SlideShare a Scribd company logo
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)
e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 7, Issue 2 (May. - Jun. 2013), PP 49-62
www.iosrjournals.org
www.iosrjournals.org 49 | Page
Seismic Retrofitting of a RC Building by Adding Steel Plate Shear
Walls
M.A. Ismaeil1
,A.E.Hassaballa3
1 King Khalid University, KSA. On Leave from Sudan University of Science and Technology, Khartoum, Sudan.
3 Jazan University, KSA. On Leave from Sudan University of Science and Technology, Khartoum, Sudan.
Abstract: This paper deals with the step-by-step retrofitting of buildings by using steel plate shear walls
(SPSWs) with the aid of SAP2000 programme. One type of reinforced concrete building is selected for
evaluation. This building represents the most used forms of residential buildings in the Sudan, in terms of
geometric form, and dimensions. This paper uses the equivalent static method provided in the regulations
proposed by the Egyptian Society for Earthquake Engineering. One typical model was selected from the existing
residual buildings in Khartoum city, as a case study. The proposed methodology that has been used to evaluate
the seismic resistance of chosen building is done through the design of the structural elements of the buildings
before and after adding the seismic forces. The retrofitting of building was done by using steel plate shear walls
with thicknesses of 5mm, 7mm and 10mm. From the results obtained, it was found that the use of two additional
SPSWs with 7 mm thickness placed at the internal frame of the existing system, resulted in a reduction of
bending moments in the columns and beams. The increase of thickness has a clear effect on the bending moment
of the columns, but has little effects on the bending moments of the beams.
Keywords- Retrofitting, SAP2000, Steel Plate Shear Walls (SPSWs), the Sudan
I. Introduction
This paper discusses Seismic retrofitting of a typical residential building in the Sudan which have been
designed and constructed without any seismic provisions. Seismic retrofitting is a modification of the structural
and /or non-structural components in a building that aims to improve the building's performance in future
earthquakes. Adding structural walls is one of the most common structure-level retrofitting methods to
strengthen existing structures. This approach is effective for controlling global lateral drifts and for reducing
damage in frame members. In this paper the seismic retrofitting of existing reinforced concrete RC buildings by
means of steel shear walls is examined.
1.1 The main function of steel plate shear walls
The main function of a steel plate shear wall (SPSW) is to resist horizontal story shear and overturning
moment due to lateral loads. In general, steel plate shear wall system consists of a steel plate wall, two boundary
columns and horizontal floor beams , fig.1, and 2 show samples of steel plate shear wall systems [1].
Figure 1. Coupled steel plate shear wall [1]
Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls
www.iosrjournals.org 50 | Page
Figure 2. A view of building with steel plate shear walls and a close-up of the walls [1]
1.2 The construction of steel plate shear walls
Steel plate shear wall systems that can be constructed with shop welded-field bolted elements can make
the steel plate shear walls more efficient than the traditional systems Fig .3 show the Steel Frame – RC
Structure Connections .
(a)
(b)
Figure 3. The steel frame – RC structure connections [2]
II. Case Study
2.1 Description of the Building
A three-story RC residential building, representing the majority of domestic buildings in Sudan, was
selected for this research. The studied frame is an existing building located in Khartoum city zone 2A [8]. The
structure system is a moment resisting RC frame with a 200 mm thickness flat slab, situated .The analysis is
carried out using SAP2000 FEA programm [3]. The structural members are made of in-situ reinforced concrete
.The overall plan dimension is 18 mx24 m. the height of the building is 9.6 m .The rectangular shape was used
for the columns. Columns and beams sizes along the building height are listed in Tables 1 and 2.Figs. 4, 5, and 6
show detailed information on the structural and architectural layout of the building.
Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls
www.iosrjournals.org 51 | Page
Figure 4. Section x-x
Figure 5.Foundations and columns plan
Figure 6. Plan of residual building considered
Table 1. The cross sections of columns
The cross sections of columnsStory No.
250x500Ground floor
250x500First floor
250x500Second floor
Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls
www.iosrjournals.org 52 | Page
Table 2. The cross sections of beams
The cross sections of beamsStory No.
300x500Ground floor
300x500First floor
300x500Second floor
IV. Structural Modeling
Numerical models for the case has been prepared using SAP2000 version 14 (Computers and
Structures) [3]. Beams and columns are modeled as frame elements while walls and slabs are modeled as shell
elements. In this paper the seismic performance of the considered residual building will be evaluated using the
linear static analysis procedure. .Fig. 7 shows the models for the three-story building. The label of columns is
shown in Fig. 8.
Figure 7. Three –dimension view of the initial structure.
Figure 8. Label of columns
4.1 Modeling of steel shear walls in Analysis
The steel plate shear walls can be modeled using full shell elements and isotropic material. It is
suggested that the wall panel be modeled using at least 16 shell elements (4x4 mesh) per panel [11]. The lateral
force resisting system consists of moment resisting frames with steel plate shear walls. The thickness of steel
shear wall panels is taken variable between 5mm-10 mm [4].
V. Analysis of Original Building
The internal forces obtained from the computer analysis program SAP2000 [3] are used to design the
reinforced concrete sections of the structural elements of the residual building using the (BS 8110, 1997) [5]
,and the limit state design method (Mosley and Bungey, 1997) [6]. It has been found that the existing design of
columns under the effect of gravity loads is adequate for the study case. As for the design of columns a
computer program called ISACOL (Shehata, 1999) [7] has been used. The paper studied four columns for the
evaluation. Table 3 shows the Straining action for the four columns due to gravity load and Table 4 shows the
present design compared with the original design of critical columns for the studied case. It is clear that the
Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls
www.iosrjournals.org 53 | Page
original design of these columns exceeds the present design which means that it is satisfactory for gravity loads.
It is worthy to mention that internal forces in beams of the study case have been calculated under gravity loads.
Then the (BS 8110, 1997) [5] has been used to check the existing design. It has been found that the existing
design is adequate for the case.
Table 3.Straining action for the four columns due to gravity loads
Columns
No.
Load Case N Mx My
C12 ULTIMATE 904.74 9.40 47.73
C20 ULTIMATE 1181.41 2.39 -9.22
C14 ULTIMATE 1357.83 1.07 -2.03
C22 ULTIMATE 1358.37 8.83 1.55
Where :
N: is the axial load in the column due to due to forces.
Mx : is the bending moment at the column due to forces applied in x- direction .
My : is the bending moment at the column due to forces applied in y- direction.
5.1 Design of some columns due to gravity loads only (C22):
Figure 9. ISACOL Program result for design of column No, C22 due to gravity loads
Table 4. Comparison between original and present design for gravity loads
Column
No.
Original Design Present Design
Section* Reinf. Section* Reinf.
C12 250x500 8 Φ 16 250x400 8 Φ 16
C20 250x500 8 Φ 16 250x400 8 Φ 16
C14 250x500 8 Φ 16 250x400 8 Φ 16
C22 250x500 8 Φ 16 250x400 8 Φ 16
* Section dimensions are in mm.
Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls
www.iosrjournals.org 54 | Page
VI. Check of Design Considering Earthquake and Wind Loads
The moments obtained from earthquake and wind loads are shown in .Tables4 and 5. It has been found
that the effect of seismic load is much more than the effect of wind load. Fig. 12 and fig. 13 show the
comparison between moments in columns due to earthquake and wind loads.
6.1 Wind loads
The British Standard Code gives methods for determining the gust peak wind loads on buildings and
components thereof that should be taken into account in design using equivalent static procedures. Wind loads
according to British Standard Code (BSI) were calculated by using SAP2000, and Wind speed factors according
to BSI, cp3: chapter V: part 2: 1972 [4] .The basic wind speed V for Khartoum is given by 44.4 m/sec [8] .
Table 5. The Staining actions (Mx) due to Wind loads (ENVWX) and Seismic loads (ENVEQX)
Column
No.
Wind-ENVWX Seismic-ENVEQX
Mx Mx
C12 9.40 9.40
C20 4.26 2.47
C14 1.09 1.09
C22 11.78 8.84
Table 6. The Staining actions (My) due to Wind loads (ENVWX) and Seismic loads (ENVEQX)
Column No.
Wind-ENVWX Seismic-ENVEQX
My My
C12 47.63 47.63
C20 -9.26 -9.26
C14 -2.00 -2.00
C22 1.52 1.52
Table 7. The Staining actions (Mx) due to Wind loads (ENVWY) and Seismic loads (ENVEQY)
Column No.
Wind-ENVWY Seismic-ENVEQY
Mx Mx
C12 43.77 83.43
C20 34.46 71.64
C14 30.88 66.33
C22 41.80 80.28
Table 8. The Staining actions (MY) due to Wind loads (ENVWY) and Seismic loads (ENVEQY)
Column
No.
Wind+ENVWY Seismic+ENVEQY
My My
C12 51.80 50.51
C20 -8.97 -9.26
C14 -2.00 -2.00
C22 4.91 13.74
Where, ENVEQX are envelope of Load Combination for seismic loads in direction x, ENVEQY: are
envelope of Load Combination for seismic loads in direction in direction Y.
Figure 10.Comparison between My due to Wind loads and My due to Seismic loads
Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls
www.iosrjournals.org 55 | Page
Figure 11.Comparison between Mx due to Wind loads and Mx due to Seismic loads
In all directions the effect of seismic loads is govern so, the paper concentrated in the effect of seismic
loads only
6.2 Earthquake loads
It is well known that the Sudan has no regulations for the seismic design of buildings. Therefore, in the
present paper earthquake loads are calculated following the rules which are given in the Regulations for
earthquake resistant design of buildings in Egypt, (ESEE, 1988) [9]. These regulations have been prepared by
the Egyptian Society for Earthquake Engineering (ESEE). In order to apply the ESEE regulations a seismic map
for the Sudan is required to determine the site seismicity factor. In 2002, Eissa et al . Developed a new seismic
hazard maps and seismic zoning map for the Sudan (Eissa et al , 2002) [8] , as shown in Fig.12.
Figure 12. Seismic Zoning Map of the Sudan (Eissa et al , 2002) [8]
Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls
www.iosrjournals.org 56 | Page
Figure 13. Seismic Hazard Map of the Sudan (Hassaballa et al , 2010) [10].
VII. Seismic Assessment by the ESEE. 1988
The total design seismic base shear force is estimated using the static equivalent force procedure
(ESEE, 19880) [9]. Four our case study, distribution of the lateral seismic loads is shown in fig 16 , for both
directions.
7.1 Calculation of base shear
The total weight is given by equation (1) :
Wi = Di + PLi (1)
Where, p is the incidence factor and is equal to p = 0.25. After analysis for gravity loads, the total floor weight
will be as follows: 8955 KN.The equivalent lateral force procedure of (ESEE 1988) was used to calculate the
design base shear. The resulting seismic coefficient, Cs, was determined to be 0.125 and the corresponding base
shear was approximately 1120 KN.from equation (2):
V = Cs*Wt (2)
7.2 Distribution of horizontal seismic force
The period of the building is the same in both directions. Hence, the load in the E-W direction are the
same as those for the N-S direction as shown Fig 14.
Figure 14.Distribution of horizontal seismic force
Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls
www.iosrjournals.org 57 | Page
7.3 Check of seismic design for study case
Numerical analysis for the study case has been performed using SAP2000 (Computers and Structures)
[3] and the reinforced concrete columns are designed according to the (BS 8110, 1997) [5] using the limit state
design method (Mosley and Bungey, 1997) [6].Table 9 and 10 show the Straining action (moments) for the ten
columns due to seismic load, and the seismic design compared with the original design of that columns which
are chosen respectively. It is clear that most of columns are unsafe due to seismic loads. Therefore, a
strengthening scheme is needed for the residual building in order to resist earthquake forces.
Table 9.Straining action for the same four columns due to seismic loads
Column No. Load Case N Mx My
C12 ENVEQY 904.60 83.43 50.51
C20 ENVEQY 1181.39 71.64 -9.26
C14 ENVEQY 1357.73 66.33 -2.00
C22 ENVEQY 1358.28 80.28 13.74
7.3.1 Design of some columns due to gravity and seismic loads (C22):
Figure 15.ISACOL Program result for Design of Column No, C22due to seismic loads
Table 10. Comparison between Original and Present Design Including Seismic Loads
Column
No.
Original Design Present Design
Section* Reinf. Section* Reinf.
C12 250x500 8 Φ 16 250x550 10 Φ 16
C20 250x500 8 Φ 16 250x500 10 Φ 16
C14 250x500 8 Φ 16 250x500 10 Φ 16
C22 250x500 8 Φ 16 250x600 10 Φ 16
* Section dimensions are in mm.
VIII. Suggesting of Retrofitting
8.1 Type of retrofitting
There are many seismic retrofit techniques available, depending on the purpose needed from
strengthening, types and conditions of structures. Seismic retrofitting is the modification of existing structures
to make them more resistant to seismic ground motion, or soil failure due to earthquakes .
There are two ways to enhance the seismic capacity of existing structures. The first approach is a structure-level
retrofit, which involves global modifications to the structural system. Common global modifications include the
addition of structural walls, steel braces, or base isolators. The second approach is a member-level retrofit. In
this approach, the ductility of components with inadequate capacities is increased to satisfy their specific limit
Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls
www.iosrjournals.org 58 | Page
states. The member-level retrofit includes methods such as the addition of concrete, steel, or fiber reinforced
polymer (FRP) jackets to columns for confinement [11] .Fig. 16-18 show some technique using to retrofit
existing structures.
Figure 16. Retrofitted with RC Wing Wall
Figure 17. School building retrofitted with shear walls
Figure 18. Retrofitting with RC Column Jacketing [12]
Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls
www.iosrjournals.org 59 | Page
8.2 suggestion of strengthening
There are different methods for seismic strengthening of existing buildings. However, social and
economic conditions should be considered to choose the appropriate method. Adding structural walls is one of
the most common structure-level retrofitting methods to strengthen existing structures. This approach is
effective for controlling global lateral drifts and for reducing damage in frame members [5]. Structural walls
may be either reinforced concrete or steel plate. In this paper new SPSWs with 5 mm, 7 mm, and 10 mm
thickness were added in (y) direction along the height of the structure. Fig. 20, 21 , and 22 show the suggested
strengthening of the structure with the new SPSWs.
Figure 20. The SPSWs 5 mm
Figure 21. The SPSWs 7 mm
Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls
www.iosrjournals.org 60 | Page
Figure 22. The SPSWs 10 mm
Figure 23. Modeling of shear wall in y directions [14]
IX. Analysis of Retrofitted Structure
The strengthened structure was reanalyzed using the same procedure. The proposed method increased
the performance of the structure in both directions either for strength, displacement and ductility capacity.
Table. 11 show straining action for the four columns that which is chosen due to seismic load before and after
strengthening. It has been found that all columns in the study case became safe after strengthening.
Table 11. Straining action for the four columns that which are chosen due to seismic load before and after
strengthening.
Column
No.
Gravity Seismic+Column
SPSW
5mm
SPSW
7mm
SPSW
10mm
C12 9.40 83.43 35.09 29.96 25.26
C20 2.39 71.64 56.63 53.27 49.66
C14 1.07 66.33 24.94 20.50 16.41
C22 8.83 80.28 41.19 36.46 31.86
Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls
www.iosrjournals.org 61 | Page
Figure 24.Straining action Mx for the four columns which are chosen due to seismic load before and after
strengthening.
Table 12. Straining action My for the four columns that which are chosen due to seismic load before and after
strengthening.
Columns
No.
Gravity Seismic+Column SPSW 5mm SPSW 7mm
SPSW
10mm
My My My My My
C12 47.73 50.51 54.24 53.83 53.06
C20 -9.22 -9.26 -9.68 -9.74 -9.80
C14 -2.03 -2.00 -2.75 -2.88 -3.01
C22 1.55 13.74 15.87 15.39 14.61
Figure 25.Straining action My for the four columns which are chosen due to seismic load before and after
strengthening.
Table 13. Comparison between Original and Strengthened Design for Study Case .
Column No.
Original Design After Strengthening
Section* Reinf. Section* Reinf.
C12 250x500 8 Φ 16 250x400 8 Φ 16
C20 250x500 8 Φ 16 250x400 8 Φ 16
C14 250x500 8 Φ 16 250x400 8 Φ 16
C22 250x500 8 Φ 16 250x400 8 Φ 16
* Section dimensions are in mm
X. Conclusion
One of the most difficult problems of strengthening of existing buildings is how to find the adequate
solution that satisfies both economical and technical aspects.
Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls
www.iosrjournals.org 62 | Page
This study presents guidelines to investigate the seismic resistance of buildings in Sudan.? The present
paper proposes a simple procedure to check the seismic resistance and retrofit of such buildings. The obtained
results emphasize the following conclusions: (1) Current design of residual buildings in the Sudan does not
consider earthquake loads,(2) It has been found that the current design of buildings in the Sudan is not safe for
the current seismicity of the Sudan,(3) A proposed methodology has been presented for evaluation of seismic
resistance of existing buildings in the Sudan, and (4) A strengthening technique for existing buildings in the
Sudan has been presented. (5) with the use of 7 mm thickness steel plate shear wall inserted in the building, a
reduction of bending moments in the columns and beams was observed. (6) The increase of thickness has a clear
effect on the bending moment of the columns, and has little effects on the bending moment of the beams.
It is recommended that, since this retrofitting method showed a great improvement in the capacity of the
building, it should be adopted as a suitable strategy for this case to reduce the seismic vulnerability of exiting
RC buildings in Sudan.
References
[1]. Abolhassan, P.E. ,Seismic Behaviour and Design of Steel Shear Walls.(ASI, Steel TIPS, First Print, California,2001).
[2]. Astaneh-Asl, A., Steel Plate Shear Walls, Proceedings, U.S.-Japan Partnership for Advanced Steel Structures, U.S.-Japan
Workshop on Seismic Fracture issues in Steel Structure, San Francisco,February 2000.
[3]. Computers and Structures. SAP2000: Three Dimensional Static and Dynamic Finite Element Analysis and Design of Structures,
Computers and Structures Inc., Berkeley, California, U.S.A. 2001.
[4]. Ismaeil, M. A., and Sobaih, M.E, A Proposed Methodology for Seismic Evaluation and Strengthening of Existing School
Buildings in The Sudan., 15th WCEE, Portugal, September, 2012. Paper No.0 571.
[5]. BS 8110. The Structural Use of Concrete, British Standard Institution, London. 1997.
[6]. Mosley, W. H. and Bungey, J. H. ,Reinforced Concrete Design (BS 8110:Part 1, 2nd Ed. Macmillan , London. 1997).
[7]. A .Y. Shehata, Information Systems Application on Reinforced Concrete Columns., M.Sc. Thesis, Faculty of Engineering,
Department of Structural Engineering, Cairo University, Giza, Egypt, 1999.
[8]. A .A. Eissa, Towards a Sudanese Code of Practice for Earthquake Design., M.Sc. Thesis., Faculty of Engineering, Department of
Structural Engineering, Khartoum University, Khartoum, Sudan. 2002.
[9]. Egyptian Society for Earthquake Engineering (ESEE) ,Regulations for Earthquake-Resistance Design of Buildings in Egypt.,Cairo
,Egypt.,(1988).
[10]. Hassaballa, A. E , Sobaih, M. E & A. R. A. Mohamed ,Sensitivity Analysis in Estimating Seismic Hazard for Sudan., Proc., 14th
European Conference on Earthquake Engineering, 30 Aug.-3 Sept., 2010, Ohrid, Republic of Macedonia.
[11]. Jong-Wha Bai, Seismic Retrofit for Reinforced Concrete Building Structures , Final Report ,. Consequence-Based Engineering
(CBE) Institute,. Texas ,2003.
[12]. Murty .C. V. R . , The Seismic Performance of Reinforced Concrete Frame Buildings with Masonry Infill Walls ,A Tutorial
Developed by a Committee of the World Housing Encyclopedia,(First Edition ,Publication Number WHE,2006).
[13]. Sobaih, M. E ;Hassaballa, A. E , & Ismaeil, M. A. ,Assessment of Seismic Performance and Strengthening of Existing School
Buildings in the Sudan, International Journal of Engineering Research &Technology (IJERT),ISSN:2278-0181, 2(6), 2013.
[14]. Ismaeil, M. A., and Sobaih, M.E, A Proposed Methodology for Seismic Evaluation and Strengthening of Existing School
Buildings in The Sudan., 15th WCEE, Portugal, September, 2012. Paper No.0 571.

More Related Content

What's hot

Retrofitting
Retrofitting Retrofitting
Retrofitting
Pankajkumar Singh
 
Comparison of Mesh Type Seismic Retrofitting for Masonry Structures
Comparison of Mesh Type Seismic Retrofitting for Masonry StructuresComparison of Mesh Type Seismic Retrofitting for Masonry Structures
Comparison of Mesh Type Seismic Retrofitting for Masonry Structures
chali090
 
Retrofitting
RetrofittingRetrofitting
Retrofitting
Rizwan Samor
 
C046401422
C046401422C046401422
C046401422
IOSR-JEN
 
Seismic Retrofitting of Masonry Structures
Seismic Retrofitting of Masonry StructuresSeismic Retrofitting of Masonry Structures
Seismic Retrofitting of Masonry Structures
Dr K M SONI
 
SEISMIC RETROFITTING OF BUILDINGS
SEISMIC RETROFITTING OF BUILDINGSSEISMIC RETROFITTING OF BUILDINGS
SEISMIC RETROFITTING OF BUILDINGS
Sukanta Paul
 
Textiles in earthquake prevention
Textiles in earthquake preventionTextiles in earthquake prevention
Textiles in earthquake prevention
Suvin
 
Seismic retrofitting of buildings
Seismic retrofitting of buildingsSeismic retrofitting of buildings
Seismic retrofitting of buildings
Sukanta Paul
 
Kiran more (retrofitting presentation)te b
Kiran more (retrofitting presentation)te bKiran more (retrofitting presentation)te b
Kiran more (retrofitting presentation)te b
KiranMore87
 
seismic retrofit
seismic retrofitseismic retrofit
seismic retrofit
sunil lokhande
 
Retrofitting of irrigation structures- Prakasam Barrage, Andhra Pradesh, -A...
Retrofitting of irrigation  structures- Prakasam Barrage, Andhra Pradesh, -A...Retrofitting of irrigation  structures- Prakasam Barrage, Andhra Pradesh, -A...
Retrofitting of irrigation structures- Prakasam Barrage, Andhra Pradesh, -A...
IEI GSC
 
Retrofitting
RetrofittingRetrofitting
Retrofitting
Yash Kumar
 
Seismic retrofitting techniques & rehabilitation
Seismic retrofitting techniques & rehabilitationSeismic retrofitting techniques & rehabilitation
Seismic retrofitting techniques & rehabilitation
Shuvam Sarkar
 
Retrofitting case study of RCC structure
Retrofitting case study of RCC structureRetrofitting case study of RCC structure
Retrofitting case study of RCC structure
Manish Sharma
 
Comparison of Different Retrofitting Techniques for Masonry Buildings
Comparison of Different Retrofitting Techniques for Masonry BuildingsComparison of Different Retrofitting Techniques for Masonry Buildings
Comparison of Different Retrofitting Techniques for Masonry Buildings
Nitin Kumar
 
Retrofitting
RetrofittingRetrofitting
Retrofitting
Roshni K G
 
Seismic retrofit for rcc structureslocal global consequences
Seismic retrofit for rcc structureslocal global consequencesSeismic retrofit for rcc structureslocal global consequences
Seismic retrofit for rcc structureslocal global consequences
Hashim k abdul azeez
 
Seismic retrofit methods
Seismic retrofit methodsSeismic retrofit methods
Seismic retrofit methods
Paul McMullin
 
Retrofitting of Masonry Buildings
Retrofitting of Masonry BuildingsRetrofitting of Masonry Buildings
Retrofitting of Masonry Buildings
Manish Sharma
 
Seismic Retrofitting of RC Building with Jacketing and Shear Wall Seismic Ret...
Seismic Retrofitting of RC Buildingwith Jacketing and Shear Wall Seismic Ret...Seismic Retrofitting of RC Buildingwith Jacketing and Shear Wall Seismic Ret...
Seismic Retrofitting of RC Building with Jacketing and Shear Wall Seismic Ret...
Bala murali
 

What's hot (20)

Retrofitting
Retrofitting Retrofitting
Retrofitting
 
Comparison of Mesh Type Seismic Retrofitting for Masonry Structures
Comparison of Mesh Type Seismic Retrofitting for Masonry StructuresComparison of Mesh Type Seismic Retrofitting for Masonry Structures
Comparison of Mesh Type Seismic Retrofitting for Masonry Structures
 
Retrofitting
RetrofittingRetrofitting
Retrofitting
 
C046401422
C046401422C046401422
C046401422
 
Seismic Retrofitting of Masonry Structures
Seismic Retrofitting of Masonry StructuresSeismic Retrofitting of Masonry Structures
Seismic Retrofitting of Masonry Structures
 
SEISMIC RETROFITTING OF BUILDINGS
SEISMIC RETROFITTING OF BUILDINGSSEISMIC RETROFITTING OF BUILDINGS
SEISMIC RETROFITTING OF BUILDINGS
 
Textiles in earthquake prevention
Textiles in earthquake preventionTextiles in earthquake prevention
Textiles in earthquake prevention
 
Seismic retrofitting of buildings
Seismic retrofitting of buildingsSeismic retrofitting of buildings
Seismic retrofitting of buildings
 
Kiran more (retrofitting presentation)te b
Kiran more (retrofitting presentation)te bKiran more (retrofitting presentation)te b
Kiran more (retrofitting presentation)te b
 
seismic retrofit
seismic retrofitseismic retrofit
seismic retrofit
 
Retrofitting of irrigation structures- Prakasam Barrage, Andhra Pradesh, -A...
Retrofitting of irrigation  structures- Prakasam Barrage, Andhra Pradesh, -A...Retrofitting of irrigation  structures- Prakasam Barrage, Andhra Pradesh, -A...
Retrofitting of irrigation structures- Prakasam Barrage, Andhra Pradesh, -A...
 
Retrofitting
RetrofittingRetrofitting
Retrofitting
 
Seismic retrofitting techniques & rehabilitation
Seismic retrofitting techniques & rehabilitationSeismic retrofitting techniques & rehabilitation
Seismic retrofitting techniques & rehabilitation
 
Retrofitting case study of RCC structure
Retrofitting case study of RCC structureRetrofitting case study of RCC structure
Retrofitting case study of RCC structure
 
Comparison of Different Retrofitting Techniques for Masonry Buildings
Comparison of Different Retrofitting Techniques for Masonry BuildingsComparison of Different Retrofitting Techniques for Masonry Buildings
Comparison of Different Retrofitting Techniques for Masonry Buildings
 
Retrofitting
RetrofittingRetrofitting
Retrofitting
 
Seismic retrofit for rcc structureslocal global consequences
Seismic retrofit for rcc structureslocal global consequencesSeismic retrofit for rcc structureslocal global consequences
Seismic retrofit for rcc structureslocal global consequences
 
Seismic retrofit methods
Seismic retrofit methodsSeismic retrofit methods
Seismic retrofit methods
 
Retrofitting of Masonry Buildings
Retrofitting of Masonry BuildingsRetrofitting of Masonry Buildings
Retrofitting of Masonry Buildings
 
Seismic Retrofitting of RC Building with Jacketing and Shear Wall Seismic Ret...
Seismic Retrofitting of RC Buildingwith Jacketing and Shear Wall Seismic Ret...Seismic Retrofitting of RC Buildingwith Jacketing and Shear Wall Seismic Ret...
Seismic Retrofitting of RC Building with Jacketing and Shear Wall Seismic Ret...
 

Viewers also liked

Seismic retrofit of building structures
Seismic retrofit of building structuresSeismic retrofit of building structures
Seismic retrofit of building structures
gopi1991
 
Seismic retrofitting techniques of rcc
Seismic retrofitting techniques of rccSeismic retrofitting techniques of rcc
Seismic retrofitting techniques of rcc
Korrapati Pratyusha
 
Helen McHugh, Head of Sustainable Technology at ebm-papst - Retrofitting Case...
Helen McHugh, Head of Sustainable Technology at ebm-papst - Retrofitting Case...Helen McHugh, Head of Sustainable Technology at ebm-papst - Retrofitting Case...
Helen McHugh, Head of Sustainable Technology at ebm-papst - Retrofitting Case...
Global Business Events
 
Final presentations lxb123530 attempt_2014-05-06-22-47-10_20140506 retrofitti...
Final presentations lxb123530 attempt_2014-05-06-22-47-10_20140506 retrofitti...Final presentations lxb123530 attempt_2014-05-06-22-47-10_20140506 retrofitti...
Final presentations lxb123530 attempt_2014-05-06-22-47-10_20140506 retrofitti...
designprince
 
DESIGN AND ANALYSIS OF MULTI STORIED STRUCTURES USING STATIC NON LINEAR ANALYSIS
DESIGN AND ANALYSIS OF MULTI STORIED STRUCTURES USING STATIC NON LINEAR ANALYSISDESIGN AND ANALYSIS OF MULTI STORIED STRUCTURES USING STATIC NON LINEAR ANALYSIS
DESIGN AND ANALYSIS OF MULTI STORIED STRUCTURES USING STATIC NON LINEAR ANALYSIS
Ijripublishers Ijri
 
Ajmal
AjmalAjmal
seismic retrofitting using precast elements
seismic retrofitting using precast elementsseismic retrofitting using precast elements
seismic retrofitting using precast elements
discorajan
 
Seismic Conceptual Design of Buildings
Seismic Conceptual Design of BuildingsSeismic Conceptual Design of Buildings
Seismic Conceptual Design of Buildings
Mohd Danish
 
RETROFITTING
RETROFITTINGRETROFITTING
RETROFITTING
Md.Asif Rahman
 
Retrrofitting
RetrrofittingRetrrofitting
Retrrofitting
ENGR.TOWHIDUL ISLAM
 
Standard Penetration Test & Liquid Limit,Plasticity Limit
Standard Penetration Test & Liquid Limit,Plasticity LimitStandard Penetration Test & Liquid Limit,Plasticity Limit
Standard Penetration Test & Liquid Limit,Plasticity Limit
gurjapsinghsomal
 
METHODS OF RETROFITTING EARTHQUAKE DAMAGES
METHODS OF RETROFITTING EARTHQUAKE DAMAGESMETHODS OF RETROFITTING EARTHQUAKE DAMAGES
METHODS OF RETROFITTING EARTHQUAKE DAMAGES
Umer Farooq
 
Chapter 4 repair, rehabilitation & retrofiiting
Chapter 4 repair, rehabilitation & retrofiitingChapter 4 repair, rehabilitation & retrofiiting
Chapter 4 repair, rehabilitation & retrofiiting
Ankit Patel
 
Standard Penetration Test
Standard Penetration TestStandard Penetration Test
Standard Penetration Test
Abdur Rahman Quadri
 

Viewers also liked (14)

Seismic retrofit of building structures
Seismic retrofit of building structuresSeismic retrofit of building structures
Seismic retrofit of building structures
 
Seismic retrofitting techniques of rcc
Seismic retrofitting techniques of rccSeismic retrofitting techniques of rcc
Seismic retrofitting techniques of rcc
 
Helen McHugh, Head of Sustainable Technology at ebm-papst - Retrofitting Case...
Helen McHugh, Head of Sustainable Technology at ebm-papst - Retrofitting Case...Helen McHugh, Head of Sustainable Technology at ebm-papst - Retrofitting Case...
Helen McHugh, Head of Sustainable Technology at ebm-papst - Retrofitting Case...
 
Final presentations lxb123530 attempt_2014-05-06-22-47-10_20140506 retrofitti...
Final presentations lxb123530 attempt_2014-05-06-22-47-10_20140506 retrofitti...Final presentations lxb123530 attempt_2014-05-06-22-47-10_20140506 retrofitti...
Final presentations lxb123530 attempt_2014-05-06-22-47-10_20140506 retrofitti...
 
DESIGN AND ANALYSIS OF MULTI STORIED STRUCTURES USING STATIC NON LINEAR ANALYSIS
DESIGN AND ANALYSIS OF MULTI STORIED STRUCTURES USING STATIC NON LINEAR ANALYSISDESIGN AND ANALYSIS OF MULTI STORIED STRUCTURES USING STATIC NON LINEAR ANALYSIS
DESIGN AND ANALYSIS OF MULTI STORIED STRUCTURES USING STATIC NON LINEAR ANALYSIS
 
Ajmal
AjmalAjmal
Ajmal
 
seismic retrofitting using precast elements
seismic retrofitting using precast elementsseismic retrofitting using precast elements
seismic retrofitting using precast elements
 
Seismic Conceptual Design of Buildings
Seismic Conceptual Design of BuildingsSeismic Conceptual Design of Buildings
Seismic Conceptual Design of Buildings
 
RETROFITTING
RETROFITTINGRETROFITTING
RETROFITTING
 
Retrrofitting
RetrrofittingRetrrofitting
Retrrofitting
 
Standard Penetration Test & Liquid Limit,Plasticity Limit
Standard Penetration Test & Liquid Limit,Plasticity LimitStandard Penetration Test & Liquid Limit,Plasticity Limit
Standard Penetration Test & Liquid Limit,Plasticity Limit
 
METHODS OF RETROFITTING EARTHQUAKE DAMAGES
METHODS OF RETROFITTING EARTHQUAKE DAMAGESMETHODS OF RETROFITTING EARTHQUAKE DAMAGES
METHODS OF RETROFITTING EARTHQUAKE DAMAGES
 
Chapter 4 repair, rehabilitation & retrofiiting
Chapter 4 repair, rehabilitation & retrofiitingChapter 4 repair, rehabilitation & retrofiiting
Chapter 4 repair, rehabilitation & retrofiiting
 
Standard Penetration Test
Standard Penetration TestStandard Penetration Test
Standard Penetration Test
 

Similar to Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls

G0391049056
G0391049056G0391049056
G0391049056
inventionjournals
 
ANALYSIS OF REINFORCED CONCRETE FRAMED STRUCTURE(G+15) WITH STEEL BRACING SYS...
ANALYSIS OF REINFORCED CONCRETE FRAMED STRUCTURE(G+15) WITH STEEL BRACING SYS...ANALYSIS OF REINFORCED CONCRETE FRAMED STRUCTURE(G+15) WITH STEEL BRACING SYS...
ANALYSIS OF REINFORCED CONCRETE FRAMED STRUCTURE(G+15) WITH STEEL BRACING SYS...
IRJET Journal
 
seismic response of multi storey building equipped with steel bracing
 seismic response of multi storey building equipped with steel bracing seismic response of multi storey building equipped with steel bracing
seismic response of multi storey building equipped with steel bracing
INFOGAIN PUBLICATION
 
Analysis and Optimum Design for Steel Moment Resisting Frames to Seismic Exci...
Analysis and Optimum Design for Steel Moment Resisting Frames to Seismic Exci...Analysis and Optimum Design for Steel Moment Resisting Frames to Seismic Exci...
Analysis and Optimum Design for Steel Moment Resisting Frames to Seismic Exci...
IJCMESJOURNAL
 
Analysis and Optimum Design for Steel Moment Resisting Frames to Seismic Exci...
Analysis and Optimum Design for Steel Moment Resisting Frames to Seismic Exci...Analysis and Optimum Design for Steel Moment Resisting Frames to Seismic Exci...
Analysis and Optimum Design for Steel Moment Resisting Frames to Seismic Exci...
IJCMESJOURNAL
 
Dynamic Response of High Rise Structures Under The Influence of Shear Walls
Dynamic Response of High Rise Structures Under The Influence of Shear WallsDynamic Response of High Rise Structures Under The Influence of Shear Walls
Dynamic Response of High Rise Structures Under The Influence of Shear Walls
IJERA Editor
 
Kt3419401945
Kt3419401945Kt3419401945
Kt3419401945
IJERA Editor
 
EFFECT OF SEISMIC LOAD ON REINFORCED CONCRETE MULTISTORY BUILDING FROM ECONOM...
EFFECT OF SEISMIC LOAD ON REINFORCED CONCRETE MULTISTORY BUILDING FROM ECONOM...EFFECT OF SEISMIC LOAD ON REINFORCED CONCRETE MULTISTORY BUILDING FROM ECONOM...
EFFECT OF SEISMIC LOAD ON REINFORCED CONCRETE MULTISTORY BUILDING FROM ECONOM...
IAEME Publication
 
Ijciet 10 01_009
Ijciet 10 01_009Ijciet 10 01_009
Ijciet 10 01_009
IAEME Publication
 
IRJET- Dynamic Analysis of Tall Tubular Steel Structures for Different Geomet...
IRJET- Dynamic Analysis of Tall Tubular Steel Structures for Different Geomet...IRJET- Dynamic Analysis of Tall Tubular Steel Structures for Different Geomet...
IRJET- Dynamic Analysis of Tall Tubular Steel Structures for Different Geomet...
IRJET Journal
 
Seismic Behavior Of Double Steel Plate Composite Wall Under Cyclic Loading
Seismic Behavior Of Double Steel Plate Composite Wall Under Cyclic LoadingSeismic Behavior Of Double Steel Plate Composite Wall Under Cyclic Loading
Seismic Behavior Of Double Steel Plate Composite Wall Under Cyclic Loading
IRJET Journal
 
Final Ppt (18MTSE005 ).pptx
Final Ppt (18MTSE005 ).pptxFinal Ppt (18MTSE005 ).pptx
Final Ppt (18MTSE005 ).pptx
ErDhirajKumarShah
 
I012274853
I012274853I012274853
I012274853
IOSR Journals
 
Optimisation of earth quake response of tall building by using different fram...
Optimisation of earth quake response of tall building by using different fram...Optimisation of earth quake response of tall building by using different fram...
Optimisation of earth quake response of tall building by using different fram...
eSAT Journals
 
IRJET- Dynamic Analysis of Tall Tubular Steel Structures of Hexagon Configura...
IRJET- Dynamic Analysis of Tall Tubular Steel Structures of Hexagon Configura...IRJET- Dynamic Analysis of Tall Tubular Steel Structures of Hexagon Configura...
IRJET- Dynamic Analysis of Tall Tubular Steel Structures of Hexagon Configura...
IRJET Journal
 
Study of Wind Loads on Steel Building with and Without Different Braced Syste...
Study of Wind Loads on Steel Building with and Without Different Braced Syste...Study of Wind Loads on Steel Building with and Without Different Braced Syste...
Study of Wind Loads on Steel Building with and Without Different Braced Syste...
IRJET Journal
 
Out of Plane Behavior of Contained Masonry Infilled Frames Subjected to Seism...
Out of Plane Behavior of Contained Masonry Infilled Frames Subjected to Seism...Out of Plane Behavior of Contained Masonry Infilled Frames Subjected to Seism...
Out of Plane Behavior of Contained Masonry Infilled Frames Subjected to Seism...
paperpublications3
 
SEISMIC EVALUATION OF RETROFITING TO REINFORCED CONCRETE BUILDINGS
SEISMIC EVALUATION OF RETROFITING TO REINFORCED CONCRETE BUILDINGSSEISMIC EVALUATION OF RETROFITING TO REINFORCED CONCRETE BUILDINGS
SEISMIC EVALUATION OF RETROFITING TO REINFORCED CONCRETE BUILDINGS
IRJET Journal
 
STRUCTURAL PERFORMANCE OF INNOVATIVE FABRICATED COUPLED COMPOSITE COLUMN IN M...
STRUCTURAL PERFORMANCE OF INNOVATIVE FABRICATED COUPLED COMPOSITE COLUMN IN M...STRUCTURAL PERFORMANCE OF INNOVATIVE FABRICATED COUPLED COMPOSITE COLUMN IN M...
STRUCTURAL PERFORMANCE OF INNOVATIVE FABRICATED COUPLED COMPOSITE COLUMN IN M...
IRJET Journal
 
A THEORETICAL STUDY ON COLLAPSE MECHANISM AND STRUCTURAL BEHAVIOR OF MULTI-ST...
A THEORETICAL STUDY ON COLLAPSE MECHANISM AND STRUCTURAL BEHAVIOR OF MULTI-ST...A THEORETICAL STUDY ON COLLAPSE MECHANISM AND STRUCTURAL BEHAVIOR OF MULTI-ST...
A THEORETICAL STUDY ON COLLAPSE MECHANISM AND STRUCTURAL BEHAVIOR OF MULTI-ST...
nhandoan10
 

Similar to Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls (20)

G0391049056
G0391049056G0391049056
G0391049056
 
ANALYSIS OF REINFORCED CONCRETE FRAMED STRUCTURE(G+15) WITH STEEL BRACING SYS...
ANALYSIS OF REINFORCED CONCRETE FRAMED STRUCTURE(G+15) WITH STEEL BRACING SYS...ANALYSIS OF REINFORCED CONCRETE FRAMED STRUCTURE(G+15) WITH STEEL BRACING SYS...
ANALYSIS OF REINFORCED CONCRETE FRAMED STRUCTURE(G+15) WITH STEEL BRACING SYS...
 
seismic response of multi storey building equipped with steel bracing
 seismic response of multi storey building equipped with steel bracing seismic response of multi storey building equipped with steel bracing
seismic response of multi storey building equipped with steel bracing
 
Analysis and Optimum Design for Steel Moment Resisting Frames to Seismic Exci...
Analysis and Optimum Design for Steel Moment Resisting Frames to Seismic Exci...Analysis and Optimum Design for Steel Moment Resisting Frames to Seismic Exci...
Analysis and Optimum Design for Steel Moment Resisting Frames to Seismic Exci...
 
Analysis and Optimum Design for Steel Moment Resisting Frames to Seismic Exci...
Analysis and Optimum Design for Steel Moment Resisting Frames to Seismic Exci...Analysis and Optimum Design for Steel Moment Resisting Frames to Seismic Exci...
Analysis and Optimum Design for Steel Moment Resisting Frames to Seismic Exci...
 
Dynamic Response of High Rise Structures Under The Influence of Shear Walls
Dynamic Response of High Rise Structures Under The Influence of Shear WallsDynamic Response of High Rise Structures Under The Influence of Shear Walls
Dynamic Response of High Rise Structures Under The Influence of Shear Walls
 
Kt3419401945
Kt3419401945Kt3419401945
Kt3419401945
 
EFFECT OF SEISMIC LOAD ON REINFORCED CONCRETE MULTISTORY BUILDING FROM ECONOM...
EFFECT OF SEISMIC LOAD ON REINFORCED CONCRETE MULTISTORY BUILDING FROM ECONOM...EFFECT OF SEISMIC LOAD ON REINFORCED CONCRETE MULTISTORY BUILDING FROM ECONOM...
EFFECT OF SEISMIC LOAD ON REINFORCED CONCRETE MULTISTORY BUILDING FROM ECONOM...
 
Ijciet 10 01_009
Ijciet 10 01_009Ijciet 10 01_009
Ijciet 10 01_009
 
IRJET- Dynamic Analysis of Tall Tubular Steel Structures for Different Geomet...
IRJET- Dynamic Analysis of Tall Tubular Steel Structures for Different Geomet...IRJET- Dynamic Analysis of Tall Tubular Steel Structures for Different Geomet...
IRJET- Dynamic Analysis of Tall Tubular Steel Structures for Different Geomet...
 
Seismic Behavior Of Double Steel Plate Composite Wall Under Cyclic Loading
Seismic Behavior Of Double Steel Plate Composite Wall Under Cyclic LoadingSeismic Behavior Of Double Steel Plate Composite Wall Under Cyclic Loading
Seismic Behavior Of Double Steel Plate Composite Wall Under Cyclic Loading
 
Final Ppt (18MTSE005 ).pptx
Final Ppt (18MTSE005 ).pptxFinal Ppt (18MTSE005 ).pptx
Final Ppt (18MTSE005 ).pptx
 
I012274853
I012274853I012274853
I012274853
 
Optimisation of earth quake response of tall building by using different fram...
Optimisation of earth quake response of tall building by using different fram...Optimisation of earth quake response of tall building by using different fram...
Optimisation of earth quake response of tall building by using different fram...
 
IRJET- Dynamic Analysis of Tall Tubular Steel Structures of Hexagon Configura...
IRJET- Dynamic Analysis of Tall Tubular Steel Structures of Hexagon Configura...IRJET- Dynamic Analysis of Tall Tubular Steel Structures of Hexagon Configura...
IRJET- Dynamic Analysis of Tall Tubular Steel Structures of Hexagon Configura...
 
Study of Wind Loads on Steel Building with and Without Different Braced Syste...
Study of Wind Loads on Steel Building with and Without Different Braced Syste...Study of Wind Loads on Steel Building with and Without Different Braced Syste...
Study of Wind Loads on Steel Building with and Without Different Braced Syste...
 
Out of Plane Behavior of Contained Masonry Infilled Frames Subjected to Seism...
Out of Plane Behavior of Contained Masonry Infilled Frames Subjected to Seism...Out of Plane Behavior of Contained Masonry Infilled Frames Subjected to Seism...
Out of Plane Behavior of Contained Masonry Infilled Frames Subjected to Seism...
 
SEISMIC EVALUATION OF RETROFITING TO REINFORCED CONCRETE BUILDINGS
SEISMIC EVALUATION OF RETROFITING TO REINFORCED CONCRETE BUILDINGSSEISMIC EVALUATION OF RETROFITING TO REINFORCED CONCRETE BUILDINGS
SEISMIC EVALUATION OF RETROFITING TO REINFORCED CONCRETE BUILDINGS
 
STRUCTURAL PERFORMANCE OF INNOVATIVE FABRICATED COUPLED COMPOSITE COLUMN IN M...
STRUCTURAL PERFORMANCE OF INNOVATIVE FABRICATED COUPLED COMPOSITE COLUMN IN M...STRUCTURAL PERFORMANCE OF INNOVATIVE FABRICATED COUPLED COMPOSITE COLUMN IN M...
STRUCTURAL PERFORMANCE OF INNOVATIVE FABRICATED COUPLED COMPOSITE COLUMN IN M...
 
A THEORETICAL STUDY ON COLLAPSE MECHANISM AND STRUCTURAL BEHAVIOR OF MULTI-ST...
A THEORETICAL STUDY ON COLLAPSE MECHANISM AND STRUCTURAL BEHAVIOR OF MULTI-ST...A THEORETICAL STUDY ON COLLAPSE MECHANISM AND STRUCTURAL BEHAVIOR OF MULTI-ST...
A THEORETICAL STUDY ON COLLAPSE MECHANISM AND STRUCTURAL BEHAVIOR OF MULTI-ST...
 

More from IOSR Journals

A011140104
A011140104A011140104
A011140104
IOSR Journals
 
M0111397100
M0111397100M0111397100
M0111397100
IOSR Journals
 
L011138596
L011138596L011138596
L011138596
IOSR Journals
 
K011138084
K011138084K011138084
K011138084
IOSR Journals
 
J011137479
J011137479J011137479
J011137479
IOSR Journals
 
I011136673
I011136673I011136673
I011136673
IOSR Journals
 
G011134454
G011134454G011134454
G011134454
IOSR Journals
 
H011135565
H011135565H011135565
H011135565
IOSR Journals
 
F011134043
F011134043F011134043
F011134043
IOSR Journals
 
E011133639
E011133639E011133639
E011133639
IOSR Journals
 
D011132635
D011132635D011132635
D011132635
IOSR Journals
 
C011131925
C011131925C011131925
C011131925
IOSR Journals
 
B011130918
B011130918B011130918
B011130918
IOSR Journals
 
A011130108
A011130108A011130108
A011130108
IOSR Journals
 
I011125160
I011125160I011125160
I011125160
IOSR Journals
 
H011124050
H011124050H011124050
H011124050
IOSR Journals
 
G011123539
G011123539G011123539
G011123539
IOSR Journals
 
F011123134
F011123134F011123134
F011123134
IOSR Journals
 
E011122530
E011122530E011122530
E011122530
IOSR Journals
 
D011121524
D011121524D011121524
D011121524
IOSR Journals
 

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Recently uploaded

官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
171ticu
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
Dr Ramhari Poudyal
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
IJECEIAES
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
IJECEIAES
 
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball playEric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
enizeyimana36
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
Rahul
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
gerogepatton
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
mahammadsalmanmech
 
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
ihlasbinance2003
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
University of Maribor
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
camseq
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
NazakatAliKhoso2
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
IJECEIAES
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
sachin chaurasia
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
VICTOR MAESTRE RAMIREZ
 

Recently uploaded (20)

官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
 
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball playEric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
 
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
 

Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls

  • 1. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 7, Issue 2 (May. - Jun. 2013), PP 49-62 www.iosrjournals.org www.iosrjournals.org 49 | Page Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls M.A. Ismaeil1 ,A.E.Hassaballa3 1 King Khalid University, KSA. On Leave from Sudan University of Science and Technology, Khartoum, Sudan. 3 Jazan University, KSA. On Leave from Sudan University of Science and Technology, Khartoum, Sudan. Abstract: This paper deals with the step-by-step retrofitting of buildings by using steel plate shear walls (SPSWs) with the aid of SAP2000 programme. One type of reinforced concrete building is selected for evaluation. This building represents the most used forms of residential buildings in the Sudan, in terms of geometric form, and dimensions. This paper uses the equivalent static method provided in the regulations proposed by the Egyptian Society for Earthquake Engineering. One typical model was selected from the existing residual buildings in Khartoum city, as a case study. The proposed methodology that has been used to evaluate the seismic resistance of chosen building is done through the design of the structural elements of the buildings before and after adding the seismic forces. The retrofitting of building was done by using steel plate shear walls with thicknesses of 5mm, 7mm and 10mm. From the results obtained, it was found that the use of two additional SPSWs with 7 mm thickness placed at the internal frame of the existing system, resulted in a reduction of bending moments in the columns and beams. The increase of thickness has a clear effect on the bending moment of the columns, but has little effects on the bending moments of the beams. Keywords- Retrofitting, SAP2000, Steel Plate Shear Walls (SPSWs), the Sudan I. Introduction This paper discusses Seismic retrofitting of a typical residential building in the Sudan which have been designed and constructed without any seismic provisions. Seismic retrofitting is a modification of the structural and /or non-structural components in a building that aims to improve the building's performance in future earthquakes. Adding structural walls is one of the most common structure-level retrofitting methods to strengthen existing structures. This approach is effective for controlling global lateral drifts and for reducing damage in frame members. In this paper the seismic retrofitting of existing reinforced concrete RC buildings by means of steel shear walls is examined. 1.1 The main function of steel plate shear walls The main function of a steel plate shear wall (SPSW) is to resist horizontal story shear and overturning moment due to lateral loads. In general, steel plate shear wall system consists of a steel plate wall, two boundary columns and horizontal floor beams , fig.1, and 2 show samples of steel plate shear wall systems [1]. Figure 1. Coupled steel plate shear wall [1]
  • 2. Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls www.iosrjournals.org 50 | Page Figure 2. A view of building with steel plate shear walls and a close-up of the walls [1] 1.2 The construction of steel plate shear walls Steel plate shear wall systems that can be constructed with shop welded-field bolted elements can make the steel plate shear walls more efficient than the traditional systems Fig .3 show the Steel Frame – RC Structure Connections . (a) (b) Figure 3. The steel frame – RC structure connections [2] II. Case Study 2.1 Description of the Building A three-story RC residential building, representing the majority of domestic buildings in Sudan, was selected for this research. The studied frame is an existing building located in Khartoum city zone 2A [8]. The structure system is a moment resisting RC frame with a 200 mm thickness flat slab, situated .The analysis is carried out using SAP2000 FEA programm [3]. The structural members are made of in-situ reinforced concrete .The overall plan dimension is 18 mx24 m. the height of the building is 9.6 m .The rectangular shape was used for the columns. Columns and beams sizes along the building height are listed in Tables 1 and 2.Figs. 4, 5, and 6 show detailed information on the structural and architectural layout of the building.
  • 3. Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls www.iosrjournals.org 51 | Page Figure 4. Section x-x Figure 5.Foundations and columns plan Figure 6. Plan of residual building considered Table 1. The cross sections of columns The cross sections of columnsStory No. 250x500Ground floor 250x500First floor 250x500Second floor
  • 4. Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls www.iosrjournals.org 52 | Page Table 2. The cross sections of beams The cross sections of beamsStory No. 300x500Ground floor 300x500First floor 300x500Second floor IV. Structural Modeling Numerical models for the case has been prepared using SAP2000 version 14 (Computers and Structures) [3]. Beams and columns are modeled as frame elements while walls and slabs are modeled as shell elements. In this paper the seismic performance of the considered residual building will be evaluated using the linear static analysis procedure. .Fig. 7 shows the models for the three-story building. The label of columns is shown in Fig. 8. Figure 7. Three –dimension view of the initial structure. Figure 8. Label of columns 4.1 Modeling of steel shear walls in Analysis The steel plate shear walls can be modeled using full shell elements and isotropic material. It is suggested that the wall panel be modeled using at least 16 shell elements (4x4 mesh) per panel [11]. The lateral force resisting system consists of moment resisting frames with steel plate shear walls. The thickness of steel shear wall panels is taken variable between 5mm-10 mm [4]. V. Analysis of Original Building The internal forces obtained from the computer analysis program SAP2000 [3] are used to design the reinforced concrete sections of the structural elements of the residual building using the (BS 8110, 1997) [5] ,and the limit state design method (Mosley and Bungey, 1997) [6]. It has been found that the existing design of columns under the effect of gravity loads is adequate for the study case. As for the design of columns a computer program called ISACOL (Shehata, 1999) [7] has been used. The paper studied four columns for the evaluation. Table 3 shows the Straining action for the four columns due to gravity load and Table 4 shows the present design compared with the original design of critical columns for the studied case. It is clear that the
  • 5. Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls www.iosrjournals.org 53 | Page original design of these columns exceeds the present design which means that it is satisfactory for gravity loads. It is worthy to mention that internal forces in beams of the study case have been calculated under gravity loads. Then the (BS 8110, 1997) [5] has been used to check the existing design. It has been found that the existing design is adequate for the case. Table 3.Straining action for the four columns due to gravity loads Columns No. Load Case N Mx My C12 ULTIMATE 904.74 9.40 47.73 C20 ULTIMATE 1181.41 2.39 -9.22 C14 ULTIMATE 1357.83 1.07 -2.03 C22 ULTIMATE 1358.37 8.83 1.55 Where : N: is the axial load in the column due to due to forces. Mx : is the bending moment at the column due to forces applied in x- direction . My : is the bending moment at the column due to forces applied in y- direction. 5.1 Design of some columns due to gravity loads only (C22): Figure 9. ISACOL Program result for design of column No, C22 due to gravity loads Table 4. Comparison between original and present design for gravity loads Column No. Original Design Present Design Section* Reinf. Section* Reinf. C12 250x500 8 Φ 16 250x400 8 Φ 16 C20 250x500 8 Φ 16 250x400 8 Φ 16 C14 250x500 8 Φ 16 250x400 8 Φ 16 C22 250x500 8 Φ 16 250x400 8 Φ 16 * Section dimensions are in mm.
  • 6. Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls www.iosrjournals.org 54 | Page VI. Check of Design Considering Earthquake and Wind Loads The moments obtained from earthquake and wind loads are shown in .Tables4 and 5. It has been found that the effect of seismic load is much more than the effect of wind load. Fig. 12 and fig. 13 show the comparison between moments in columns due to earthquake and wind loads. 6.1 Wind loads The British Standard Code gives methods for determining the gust peak wind loads on buildings and components thereof that should be taken into account in design using equivalent static procedures. Wind loads according to British Standard Code (BSI) were calculated by using SAP2000, and Wind speed factors according to BSI, cp3: chapter V: part 2: 1972 [4] .The basic wind speed V for Khartoum is given by 44.4 m/sec [8] . Table 5. The Staining actions (Mx) due to Wind loads (ENVWX) and Seismic loads (ENVEQX) Column No. Wind-ENVWX Seismic-ENVEQX Mx Mx C12 9.40 9.40 C20 4.26 2.47 C14 1.09 1.09 C22 11.78 8.84 Table 6. The Staining actions (My) due to Wind loads (ENVWX) and Seismic loads (ENVEQX) Column No. Wind-ENVWX Seismic-ENVEQX My My C12 47.63 47.63 C20 -9.26 -9.26 C14 -2.00 -2.00 C22 1.52 1.52 Table 7. The Staining actions (Mx) due to Wind loads (ENVWY) and Seismic loads (ENVEQY) Column No. Wind-ENVWY Seismic-ENVEQY Mx Mx C12 43.77 83.43 C20 34.46 71.64 C14 30.88 66.33 C22 41.80 80.28 Table 8. The Staining actions (MY) due to Wind loads (ENVWY) and Seismic loads (ENVEQY) Column No. Wind+ENVWY Seismic+ENVEQY My My C12 51.80 50.51 C20 -8.97 -9.26 C14 -2.00 -2.00 C22 4.91 13.74 Where, ENVEQX are envelope of Load Combination for seismic loads in direction x, ENVEQY: are envelope of Load Combination for seismic loads in direction in direction Y. Figure 10.Comparison between My due to Wind loads and My due to Seismic loads
  • 7. Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls www.iosrjournals.org 55 | Page Figure 11.Comparison between Mx due to Wind loads and Mx due to Seismic loads In all directions the effect of seismic loads is govern so, the paper concentrated in the effect of seismic loads only 6.2 Earthquake loads It is well known that the Sudan has no regulations for the seismic design of buildings. Therefore, in the present paper earthquake loads are calculated following the rules which are given in the Regulations for earthquake resistant design of buildings in Egypt, (ESEE, 1988) [9]. These regulations have been prepared by the Egyptian Society for Earthquake Engineering (ESEE). In order to apply the ESEE regulations a seismic map for the Sudan is required to determine the site seismicity factor. In 2002, Eissa et al . Developed a new seismic hazard maps and seismic zoning map for the Sudan (Eissa et al , 2002) [8] , as shown in Fig.12. Figure 12. Seismic Zoning Map of the Sudan (Eissa et al , 2002) [8]
  • 8. Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls www.iosrjournals.org 56 | Page Figure 13. Seismic Hazard Map of the Sudan (Hassaballa et al , 2010) [10]. VII. Seismic Assessment by the ESEE. 1988 The total design seismic base shear force is estimated using the static equivalent force procedure (ESEE, 19880) [9]. Four our case study, distribution of the lateral seismic loads is shown in fig 16 , for both directions. 7.1 Calculation of base shear The total weight is given by equation (1) : Wi = Di + PLi (1) Where, p is the incidence factor and is equal to p = 0.25. After analysis for gravity loads, the total floor weight will be as follows: 8955 KN.The equivalent lateral force procedure of (ESEE 1988) was used to calculate the design base shear. The resulting seismic coefficient, Cs, was determined to be 0.125 and the corresponding base shear was approximately 1120 KN.from equation (2): V = Cs*Wt (2) 7.2 Distribution of horizontal seismic force The period of the building is the same in both directions. Hence, the load in the E-W direction are the same as those for the N-S direction as shown Fig 14. Figure 14.Distribution of horizontal seismic force
  • 9. Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls www.iosrjournals.org 57 | Page 7.3 Check of seismic design for study case Numerical analysis for the study case has been performed using SAP2000 (Computers and Structures) [3] and the reinforced concrete columns are designed according to the (BS 8110, 1997) [5] using the limit state design method (Mosley and Bungey, 1997) [6].Table 9 and 10 show the Straining action (moments) for the ten columns due to seismic load, and the seismic design compared with the original design of that columns which are chosen respectively. It is clear that most of columns are unsafe due to seismic loads. Therefore, a strengthening scheme is needed for the residual building in order to resist earthquake forces. Table 9.Straining action for the same four columns due to seismic loads Column No. Load Case N Mx My C12 ENVEQY 904.60 83.43 50.51 C20 ENVEQY 1181.39 71.64 -9.26 C14 ENVEQY 1357.73 66.33 -2.00 C22 ENVEQY 1358.28 80.28 13.74 7.3.1 Design of some columns due to gravity and seismic loads (C22): Figure 15.ISACOL Program result for Design of Column No, C22due to seismic loads Table 10. Comparison between Original and Present Design Including Seismic Loads Column No. Original Design Present Design Section* Reinf. Section* Reinf. C12 250x500 8 Φ 16 250x550 10 Φ 16 C20 250x500 8 Φ 16 250x500 10 Φ 16 C14 250x500 8 Φ 16 250x500 10 Φ 16 C22 250x500 8 Φ 16 250x600 10 Φ 16 * Section dimensions are in mm. VIII. Suggesting of Retrofitting 8.1 Type of retrofitting There are many seismic retrofit techniques available, depending on the purpose needed from strengthening, types and conditions of structures. Seismic retrofitting is the modification of existing structures to make them more resistant to seismic ground motion, or soil failure due to earthquakes . There are two ways to enhance the seismic capacity of existing structures. The first approach is a structure-level retrofit, which involves global modifications to the structural system. Common global modifications include the addition of structural walls, steel braces, or base isolators. The second approach is a member-level retrofit. In this approach, the ductility of components with inadequate capacities is increased to satisfy their specific limit
  • 10. Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls www.iosrjournals.org 58 | Page states. The member-level retrofit includes methods such as the addition of concrete, steel, or fiber reinforced polymer (FRP) jackets to columns for confinement [11] .Fig. 16-18 show some technique using to retrofit existing structures. Figure 16. Retrofitted with RC Wing Wall Figure 17. School building retrofitted with shear walls Figure 18. Retrofitting with RC Column Jacketing [12]
  • 11. Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls www.iosrjournals.org 59 | Page 8.2 suggestion of strengthening There are different methods for seismic strengthening of existing buildings. However, social and economic conditions should be considered to choose the appropriate method. Adding structural walls is one of the most common structure-level retrofitting methods to strengthen existing structures. This approach is effective for controlling global lateral drifts and for reducing damage in frame members [5]. Structural walls may be either reinforced concrete or steel plate. In this paper new SPSWs with 5 mm, 7 mm, and 10 mm thickness were added in (y) direction along the height of the structure. Fig. 20, 21 , and 22 show the suggested strengthening of the structure with the new SPSWs. Figure 20. The SPSWs 5 mm Figure 21. The SPSWs 7 mm
  • 12. Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls www.iosrjournals.org 60 | Page Figure 22. The SPSWs 10 mm Figure 23. Modeling of shear wall in y directions [14] IX. Analysis of Retrofitted Structure The strengthened structure was reanalyzed using the same procedure. The proposed method increased the performance of the structure in both directions either for strength, displacement and ductility capacity. Table. 11 show straining action for the four columns that which is chosen due to seismic load before and after strengthening. It has been found that all columns in the study case became safe after strengthening. Table 11. Straining action for the four columns that which are chosen due to seismic load before and after strengthening. Column No. Gravity Seismic+Column SPSW 5mm SPSW 7mm SPSW 10mm C12 9.40 83.43 35.09 29.96 25.26 C20 2.39 71.64 56.63 53.27 49.66 C14 1.07 66.33 24.94 20.50 16.41 C22 8.83 80.28 41.19 36.46 31.86
  • 13. Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls www.iosrjournals.org 61 | Page Figure 24.Straining action Mx for the four columns which are chosen due to seismic load before and after strengthening. Table 12. Straining action My for the four columns that which are chosen due to seismic load before and after strengthening. Columns No. Gravity Seismic+Column SPSW 5mm SPSW 7mm SPSW 10mm My My My My My C12 47.73 50.51 54.24 53.83 53.06 C20 -9.22 -9.26 -9.68 -9.74 -9.80 C14 -2.03 -2.00 -2.75 -2.88 -3.01 C22 1.55 13.74 15.87 15.39 14.61 Figure 25.Straining action My for the four columns which are chosen due to seismic load before and after strengthening. Table 13. Comparison between Original and Strengthened Design for Study Case . Column No. Original Design After Strengthening Section* Reinf. Section* Reinf. C12 250x500 8 Φ 16 250x400 8 Φ 16 C20 250x500 8 Φ 16 250x400 8 Φ 16 C14 250x500 8 Φ 16 250x400 8 Φ 16 C22 250x500 8 Φ 16 250x400 8 Φ 16 * Section dimensions are in mm X. Conclusion One of the most difficult problems of strengthening of existing buildings is how to find the adequate solution that satisfies both economical and technical aspects.
  • 14. Seismic Retrofitting of a RC Building by Adding Steel Plate Shear Walls www.iosrjournals.org 62 | Page This study presents guidelines to investigate the seismic resistance of buildings in Sudan.? The present paper proposes a simple procedure to check the seismic resistance and retrofit of such buildings. The obtained results emphasize the following conclusions: (1) Current design of residual buildings in the Sudan does not consider earthquake loads,(2) It has been found that the current design of buildings in the Sudan is not safe for the current seismicity of the Sudan,(3) A proposed methodology has been presented for evaluation of seismic resistance of existing buildings in the Sudan, and (4) A strengthening technique for existing buildings in the Sudan has been presented. (5) with the use of 7 mm thickness steel plate shear wall inserted in the building, a reduction of bending moments in the columns and beams was observed. (6) The increase of thickness has a clear effect on the bending moment of the columns, and has little effects on the bending moment of the beams. It is recommended that, since this retrofitting method showed a great improvement in the capacity of the building, it should be adopted as a suitable strategy for this case to reduce the seismic vulnerability of exiting RC buildings in Sudan. References [1]. Abolhassan, P.E. ,Seismic Behaviour and Design of Steel Shear Walls.(ASI, Steel TIPS, First Print, California,2001). [2]. Astaneh-Asl, A., Steel Plate Shear Walls, Proceedings, U.S.-Japan Partnership for Advanced Steel Structures, U.S.-Japan Workshop on Seismic Fracture issues in Steel Structure, San Francisco,February 2000. [3]. Computers and Structures. SAP2000: Three Dimensional Static and Dynamic Finite Element Analysis and Design of Structures, Computers and Structures Inc., Berkeley, California, U.S.A. 2001. [4]. Ismaeil, M. A., and Sobaih, M.E, A Proposed Methodology for Seismic Evaluation and Strengthening of Existing School Buildings in The Sudan., 15th WCEE, Portugal, September, 2012. Paper No.0 571. [5]. BS 8110. The Structural Use of Concrete, British Standard Institution, London. 1997. [6]. Mosley, W. H. and Bungey, J. H. ,Reinforced Concrete Design (BS 8110:Part 1, 2nd Ed. Macmillan , London. 1997). [7]. A .Y. Shehata, Information Systems Application on Reinforced Concrete Columns., M.Sc. Thesis, Faculty of Engineering, Department of Structural Engineering, Cairo University, Giza, Egypt, 1999. [8]. A .A. Eissa, Towards a Sudanese Code of Practice for Earthquake Design., M.Sc. Thesis., Faculty of Engineering, Department of Structural Engineering, Khartoum University, Khartoum, Sudan. 2002. [9]. Egyptian Society for Earthquake Engineering (ESEE) ,Regulations for Earthquake-Resistance Design of Buildings in Egypt.,Cairo ,Egypt.,(1988). [10]. Hassaballa, A. E , Sobaih, M. E & A. R. A. Mohamed ,Sensitivity Analysis in Estimating Seismic Hazard for Sudan., Proc., 14th European Conference on Earthquake Engineering, 30 Aug.-3 Sept., 2010, Ohrid, Republic of Macedonia. [11]. Jong-Wha Bai, Seismic Retrofit for Reinforced Concrete Building Structures , Final Report ,. Consequence-Based Engineering (CBE) Institute,. Texas ,2003. [12]. Murty .C. V. R . , The Seismic Performance of Reinforced Concrete Frame Buildings with Masonry Infill Walls ,A Tutorial Developed by a Committee of the World Housing Encyclopedia,(First Edition ,Publication Number WHE,2006). [13]. Sobaih, M. E ;Hassaballa, A. E , & Ismaeil, M. A. ,Assessment of Seismic Performance and Strengthening of Existing School Buildings in the Sudan, International Journal of Engineering Research &Technology (IJERT),ISSN:2278-0181, 2(6), 2013. [14]. Ismaeil, M. A., and Sobaih, M.E, A Proposed Methodology for Seismic Evaluation and Strengthening of Existing School Buildings in The Sudan., 15th WCEE, Portugal, September, 2012. Paper No.0 571.