FET BIASING
The Relationship of ID and VGS is Non-Linear.
Field-Effect Transistor
MOSFET
n-Channel
p-Channel
JFET
DMOSFET EMOSFET
n-Channel
p-Channel
n-Channel
p-Channel
p. 450
Summary
JFET Configuration
Summary
MOSFET
Configuration
p. 450
General Relationships
EMOSFET & EMESFET
JFET & DMOSFET &
DMESFET
Fixed-Bias Configuration
Fixed Bias Configuration
Shockley’s Equation
Fixed DC Supply Capacitor
Fixed Bias Configuration
Solution:
Graphical Approach
Solution:
Given Q-point
Output
Self-Bias Configuration
Self Bias Configuration
Capacitor
Shockley’s Equation Ouput
Self Bias Configuration
Solution:
Quadratic Equation
Bias Line
Gate to Source Voltage
IDS VGS
0mA 0V
4mA 4V
8mA 8V
��
2
+
2������−��
��
2������
2
��
2
�� +
��
2
��
2
= 0
Self Bias Configuration
Solution:
Quadratic Equation
Bias Line
Gate to Source Voltage
IDS VGS
0mA 0V
4mA 4V
8mA 8V
��
2
+
2������−��
��
2������
2
��
2
�� +
��
2
��
2
= 0
Self Bias Configuration
Solution:
Given Q-point
Output
Voltalge-Divider Bias Configuration
Voltage-Divider Bias Configuration
Capacitor
Voltage-Divider Bias Configuration
Bias Line
Voltage-Divider Configuration
Solution:
Load Line
Voltage-Divider Configuration
Solution:
Capacitor
Common Gate Bias Configuration
Common Gate Bias Configuration
Load Line
Capacitor
Common Gate Bias Configuration
Bias Line
Input
Output
Common Gate Configuration
Solution:
Transfer Curve
Common Gate Configuration
Solution:
Capacitor
JFET (RD = 0Ω) Bias Configuration
Special Case (VGSQ = 0 V) Bias Configuration
Special Case Bias Configuration
Input
Output
Summary
MOSFET
Configuration
p. 450
a
Depletion-Type MOSFETs
Positive Values for VGS
ID exceeds IDSS
DMOSFET - Fixed-Bias Configuration
DMOSFET - Voltage-Divider Bias Configuration
DMOSFET - Voltage-Divider Configuration
Bias Line
Capacitor
DMOSFET - Voltage-Divider Configuration
DMOSFET - Self Bias Configuration
ID exceeds IDSS
Transfer Curve
Bias Line
Capacitor
a
Enhancement-Type MOSFETs
4 Coordinates
(VGS, ID)
1. (VTH, 0)
2. (VGSon, IDon)
3. (VGS1, ID1)
• VTH < VGS1 < VGSon
4. (VGS2, ID2)
• VGS2 > VGSon
Enhancement-Type
MOSFETs
EMOSFET - Feedback Bias Configuration
EMOSFET - Feedback Biasing Arrangement
Load Line
Input and Output
Capacitor
EMOSFET - Feedback Biasing Arrangement
Solution:
Identify k
(VGS, ID)
(VTH, 0)
(VGSon, IDon)
(VGS1, ID1)
VTH < VGS1 < VGSon
(VGS2, ID2)
VGS2 > VGSon
(VGS, ID)
(3, 0)
(8, 6)
(VGS1, ID1)
VTH < VGS1 < VGSon
(VGS2, ID2)
VGS2 > VGSon
Capacitor
EMOSFET - Feedback Biasing Arrangement
Solution:
Plotting the Transfer Curve
(VGS, ID)
(VTH, 0)
(VGSon, IDon)
(VGS1, ID1)
VTH < VGS1 < VGSon
(VGS2, ID2)
VGS2 > VGSon
(VGS, ID)
(3, 0)
(8, 6)
(6, 2.16)
VTH < VGS1 < VGSon
(10, 11.76)
VGS2 > VGSon
EMOSFET - Feedback Biasing Arrangement
Solution:
Bias Line
EMOSFET - Voltage-Divider Bias Configuration
EMOSFET - Voltage-Divider Arrangement
Input
Output
EMOSFET - Voltage-Divider Arrangement
Solution:
Plotting the Device
(VGS, ID)
(VTH, 0)
(VGSon, IDon)
(VGS1, ID1)
VTH < VGS1 < VGSon
(VGS2, ID2)
VGS2 > VGSon
(VGS, ID)
(5, 0)
(10, 3)
(VGS1, ID1)
VTH < VGS1 < VGSon
(VGS2, ID2)
VGS2 > VGSon
Plotting the Transfer Curve
EMOSFET - Voltage-Divider Arrangement
Identify k (VGS, ID)
(5, 0)
(10, 3)
(8, ID1)
VTH < VGS1 < VGSon
(20, ID2)
VGS2 > VGSon
Line Line
(5, 0)
(10, 3) ID2=27mA
ID1=1.80mA
a
p-CHANNEL FETS
Mirror Image of the Transfer Curves
Current Directions are reversed
p-Channel FETS
p-Channel
Bias Line

FET-BIASING.pdf