SlideShare a Scribd company logo
1 of 11
Determinants
Introduction
Every square matrix has associated with it a scalar called its
determinant.
Given a matrix A, we use det(A) or |A| to designate its determinant.
We can also designate the determinant of matrix A by replacing the
brackets by vertical straight lines. For example,
A=[2 1
0 3 ] det(A)=∣
2 1
0 3
∣
Definition 1: The determinant of a 1×1 matrix [a] is the scalar a.
Definition 2: The determinant of a 2×2 matrix is the scalar ad-bc.
For higher order matrices, we will use a recursive procedure to compute
determinants.
[a b
c d]
Expansion by Cofactors
Definition 1: Given a matrix A, a minor is the determinant of
square submatrix of A.
Definition 2: Given a matrix A=[aij] , the cofactor of the element
aij is a scalar obtained by multiplying together the term (-1)i+j
and the minor obtained from A by removing the ith row and the
jth column.
In other words, the cofactor Cij is given by Cij = (−1)i+j
Mij.
For example,
A=
[
a11 a12 a13
a21 a22 a23
a31 a32 a33
]
M21=∣
a12 a13
a32 a33
∣
M22=∣
a11 a13
a31 a33
∣
⇒C21=(−1)2+1
M 21=−M21
⇒C22=(−1)
2+2
M22=M22
Expansion by Cofactors
To find the determinant of a matrix A of arbitrary order,
a)Pick any one row or any one column of the matrix;
b)For each element in the row or column chosen, find its
cofactor;
c)Multiply each element in the row or column chosen by its
cofactor and sum the results. This sum is the determinant of the
matrix.
In other words, the determinant of A is given by
det( A)=∣A∣=∑
j=1
n
aij Cij=ai1 Ci1+ai2 Ci2+⋯+ain Cin
det ( A )=∣A∣=∑
i=1
n
aij Cij=a1j C1j+a2j C2j +⋯+anj Cnj
ith row
expansion
jth column
expansion
Example 1:
We can compute the determinant
1 2 3
4 5 6
7 8 9
=T
by expanding along the first row,
( ) ( ) ( )
1 1 1 2 1 35 6 4 6 4 5
1 2 3
8 9 7 9 7 8
+ + +
= × − + × − + × −T 3 12 9 0= − + − =
Or expand down the second column:
( ) ( ) ( )
1 2 2 2 3 24 6 1 3 1 3
2 5 8
7 9 7 9 4 6
+ + +
= × − + × − + × −T 12 60 48 0= − + =
Example 2: (using a row or column with many zeroes)
( )
2 3
1 5 0
1 5
2 1 1 1
3 1
3 1 0
+
= × −
−
−
16=
Properties of determinants
Property 1: If one row of a matrix consists entirely of zeros, then
the determinant is zero.
Property 2: If two rows of a matrix are interchanged, the
determinant changes sign.
Property 3: If two rows of a matrix are identical, the determinant
is zero.
Property 4: If the matrix B is obtained from the matrix A by
multiplying every element in one row of A by the scalar λ, then |
B|= λ|A|.
Property 5: For an n × n matrix A and any scalar λ, det(λA)=
λn
det(A).
Properties of determinants
Property 6: If a matrix B is obtained from a matrix A by adding to
one row of A, a scalar times another row of A, then |A|=|B|.
Property 7: det(A) = det(AT
).
Property 8: The determinant of a triangular matrix, either upper or
lower, is the product of the elements on the main diagonal.
Property 9: If A and B are of the same order, then
det(AB)=det(A) det(B).
Inversion
Theorem 1: A square matrix has an inverse if and only if its
determinant is not zero.
Below we develop a method to calculate the inverse of
nonsingular matrices using determinants.
Definition 1: The cofactor matrix associated with an n × n matrix
A is an n × n matrix Ac
obtained from A by replacing each
element of A by its cofactor.
Definition 2: The adjugate of an n × n matrix A is the transpose
of the cofactor matrix of A: Aa
= (Ac
)T

Find the adjugate of
Solution:
The cofactor matrix of A:
A=
[−1 3 2
0 −2 1
1 0 −2 ]
[
∣−2 1
0 −2
∣ −∣0 1
1 −2
∣ ∣0 −2
1 0
∣
−∣
3 2
0 −2
∣ ∣
−1 2
1 −2
∣ −∣
−1 3
1 0
∣
∣
3 2
−2 1
∣ −∣
−1 2
0 1
∣ ∣
−1 3
0 −2
∣] =
[4 1 2
6 0 3
7 1 2 ]
Aa
=
[4 6 7
1 0 1
2 3 2 ]
Example of finding adjugate
Inversion using determinants
Theorem 2: A Aa
= Aa
A = |A| I .
If |A| ≠ 0 then from Theorem 2, A(Aa
∣A∣)=(Aa
∣A∣)A=I
A
−1
=
1
∣A∣
A
a
if ∣A∣≠0
That is, if |A| ≠ 0, then A-1
may be obtained by dividing the
adjugate of A by the determinant of A.
For example, if
then
A=[a b
c d ],
A−1
=
1
∣A∣
Aa
=
1
ad−bc [d −b
−c a ]
Use the adjugate of to find A-1A=
[−1 3 2
0 −2 1
1 0 −2 ]
Aa
=
[4 6 7
1 0 1
2 3 2 ]
∣A∣=(−1)(−2)(−2)+(3)(1)(1)−(1)(−2)(2)=3
A
−1
=
1
∣A∣
A
a
=
1
3 [
4 6 7
1 0 1
2 3 2 ]=
[
4
3
2 7
3
1
3
0
1
3
2
3
1 2
3
]
Inversion using determinants: example

More Related Content

What's hot (20)

Matrix Operations
Matrix OperationsMatrix Operations
Matrix Operations
 
Matrix inverse
Matrix inverseMatrix inverse
Matrix inverse
 
Matrices
MatricesMatrices
Matrices
 
Matrices & Determinants
Matrices & DeterminantsMatrices & Determinants
Matrices & Determinants
 
Introduction of matrices
Introduction of matricesIntroduction of matrices
Introduction of matrices
 
Matrix
MatrixMatrix
Matrix
 
Matrices and Determinants
Matrices and DeterminantsMatrices and Determinants
Matrices and Determinants
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 
Lesson 1 matrix
Lesson 1 matrixLesson 1 matrix
Lesson 1 matrix
 
Matrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for BusinessMatrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for Business
 
Lesson 3 - matrix multiplication
Lesson 3 - matrix multiplicationLesson 3 - matrix multiplication
Lesson 3 - matrix multiplication
 
Matrices
Matrices Matrices
Matrices
 
Sets PowerPoint Presentation
Sets PowerPoint PresentationSets PowerPoint Presentation
Sets PowerPoint Presentation
 
Matrix algebra
Matrix algebraMatrix algebra
Matrix algebra
 
presentation on matrix
 presentation on matrix presentation on matrix
presentation on matrix
 
Matrix and Determinants
Matrix and DeterminantsMatrix and Determinants
Matrix and Determinants
 
Operations on sets
Operations on setsOperations on sets
Operations on sets
 
Function and Its Types.
Function and Its Types.Function and Its Types.
Function and Its Types.
 
Matrices
MatricesMatrices
Matrices
 
the inverse of the matrix
the inverse of the matrixthe inverse of the matrix
the inverse of the matrix
 

Similar to Determinants - Mathematics

Engg maths k notes(4)
Engg maths k notes(4)Engg maths k notes(4)
Engg maths k notes(4)Ranjay Kumar
 
Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -Rai University
 
Calculus and matrix algebra notes
Calculus and matrix algebra notesCalculus and matrix algebra notes
Calculus and matrix algebra notesVICTOROGOT4
 
GATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraGATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraParthDave57
 
Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)shamimakamili
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinantsoscar
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinantsoscar
 
Chapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/SlidesChapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/SlidesChaimae Baroudi
 
Determinants, crammers law, Inverse by adjoint and the applications
Determinants, crammers law,  Inverse by adjoint and the applicationsDeterminants, crammers law,  Inverse by adjoint and the applications
Determinants, crammers law, Inverse by adjoint and the applicationsNikoBellic28
 
Appendix B Matrices And Determinants
Appendix B  Matrices And DeterminantsAppendix B  Matrices And Determinants
Appendix B Matrices And DeterminantsAngie Miller
 
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANKMatrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANKWaqas Afzal
 

Similar to Determinants - Mathematics (20)

Engg maths k notes(4)
Engg maths k notes(4)Engg maths k notes(4)
Engg maths k notes(4)
 
Matrices
MatricesMatrices
Matrices
 
Matrices
MatricesMatrices
Matrices
 
Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -
 
Calculus and matrix algebra notes
Calculus and matrix algebra notesCalculus and matrix algebra notes
Calculus and matrix algebra notes
 
M a t r i k s
M a t r i k sM a t r i k s
M a t r i k s
 
GATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraGATE Preparation : Matrix Algebra
GATE Preparation : Matrix Algebra
 
Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)Business mathametics and statistics b.com ii semester (2)
Business mathametics and statistics b.com ii semester (2)
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 
Determinants
DeterminantsDeterminants
Determinants
 
Determinants
DeterminantsDeterminants
Determinants
 
Chapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/SlidesChapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/Slides
 
Determinants, crammers law, Inverse by adjoint and the applications
Determinants, crammers law,  Inverse by adjoint and the applicationsDeterminants, crammers law,  Inverse by adjoint and the applications
Determinants, crammers law, Inverse by adjoint and the applications
 
APM.pdf
APM.pdfAPM.pdf
APM.pdf
 
Appendix B Matrices And Determinants
Appendix B  Matrices And DeterminantsAppendix B  Matrices And Determinants
Appendix B Matrices And Determinants
 
1565 matrix01-ppt
1565 matrix01-ppt1565 matrix01-ppt
1565 matrix01-ppt
 
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANKMatrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
 
Takue
TakueTakue
Takue
 
Presentation on matrix
Presentation on matrixPresentation on matrix
Presentation on matrix
 

More from Drishti Bhalla

Propositions - Discrete Structures
Propositions - Discrete Structures Propositions - Discrete Structures
Propositions - Discrete Structures Drishti Bhalla
 
Physical Layer Numericals - Data Communication & Networking
Physical Layer  Numericals - Data Communication & NetworkingPhysical Layer  Numericals - Data Communication & Networking
Physical Layer Numericals - Data Communication & NetworkingDrishti Bhalla
 
Matrices - Mathematics
Matrices - MathematicsMatrices - Mathematics
Matrices - MathematicsDrishti Bhalla
 
Mid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer GraphicsMid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer GraphicsDrishti Bhalla
 
Unix Memory Management - Operating Systems
Unix Memory Management - Operating SystemsUnix Memory Management - Operating Systems
Unix Memory Management - Operating SystemsDrishti Bhalla
 
Collections Api - Java
Collections Api - JavaCollections Api - Java
Collections Api - JavaDrishti Bhalla
 
Airline Reservation System - Software Engineering
Airline Reservation System - Software EngineeringAirline Reservation System - Software Engineering
Airline Reservation System - Software EngineeringDrishti Bhalla
 
Performance Management and Feedback - SHRM
Performance Management and Feedback - SHRMPerformance Management and Feedback - SHRM
Performance Management and Feedback - SHRMDrishti Bhalla
 
Computer System Architecture - BUN instruction
Computer System Architecture - BUN instructionComputer System Architecture - BUN instruction
Computer System Architecture - BUN instructionDrishti Bhalla
 
King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4Drishti Bhalla
 
Information Technology - System Threats
Information Technology - System ThreatsInformation Technology - System Threats
Information Technology - System ThreatsDrishti Bhalla
 
Software Metrics - Software Engineering
Software Metrics - Software EngineeringSoftware Metrics - Software Engineering
Software Metrics - Software EngineeringDrishti Bhalla
 
Binary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of AlgorithmsBinary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of AlgorithmsDrishti Bhalla
 
CNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of ComputationCNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of ComputationDrishti Bhalla
 
Fd & Normalization - Database Management System
Fd & Normalization - Database Management SystemFd & Normalization - Database Management System
Fd & Normalization - Database Management SystemDrishti Bhalla
 

More from Drishti Bhalla (16)

Propositions - Discrete Structures
Propositions - Discrete Structures Propositions - Discrete Structures
Propositions - Discrete Structures
 
Physical Layer Numericals - Data Communication & Networking
Physical Layer  Numericals - Data Communication & NetworkingPhysical Layer  Numericals - Data Communication & Networking
Physical Layer Numericals - Data Communication & Networking
 
Matrices - Mathematics
Matrices - MathematicsMatrices - Mathematics
Matrices - Mathematics
 
Holy Rivers - Hindi
Holy Rivers - HindiHoly Rivers - Hindi
Holy Rivers - Hindi
 
Mid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer GraphicsMid point line Algorithm - Computer Graphics
Mid point line Algorithm - Computer Graphics
 
Unix Memory Management - Operating Systems
Unix Memory Management - Operating SystemsUnix Memory Management - Operating Systems
Unix Memory Management - Operating Systems
 
Collections Api - Java
Collections Api - JavaCollections Api - Java
Collections Api - Java
 
Airline Reservation System - Software Engineering
Airline Reservation System - Software EngineeringAirline Reservation System - Software Engineering
Airline Reservation System - Software Engineering
 
Performance Management and Feedback - SHRM
Performance Management and Feedback - SHRMPerformance Management and Feedback - SHRM
Performance Management and Feedback - SHRM
 
Computer System Architecture - BUN instruction
Computer System Architecture - BUN instructionComputer System Architecture - BUN instruction
Computer System Architecture - BUN instruction
 
King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4King of acids -Sulphuric Acid H2SO4
King of acids -Sulphuric Acid H2SO4
 
Information Technology - System Threats
Information Technology - System ThreatsInformation Technology - System Threats
Information Technology - System Threats
 
Software Metrics - Software Engineering
Software Metrics - Software EngineeringSoftware Metrics - Software Engineering
Software Metrics - Software Engineering
 
Binary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of AlgorithmsBinary Search - Design & Analysis of Algorithms
Binary Search - Design & Analysis of Algorithms
 
CNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of ComputationCNF & Leftmost Derivation - Theory of Computation
CNF & Leftmost Derivation - Theory of Computation
 
Fd & Normalization - Database Management System
Fd & Normalization - Database Management SystemFd & Normalization - Database Management System
Fd & Normalization - Database Management System
 

Recently uploaded

Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 

Recently uploaded (20)

Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 

Determinants - Mathematics

  • 2. Introduction Every square matrix has associated with it a scalar called its determinant. Given a matrix A, we use det(A) or |A| to designate its determinant. We can also designate the determinant of matrix A by replacing the brackets by vertical straight lines. For example, A=[2 1 0 3 ] det(A)=∣ 2 1 0 3 ∣ Definition 1: The determinant of a 1×1 matrix [a] is the scalar a. Definition 2: The determinant of a 2×2 matrix is the scalar ad-bc. For higher order matrices, we will use a recursive procedure to compute determinants. [a b c d]
  • 3. Expansion by Cofactors Definition 1: Given a matrix A, a minor is the determinant of square submatrix of A. Definition 2: Given a matrix A=[aij] , the cofactor of the element aij is a scalar obtained by multiplying together the term (-1)i+j and the minor obtained from A by removing the ith row and the jth column. In other words, the cofactor Cij is given by Cij = (−1)i+j Mij. For example, A= [ a11 a12 a13 a21 a22 a23 a31 a32 a33 ] M21=∣ a12 a13 a32 a33 ∣ M22=∣ a11 a13 a31 a33 ∣ ⇒C21=(−1)2+1 M 21=−M21 ⇒C22=(−1) 2+2 M22=M22
  • 4. Expansion by Cofactors To find the determinant of a matrix A of arbitrary order, a)Pick any one row or any one column of the matrix; b)For each element in the row or column chosen, find its cofactor; c)Multiply each element in the row or column chosen by its cofactor and sum the results. This sum is the determinant of the matrix. In other words, the determinant of A is given by det( A)=∣A∣=∑ j=1 n aij Cij=ai1 Ci1+ai2 Ci2+⋯+ain Cin det ( A )=∣A∣=∑ i=1 n aij Cij=a1j C1j+a2j C2j +⋯+anj Cnj ith row expansion jth column expansion
  • 5. Example 1: We can compute the determinant 1 2 3 4 5 6 7 8 9 =T by expanding along the first row, ( ) ( ) ( ) 1 1 1 2 1 35 6 4 6 4 5 1 2 3 8 9 7 9 7 8 + + + = × − + × − + × −T 3 12 9 0= − + − = Or expand down the second column: ( ) ( ) ( ) 1 2 2 2 3 24 6 1 3 1 3 2 5 8 7 9 7 9 4 6 + + + = × − + × − + × −T 12 60 48 0= − + = Example 2: (using a row or column with many zeroes) ( ) 2 3 1 5 0 1 5 2 1 1 1 3 1 3 1 0 + = × − − − 16=
  • 6. Properties of determinants Property 1: If one row of a matrix consists entirely of zeros, then the determinant is zero. Property 2: If two rows of a matrix are interchanged, the determinant changes sign. Property 3: If two rows of a matrix are identical, the determinant is zero. Property 4: If the matrix B is obtained from the matrix A by multiplying every element in one row of A by the scalar λ, then | B|= λ|A|. Property 5: For an n × n matrix A and any scalar λ, det(λA)= λn det(A).
  • 7. Properties of determinants Property 6: If a matrix B is obtained from a matrix A by adding to one row of A, a scalar times another row of A, then |A|=|B|. Property 7: det(A) = det(AT ). Property 8: The determinant of a triangular matrix, either upper or lower, is the product of the elements on the main diagonal. Property 9: If A and B are of the same order, then det(AB)=det(A) det(B).
  • 8. Inversion Theorem 1: A square matrix has an inverse if and only if its determinant is not zero. Below we develop a method to calculate the inverse of nonsingular matrices using determinants. Definition 1: The cofactor matrix associated with an n × n matrix A is an n × n matrix Ac obtained from A by replacing each element of A by its cofactor. Definition 2: The adjugate of an n × n matrix A is the transpose of the cofactor matrix of A: Aa = (Ac )T
  • 9.  Find the adjugate of Solution: The cofactor matrix of A: A= [−1 3 2 0 −2 1 1 0 −2 ] [ ∣−2 1 0 −2 ∣ −∣0 1 1 −2 ∣ ∣0 −2 1 0 ∣ −∣ 3 2 0 −2 ∣ ∣ −1 2 1 −2 ∣ −∣ −1 3 1 0 ∣ ∣ 3 2 −2 1 ∣ −∣ −1 2 0 1 ∣ ∣ −1 3 0 −2 ∣] = [4 1 2 6 0 3 7 1 2 ] Aa = [4 6 7 1 0 1 2 3 2 ] Example of finding adjugate
  • 10. Inversion using determinants Theorem 2: A Aa = Aa A = |A| I . If |A| ≠ 0 then from Theorem 2, A(Aa ∣A∣)=(Aa ∣A∣)A=I A −1 = 1 ∣A∣ A a if ∣A∣≠0 That is, if |A| ≠ 0, then A-1 may be obtained by dividing the adjugate of A by the determinant of A. For example, if then A=[a b c d ], A−1 = 1 ∣A∣ Aa = 1 ad−bc [d −b −c a ]
  • 11. Use the adjugate of to find A-1A= [−1 3 2 0 −2 1 1 0 −2 ] Aa = [4 6 7 1 0 1 2 3 2 ] ∣A∣=(−1)(−2)(−2)+(3)(1)(1)−(1)(−2)(2)=3 A −1 = 1 ∣A∣ A a = 1 3 [ 4 6 7 1 0 1 2 3 2 ]= [ 4 3 2 7 3 1 3 0 1 3 2 3 1 2 3 ] Inversion using determinants: example