SlideShare a Scribd company logo
Equilibrium Point Analysis: Linearization Technique
TARUN GEHLOT (B.E, CIVIL, HONOURS)
Recall that only the solutions of linear systems may be found explicitly. The
problem is that in general real life problems may only be modeled by
nonlinear systems. In this case, we only know how to describe the solutions
globally (via nullclines). What happens around an equilibrium point
remains a mystery so far. Here we propose the to discuss this problem. The
main idea is to approximate a nonlinear system by a linear one (around the
equilibrium point). Of course, we do hope that the behavior of the
solutions of the linear system will be the same as the nonlinear one. This is
the case most of the time (not all the time!).
Example. Consider the Van der Pol equation
This is a nonlinear equation. Let us translate this equation into a system.
Set
. Then we have
The equilibrium points reduce to the only point (0,0). Let us find the
nullclines and the direction of the velocity vectors along them.
The x-nullcline is given by
Hence the x-nullcline is the x-axis.
The y-nullcline is given by
Equilibrium Point Analysis: Linearization Technique
TARUN GEHLOT (B.E, CIVIL, HONOURS)
Hence the y-nullcline is the curve
.
In the picture below we draw the nullclines and direction of the velocity
vectors along them.
Note that the arrangement of these curves tell us that the solutions
``circles'' around the origin. But it is not clear whether the solutions circle
and dye at the origin, circle away from the origin, or keep on circling
periodically. A very rough approach to this problem suggests that if we
rewrite the term
as
, then when (x,y) is close to (0,0), the term
is very small compared to -x+y. Hence a close system to the original
nonlinear system is
Equilibrium Point Analysis: Linearization Technique
TARUN GEHLOT (B.E, CIVIL, HONOURS)
which happens to be a linear system. The eigenvalues of this system are
. Hence the solutions of the linear system spiral away from the origin (since
the real part
is positive). So we suggest that the solutions of nonlinear system spiral
away from the origin (look at the picture below)
The solution started close to the equilibrium point, then it moved away.
Notice that in this case, the trajectory is getting close to what looks like a
cycle. To better see this, let us consider the graphs of the
function x(t) andy(t):
Equilibrium Point Analysis: Linearization Technique
TARUN GEHLOT (B.E, CIVIL, HONOURS)
and
So what if we want to generalize this to different systems. Is there a
technique that mimic what we did? The answer is yes. It is
called linearization.
Linearization Technique.
Consider the autonomous system
Equilibrium Point Analysis: Linearization Technique
TARUN GEHLOT (B.E, CIVIL, HONOURS)
And assume that
is an equilibrium point. So we would like to find the closest linear system
when (x,y) is close to
. In order to do that we need to approximate the functions f(x,y) and g(x,y)
when (x,y) is close to
. This is a similar problem to approximating a real valued function by its
tangent (around a point of course). From multivariable calculus, we get
and
when (x,y) is close to
. Then the nonlinear system may be approximated by the system
But since
is an equilibrium point, then we have
. Hence we have
Equilibrium Point Analysis: Linearization Technique
TARUN GEHLOT (B.E, CIVIL, HONOURS)
This is a linear system. Its coefficient matrix is
This matrix is called the Jacobian matrix of the system at the point
.
Summary of the linearization technique.
Consider the autonomous system
and
an equilibrium point.
Find the partial derivatives
Write down the Jacobian matrix
Equilibrium Point Analysis: Linearization Technique
TARUN GEHLOT (B.E, CIVIL, HONOURS)
Find the eigenvalues of the Jacobian matrix.
Deduce the fate of the solutions around the equilibrium point from the
eigenvalues. For example,
if the eigenvalues are negative or complex with negative real part, then the
equilibrium point is a sink (that is all the solutions will dye at the
equilibrium point). Note that if the eigenvalues are complex, then the
solutions will spiral around the equilibrium point.
If the eigenvalues are positive or complex with positive real part, then the
equilibrium point is a source (that is all the solutions will move away from
the equilibrium point). Note that if the eigenvalues are complex, then the
solutions will spiral away from the equilibrium point.
If the eigenvalues are real number with different sign (one positive and one
negative), then the the equilibrium point is a saddle. In fact, there will be
two solutions which approach the equilibrium point as
, and two more solutions which approach the equilibrium point as
. For the linear system theses solutions are lines, but for the nonlinear
system they are not in general. These four solutions are
called separatrix.Remark. When dealing with an autonomous system
without prior knowledge of the equilibrium point, then we advice to first
find the Jacobian matrix and plug the values for every equilibrium point.
This way you don't repeat the calculations over and over again.
Example. Consider the equation of the pendulum
Equilibrium Point Analysis: Linearization Technique
TARUN GEHLOT (B.E, CIVIL, HONOURS)
where
is the damping coefficient. See the picture below.
The equivalent system is
The equilibrium points are
, where
. The angles
, for
Equilibrium Point Analysis: Linearization Technique
TARUN GEHLOT (B.E, CIVIL, HONOURS)
, correspond to the pendulum at its lowest position, while
, for
, correspond to the pendulum at its highest position. The Jacobian matrix of
the system
Let us concentrate on the equilibrium positions (0,0) and
.
For (0,0), the Jacobian matrix is
For the sake of illustration let us fix the parameters. For example,
if we take
(undamped pendulum), then the eigenvalues are
which implies that the mass will oscillate around the lowest position in a
periodic fashion.
If
(dumped pendulum), m=1, and l=1. Then the eigenvalues are
Equilibrium Point Analysis: Linearization Technique
TARUN GEHLOT (B.E, CIVIL, HONOURS)
Since the real part is negative, the solutions will sink (dye) while oscillating
around the equilibrium point. Here we have the same behavior for the
linear and nonlinear system.
For
, the Jacobian matrix is
The eigenvalues are
Clearly we have two real eigenvalues with one positive and one negative.
So the solutions will always get away from the equilibrium position except
along one curve (the separatrix).

More Related Content

What's hot

Lyapunov stability
Lyapunov stability Lyapunov stability
Lyapunov stability
Srinath Thamban
 
Unit 5: All
Unit 5: AllUnit 5: All
Unit 5: All
Hector Zenil
 
Controllability and observability
Controllability and observabilityControllability and observability
Controllability and observability
jawaharramaya
 
LYAPUNOV STABILITY PROBLEM SOLUTION
LYAPUNOV STABILITY PROBLEM SOLUTIONLYAPUNOV STABILITY PROBLEM SOLUTION
LYAPUNOV STABILITY PROBLEM SOLUTION
rohit kumar
 
NONLINEAR CONTROL SYSTEM (Phase plane & Phase Trajectory Method)
NONLINEAR CONTROL SYSTEM(Phase plane & Phase Trajectory Method)NONLINEAR CONTROL SYSTEM(Phase plane & Phase Trajectory Method)
NONLINEAR CONTROL SYSTEM (Phase plane & Phase Trajectory Method)
Niraj Solanki
 
STate Space Analysis
STate Space AnalysisSTate Space Analysis
STate Space Analysis
Hussain K
 
Ch2 mathematical modeling of control system
Ch2 mathematical modeling of control system Ch2 mathematical modeling of control system
Ch2 mathematical modeling of control system
Elaf A.Saeed
 
Modern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of SystemsModern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of Systems
Amr E. Mohamed
 
Introduction to Numerical Analysis
Introduction to Numerical AnalysisIntroduction to Numerical Analysis
Introduction to Numerical Analysis
Mohammad Tawfik
 
Lect 2 bif_th
Lect 2 bif_thLect 2 bif_th
Lect 2 bif_th
getnetzegeye
 
Bifurcation
BifurcationBifurcation
Bifurcation
Hamed Abdi
 
Transfer function and mathematical modeling
Transfer  function  and  mathematical  modelingTransfer  function  and  mathematical  modeling
Transfer function and mathematical modeling
vishalgohel12195
 
MODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROL
MODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROLMODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROL
MODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROL
Journal For Research
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
Purnima Pandit
 
Modern Control - Lec07 - State Space Modeling of LTI Systems
Modern Control - Lec07 - State Space Modeling of LTI SystemsModern Control - Lec07 - State Space Modeling of LTI Systems
Modern Control - Lec07 - State Space Modeling of LTI Systems
Amr E. Mohamed
 
linear algebra in control systems
linear algebra in control systemslinear algebra in control systems
linear algebra in control systemsGanesh Bhat
 
State space models
State space modelsState space models
Chapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic SignalsChapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic Signals
Attaporn Ninsuwan
 
11 kinematicsrobot
11 kinematicsrobot11 kinematicsrobot
11 kinematicsrobot
Pallavi Choudekar
 
SINGULAR POINT IN NON-LINEAR SYSTEM
SINGULAR POINT IN NON-LINEAR SYSTEM SINGULAR POINT IN NON-LINEAR SYSTEM
SINGULAR POINT IN NON-LINEAR SYSTEM
ANISH PATHAK
 

What's hot (20)

Lyapunov stability
Lyapunov stability Lyapunov stability
Lyapunov stability
 
Unit 5: All
Unit 5: AllUnit 5: All
Unit 5: All
 
Controllability and observability
Controllability and observabilityControllability and observability
Controllability and observability
 
LYAPUNOV STABILITY PROBLEM SOLUTION
LYAPUNOV STABILITY PROBLEM SOLUTIONLYAPUNOV STABILITY PROBLEM SOLUTION
LYAPUNOV STABILITY PROBLEM SOLUTION
 
NONLINEAR CONTROL SYSTEM (Phase plane & Phase Trajectory Method)
NONLINEAR CONTROL SYSTEM(Phase plane & Phase Trajectory Method)NONLINEAR CONTROL SYSTEM(Phase plane & Phase Trajectory Method)
NONLINEAR CONTROL SYSTEM (Phase plane & Phase Trajectory Method)
 
STate Space Analysis
STate Space AnalysisSTate Space Analysis
STate Space Analysis
 
Ch2 mathematical modeling of control system
Ch2 mathematical modeling of control system Ch2 mathematical modeling of control system
Ch2 mathematical modeling of control system
 
Modern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of SystemsModern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of Systems
 
Introduction to Numerical Analysis
Introduction to Numerical AnalysisIntroduction to Numerical Analysis
Introduction to Numerical Analysis
 
Lect 2 bif_th
Lect 2 bif_thLect 2 bif_th
Lect 2 bif_th
 
Bifurcation
BifurcationBifurcation
Bifurcation
 
Transfer function and mathematical modeling
Transfer  function  and  mathematical  modelingTransfer  function  and  mathematical  modeling
Transfer function and mathematical modeling
 
MODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROL
MODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROLMODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROL
MODELLING AND SIMULATION OF INVERTED PENDULUM USING INTERNAL MODEL CONTROL
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 
Modern Control - Lec07 - State Space Modeling of LTI Systems
Modern Control - Lec07 - State Space Modeling of LTI SystemsModern Control - Lec07 - State Space Modeling of LTI Systems
Modern Control - Lec07 - State Space Modeling of LTI Systems
 
linear algebra in control systems
linear algebra in control systemslinear algebra in control systems
linear algebra in control systems
 
State space models
State space modelsState space models
State space models
 
Chapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic SignalsChapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic Signals
 
11 kinematicsrobot
11 kinematicsrobot11 kinematicsrobot
11 kinematicsrobot
 
SINGULAR POINT IN NON-LINEAR SYSTEM
SINGULAR POINT IN NON-LINEAR SYSTEM SINGULAR POINT IN NON-LINEAR SYSTEM
SINGULAR POINT IN NON-LINEAR SYSTEM
 

Viewers also liked

Differentiation and Linearization
Differentiation and LinearizationDifferentiation and Linearization
Differentiation and Linearization
RAVI PRASAD K.J.
 
Real-time PID control of an inverted pendulum
Real-time PID control of an inverted pendulumReal-time PID control of an inverted pendulum
Real-time PID control of an inverted pendulum
Francesco Corucci
 
Mathematical model analysis and control algorithms design based on state feed...
Mathematical model analysis and control algorithms design based on state feed...Mathematical model analysis and control algorithms design based on state feed...
Mathematical model analysis and control algorithms design based on state feed...
hunypink
 
Controller design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqrController design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqr
eSAT Publishing House
 
2014 inverted pendulum_presentation
2014 inverted pendulum_presentation2014 inverted pendulum_presentation
2014 inverted pendulum_presentationSteven Hefner
 
Inverted Pendulum
Inverted PendulumInverted Pendulum
Inverted Pendulum
Carlos
 

Viewers also liked (6)

Differentiation and Linearization
Differentiation and LinearizationDifferentiation and Linearization
Differentiation and Linearization
 
Real-time PID control of an inverted pendulum
Real-time PID control of an inverted pendulumReal-time PID control of an inverted pendulum
Real-time PID control of an inverted pendulum
 
Mathematical model analysis and control algorithms design based on state feed...
Mathematical model analysis and control algorithms design based on state feed...Mathematical model analysis and control algorithms design based on state feed...
Mathematical model analysis and control algorithms design based on state feed...
 
Controller design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqrController design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqr
 
2014 inverted pendulum_presentation
2014 inverted pendulum_presentation2014 inverted pendulum_presentation
2014 inverted pendulum_presentation
 
Inverted Pendulum
Inverted PendulumInverted Pendulum
Inverted Pendulum
 

Similar to Equilibrium point analysis linearization technique

2 general properties
2 general properties2 general properties
2 general propertieskatamthreveni
 
V4 cccn stable chaos
V4 cccn stable chaosV4 cccn stable chaos
V4 cccn stable chaosXiong Wang
 
fdocuments.net_homogeneous-linear-systems.pptx
fdocuments.net_homogeneous-linear-systems.pptxfdocuments.net_homogeneous-linear-systems.pptx
fdocuments.net_homogeneous-linear-systems.pptx
EngrZahidUsman
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equationsCesar Mendoza
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equationsCesar Mendoza
 
Hopf-Bifurcation Ina Two Dimensional Nonlinear Differential Equation
Hopf-Bifurcation Ina Two Dimensional Nonlinear Differential  EquationHopf-Bifurcation Ina Two Dimensional Nonlinear Differential  Equation
Hopf-Bifurcation Ina Two Dimensional Nonlinear Differential Equation
IJMER
 
CCCN Talk on Stable Chaos
CCCN Talk on Stable ChaosCCCN Talk on Stable Chaos
CCCN Talk on Stable Chaos
Xiong Wang
 
Series solutions airy's equation
Series solutions airy's equationSeries solutions airy's equation
Series solutions airy's equation
Tarun Gehlot
 
Review power series
Review power seriesReview power series
Review power series
Tarun Gehlot
 
Math Geophysics-system of linear algebraic equations
Math Geophysics-system of linear algebraic equationsMath Geophysics-system of linear algebraic equations
Math Geophysics-system of linear algebraic equations
Amin khalil
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
Rich Elle
 
IMPLICIT DIFFERENTIATION AND RELATED RATES
IMPLICIT DIFFERENTIATIONANDRELATED RATESIMPLICIT DIFFERENTIATIONANDRELATED RATES
IMPLICIT DIFFERENTIATION AND RELATED RATES
AkefAfaneh2
 
Linear Algebra and its use in finance:
Linear Algebra and its use in finance:Linear Algebra and its use in finance:
Linear Algebra and its use in finance:
Service_supportAssignment
 
Lec9
Lec9Lec9
SimultaneousEquationsFINAL2.pdf
SimultaneousEquationsFINAL2.pdfSimultaneousEquationsFINAL2.pdf
SimultaneousEquationsFINAL2.pdf
CyprianObota
 
DOMV No 8 MDOF LINEAR SYSTEMS - RAYLEIGH'S METHOD - FREE VIBRATION.pdf
DOMV No 8  MDOF LINEAR SYSTEMS - RAYLEIGH'S METHOD  - FREE VIBRATION.pdfDOMV No 8  MDOF LINEAR SYSTEMS - RAYLEIGH'S METHOD  - FREE VIBRATION.pdf
DOMV No 8 MDOF LINEAR SYSTEMS - RAYLEIGH'S METHOD - FREE VIBRATION.pdf
ahmedelsharkawy98
 
Oscillation ppt
Oscillation ppt Oscillation ppt
Oscillation ppt
AmeenSoomro1
 
Lec7
Lec7Lec7
A brief history of process algebra
A brief history of process algebraA brief history of process algebra
A brief history of process algebrasugeladi
 

Similar to Equilibrium point analysis linearization technique (20)

2 general properties
2 general properties2 general properties
2 general properties
 
V4 cccn stable chaos
V4 cccn stable chaosV4 cccn stable chaos
V4 cccn stable chaos
 
fdocuments.net_homogeneous-linear-systems.pptx
fdocuments.net_homogeneous-linear-systems.pptxfdocuments.net_homogeneous-linear-systems.pptx
fdocuments.net_homogeneous-linear-systems.pptx
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equations
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equations
 
Hopf-Bifurcation Ina Two Dimensional Nonlinear Differential Equation
Hopf-Bifurcation Ina Two Dimensional Nonlinear Differential  EquationHopf-Bifurcation Ina Two Dimensional Nonlinear Differential  Equation
Hopf-Bifurcation Ina Two Dimensional Nonlinear Differential Equation
 
CCCN Talk on Stable Chaos
CCCN Talk on Stable ChaosCCCN Talk on Stable Chaos
CCCN Talk on Stable Chaos
 
Series solutions airy's equation
Series solutions airy's equationSeries solutions airy's equation
Series solutions airy's equation
 
Review power series
Review power seriesReview power series
Review power series
 
Math Geophysics-system of linear algebraic equations
Math Geophysics-system of linear algebraic equationsMath Geophysics-system of linear algebraic equations
Math Geophysics-system of linear algebraic equations
 
lyapunov.pdf
lyapunov.pdflyapunov.pdf
lyapunov.pdf
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
 
IMPLICIT DIFFERENTIATION AND RELATED RATES
IMPLICIT DIFFERENTIATIONANDRELATED RATESIMPLICIT DIFFERENTIATIONANDRELATED RATES
IMPLICIT DIFFERENTIATION AND RELATED RATES
 
Linear Algebra and its use in finance:
Linear Algebra and its use in finance:Linear Algebra and its use in finance:
Linear Algebra and its use in finance:
 
Lec9
Lec9Lec9
Lec9
 
SimultaneousEquationsFINAL2.pdf
SimultaneousEquationsFINAL2.pdfSimultaneousEquationsFINAL2.pdf
SimultaneousEquationsFINAL2.pdf
 
DOMV No 8 MDOF LINEAR SYSTEMS - RAYLEIGH'S METHOD - FREE VIBRATION.pdf
DOMV No 8  MDOF LINEAR SYSTEMS - RAYLEIGH'S METHOD  - FREE VIBRATION.pdfDOMV No 8  MDOF LINEAR SYSTEMS - RAYLEIGH'S METHOD  - FREE VIBRATION.pdf
DOMV No 8 MDOF LINEAR SYSTEMS - RAYLEIGH'S METHOD - FREE VIBRATION.pdf
 
Oscillation ppt
Oscillation ppt Oscillation ppt
Oscillation ppt
 
Lec7
Lec7Lec7
Lec7
 
A brief history of process algebra
A brief history of process algebraA brief history of process algebra
A brief history of process algebra
 

More from Tarun Gehlot

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228
Tarun Gehlot
 
Binary relations
Binary relationsBinary relations
Binary relations
Tarun Gehlot
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behavior
Tarun Gehlot
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)
Tarun Gehlot
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error method
Tarun Gehlot
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
Tarun Gehlot
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
Tarun Gehlot
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
Tarun Gehlot
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
Tarun Gehlot
 
Matlab commands
Matlab commandsMatlab commands
Matlab commands
Tarun Gehlot
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
Tarun Gehlot
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
Tarun Gehlot
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
Tarun Gehlot
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
Tarun Gehlot
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-triangles
Tarun Gehlot
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
Tarun Gehlot
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theory
Tarun Gehlot
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
Tarun Gehlot
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
Tarun Gehlot
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functions
Tarun Gehlot
 

More from Tarun Gehlot (20)

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228
 
Binary relations
Binary relationsBinary relations
Binary relations
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behavior
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error method
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
 
Matlab commands
Matlab commandsMatlab commands
Matlab commands
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-triangles
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theory
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functions
 

Recently uploaded

Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
timhan337
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
CarlosHernanMontoyab2
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 

Recently uploaded (20)

Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf678020731-Sumas-y-Restas-Para-Colorear.pdf
678020731-Sumas-y-Restas-Para-Colorear.pdf
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 

Equilibrium point analysis linearization technique

  • 1. Equilibrium Point Analysis: Linearization Technique TARUN GEHLOT (B.E, CIVIL, HONOURS) Recall that only the solutions of linear systems may be found explicitly. The problem is that in general real life problems may only be modeled by nonlinear systems. In this case, we only know how to describe the solutions globally (via nullclines). What happens around an equilibrium point remains a mystery so far. Here we propose the to discuss this problem. The main idea is to approximate a nonlinear system by a linear one (around the equilibrium point). Of course, we do hope that the behavior of the solutions of the linear system will be the same as the nonlinear one. This is the case most of the time (not all the time!). Example. Consider the Van der Pol equation This is a nonlinear equation. Let us translate this equation into a system. Set . Then we have The equilibrium points reduce to the only point (0,0). Let us find the nullclines and the direction of the velocity vectors along them. The x-nullcline is given by Hence the x-nullcline is the x-axis. The y-nullcline is given by
  • 2. Equilibrium Point Analysis: Linearization Technique TARUN GEHLOT (B.E, CIVIL, HONOURS) Hence the y-nullcline is the curve . In the picture below we draw the nullclines and direction of the velocity vectors along them. Note that the arrangement of these curves tell us that the solutions ``circles'' around the origin. But it is not clear whether the solutions circle and dye at the origin, circle away from the origin, or keep on circling periodically. A very rough approach to this problem suggests that if we rewrite the term as , then when (x,y) is close to (0,0), the term is very small compared to -x+y. Hence a close system to the original nonlinear system is
  • 3. Equilibrium Point Analysis: Linearization Technique TARUN GEHLOT (B.E, CIVIL, HONOURS) which happens to be a linear system. The eigenvalues of this system are . Hence the solutions of the linear system spiral away from the origin (since the real part is positive). So we suggest that the solutions of nonlinear system spiral away from the origin (look at the picture below) The solution started close to the equilibrium point, then it moved away. Notice that in this case, the trajectory is getting close to what looks like a cycle. To better see this, let us consider the graphs of the function x(t) andy(t):
  • 4. Equilibrium Point Analysis: Linearization Technique TARUN GEHLOT (B.E, CIVIL, HONOURS) and So what if we want to generalize this to different systems. Is there a technique that mimic what we did? The answer is yes. It is called linearization. Linearization Technique. Consider the autonomous system
  • 5. Equilibrium Point Analysis: Linearization Technique TARUN GEHLOT (B.E, CIVIL, HONOURS) And assume that is an equilibrium point. So we would like to find the closest linear system when (x,y) is close to . In order to do that we need to approximate the functions f(x,y) and g(x,y) when (x,y) is close to . This is a similar problem to approximating a real valued function by its tangent (around a point of course). From multivariable calculus, we get and when (x,y) is close to . Then the nonlinear system may be approximated by the system But since is an equilibrium point, then we have . Hence we have
  • 6. Equilibrium Point Analysis: Linearization Technique TARUN GEHLOT (B.E, CIVIL, HONOURS) This is a linear system. Its coefficient matrix is This matrix is called the Jacobian matrix of the system at the point . Summary of the linearization technique. Consider the autonomous system and an equilibrium point. Find the partial derivatives Write down the Jacobian matrix
  • 7. Equilibrium Point Analysis: Linearization Technique TARUN GEHLOT (B.E, CIVIL, HONOURS) Find the eigenvalues of the Jacobian matrix. Deduce the fate of the solutions around the equilibrium point from the eigenvalues. For example, if the eigenvalues are negative or complex with negative real part, then the equilibrium point is a sink (that is all the solutions will dye at the equilibrium point). Note that if the eigenvalues are complex, then the solutions will spiral around the equilibrium point. If the eigenvalues are positive or complex with positive real part, then the equilibrium point is a source (that is all the solutions will move away from the equilibrium point). Note that if the eigenvalues are complex, then the solutions will spiral away from the equilibrium point. If the eigenvalues are real number with different sign (one positive and one negative), then the the equilibrium point is a saddle. In fact, there will be two solutions which approach the equilibrium point as , and two more solutions which approach the equilibrium point as . For the linear system theses solutions are lines, but for the nonlinear system they are not in general. These four solutions are called separatrix.Remark. When dealing with an autonomous system without prior knowledge of the equilibrium point, then we advice to first find the Jacobian matrix and plug the values for every equilibrium point. This way you don't repeat the calculations over and over again. Example. Consider the equation of the pendulum
  • 8. Equilibrium Point Analysis: Linearization Technique TARUN GEHLOT (B.E, CIVIL, HONOURS) where is the damping coefficient. See the picture below. The equivalent system is The equilibrium points are , where . The angles , for
  • 9. Equilibrium Point Analysis: Linearization Technique TARUN GEHLOT (B.E, CIVIL, HONOURS) , correspond to the pendulum at its lowest position, while , for , correspond to the pendulum at its highest position. The Jacobian matrix of the system Let us concentrate on the equilibrium positions (0,0) and . For (0,0), the Jacobian matrix is For the sake of illustration let us fix the parameters. For example, if we take (undamped pendulum), then the eigenvalues are which implies that the mass will oscillate around the lowest position in a periodic fashion. If (dumped pendulum), m=1, and l=1. Then the eigenvalues are
  • 10. Equilibrium Point Analysis: Linearization Technique TARUN GEHLOT (B.E, CIVIL, HONOURS) Since the real part is negative, the solutions will sink (dye) while oscillating around the equilibrium point. Here we have the same behavior for the linear and nonlinear system. For , the Jacobian matrix is The eigenvalues are Clearly we have two real eigenvalues with one positive and one negative. So the solutions will always get away from the equilibrium position except along one curve (the separatrix).