This document summarizes a research paper that presents a speech enhancement method using stationary wavelet transform. The method first classifies speech into voiced, unvoiced, and silence regions based on short-time energy. It then applies different thresholding techniques to the wavelet coefficients of each region - modified hard thresholding for voiced speech, semi-soft thresholding for unvoiced speech, and setting coefficients to zero for silence. Experimental results using speech from the TIMIT database corrupted with white Gaussian noise at various SNR levels show improved performance over other popular denoising methods.