
 
Information Technology - System Threats
Information Technology - System ThreatsInformation Technology - System Threats
Information Technology - System Threats
 
Software Metrics - Software Engineering
Software Metrics - Software EngineeringSoftware Metrics - Software Engineering
Software Metrics - Software Engineering
 
Binary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of AlgorithmsBinary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of Algorithms
 
CNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of ComputationCNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of Computation
 
Fd & Normalization - Database Management System
Fd & Normalization - Database Management SystemFd & Normalization - Database Management System
Fd & Normalization - Database Management System
 

Recently uploaded

A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Fajar Baskoro
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
ak6969907
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
AyyanKhan40
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
Celine George
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
Priyankaranawat4
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
Celine George
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
Colégio Santa Teresinha
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
RitikBhardwaj56
 
Liberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdfLiberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdf
WaniBasim
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
chanes7
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
Celine George
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
simonomuemu
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
GeorgeMilliken2
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
Celine George
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
Dr. Mulla Adam Ali
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
heathfieldcps1
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
Academy of Science of South Africa
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 

Recently uploaded (20)

A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
 
World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024World environment day ppt For 5 June 2024
World environment day ppt For 5 June 2024
 
PIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf IslamabadPIMS Job Advertisement 2024.pdf Islamabad
PIMS Job Advertisement 2024.pdf Islamabad
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17How to Fix the Import Error in the Odoo 17
How to Fix the Import Error in the Odoo 17
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
 
Liberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdfLiberal Approach to the Study of Indian Politics.pdf
Liberal Approach to the Study of Indian Politics.pdf
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
 
How to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold MethodHow to Build a Module in Odoo 17 Using the Scaffold Method
How to Build a Module in Odoo 17 Using the Scaffold Method
 
Hindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdfHindi varnamala | hindi alphabet PPT.pdf
Hindi varnamala | hindi alphabet PPT.pdf
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 

Matrices - Mathematics

  • 1. MATHS  MATHS   PRESENTATIONPRESENTATION GROUP MEMBERS : DRISHTI (1838) VANDANA (1831) DIMPY(1833)
  • 2.  Operations with Matrices  Properties of Matrix Operations  The Inverse of a Matrix MATRICES
  • 3.  Matrix: A=[ aij ]= [ a11 a12 a13 ⋯ a1n a21 a22 a23 ⋯ a2n a31 a32 a33 ⋯ a3n ⋮ ⋮ ⋮ ⋮ am1 am2 am3 ⋯ amn ]m×n ∈ M m×n (i, j)-th entry: aij row: m column: n size: m×n
  • 4.  i-th row vector ri=[ai1 ai2 ⋯ ain ]  j-th column vector c j= [ c1j c2j ⋮ cmj ] row matrix column matrix  Square matrix: m = n
  • 5.  Diagonal matrix: A=diag (d1 ,d2 ,⋯ ,dn) = [ d1 0 … 0 0 d2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ dn ]∈M n×n  Trace: If A=[aij ]n×n Then Tr ( A )=a11 +a22 +⋯+ann
  • 6. Ex: A=[1 2 3 4 5 6 ] = [r1 r2 ] =[c1 c2 c3 ] r1=[1 2 3 ], r2=[4 5 6 ] c1=[1 4], c2=[2 5], c3=[3 6] A=[1 2 3 4 5 6 ] ⇒ ⇒
  • 7. If A=[aij ]m×n , B=[bij ]m×n  Equal matrix: Then A=B if and only if aij =bij ∀ 1≤i≤m, 1≤ j≤n  Ex 1: (Equal matrix) A=[1 2 3 4 ] B=[a b c d ] If A=B Then a=1, b=2, c=3, d=4
  • 8.  Matrix addition: If A=[aij ]m×n , B=[bij ]m×n Then A+B=[ aij ]m×n +[ bij ]m×n=[ aij +bij ]m×n  Ex 2: (Matrix addition) [−1 2 0 1 ]+[ 1 3 −1 2 ]=[−1+1 2+3 0−1 1+2 ]=[0 5 −1 3 ] [1 −3 −2]+ [−1 3 2 ]= [1−1 −3+3 −2+2] = [0 0 0]
  • 9.  Matrix subtraction: A−B=A+(−1)B  Scalar multiplication: If A=[aij ]m×n , c: scalar  Ex 3: (Scalar multiplication and matrix subtraction) A= [1 2 4 −3 0 −1 2 1 2 ] B= [2 0 0 1 −4 3 −1 3 2 ] Find (a) 3A, (b) –B, (c) 3A – B Then cA=[caij ]m×n
  • 10. (a) 3A=3 [1 2 4 −3 0 −1 2 1 2 ] (b) −B=(−1) [2 0 0 1 −4 3 −1 3 2 ] (c) 3A−B= [3 6 12 −9 0 −3 6 3 6 ]− [2 0 0 1 −4 3 −1 3 2 ] Sol: = [3 6 12 −9 0 −3 6 3 6 ]= [ 3(1) 3(2) 3(4) 3(−3) 3(0) 3(−1) 3(2) 3(1) 3(2) ] = [−2 0 0 −1 4 −3 1 −3 −2 ] = [ 1 6 12 −10 4 −6 7 0 4 ]
  • 11.  Matrix multiplication: If A=[aij ]m×n , B=[bij ]n× p Then AB=[ aij ]m×n [bij ]n× p=[cij ]m×p cij=∑ k=1 n aik bkj =ai1 b1j +ai2 b2j+⋯+ain bnj where  Notes: (1) A+B = B+A, (2)AB≠BA Size of AB [ a11 a12 ⋯ a1n ⋮ ⋮ ⋮ ai1 ai2 ⋯ ain ⋮ an1 ⋮ an2 ⋯ ⋮ ann ][ b11 ⋯ b1j ⋯ b1n b21 ⋮ b2j ⋯ b2n ⋮ ⋮ ⋮ ⋮ bn1 ⋯ bnj ⋯ bnn ]= [ci1 ci2 ⋯ cij ⋯ cin ]
  • 12. A= [−1 3 4 −2 5 0 ] B=[−3 2 −4 1 ]  Ex 4: (Find AB) Sol: AB= [ (−1)(−3)+(3)(−4) (−1)(2)+(3)(1) (4)(−3)+(−2)(−4) (4)(2)+(−2)(1) (5)(−3)+(0)(−4) (5)(2)+(0)(1) ] = [−9 1 −4 6 −15 10 ]
  • 13.  Matrix form of a system of linear equations: { a11 x1 +a12 x2+⋯+a1n xn =b1 a21 x1 +a22 x2+⋯+a2n xn =b2 ⋮ am1 x1 +am2 x2+⋯+amn xn =bm }= = = A x b m linear equations Single matrix equation Ax =b m×nn×1 m×1[ a11 a12 ⋯ a1n a21 a22 ⋯ a2n ⋮ ⋮ ⋮ ⋮ am1 am2 ⋯ amn ][ x1 x2 ⋮ xn ]= [ b1 b2 ⋮ bm ] ⇓
  • 14.  Partitioned matrices: A= [ a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 ]= [A11 A12 A21 A22 ] submatrix A= [ a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 ]= [ r1 r2 r3 ] A= [ a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 ]=[c1 c2 c3 c4 ]
  • 15.  Three basic matrix operators: (1) matrix addition (2) scalar multiplication (3) matrix multiplication  Zero matrix: 0m×n  Identity matrix of order n: I n
  • 16. Then (1) A+B = B + A (2) A + ( B + C ) = ( A + B ) + C (3) ( cd ) A = c ( dA ) (4) 1A = A (5) c( A+B ) = cA + cB (6) ( c+d ) A = cA + dA If A,B,C ∈M m×n , c,d :scalar  Properties of matrix addition and scalar multiplication:
  • 17. If A∈Mm×n , c :scalar Then (1) A+0m×n =A (2) A+(− A)=0m×n (3) cA=0m×n ⇒ c= 0 or A= 0m× n  Notes: (1) 0m×n: the additive identity for the set of all m×n matrices (2) –A: the additive inverse of A  Properties of zero matrices:
  • 18. If A= [ a11 a12 ⋯ a1n a21 a22 ⋯ a2n ⋮ ⋮ ⋮ ⋮ am1 am2 ⋯ amn ]∈M m×n Then AT = [ a11 a21 ⋯ am1 a12 a22 ⋯ am2 ⋮ ⋮ ⋮ ⋮ a1n a2n ⋯ amn ]∈ M n×m  Transpose of a matrix : Transpose is the interchange of rows and columns of a given matrix.
  • 19. A=[2 8] (b) A= [1 2 3 4 5 6 7 8 9 ] (c ) A= [0 1 2 4 1 −1] Sol: (a) A=[2 8] ⇒ A T =[2 8 ] (b) A= [1 2 3 4 5 6 7 8 9 ] ⇒ AT = [1 4 7 2 5 8 3 6 9 ](c ) A= [0 1 2 4 1 −1] ⇒ AT =[0 2 1 1 4 −1] (a)  Ex 8: (Find the transpose of the following matrix)
  • 20. (1) ( A T ) T =A (2 ) ( A+B) T =A T +B T (3) (cA)T =c ( AT ) (4 ) ( AB ) T =B T A T  Properties of transposes
  • 21. A square matrix A is symmetric if A = AT  Ex: If A= [1 2 3 a 4 5 b c 6 ] is symmetric, find a, b, c? A square matrix A is skew-symmetric if AT = –A  Skew-symmetric matrix: Sol: A= [1 2 3 a 4 5 b c 6 ] AT = [1 a b 2 4 c 3 5 6 ] a= 2,b= 3,c= 5 A=A T ⇒  Symmetric matrix:
  • 22. If A= [0 1 2 a 0 3 b c 0 ] is a skew-symmetric, find a, b, c?  Note: AAT is symmetric Pf: (AAT )T =( AT )T AT =AAT AA∴ T is symmetric Sol: A= [0 1 2 a 0 3 b c 0 ] −AT = [0 −a −b −1 0 −c −2 −3 0 ] A=−A T a=−1,b=−2,c=−3⇒  Ex:
  • 23. ab = ba (Commutative law for multiplication) (1)If m≠ p, then AB is defined ,BA is undefined . (3)If m=p=n,then AB∈M m×m ,BA∈ M m×m (2)If m=p, m≠n, then AB∈M m×m ,BA∈ M n×n (Sizes are not the same) (Sizes are the same, but matrices are not equal)  Real number:  Matrix: AB≠BA m×nn× p Three situations:
  • 24. A=[1 3 2 −1] B=[2 −1 0 2 ] Sol: AB=[1 3 2 −1 ][2 −1 0 2 ]=[2 5 4 −4 ]  Note: AB≠BA BA=[2 −1 0 2 ][1 3 2 −1]=[0 7 4 −2 ]  Ex 4: Sow that AB and BA are not equal for the matrices. and
  • 25. (Cancellation is not valid) ac=bc, c≠0 ⇒ a=b (Cancellation law)  Matrix: AC=BC C ≠0 (1) If C is invertible, then A = B  Real number: A≠B(2) If C is not invertible, then
  • 26. 26 /61 A=[1 3 0 1 ], B=[2 4 2 3 ], C=[ 1 −2 −1 2 ] Sol: AC=[1 3 0 1 ][ 1 −2 −1 2 ]=[−2 4 −1 2 ] So AC=BC But A≠B BC=[2 4 2 3 ][ 1 −2 −1 2 ]=[−2 4 −1 2 ]  Ex 5: (An example in which cancellation is not valid) Show that AC=BC Elementary Linear Algebra: Section 2.2, p.65
  • 27. A∈M n×n If there exists a matrix B∈ M n× n such that AB=BA=In ,  Note: A matrix that does not have an inverse is called noninvertible (or singular). Consider Then (1) A is invertible (or nonsingular) (2) B is the inverse of A  Inverse matrix:
  • 28. If B and C are both inverses of the matrix A, then B = C. Pf: AB=I C (AB)=CI (CA)B=C IB=C B=C Consequently, the inverse of a matrix is unique.  Notes:(1) The inverse of A is denoted by A −1 (2) AA −1 =A −1 A=I  Thm 2.7: (The inverse of a matrix is unique)
  • 29. [A ∣ I ]⃗Gauss-Jordan Elimination [I ∣ A−1 ]  Ex 2: (Find the inverse of the matrix) A=[ 1 4 −1 −3 ] Sol: AX=I [ 1 4 −1 −3 ][x11 x12 x21 x22 ]=[1 0 0 1 ] [ x11+4x21 x12+4x22 −x11−3x21 −x12−3x22 ]=[1 0 0 1 ]  Find the inverse of a matrix by Gauss-Jordan Elimination:
  • 30. (1)⇒[ 1 4 ⋮ 1 −1 −3 ⋮ 0 ]⃗ r12 (1) , r21 (−4) [1 0 ⋮ −3 0 1 ⋮ 1 ] (2)⇒[1 4 ⋮ 0 −1 −3 ⋮ 1 ]⃗ r12 (1) , r21 (−4) [1 0 ⋮ −4 0 1 ⋮ 1 ] ⇒ x11=−3, x21=1 ⇒ x12=−4, x22=1 X=A−1 = [x11 x12 x21 x22 ]=[−3 −4 1 1 ] ( AX=I=AA-1 ) Thus ⇒ x11 + 4x21 1 −x11 − 3x21 0 (1) x12 + 4x22 0 −x12 − 3x22 1 (2)
  • 31. ⃗r12 (1) ,r 21 (−4) [1 0 ⋮ −3 −4 0 1 ⋮ 1 1 ]¿ A I I A−1 ¿¿¿ If A can’t be row reduced to I, then A is singular.  Note:
  • 32. A= [1 −1 0 1 0 −1 −6 2 3 ] ⃗R2−R1 [1 −1 0 ⋮ 1 0 0 0 1 −1 ⋮ −1 1 0 −6 2 3 ⋮ 0 0 1] Sol: [A ⋮ I ] = [1 −1 0 1 0 −1 −6 2 3 ⋮ ⋮ ⋮ 1 0 0 0 1 0 0 0 1 ] ⃗R3+6R1 [1 −1 0 0 1 −1 0 −4 3 ⋮ ⋮ ⋮ 1 0 0 −1 1 0 6 0 1 ] ⃗−R3 [1 −1 0 ⋮ 1 0 0 0 1 −1 ⋮ −1 1 0 0 0 1 ⋮ −2 −4 −1 ]⃗R3+4R2 [1 −1 0 ⋮ 1 0 0 0 1 −1 ⋮ −1 1 0 0 0 −1 ⋮ 2 4 1 ]  Ex 3: (Find the inverse of the following matrix)
  • 33. ⃗R2+R3 [1 −1 0 ⋮ 1 0 0 0 1 0 ⋮ −3 −3 −1 0 0 1 ⋮ −2 −4 −1 ] ⃗R1+R2 [1 0 0 ⋮ −2 −3 −1 0 1 0 ⋮ −3 −3 −1 0 0 1 ⋮ −1 −4 −1 ] So the matrix A is invertible, and its inverse is A−1 = [−2 −3 −1 −3 −3 −1 −2 −4 −1 ] = [I ⋮ A−1 ]  Check: AA−1 =A−1 A=I
  • 34. (1) A 0 =I (2) A k =AA⋯A⏟ k factors (k> 0) (3) Ar ⋅As =Ar+s r,s:integers ( A r ) s =A rs (4) D= [ d1 0 ⋯ 0 0 d2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ dn ]⇒ Dk = [ d1 k 0 ⋯ 0 0 d2 k ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ dn k ]  Power of a square matrix:
  • 35. If A is an invertible matrix, k is a positive integer, and c is a scalar not equal to zero, then (1) A −1 is invertible and ( A −1 ) −1 =A (2) Ak is invertible and ( Ak )−1 =A−1 A−1 ⋯A−1 ⏟ k factors =( A−1 )k =A−k (3) c A is invertible and (cA)−1 = 1 c A−1 ,c≠0 (4)A T is invertible and ( A T ) −1 =(A −1 ) T  Thm 2.8 : (Properties of inverse matrices)
  • 36.  Thm 2.9: (The inverse of a product) If A and B are invertible matrices of size n, then AB is invertible and (AB) −1 =B −1 A −1 If AB is invertible, then its inverse is unique. So (AB)−1 =B−1 A−1 Pf: (AB)(B−1 A−1 )=A( BB−1 ) A−1 =A(I )A−1 =( AI) A−1 =AA−1 =I (B −1 A −1 )( AB)=B −1 ( A −1 A)B=B −1 (I )B=B −1 ( IB)=B −1 B=I  Note: (A1 A2 A3⋯An ) −1 =An −1 ⋯A3 −1 A2 −1 A1 −1
  • 37.  Thm 2.10 (Cancellation properties) If C is an invertible matrix, then the following properties hold: (1) If AC=BC, then A=B (Right cancellation property) (2) If CA=CB, then A=B (Left cancellation property) Pf: AC=BC (AC )C−1 =(BC)C−1 A(CC−1 )=B(CC−1 ) AI=BI A=B (C is invertible, so C -1 exists)  Note:If C is not invertible, then cancellation is not valid.
  • 38.  Thm 2.11: (Systems of equations with unique solutions) If A is an invertible matrix, then the system of linear equations Ax = b has a unique solution given by x=A −1 b Pf: ( A is nonsingular) Ax=b A−1 Ax=A−1 b Ix=A−1 b x=A−1 b This solution is unique. If x1 and x2 were two solutions of equation Ax=b . then Ax1 =b=Ax2 ⇒ x1=x2 (Left cancellation property)