SlideShare a Scribd company logo
1 of 24
Download to read offline
Lecture 8: MDOF LINEAR SYSTEMS
RAYLEIGH'S METHOD
FREE VIBRATION
๐‘š๐‘š ฬˆ
๐‘ง๐‘ง + ๐‘๐‘ ฬ‡
๐‘ง๐‘ง + ๐‘˜๐‘˜ ๐‘ง๐‘ง = ๐‘๐‘(t)
There are several important types of problem associated Multi-
degree-of-freedom (MDOF) linear dynamic models of the form:
The first most important problem is to obtain natural frequencies and
mode shapes of free vibration i.e. undamped, unforced systems. This
involves solving the system model equation:
๐‘š๐‘š ฬˆ
๐‘ง๐‘ง + ๐‘˜๐‘˜ ๐‘ง๐‘ง = 0
Free-vibration natural frequencies and mode shapes are of interest in
their own right but they also play a big part in forced vibration analysis.
Free Vibration
Given the importance of natural frequencies, historically,
many approximate methods were developed to obtain
free-vibration natural frequencies. Most of these methods
pre-date digital computers and are therefore largely
obsolete. One method however is still important today,
namely Rayleighโ€™s method.
In this module we will examine:
1/ Free-vibration natural frequencies and mode shapes
2/ Forced vibration analysis for systems with proportional damping.
Rayleighโ€™s method to obtain approximate
natural frequencies
Rayleighโ€™s methods is a very powerful approximate method to
obtain natural frequencies of both discrete and continuous
systems. It also forms the basis of the Rayleigh-Ritz method which
is important in several areas and widely used in analysis (but we
will not study it in this module).
Rayleighโ€™s principle
Rayleighโ€™s method is based on Rayleighโ€™s Principle. A corollary of
Rayleighโ€™s Principle states that: โ€œThe frequency of vibration of a
conservative system vibrating about an equilibrium position has a
โ€˜stationary valueโ€™ in the neighbourhood of a natural mode. This
stationary value is in fact a minimum value in the neighbourhood of
the โ€˜fundamentalโ€™ natural frequencyโ€.
Rayleighโ€™s method to obtain approximate
natural frequencies
So the natural frequency predicted using Rayleighโ€™s method is at
a โ€˜turning pointโ€™ (in some sense) when a correct vibration mode
shape is used.
One way to use this principle is to consider the kinetic energy T
and potential energy V for some vibration frequency ๐œ”๐œ”. The
principle then states that
๐‘‘๐‘‘
๐‘‘๐‘‘๐‘‘๐‘‘
๐‘‡๐‘‡ + ๐‘‰๐‘‰ = 0 (i.e. a โ€˜turning pointโ€™
condition). This condition ultimately gives an (approximate)
equation for the natural frequency ๐œ”๐œ” in terms of an assumed
vibration shape.
An alternative route to the same equation is to equate the
maximum potential energy Vmax to the max kinetic energy Tmax.
Consider simple harmonic
motion
Mass
k 0 1 2 3 4 5 6
time
-1
-0.5
0
0.5
1
Displacement
Velocity
๐‘‡๐‘‡ =
1
2
ฬ‡
๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘š๐‘š ฬ‡
๐‘ง๐‘ง
and
๐‘‰๐‘‰ =
1
2
๐‘ง๐‘ง๐‘‡๐‘‡
๐‘˜๐‘˜ ๐‘ง๐‘ง
Rayleighโ€™s method
Max potential energy Vmax = Max kinetic energy Tmax
We saw earlier the expressions for the kinetic and
potential energy of a discrete MDOF system i.e.:
๐‘‡๐‘‡ =
1
2
ฬ‡
๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘š๐‘š ฬ‡
๐‘ง๐‘ง
and
๐‘‰๐‘‰ =
1
2
๐‘ง๐‘ง๐‘‡๐‘‡
๐‘˜๐‘˜ ๐‘ง๐‘ง
Rayleighโ€™s method
If we assume that the dynamic system is vibrating harmonically
at frequency ๐œ”๐œ” such that:
๐‘ง๐‘ง ๐‘ก๐‘ก = ฬ‚
๐‘ง๐‘ง๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘—๐‘—
where ฬ‚
๐‘ง๐‘ง is an assumed shape of displacement, then:
๐‘‡๐‘‡ =
1
2
๐œ”๐œ”2 ฬ‚
๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘š๐‘š ฬ‚
๐‘ง๐‘ง๐‘’๐‘’2๐‘—๐‘—๐‘—๐‘—๐‘—๐‘—
giving:
๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = +
๐œ”๐œ”2
2
ฬ‚
๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘š๐‘š ฬ‚
๐‘ง๐‘ง
And similarly:
๐‘‰๐‘‰
๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š =
1
2
ฬ‚
๐‘ง๐‘ง๐‘‡๐‘‡
๐‘˜๐‘˜ ฬ‚
๐‘ง๐‘ง
Rayleighโ€™s method
By equating maximum kinetic energy to the potential energy i.e.:
๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = ๐‘‰๐‘‰
๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š
we get:
๐œ”๐œ”2
2
ฬ‚
๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘š๐‘š ฬ‚
๐‘ง๐‘ง โ‰…
1
2
ฬ‚
๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘˜๐‘˜ ฬ‚
๐‘ง๐‘ง
or
๐œ”๐œ”2 =
ฬ‚
๐‘ง๐‘ง๐‘‡๐‘‡
๐‘˜๐‘˜ ฬ‚
๐‘ง๐‘ง
ฬ‚
๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘š๐‘š ฬ‚
๐‘ง๐‘ง
This is known as Rayleighโ€™s Quotient for a discrete system. If ฬ‚
๐‘ง๐‘ง is an eigenvector,
๐œ”๐œ” is exact. For example the jth natural frequency can be approximated by
๐œ”๐œ”๐‘—๐‘—
2
โ‰…
ฬ‚
๐‘ง๐‘ง๐‘—๐‘—
๐‘‡๐‘‡
๐‘˜๐‘˜ ฬ‚
๐‘ง๐‘ง๐‘—๐‘—
ฬ‚
๐‘ง๐‘ง๐‘—๐‘—
๐‘‡๐‘‡
๐‘š๐‘š ฬ‚
๐‘ง๐‘ง๐‘—๐‘—
where ฬ‚
๐‘ง๐‘ง๐‘—๐‘— is an assumed mode shape of the jth mode.
Rayleighโ€™s method
โ€ข For a SDOF system, Rayleigh's Quotient gives the result:
๐œ”๐œ”2 =
๐‘˜๐‘˜
๐‘š๐‘š
(which is exact).
โ€ข Rayleighโ€™s Quotient gives an upper bound estimate of ๐œ”๐œ”1 (i.e. the
lowest natural frequency, known as the โ€˜fundamentalโ€™). For any
assumed mode shape, the true natural frequency of the
fundamental mode is therefore always less than estimated, i.e.
the true fundamental frequency ๐œ”๐œ”1
2
โ‰ค
ฬ‚
๐‘ง๐‘ง๐‘—๐‘—
๐‘‡๐‘‡
๐‘˜๐‘˜ ฬ‚
๐‘ง๐‘ง๐‘—๐‘—
ฬ‚
๐‘ง๐‘ง๐‘—๐‘—
๐‘‡๐‘‡
๐‘š๐‘š ฬ‚
๐‘ง๐‘ง๐‘—๐‘—
.
Rayleighโ€™s method
An Example
For the lumped mass system shown the discrete model is:
๐‘š๐‘š 0
0 ๐‘š๐‘š
ฬˆ
๐‘ง๐‘ง1
ฬˆ
๐‘ง๐‘ง2
+
2๐‘˜๐‘˜ โˆ’ ๐‘˜๐‘˜
โˆ’๐‘˜๐‘˜ 2๐‘˜๐‘˜
๐‘ง๐‘ง1
๐‘ง๐‘ง2
=
0
0
We have not studied them yet, but this system has eigenvalues
(exact natural frequencies (squared)):
๐œ”๐œ”1
2
=
๐‘˜๐‘˜
๐‘š๐‘š
; and ๐œ”๐œ”2
2
=
3๐‘˜๐‘˜
๐‘š๐‘š
and eigenvectors are:
ฬ‚
๐‘ง๐‘ง(1) =
1
1
and ฬ‚
๐‘ง๐‘ง(2) =
1
โˆ’1
.
We are actually trying to estimate ๐œ”๐œ”1
Rayleighโ€™s method
Note: If we put the true mode shapes into Rayleigh's Quotient we will
obtain the exact natural frequencies i.e.
1 1
2๐‘˜๐‘˜ โˆ’ ๐‘˜๐‘˜
โˆ’๐‘˜๐‘˜ 2๐‘˜๐‘˜
1
1
= 2๐‘˜๐‘˜ ; 1 1
๐‘š๐‘š 0
0 ๐‘š๐‘š
1
1
= 2๐‘š๐‘š
๐œ”๐œ”๐‘—๐‘—
2
โ‰…
ฬ‚
๐‘ง๐‘ง๐‘—๐‘—
๐‘‡๐‘‡
๐‘˜๐‘˜ ฬ‚
๐‘ง๐‘ง๐‘—๐‘—
ฬ‚
๐‘ง๐‘ง๐‘—๐‘—
๐‘‡๐‘‡
๐‘š๐‘š ฬ‚
๐‘ง๐‘ง๐‘—๐‘—
โˆด ๐œ”๐œ”1
2
=
2๐‘˜๐‘˜
2๐‘š๐‘š
=
๐‘˜๐‘˜
๐‘š๐‘š
(which is exact); and if we use
1
โˆ’1
๐œ”๐œ”2
2
=
3๐‘˜๐‘˜
๐‘š๐‘š
(also exact )
Rayleighโ€™s method
Suppose however the guess of the 1st mode shape were ฬ‚
๐‘ง๐‘ง(1) =
1
0.5
(not
1
1
) then:
๐œ”๐œ”1
2
โ‰…
ฬ‚
๐‘ง๐‘ง๐‘‡๐‘‡
๐‘˜๐‘˜ ฬ‚
๐‘ง๐‘ง
ฬ‚
๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘š๐‘š ฬ‚
๐‘ง๐‘ง
=
1 0.5
2๐‘˜๐‘˜ โˆ’ ๐‘˜๐‘˜
โˆ’๐‘˜๐‘˜ 2๐‘˜๐‘˜
1
0.5
1 0.5
๐‘š๐‘š 0
0 ๐‘š๐‘š
1
0.5
=
6
5
๐‘˜๐‘˜
๐‘š๐‘š
>
๐‘˜๐‘˜
๐‘š๐‘š
๐œ”๐œ”1 = 1.095
๐‘˜๐‘˜
๐‘š๐‘š
i.e. 10% above the true value ๐œ”๐œ”1 for a large error in ๐‘ง๐‘ง(1). If the guess were ฬ‚
๐‘ง๐‘ง 1 =
1
0.9
then:
๐œ”๐œ”1
2
โ‰…
1 0.9
2๐‘˜๐‘˜ โˆ’ ๐‘˜๐‘˜
โˆ’๐‘˜๐‘˜ 2๐‘˜๐‘˜
1
0.9
1 0.9
๐‘š๐‘š 0
0 ๐‘š๐‘š
1
0.9
=
1.82๐‘˜๐‘˜
1.81๐‘š๐‘š
= 1.0055
๐‘˜๐‘˜
๐‘š๐‘š
i.e. a 0.3% error in ๐œ”๐œ”1. Similar accuracy is obtained for estimates of ๐œ”๐œ”2 but we cannot
say whether the estimates of ๐œ”๐œ”2 will be above or below the true ๐œ”๐œ”2).
FREE VIBRATION OF LINEAR MDOF
SYSTEMS
This section is concerned with exact calculation of natural
frequencies and mode shapes associated with:
๐‘š๐‘š ฬˆ
๐‘๐‘ + ๐‘˜๐‘˜ ๐‘๐‘ = ๐‘‚๐‘‚
which represents free motion associated with an undamped system.
Free vibration characteristics are needed for: i) qualitative use in
assessing potentially problematic frequencies where resonance
could occur in lightly damped systems, and ii) of equal importance,
to obtain normal modes which can be used to solve MDOF systems
with forcing and proportional damping. Here the focus will be on
systems with a symmetric matrices for [m] and [k].
FREE VIBRATION OF LINEAR MDOF
SYSTEMS
Mathematically the problem to solve requires solution of the
eigenvalues and eigenvectors of a square (but not
necessarily symmetric) matrix. For a conservative system
given by:
both the eigenvalues and eigenvectors are real. So the focus
will be the interpretation of the eigenvalues and vectors. The
derivation of some important orthogonality properties which
the normal modes satisfy will be given in the next
presentation.
๐‘š๐‘š ฬˆ
๐‘๐‘ + ๐‘˜๐‘˜ ๐‘๐‘ = ๐‘‚๐‘‚
FREE VIBRATION OF LINEAR MDOF
SYSTEMS
Eigenvalues and Eigen Vectors of Conservative Systems
To obtain the solution for model ๐‘š๐‘š ฬˆ
๐‘๐‘ + ๐‘˜๐‘˜ ๐‘๐‘ = O we assume
the solution is harmonic of complex amplitude (i.e. sinusoidal or
co-sinusoidal) which allows phase shift between input and
output to be easily accounted for. Therefore assume:
๐‘๐‘ ๐‘ก๐‘ก = ฬ‚
๐‘๐‘๐‘’๐‘’๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–
where ฬ‚
๐‘๐‘ is a constant vector with complex components, which
on substitution into the model gives:
โˆ’๐œ”๐œ”2
๐‘š๐‘š ฬ‚
๐‘๐‘ + ๐‘˜๐‘˜ ฬ‚
๐‘๐‘ ๐‘’๐‘’๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–
= 0
but since:
๐‘’๐‘’๐‘–๐‘–๐‘–๐‘–๐‘–๐‘– โ‰  0
gives:
โˆ’๐œ”๐œ”2 ๐‘š๐‘š ฬ‚
๐‘๐‘ + ๐‘˜๐‘˜ ฬ‚
๐‘๐‘ = 0
FREE VIBRATION OF LINEAR MDOF
SYSTEMS
Now pre-multiply โˆ’๐œ”๐œ”2 ๐‘š๐‘š ฬ‚
๐‘๐‘ + ๐‘˜๐‘˜ ฬ‚
๐‘๐‘ = 0 by ๐‘š๐‘š โˆ’1 (assuming it exists), we obtain:
๐ธ๐ธ โˆ’ ๐œ”๐œ”2
๐ผ๐ผ ฬ‚
๐‘๐‘ = 0
where ๐ธ๐ธ = ๐‘š๐‘š โˆ’1
๐‘˜๐‘˜ is known as the Stiffness Form of the Dynamic Matrix.
This is a standard eigenvalue problem in which (ascending order) eigenvalues
๐œ”๐œ”2 of the matrix E need to be found. Corresponding vectors ฬ‚
๐‘๐‘ which satisfy
the above equation at each of the eigenvalues also need to be found. The
eigenvalues and eigenvectors are interpreted as Natural Frequencies and
Modes Shapes of vibration respectively for free undamped vibration. These
eigenvectors are called Normal Modes.
Note: the standard eigenvalue problem associated with a square matrix A is
usually written in the form ๐ด๐ด โˆ’ ฮป๐ผ๐ผ ๐‘ฅ๐‘ฅ = 0.
FREE VIBRATION OF LINEAR MDOF
SYSTEMS
Now the solution process to obtain the eigenvalues and eigenvectors is
only possible if:
๐ธ๐ธ โˆ’ ๐œ”๐œ”2
๐ผ๐ผ = 0
i.e. a determinantal equation which leads to the frequency equation (i.e. a
polynomial in ๐œ”๐œ”2) the roots of which are the eigenvalues ( ๐œ”๐œ”1
2
, ๐œ”๐œ”2
2
, โ€ฆ , ๐œ”๐œ”๐‘๐‘
2
.
There should be N roots. Now ๐œ”๐œ”1 is called the first mode frequency (or the
fundamental frequency), ๐œ”๐œ”2 is the 2nd mode frequency, and so on. If, for
each eigenvalue, we substitute back into: ๐ธ๐ธ โˆ’ ๐œ”๐œ”๐‘–๐‘–
2
ฮ™ ฬ‚
๐‘๐‘ = 0 then from this
equation, we can solve for an eigenvector which is a relative measure of
how the displacements are related, when the system is vibrating in the ith
mode, with frequency ๐œ”๐œ”๐‘–๐‘–. The eigenvector only tells us the relative shape of
the free vibration โ€“ the amplitudes can be anything. Often, the amplitude of
displacement for the first component is conveniently set = 1; the vector
may also be normalised to magnitude = 1 (as explained shortly).
FREE VIBRATION OF LINEAR MDOF
SYSTEMS
Example: Computing the Natural Frequencies and Mode shapes:
A 3-DOF system (taken from Newland p125, involving simple hand calculation).
The system is a 3 x 3 system lumped mass model of equal mass m and equal
stiffness k as shown in the figure. The model is:
๐‘š๐‘š ฬˆ
๐‘ง๐‘ง + ๐‘๐‘ ฬ‡
๐‘ง๐‘ง + ๐œ…๐œ… ๐‘ง๐‘ง = 0
which has mass, stiffness, and damping matrices as follows:
๐‘š๐‘š =
๐‘š๐‘š 0 0
0 ๐‘š๐‘š 0
0 0 ๐‘š๐‘š
๐‘˜๐‘˜ =
2๐‘˜๐‘˜ โˆ’๐‘˜๐‘˜ 0
โˆ’๐‘˜๐‘˜ 2๐‘˜๐‘˜ โˆ’๐‘˜๐‘˜
0 โˆ’๐‘˜๐‘˜ 2๐‘˜๐‘˜
๐‘๐‘ = [0]
Here we choose value ๐‘š๐‘š = 1.0 kg and stiffness ๐‘˜๐‘˜ = 1.0 N/m for this system
FREE VIBRATION OF LINEAR MDOF
SYSTEMS
๐‘š๐‘šโˆ’1 =
1/๐‘š๐‘š 0 0
0 1/๐‘š๐‘š 0
0 0 1/๐‘š๐‘š
; ๐‘š๐‘šโˆ’1๐œ…๐œ… =
2 โˆ’1 0
โˆ’1 2 โˆ’1
0 โˆ’1 2
= ๐ธ๐ธ
To obtain the eigenvalues, we solve: ๐ธ๐ธ โˆ’ ๐œ”๐œ”2ฮ™ = 0 which leads to finding the roots
of a cubic polynomial in ๐œ”๐œ”2. The roots are:
๐œ”๐œ”1
2
= 0.5858 ๐œ”๐œ”1 = 0.7654 rad/sec
๐œ”๐œ”2
2
= 2.0000 ๐œ”๐œ”2 = 1.4142 rad/sec
๐œ”๐œ”3
2
= 3.4142 ๐œ”๐œ”3 = 1.8478 rad/sec
And for each ๐œ”๐œ”๐‘–๐‘– we can obtain eigenvectors by setting the first component in the
vector ๐‘๐‘1 = 1 and solving the remaining linear equations. Following this procedure
gives the eigenvectors:
๐‘๐‘(1) =
1.0
2
1.0
๐‘๐‘(2) =
1.0
0.0
โˆ’1.0
๐‘๐‘(3) =
1.0
โˆ’ 2
1.0
๐œ”๐œ”1 ๐œ”๐œ”2 ๐œ”๐œ”3
So the 1st element is arbitrarily normalised to 1.
FREE VIBRATION OF LINEAR MDOF
SYSTEMS
The eigenvectors show the relative
amplitudes when the structure is vibrating
only at that corresponding natural frequency.
We can show these eigenvectors graphically in
the form of mode shapes, which give relative
vibrations for each of the modes.
FREE VIBRATION OF LINEAR MDOF
SYSTEMS
The mode shapes:
1
.
0
1
.
0
Mode 1
1
.
0
1
.
0
Mode 2
at ๐œ”๐œ”1
at ๐œ”๐œ”2
at ๐œ”๐œ”3
1
.
0
Mode 3
1
.
0
FREE VIBRATION OF LINEAR MDOF
SYSTEMS
Normalisation of Eigenvectors
It is often convenient to rescale the eigenvectors to different lengths. Sometimes
this might be (as in FE code) to make the largest amplitude 1 (as we have already
done). Another procedure is to make the eigenvectors have length 1 (as in Matlab)
i.e. to scale the eigenvectors as follows:
๐‘ข๐‘ข(1) =
๐‘๐‘(1)
๐‘๐‘ 1
, ๐‘ข๐‘ข(2) =
๐‘๐‘(2)
๐‘๐‘(2)
, ๐‘ข๐‘ข(3) =
๐‘๐‘(3)
๐‘๐‘(3)
, โ€ฆ , ๐‘ข๐‘ข(๐‘๐‘) =
๐‘๐‘(๐‘๐‘)
๐‘๐‘(๐‘๐‘)
For the previous 3 x 3 system example, the unit-length normalised eigenvectors
are:
๐‘ข๐‘ข(1) =
๐‘๐‘(1)
๐‘๐‘ 1
=
1
12+ 2
2
+12
๏ฟฝ
1
2
1.0
2
1.0
=
1
2
1.0
2
1.0
=
โ„
1.0
2
๏ฟฝ
1
2
โ„
1
2
๐‘–๐‘–. ๐‘’๐‘’. ๐‘ข๐‘ข(1) = 1
FREE VIBRATION OF LINEAR MDOF
SYSTEMS
And
๐‘ข๐‘ข(2) =
๐‘๐‘(2)
๐‘๐‘ 2
=
1
12 + 02 + 12 ๏ฟฝ
1
2
1.0
0
โˆ’1.0
=
1
2
1.0
0
โˆ’1.0
=
๏ฟฝ
1.0
2
0
๏ฟฝ
โˆ’1
2
๐‘ข๐‘ข(2) = 1
And
๐‘ข๐‘ข(3) =
๐‘๐‘(3)
๐‘๐‘ 3
=
1
12 + 2
2
+ 12
๏ฟฝ
1
2
1.0
โˆ’ 2
1.0
=
1
2
1.0
โˆ’ 2
โˆ’1.0
=
๏ฟฝ
1.0
2
๏ฟฝ
โˆ’1.0
2
๏ฟฝ
1
2
๐‘ข๐‘ข(3) = 1
FREE VIBRATION OF LINEAR MDOF
SYSTEMS
The Modal Matrix
It is common to arrange the Normalised eigenvectors into a special matrix as
follows:
U = ๐‘ข๐‘ข(1), ๐‘ข๐‘ข 2 , โ€ฆ , ๐‘ข๐‘ข(๐‘๐‘)
For the 3 x 3 example, the modal matrix [U] is:
U =
โ„
1
2 ๏ฟฝ
1
2
โ„
1
2
๏ฟฝ
1
2
0 ๏ฟฝ
โˆ’1.0
2
โ„
1
2 ๏ฟฝ
โˆ’1
2
โ„
1
2
The modal matrix for the previous example.
The modal matrix [U] is an important matrix which allows a system of
equations, under certain conditions, to be diagonalised. We will examine this
feature in the next lecture.

More Related Content

What's hot

Approximate Methods
Approximate MethodsApproximate Methods
Approximate MethodsTeja Ande
ย 
Introduction to Strength of Materials
Introduction to Strength of MaterialsIntroduction to Strength of Materials
Introduction to Strength of MaterialsMsheer Bargaray
ย 
Trusses, frames & machines
Trusses, frames & machinesTrusses, frames & machines
Trusses, frames & machinesVenkat Ramana
ย 
04 Vibration of bars
04 Vibration of bars04 Vibration of bars
04 Vibration of barsMaged Mostafa
ย 
Stucture Design-I(Bending moment and Shear force)
Stucture Design-I(Bending moment and Shear force)Stucture Design-I(Bending moment and Shear force)
Stucture Design-I(Bending moment and Shear force)Simran Vats
ย 
Vibtraion notes
Vibtraion notesVibtraion notes
Vibtraion notesbinil babu
ย 
Dynamics of Machines - Unit III-Torsional Vibration
Dynamics of Machines -  Unit III-Torsional VibrationDynamics of Machines -  Unit III-Torsional Vibration
Dynamics of Machines - Unit III-Torsional VibrationDr.S.SURESH
ย 
Principle of virtual work and unit load method
Principle of virtual work and unit load methodPrinciple of virtual work and unit load method
Principle of virtual work and unit load methodMahdi Damghani
ย 
Energy methods for damped systems
Energy methods for damped systemsEnergy methods for damped systems
Energy methods for damped systemsUniversity of Glasgow
ย 
Unit 3 machines
Unit 3 machines Unit 3 machines
Unit 3 machines samreshkishore
ย 
experimental stress analysis-Chapter 7
experimental stress analysis-Chapter 7experimental stress analysis-Chapter 7
experimental stress analysis-Chapter 7MAHESH HUDALI
ย 
Bending stresses in beams
Bending stresses in beams Bending stresses in beams
Bending stresses in beams JISHNU V
ย 
Mdof
MdofMdof
MdofTeja Ande
ย 
ICR Velocity Analysis Graphical Method, Theory of Machine
ICR Velocity Analysis Graphical Method, Theory of MachineICR Velocity Analysis Graphical Method, Theory of Machine
ICR Velocity Analysis Graphical Method, Theory of MachineKESHAV
ย 
Unit 1 Introduction and Force Analysis
Unit 1 Introduction and Force AnalysisUnit 1 Introduction and Force Analysis
Unit 1 Introduction and Force AnalysisParrthipan B K
ย 
Lec3 principle virtual_work_method
Lec3 principle virtual_work_methodLec3 principle virtual_work_method
Lec3 principle virtual_work_methodMahdi Damghani
ย 
Vibration Isolation and Base Excitation
Vibration Isolation and Base ExcitationVibration Isolation and Base Excitation
Vibration Isolation and Base ExcitationHimanshi Gupta
ย 
Finite element method vs classical method 1
Finite element method vs classical method 1Finite element method vs classical method 1
Finite element method vs classical method 1manoj kumar
ย 
truses and frame
 truses and frame truses and frame
truses and frameUnikl MIMET
ย 

What's hot (20)

Approximate Methods
Approximate MethodsApproximate Methods
Approximate Methods
ย 
Introduction to Strength of Materials
Introduction to Strength of MaterialsIntroduction to Strength of Materials
Introduction to Strength of Materials
ย 
Trusses, frames & machines
Trusses, frames & machinesTrusses, frames & machines
Trusses, frames & machines
ย 
04 Vibration of bars
04 Vibration of bars04 Vibration of bars
04 Vibration of bars
ย 
Stucture Design-I(Bending moment and Shear force)
Stucture Design-I(Bending moment and Shear force)Stucture Design-I(Bending moment and Shear force)
Stucture Design-I(Bending moment and Shear force)
ย 
Lecture notes on trusses
Lecture notes on trussesLecture notes on trusses
Lecture notes on trusses
ย 
Vibtraion notes
Vibtraion notesVibtraion notes
Vibtraion notes
ย 
Dynamics of Machines - Unit III-Torsional Vibration
Dynamics of Machines -  Unit III-Torsional VibrationDynamics of Machines -  Unit III-Torsional Vibration
Dynamics of Machines - Unit III-Torsional Vibration
ย 
Principle of virtual work and unit load method
Principle of virtual work and unit load methodPrinciple of virtual work and unit load method
Principle of virtual work and unit load method
ย 
Energy methods for damped systems
Energy methods for damped systemsEnergy methods for damped systems
Energy methods for damped systems
ย 
Unit 3 machines
Unit 3 machines Unit 3 machines
Unit 3 machines
ย 
experimental stress analysis-Chapter 7
experimental stress analysis-Chapter 7experimental stress analysis-Chapter 7
experimental stress analysis-Chapter 7
ย 
Bending stresses in beams
Bending stresses in beams Bending stresses in beams
Bending stresses in beams
ย 
Mdof
MdofMdof
Mdof
ย 
ICR Velocity Analysis Graphical Method, Theory of Machine
ICR Velocity Analysis Graphical Method, Theory of MachineICR Velocity Analysis Graphical Method, Theory of Machine
ICR Velocity Analysis Graphical Method, Theory of Machine
ย 
Unit 1 Introduction and Force Analysis
Unit 1 Introduction and Force AnalysisUnit 1 Introduction and Force Analysis
Unit 1 Introduction and Force Analysis
ย 
Lec3 principle virtual_work_method
Lec3 principle virtual_work_methodLec3 principle virtual_work_method
Lec3 principle virtual_work_method
ย 
Vibration Isolation and Base Excitation
Vibration Isolation and Base ExcitationVibration Isolation and Base Excitation
Vibration Isolation and Base Excitation
ย 
Finite element method vs classical method 1
Finite element method vs classical method 1Finite element method vs classical method 1
Finite element method vs classical method 1
ย 
truses and frame
 truses and frame truses and frame
truses and frame
ย 

Similar to DOMV No 8 MDOF LINEAR SYSTEMS - RAYLEIGH'S METHOD - FREE VIBRATION.pdf

eq mothion.pptx
eq mothion.pptxeq mothion.pptx
eq mothion.pptxAnasuyamondal
ย 
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...IOSR Journals
ย 
Numerical solution of eigenvalues and applications 2
Numerical solution of eigenvalues and applications 2Numerical solution of eigenvalues and applications 2
Numerical solution of eigenvalues and applications 2SamsonAjibola
ย 
Regularization Methods to Solve
Regularization Methods to SolveRegularization Methods to Solve
Regularization Methods to SolveKomal Goyal
ย 
String theory basics
String theory basicsString theory basics
String theory basicsHassaan Saleem
ย 
Week_10.2.pdf
Week_10.2.pdfWeek_10.2.pdf
Week_10.2.pdfMir Shah
ย 
Perturbation
PerturbationPerturbation
PerturbationBHAVANAR12
ย 
Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillationsharshsharma5537
ย 
REPORT SUMMARYVibration refers to a mechanical.docx
REPORT SUMMARYVibration refers to a mechanical.docxREPORT SUMMARYVibration refers to a mechanical.docx
REPORT SUMMARYVibration refers to a mechanical.docxdebishakespeare
ย 
Applied numerical methods lec13
Applied numerical methods lec13Applied numerical methods lec13
Applied numerical methods lec13Yasser Ahmed
ย 
4 forced vibration of damped
4 forced vibration of damped4 forced vibration of damped
4 forced vibration of dampedJayesh Chopade
ย 
Bazzucchi-Campolmi-Zatti
Bazzucchi-Campolmi-ZattiBazzucchi-Campolmi-Zatti
Bazzucchi-Campolmi-ZattiFilippo Campolmi
ย 
Unit 5: All
Unit 5: AllUnit 5: All
Unit 5: AllHector Zenil
ย 
1 d,2d laplace inversion of lr nmr
1 d,2d laplace inversion of lr nmr1 d,2d laplace inversion of lr nmr
1 d,2d laplace inversion of lr nmrAdam Lee Perelman
ย 
DOMV No 7 MATH MODELLING Lagrange Equations.pdf
DOMV No 7  MATH MODELLING Lagrange Equations.pdfDOMV No 7  MATH MODELLING Lagrange Equations.pdf
DOMV No 7 MATH MODELLING Lagrange Equations.pdfahmedelsharkawy98
ย 
DOMV No 5 MATH MODELLING Newtonian d'Alembert Virtual Work (1).pdf
DOMV No 5  MATH MODELLING Newtonian d'Alembert  Virtual Work (1).pdfDOMV No 5  MATH MODELLING Newtonian d'Alembert  Virtual Work (1).pdf
DOMV No 5 MATH MODELLING Newtonian d'Alembert Virtual Work (1).pdfahmedelsharkawy98
ย 

Similar to DOMV No 8 MDOF LINEAR SYSTEMS - RAYLEIGH'S METHOD - FREE VIBRATION.pdf (20)

eq mothion.pptx
eq mothion.pptxeq mothion.pptx
eq mothion.pptx
ย 
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
Approximate Solution of a Linear Descriptor Dynamic Control System via a non-...
ย 
Lsd ee n
Lsd ee nLsd ee n
Lsd ee n
ย 
Numerical solution of eigenvalues and applications 2
Numerical solution of eigenvalues and applications 2Numerical solution of eigenvalues and applications 2
Numerical solution of eigenvalues and applications 2
ย 
Regularization Methods to Solve
Regularization Methods to SolveRegularization Methods to Solve
Regularization Methods to Solve
ย 
String theory basics
String theory basicsString theory basics
String theory basics
ย 
Week_10.2.pdf
Week_10.2.pdfWeek_10.2.pdf
Week_10.2.pdf
ย 
Perturbation
PerturbationPerturbation
Perturbation
ย 
Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillations
ย 
REPORT SUMMARYVibration refers to a mechanical.docx
REPORT SUMMARYVibration refers to a mechanical.docxREPORT SUMMARYVibration refers to a mechanical.docx
REPORT SUMMARYVibration refers to a mechanical.docx
ย 
Applied numerical methods lec13
Applied numerical methods lec13Applied numerical methods lec13
Applied numerical methods lec13
ย 
Av 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background MaterialAv 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background Material
ย 
4 forced vibration of damped
4 forced vibration of damped4 forced vibration of damped
4 forced vibration of damped
ย 
Bazzucchi-Campolmi-Zatti
Bazzucchi-Campolmi-ZattiBazzucchi-Campolmi-Zatti
Bazzucchi-Campolmi-Zatti
ย 
Unit 5: All
Unit 5: AllUnit 5: All
Unit 5: All
ย 
ch03.pptx
ch03.pptxch03.pptx
ch03.pptx
ย 
final_report
final_reportfinal_report
final_report
ย 
1 d,2d laplace inversion of lr nmr
1 d,2d laplace inversion of lr nmr1 d,2d laplace inversion of lr nmr
1 d,2d laplace inversion of lr nmr
ย 
DOMV No 7 MATH MODELLING Lagrange Equations.pdf
DOMV No 7  MATH MODELLING Lagrange Equations.pdfDOMV No 7  MATH MODELLING Lagrange Equations.pdf
DOMV No 7 MATH MODELLING Lagrange Equations.pdf
ย 
DOMV No 5 MATH MODELLING Newtonian d'Alembert Virtual Work (1).pdf
DOMV No 5  MATH MODELLING Newtonian d'Alembert  Virtual Work (1).pdfDOMV No 5  MATH MODELLING Newtonian d'Alembert  Virtual Work (1).pdf
DOMV No 5 MATH MODELLING Newtonian d'Alembert Virtual Work (1).pdf
ย 

More from ahmedelsharkawy98

DOMV No 2 RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (2).pdf
DOMV No 2  RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (2).pdfDOMV No 2  RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (2).pdf
DOMV No 2 RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (2).pdfahmedelsharkawy98
ย 
DOMV No 12 CONTINUED ADVANCED KINEMATIC ANALYSIS v2.pdf
DOMV No 12 CONTINUED ADVANCED KINEMATIC ANALYSIS v2.pdfDOMV No 12 CONTINUED ADVANCED KINEMATIC ANALYSIS v2.pdf
DOMV No 12 CONTINUED ADVANCED KINEMATIC ANALYSIS v2.pdfahmedelsharkawy98
ย 
DOMV No 4 PHYSICAL DYNAMIC MODEL TYPES (1).pdf
DOMV No 4  PHYSICAL DYNAMIC MODEL TYPES (1).pdfDOMV No 4  PHYSICAL DYNAMIC MODEL TYPES (1).pdf
DOMV No 4 PHYSICAL DYNAMIC MODEL TYPES (1).pdfahmedelsharkawy98
ย 
DOMV No 3 RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (1).pdf
DOMV No 3  RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (1).pdfDOMV No 3  RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (1).pdf
DOMV No 3 RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (1).pdfahmedelsharkawy98
ย 
DOMV No 2 RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (2).pdf
DOMV No 2  RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (2).pdfDOMV No 2  RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (2).pdf
DOMV No 2 RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (2).pdfahmedelsharkawy98
ย 

More from ahmedelsharkawy98 (6)

Sensors_2020.pptx
Sensors_2020.pptxSensors_2020.pptx
Sensors_2020.pptx
ย 
DOMV No 2 RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (2).pdf
DOMV No 2  RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (2).pdfDOMV No 2  RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (2).pdf
DOMV No 2 RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (2).pdf
ย 
DOMV No 12 CONTINUED ADVANCED KINEMATIC ANALYSIS v2.pdf
DOMV No 12 CONTINUED ADVANCED KINEMATIC ANALYSIS v2.pdfDOMV No 12 CONTINUED ADVANCED KINEMATIC ANALYSIS v2.pdf
DOMV No 12 CONTINUED ADVANCED KINEMATIC ANALYSIS v2.pdf
ย 
DOMV No 4 PHYSICAL DYNAMIC MODEL TYPES (1).pdf
DOMV No 4  PHYSICAL DYNAMIC MODEL TYPES (1).pdfDOMV No 4  PHYSICAL DYNAMIC MODEL TYPES (1).pdf
DOMV No 4 PHYSICAL DYNAMIC MODEL TYPES (1).pdf
ย 
DOMV No 3 RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (1).pdf
DOMV No 3  RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (1).pdfDOMV No 3  RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (1).pdf
DOMV No 3 RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (1).pdf
ย 
DOMV No 2 RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (2).pdf
DOMV No 2  RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (2).pdfDOMV No 2  RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (2).pdf
DOMV No 2 RESPONSE OF LINEAR SDOF SYSTEMS TO GENERAL LOADING (2).pdf
ย 

Recently uploaded

Call Girls Bangalore Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Service Ban...
Call Girls Bangalore Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Service Ban...Call Girls Bangalore Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Service Ban...
Call Girls Bangalore Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Service Ban...amitlee9823
ย 
How To Troubleshoot Mercedes Blind Spot Assist Inoperative Error
How To Troubleshoot Mercedes Blind Spot Assist Inoperative ErrorHow To Troubleshoot Mercedes Blind Spot Assist Inoperative Error
How To Troubleshoot Mercedes Blind Spot Assist Inoperative ErrorAndres Auto Service
ย 
John Deere Tractors 6130M 6140M Diagnostic Manual
John Deere Tractors  6130M 6140M Diagnostic ManualJohn Deere Tractors  6130M 6140M Diagnostic Manual
John Deere Tractors 6130M 6140M Diagnostic ManualExcavator
ย 
Sales & Marketing Alignment_ How to Synergize for Success.pptx.pdf
Sales & Marketing Alignment_ How to Synergize for Success.pptx.pdfSales & Marketing Alignment_ How to Synergize for Success.pptx.pdf
Sales & Marketing Alignment_ How to Synergize for Success.pptx.pdfAggregage
ย 
Call Girls Kanakapura Road Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Servi...
Call Girls Kanakapura Road Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Servi...Call Girls Kanakapura Road Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Servi...
Call Girls Kanakapura Road Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Servi...amitlee9823
ย 
Bangalore Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore E...
Bangalore Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore E...Bangalore Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore E...
Bangalore Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore E...amitlee9823
ย 
Greenery-Palette Pitch Deck by Slidesgo.pptx
Greenery-Palette Pitch Deck by Slidesgo.pptxGreenery-Palette Pitch Deck by Slidesgo.pptx
Greenery-Palette Pitch Deck by Slidesgo.pptxzohiiimughal286
ย 
FULL NIGHT โ€” 9999894380 Call Girls In Jagat Puri | Delhi
FULL NIGHT โ€” 9999894380 Call Girls In Jagat Puri | DelhiFULL NIGHT โ€” 9999894380 Call Girls In Jagat Puri | Delhi
FULL NIGHT โ€” 9999894380 Call Girls In Jagat Puri | DelhiSaketCallGirlsCallUs
ย 
Top Rated Call Girls South Mumbai : 9920725232 We offer Beautiful and sexy Ca...
Top Rated Call Girls South Mumbai : 9920725232 We offer Beautiful and sexy Ca...Top Rated Call Girls South Mumbai : 9920725232 We offer Beautiful and sexy Ca...
Top Rated Call Girls South Mumbai : 9920725232 We offer Beautiful and sexy Ca...amitlee9823
ย 
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN ABUDHABI,DUBAI MA...
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN ABUDHABI,DUBAI MA...+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN ABUDHABI,DUBAI MA...
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN ABUDHABI,DUBAI MA...Health
ย 
ๅฆ‚ไฝ•ๅŠž็†้บฆ่€ƒ็‘žๅคงๅญฆๆฏ•ไธš่ฏ๏ผˆMQUๆฏ•ไธš่ฏไนฆ๏ผ‰ๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
ๅฆ‚ไฝ•ๅŠž็†้บฆ่€ƒ็‘žๅคงๅญฆๆฏ•ไธš่ฏ๏ผˆMQUๆฏ•ไธš่ฏไนฆ๏ผ‰ๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€ๅฆ‚ไฝ•ๅŠž็†้บฆ่€ƒ็‘žๅคงๅญฆๆฏ•ไธš่ฏ๏ผˆMQUๆฏ•ไธš่ฏไนฆ๏ผ‰ๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
ๅฆ‚ไฝ•ๅŠž็†้บฆ่€ƒ็‘žๅคงๅญฆๆฏ•ไธš่ฏ๏ผˆMQUๆฏ•ไธš่ฏไนฆ๏ผ‰ๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€ozave
ย 
Call Girls in Malviya Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9205541914 ๐Ÿ”( Delhi) Escorts Ser...
Call Girls in Malviya Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9205541914 ๐Ÿ”( Delhi) Escorts Ser...Call Girls in Malviya Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9205541914 ๐Ÿ”( Delhi) Escorts Ser...
Call Girls in Malviya Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9205541914 ๐Ÿ”( Delhi) Escorts Ser...Delhi Call girls
ย 
Vip Mumbai Call Girls Mumbai Call On 9920725232 With Body to body massage wit...
Vip Mumbai Call Girls Mumbai Call On 9920725232 With Body to body massage wit...Vip Mumbai Call Girls Mumbai Call On 9920725232 With Body to body massage wit...
Vip Mumbai Call Girls Mumbai Call On 9920725232 With Body to body massage wit...amitlee9823
ย 
What Could Cause Your Subaru's Touch Screen To Stop Working
What Could Cause Your Subaru's Touch Screen To Stop WorkingWhat Could Cause Your Subaru's Touch Screen To Stop Working
What Could Cause Your Subaru's Touch Screen To Stop WorkingBruce Cox Imports
ย 
ELECTRICITEฬ TMT 55.pdf electrick diagram manitout
ELECTRICITEฬ TMT 55.pdf electrick diagram manitoutELECTRICITEฬ TMT 55.pdf electrick diagram manitout
ELECTRICITEฬ TMT 55.pdf electrick diagram manitoutssjews46
ย 
Call Girls Kadugodi Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Service Bang...
Call Girls Kadugodi Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Service Bang...Call Girls Kadugodi Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Service Bang...
Call Girls Kadugodi Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Service Bang...amitlee9823
ย 
Vip Mumbai Call Girls Navi Mumbai Call On 9920725232 With Body to body massag...
Vip Mumbai Call Girls Navi Mumbai Call On 9920725232 With Body to body massag...Vip Mumbai Call Girls Navi Mumbai Call On 9920725232 With Body to body massag...
Vip Mumbai Call Girls Navi Mumbai Call On 9920725232 With Body to body massag...amitlee9823
ย 
John Deere 7430 7530 Tractors Diagnostic Service Manual W.pdf
John Deere 7430 7530 Tractors Diagnostic Service Manual W.pdfJohn Deere 7430 7530 Tractors Diagnostic Service Manual W.pdf
John Deere 7430 7530 Tractors Diagnostic Service Manual W.pdfExcavator
ย 
Majestic Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore Es...
Majestic Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore Es...Majestic Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore Es...
Majestic Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore Es...amitlee9823
ย 

Recently uploaded (20)

Call Girls Bangalore Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Service Ban...
Call Girls Bangalore Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Service Ban...Call Girls Bangalore Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Service Ban...
Call Girls Bangalore Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Service Ban...
ย 
How To Troubleshoot Mercedes Blind Spot Assist Inoperative Error
How To Troubleshoot Mercedes Blind Spot Assist Inoperative ErrorHow To Troubleshoot Mercedes Blind Spot Assist Inoperative Error
How To Troubleshoot Mercedes Blind Spot Assist Inoperative Error
ย 
John Deere Tractors 6130M 6140M Diagnostic Manual
John Deere Tractors  6130M 6140M Diagnostic ManualJohn Deere Tractors  6130M 6140M Diagnostic Manual
John Deere Tractors 6130M 6140M Diagnostic Manual
ย 
Sales & Marketing Alignment_ How to Synergize for Success.pptx.pdf
Sales & Marketing Alignment_ How to Synergize for Success.pptx.pdfSales & Marketing Alignment_ How to Synergize for Success.pptx.pdf
Sales & Marketing Alignment_ How to Synergize for Success.pptx.pdf
ย 
Call Girls Kanakapura Road Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Servi...
Call Girls Kanakapura Road Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Servi...Call Girls Kanakapura Road Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Servi...
Call Girls Kanakapura Road Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Servi...
ย 
Bangalore Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore E...
Bangalore Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore E...Bangalore Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore E...
Bangalore Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore E...
ย 
Greenery-Palette Pitch Deck by Slidesgo.pptx
Greenery-Palette Pitch Deck by Slidesgo.pptxGreenery-Palette Pitch Deck by Slidesgo.pptx
Greenery-Palette Pitch Deck by Slidesgo.pptx
ย 
FULL NIGHT โ€” 9999894380 Call Girls In Jagat Puri | Delhi
FULL NIGHT โ€” 9999894380 Call Girls In Jagat Puri | DelhiFULL NIGHT โ€” 9999894380 Call Girls In Jagat Puri | Delhi
FULL NIGHT โ€” 9999894380 Call Girls In Jagat Puri | Delhi
ย 
Top Rated Call Girls South Mumbai : 9920725232 We offer Beautiful and sexy Ca...
Top Rated Call Girls South Mumbai : 9920725232 We offer Beautiful and sexy Ca...Top Rated Call Girls South Mumbai : 9920725232 We offer Beautiful and sexy Ca...
Top Rated Call Girls South Mumbai : 9920725232 We offer Beautiful and sexy Ca...
ย 
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN ABUDHABI,DUBAI MA...
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN ABUDHABI,DUBAI MA...+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN ABUDHABI,DUBAI MA...
+971565801893>>SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN ABUDHABI,DUBAI MA...
ย 
ๅฆ‚ไฝ•ๅŠž็†้บฆ่€ƒ็‘žๅคงๅญฆๆฏ•ไธš่ฏ๏ผˆMQUๆฏ•ไธš่ฏไนฆ๏ผ‰ๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
ๅฆ‚ไฝ•ๅŠž็†้บฆ่€ƒ็‘žๅคงๅญฆๆฏ•ไธš่ฏ๏ผˆMQUๆฏ•ไธš่ฏไนฆ๏ผ‰ๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€ๅฆ‚ไฝ•ๅŠž็†้บฆ่€ƒ็‘žๅคงๅญฆๆฏ•ไธš่ฏ๏ผˆMQUๆฏ•ไธš่ฏไนฆ๏ผ‰ๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
ๅฆ‚ไฝ•ๅŠž็†้บฆ่€ƒ็‘žๅคงๅญฆๆฏ•ไธš่ฏ๏ผˆMQUๆฏ•ไธš่ฏไนฆ๏ผ‰ๆˆ็ปฉๅ•ๅŽŸ็‰ˆไธ€ๆฏ”ไธ€
ย 
Call Girls in Malviya Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9205541914 ๐Ÿ”( Delhi) Escorts Ser...
Call Girls in Malviya Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9205541914 ๐Ÿ”( Delhi) Escorts Ser...Call Girls in Malviya Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9205541914 ๐Ÿ”( Delhi) Escorts Ser...
Call Girls in Malviya Nagar Delhi ๐Ÿ’ฏ Call Us ๐Ÿ”9205541914 ๐Ÿ”( Delhi) Escorts Ser...
ย 
Vip Mumbai Call Girls Mumbai Call On 9920725232 With Body to body massage wit...
Vip Mumbai Call Girls Mumbai Call On 9920725232 With Body to body massage wit...Vip Mumbai Call Girls Mumbai Call On 9920725232 With Body to body massage wit...
Vip Mumbai Call Girls Mumbai Call On 9920725232 With Body to body massage wit...
ย 
(INDIRA) Call Girl Surat Call Now 8250077686 Surat Escorts 24x7
(INDIRA) Call Girl Surat Call Now 8250077686 Surat Escorts 24x7(INDIRA) Call Girl Surat Call Now 8250077686 Surat Escorts 24x7
(INDIRA) Call Girl Surat Call Now 8250077686 Surat Escorts 24x7
ย 
What Could Cause Your Subaru's Touch Screen To Stop Working
What Could Cause Your Subaru's Touch Screen To Stop WorkingWhat Could Cause Your Subaru's Touch Screen To Stop Working
What Could Cause Your Subaru's Touch Screen To Stop Working
ย 
ELECTRICITEฬ TMT 55.pdf electrick diagram manitout
ELECTRICITEฬ TMT 55.pdf electrick diagram manitoutELECTRICITEฬ TMT 55.pdf electrick diagram manitout
ELECTRICITEฬ TMT 55.pdf electrick diagram manitout
ย 
Call Girls Kadugodi Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Service Bang...
Call Girls Kadugodi Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Service Bang...Call Girls Kadugodi Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Service Bang...
Call Girls Kadugodi Just Call ๐Ÿ‘— 7737669865 ๐Ÿ‘— Top Class Call Girl Service Bang...
ย 
Vip Mumbai Call Girls Navi Mumbai Call On 9920725232 With Body to body massag...
Vip Mumbai Call Girls Navi Mumbai Call On 9920725232 With Body to body massag...Vip Mumbai Call Girls Navi Mumbai Call On 9920725232 With Body to body massag...
Vip Mumbai Call Girls Navi Mumbai Call On 9920725232 With Body to body massag...
ย 
John Deere 7430 7530 Tractors Diagnostic Service Manual W.pdf
John Deere 7430 7530 Tractors Diagnostic Service Manual W.pdfJohn Deere 7430 7530 Tractors Diagnostic Service Manual W.pdf
John Deere 7430 7530 Tractors Diagnostic Service Manual W.pdf
ย 
Majestic Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore Es...
Majestic Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore Es...Majestic Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore Es...
Majestic Call Girls: ๐Ÿ“ 7737669865 ๐Ÿ“ High Profile Model Escorts | Bangalore Es...
ย 

DOMV No 8 MDOF LINEAR SYSTEMS - RAYLEIGH'S METHOD - FREE VIBRATION.pdf

  • 1. Lecture 8: MDOF LINEAR SYSTEMS RAYLEIGH'S METHOD FREE VIBRATION ๐‘š๐‘š ฬˆ ๐‘ง๐‘ง + ๐‘๐‘ ฬ‡ ๐‘ง๐‘ง + ๐‘˜๐‘˜ ๐‘ง๐‘ง = ๐‘๐‘(t) There are several important types of problem associated Multi- degree-of-freedom (MDOF) linear dynamic models of the form: The first most important problem is to obtain natural frequencies and mode shapes of free vibration i.e. undamped, unforced systems. This involves solving the system model equation: ๐‘š๐‘š ฬˆ ๐‘ง๐‘ง + ๐‘˜๐‘˜ ๐‘ง๐‘ง = 0 Free-vibration natural frequencies and mode shapes are of interest in their own right but they also play a big part in forced vibration analysis.
  • 2. Free Vibration Given the importance of natural frequencies, historically, many approximate methods were developed to obtain free-vibration natural frequencies. Most of these methods pre-date digital computers and are therefore largely obsolete. One method however is still important today, namely Rayleighโ€™s method. In this module we will examine: 1/ Free-vibration natural frequencies and mode shapes 2/ Forced vibration analysis for systems with proportional damping.
  • 3. Rayleighโ€™s method to obtain approximate natural frequencies Rayleighโ€™s methods is a very powerful approximate method to obtain natural frequencies of both discrete and continuous systems. It also forms the basis of the Rayleigh-Ritz method which is important in several areas and widely used in analysis (but we will not study it in this module). Rayleighโ€™s principle Rayleighโ€™s method is based on Rayleighโ€™s Principle. A corollary of Rayleighโ€™s Principle states that: โ€œThe frequency of vibration of a conservative system vibrating about an equilibrium position has a โ€˜stationary valueโ€™ in the neighbourhood of a natural mode. This stationary value is in fact a minimum value in the neighbourhood of the โ€˜fundamentalโ€™ natural frequencyโ€.
  • 4. Rayleighโ€™s method to obtain approximate natural frequencies So the natural frequency predicted using Rayleighโ€™s method is at a โ€˜turning pointโ€™ (in some sense) when a correct vibration mode shape is used. One way to use this principle is to consider the kinetic energy T and potential energy V for some vibration frequency ๐œ”๐œ”. The principle then states that ๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‡๐‘‡ + ๐‘‰๐‘‰ = 0 (i.e. a โ€˜turning pointโ€™ condition). This condition ultimately gives an (approximate) equation for the natural frequency ๐œ”๐œ” in terms of an assumed vibration shape. An alternative route to the same equation is to equate the maximum potential energy Vmax to the max kinetic energy Tmax.
  • 5. Consider simple harmonic motion Mass k 0 1 2 3 4 5 6 time -1 -0.5 0 0.5 1 Displacement Velocity ๐‘‡๐‘‡ = 1 2 ฬ‡ ๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘š๐‘š ฬ‡ ๐‘ง๐‘ง and ๐‘‰๐‘‰ = 1 2 ๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘˜๐‘˜ ๐‘ง๐‘ง
  • 6. Rayleighโ€™s method Max potential energy Vmax = Max kinetic energy Tmax We saw earlier the expressions for the kinetic and potential energy of a discrete MDOF system i.e.: ๐‘‡๐‘‡ = 1 2 ฬ‡ ๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘š๐‘š ฬ‡ ๐‘ง๐‘ง and ๐‘‰๐‘‰ = 1 2 ๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘˜๐‘˜ ๐‘ง๐‘ง
  • 7. Rayleighโ€™s method If we assume that the dynamic system is vibrating harmonically at frequency ๐œ”๐œ” such that: ๐‘ง๐‘ง ๐‘ก๐‘ก = ฬ‚ ๐‘ง๐‘ง๐‘’๐‘’๐‘—๐‘—๐‘—๐‘—๐‘—๐‘— where ฬ‚ ๐‘ง๐‘ง is an assumed shape of displacement, then: ๐‘‡๐‘‡ = 1 2 ๐œ”๐œ”2 ฬ‚ ๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘š๐‘š ฬ‚ ๐‘ง๐‘ง๐‘’๐‘’2๐‘—๐‘—๐‘—๐‘—๐‘—๐‘— giving: ๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = + ๐œ”๐œ”2 2 ฬ‚ ๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘š๐‘š ฬ‚ ๐‘ง๐‘ง And similarly: ๐‘‰๐‘‰ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = 1 2 ฬ‚ ๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘˜๐‘˜ ฬ‚ ๐‘ง๐‘ง
  • 8. Rayleighโ€™s method By equating maximum kinetic energy to the potential energy i.e.: ๐‘‡๐‘‡๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š = ๐‘‰๐‘‰ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š we get: ๐œ”๐œ”2 2 ฬ‚ ๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘š๐‘š ฬ‚ ๐‘ง๐‘ง โ‰… 1 2 ฬ‚ ๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘˜๐‘˜ ฬ‚ ๐‘ง๐‘ง or ๐œ”๐œ”2 = ฬ‚ ๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘˜๐‘˜ ฬ‚ ๐‘ง๐‘ง ฬ‚ ๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘š๐‘š ฬ‚ ๐‘ง๐‘ง This is known as Rayleighโ€™s Quotient for a discrete system. If ฬ‚ ๐‘ง๐‘ง is an eigenvector, ๐œ”๐œ” is exact. For example the jth natural frequency can be approximated by ๐œ”๐œ”๐‘—๐‘— 2 โ‰… ฬ‚ ๐‘ง๐‘ง๐‘—๐‘— ๐‘‡๐‘‡ ๐‘˜๐‘˜ ฬ‚ ๐‘ง๐‘ง๐‘—๐‘— ฬ‚ ๐‘ง๐‘ง๐‘—๐‘— ๐‘‡๐‘‡ ๐‘š๐‘š ฬ‚ ๐‘ง๐‘ง๐‘—๐‘— where ฬ‚ ๐‘ง๐‘ง๐‘—๐‘— is an assumed mode shape of the jth mode.
  • 9. Rayleighโ€™s method โ€ข For a SDOF system, Rayleigh's Quotient gives the result: ๐œ”๐œ”2 = ๐‘˜๐‘˜ ๐‘š๐‘š (which is exact). โ€ข Rayleighโ€™s Quotient gives an upper bound estimate of ๐œ”๐œ”1 (i.e. the lowest natural frequency, known as the โ€˜fundamentalโ€™). For any assumed mode shape, the true natural frequency of the fundamental mode is therefore always less than estimated, i.e. the true fundamental frequency ๐œ”๐œ”1 2 โ‰ค ฬ‚ ๐‘ง๐‘ง๐‘—๐‘— ๐‘‡๐‘‡ ๐‘˜๐‘˜ ฬ‚ ๐‘ง๐‘ง๐‘—๐‘— ฬ‚ ๐‘ง๐‘ง๐‘—๐‘— ๐‘‡๐‘‡ ๐‘š๐‘š ฬ‚ ๐‘ง๐‘ง๐‘—๐‘— .
  • 10. Rayleighโ€™s method An Example For the lumped mass system shown the discrete model is: ๐‘š๐‘š 0 0 ๐‘š๐‘š ฬˆ ๐‘ง๐‘ง1 ฬˆ ๐‘ง๐‘ง2 + 2๐‘˜๐‘˜ โˆ’ ๐‘˜๐‘˜ โˆ’๐‘˜๐‘˜ 2๐‘˜๐‘˜ ๐‘ง๐‘ง1 ๐‘ง๐‘ง2 = 0 0 We have not studied them yet, but this system has eigenvalues (exact natural frequencies (squared)): ๐œ”๐œ”1 2 = ๐‘˜๐‘˜ ๐‘š๐‘š ; and ๐œ”๐œ”2 2 = 3๐‘˜๐‘˜ ๐‘š๐‘š and eigenvectors are: ฬ‚ ๐‘ง๐‘ง(1) = 1 1 and ฬ‚ ๐‘ง๐‘ง(2) = 1 โˆ’1 . We are actually trying to estimate ๐œ”๐œ”1
  • 11. Rayleighโ€™s method Note: If we put the true mode shapes into Rayleigh's Quotient we will obtain the exact natural frequencies i.e. 1 1 2๐‘˜๐‘˜ โˆ’ ๐‘˜๐‘˜ โˆ’๐‘˜๐‘˜ 2๐‘˜๐‘˜ 1 1 = 2๐‘˜๐‘˜ ; 1 1 ๐‘š๐‘š 0 0 ๐‘š๐‘š 1 1 = 2๐‘š๐‘š ๐œ”๐œ”๐‘—๐‘— 2 โ‰… ฬ‚ ๐‘ง๐‘ง๐‘—๐‘— ๐‘‡๐‘‡ ๐‘˜๐‘˜ ฬ‚ ๐‘ง๐‘ง๐‘—๐‘— ฬ‚ ๐‘ง๐‘ง๐‘—๐‘— ๐‘‡๐‘‡ ๐‘š๐‘š ฬ‚ ๐‘ง๐‘ง๐‘—๐‘— โˆด ๐œ”๐œ”1 2 = 2๐‘˜๐‘˜ 2๐‘š๐‘š = ๐‘˜๐‘˜ ๐‘š๐‘š (which is exact); and if we use 1 โˆ’1 ๐œ”๐œ”2 2 = 3๐‘˜๐‘˜ ๐‘š๐‘š (also exact )
  • 12. Rayleighโ€™s method Suppose however the guess of the 1st mode shape were ฬ‚ ๐‘ง๐‘ง(1) = 1 0.5 (not 1 1 ) then: ๐œ”๐œ”1 2 โ‰… ฬ‚ ๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘˜๐‘˜ ฬ‚ ๐‘ง๐‘ง ฬ‚ ๐‘ง๐‘ง๐‘‡๐‘‡ ๐‘š๐‘š ฬ‚ ๐‘ง๐‘ง = 1 0.5 2๐‘˜๐‘˜ โˆ’ ๐‘˜๐‘˜ โˆ’๐‘˜๐‘˜ 2๐‘˜๐‘˜ 1 0.5 1 0.5 ๐‘š๐‘š 0 0 ๐‘š๐‘š 1 0.5 = 6 5 ๐‘˜๐‘˜ ๐‘š๐‘š > ๐‘˜๐‘˜ ๐‘š๐‘š ๐œ”๐œ”1 = 1.095 ๐‘˜๐‘˜ ๐‘š๐‘š i.e. 10% above the true value ๐œ”๐œ”1 for a large error in ๐‘ง๐‘ง(1). If the guess were ฬ‚ ๐‘ง๐‘ง 1 = 1 0.9 then: ๐œ”๐œ”1 2 โ‰… 1 0.9 2๐‘˜๐‘˜ โˆ’ ๐‘˜๐‘˜ โˆ’๐‘˜๐‘˜ 2๐‘˜๐‘˜ 1 0.9 1 0.9 ๐‘š๐‘š 0 0 ๐‘š๐‘š 1 0.9 = 1.82๐‘˜๐‘˜ 1.81๐‘š๐‘š = 1.0055 ๐‘˜๐‘˜ ๐‘š๐‘š i.e. a 0.3% error in ๐œ”๐œ”1. Similar accuracy is obtained for estimates of ๐œ”๐œ”2 but we cannot say whether the estimates of ๐œ”๐œ”2 will be above or below the true ๐œ”๐œ”2).
  • 13. FREE VIBRATION OF LINEAR MDOF SYSTEMS This section is concerned with exact calculation of natural frequencies and mode shapes associated with: ๐‘š๐‘š ฬˆ ๐‘๐‘ + ๐‘˜๐‘˜ ๐‘๐‘ = ๐‘‚๐‘‚ which represents free motion associated with an undamped system. Free vibration characteristics are needed for: i) qualitative use in assessing potentially problematic frequencies where resonance could occur in lightly damped systems, and ii) of equal importance, to obtain normal modes which can be used to solve MDOF systems with forcing and proportional damping. Here the focus will be on systems with a symmetric matrices for [m] and [k].
  • 14. FREE VIBRATION OF LINEAR MDOF SYSTEMS Mathematically the problem to solve requires solution of the eigenvalues and eigenvectors of a square (but not necessarily symmetric) matrix. For a conservative system given by: both the eigenvalues and eigenvectors are real. So the focus will be the interpretation of the eigenvalues and vectors. The derivation of some important orthogonality properties which the normal modes satisfy will be given in the next presentation. ๐‘š๐‘š ฬˆ ๐‘๐‘ + ๐‘˜๐‘˜ ๐‘๐‘ = ๐‘‚๐‘‚
  • 15. FREE VIBRATION OF LINEAR MDOF SYSTEMS Eigenvalues and Eigen Vectors of Conservative Systems To obtain the solution for model ๐‘š๐‘š ฬˆ ๐‘๐‘ + ๐‘˜๐‘˜ ๐‘๐‘ = O we assume the solution is harmonic of complex amplitude (i.e. sinusoidal or co-sinusoidal) which allows phase shift between input and output to be easily accounted for. Therefore assume: ๐‘๐‘ ๐‘ก๐‘ก = ฬ‚ ๐‘๐‘๐‘’๐‘’๐‘–๐‘–๐‘–๐‘–๐‘–๐‘– where ฬ‚ ๐‘๐‘ is a constant vector with complex components, which on substitution into the model gives: โˆ’๐œ”๐œ”2 ๐‘š๐‘š ฬ‚ ๐‘๐‘ + ๐‘˜๐‘˜ ฬ‚ ๐‘๐‘ ๐‘’๐‘’๐‘–๐‘–๐‘–๐‘–๐‘–๐‘– = 0 but since: ๐‘’๐‘’๐‘–๐‘–๐‘–๐‘–๐‘–๐‘– โ‰  0 gives: โˆ’๐œ”๐œ”2 ๐‘š๐‘š ฬ‚ ๐‘๐‘ + ๐‘˜๐‘˜ ฬ‚ ๐‘๐‘ = 0
  • 16. FREE VIBRATION OF LINEAR MDOF SYSTEMS Now pre-multiply โˆ’๐œ”๐œ”2 ๐‘š๐‘š ฬ‚ ๐‘๐‘ + ๐‘˜๐‘˜ ฬ‚ ๐‘๐‘ = 0 by ๐‘š๐‘š โˆ’1 (assuming it exists), we obtain: ๐ธ๐ธ โˆ’ ๐œ”๐œ”2 ๐ผ๐ผ ฬ‚ ๐‘๐‘ = 0 where ๐ธ๐ธ = ๐‘š๐‘š โˆ’1 ๐‘˜๐‘˜ is known as the Stiffness Form of the Dynamic Matrix. This is a standard eigenvalue problem in which (ascending order) eigenvalues ๐œ”๐œ”2 of the matrix E need to be found. Corresponding vectors ฬ‚ ๐‘๐‘ which satisfy the above equation at each of the eigenvalues also need to be found. The eigenvalues and eigenvectors are interpreted as Natural Frequencies and Modes Shapes of vibration respectively for free undamped vibration. These eigenvectors are called Normal Modes. Note: the standard eigenvalue problem associated with a square matrix A is usually written in the form ๐ด๐ด โˆ’ ฮป๐ผ๐ผ ๐‘ฅ๐‘ฅ = 0.
  • 17. FREE VIBRATION OF LINEAR MDOF SYSTEMS Now the solution process to obtain the eigenvalues and eigenvectors is only possible if: ๐ธ๐ธ โˆ’ ๐œ”๐œ”2 ๐ผ๐ผ = 0 i.e. a determinantal equation which leads to the frequency equation (i.e. a polynomial in ๐œ”๐œ”2) the roots of which are the eigenvalues ( ๐œ”๐œ”1 2 , ๐œ”๐œ”2 2 , โ€ฆ , ๐œ”๐œ”๐‘๐‘ 2 . There should be N roots. Now ๐œ”๐œ”1 is called the first mode frequency (or the fundamental frequency), ๐œ”๐œ”2 is the 2nd mode frequency, and so on. If, for each eigenvalue, we substitute back into: ๐ธ๐ธ โˆ’ ๐œ”๐œ”๐‘–๐‘– 2 ฮ™ ฬ‚ ๐‘๐‘ = 0 then from this equation, we can solve for an eigenvector which is a relative measure of how the displacements are related, when the system is vibrating in the ith mode, with frequency ๐œ”๐œ”๐‘–๐‘–. The eigenvector only tells us the relative shape of the free vibration โ€“ the amplitudes can be anything. Often, the amplitude of displacement for the first component is conveniently set = 1; the vector may also be normalised to magnitude = 1 (as explained shortly).
  • 18. FREE VIBRATION OF LINEAR MDOF SYSTEMS Example: Computing the Natural Frequencies and Mode shapes: A 3-DOF system (taken from Newland p125, involving simple hand calculation). The system is a 3 x 3 system lumped mass model of equal mass m and equal stiffness k as shown in the figure. The model is: ๐‘š๐‘š ฬˆ ๐‘ง๐‘ง + ๐‘๐‘ ฬ‡ ๐‘ง๐‘ง + ๐œ…๐œ… ๐‘ง๐‘ง = 0 which has mass, stiffness, and damping matrices as follows: ๐‘š๐‘š = ๐‘š๐‘š 0 0 0 ๐‘š๐‘š 0 0 0 ๐‘š๐‘š ๐‘˜๐‘˜ = 2๐‘˜๐‘˜ โˆ’๐‘˜๐‘˜ 0 โˆ’๐‘˜๐‘˜ 2๐‘˜๐‘˜ โˆ’๐‘˜๐‘˜ 0 โˆ’๐‘˜๐‘˜ 2๐‘˜๐‘˜ ๐‘๐‘ = [0] Here we choose value ๐‘š๐‘š = 1.0 kg and stiffness ๐‘˜๐‘˜ = 1.0 N/m for this system
  • 19. FREE VIBRATION OF LINEAR MDOF SYSTEMS ๐‘š๐‘šโˆ’1 = 1/๐‘š๐‘š 0 0 0 1/๐‘š๐‘š 0 0 0 1/๐‘š๐‘š ; ๐‘š๐‘šโˆ’1๐œ…๐œ… = 2 โˆ’1 0 โˆ’1 2 โˆ’1 0 โˆ’1 2 = ๐ธ๐ธ To obtain the eigenvalues, we solve: ๐ธ๐ธ โˆ’ ๐œ”๐œ”2ฮ™ = 0 which leads to finding the roots of a cubic polynomial in ๐œ”๐œ”2. The roots are: ๐œ”๐œ”1 2 = 0.5858 ๐œ”๐œ”1 = 0.7654 rad/sec ๐œ”๐œ”2 2 = 2.0000 ๐œ”๐œ”2 = 1.4142 rad/sec ๐œ”๐œ”3 2 = 3.4142 ๐œ”๐œ”3 = 1.8478 rad/sec And for each ๐œ”๐œ”๐‘–๐‘– we can obtain eigenvectors by setting the first component in the vector ๐‘๐‘1 = 1 and solving the remaining linear equations. Following this procedure gives the eigenvectors: ๐‘๐‘(1) = 1.0 2 1.0 ๐‘๐‘(2) = 1.0 0.0 โˆ’1.0 ๐‘๐‘(3) = 1.0 โˆ’ 2 1.0 ๐œ”๐œ”1 ๐œ”๐œ”2 ๐œ”๐œ”3 So the 1st element is arbitrarily normalised to 1.
  • 20. FREE VIBRATION OF LINEAR MDOF SYSTEMS The eigenvectors show the relative amplitudes when the structure is vibrating only at that corresponding natural frequency. We can show these eigenvectors graphically in the form of mode shapes, which give relative vibrations for each of the modes.
  • 21. FREE VIBRATION OF LINEAR MDOF SYSTEMS The mode shapes: 1 . 0 1 . 0 Mode 1 1 . 0 1 . 0 Mode 2 at ๐œ”๐œ”1 at ๐œ”๐œ”2 at ๐œ”๐œ”3 1 . 0 Mode 3 1 . 0
  • 22. FREE VIBRATION OF LINEAR MDOF SYSTEMS Normalisation of Eigenvectors It is often convenient to rescale the eigenvectors to different lengths. Sometimes this might be (as in FE code) to make the largest amplitude 1 (as we have already done). Another procedure is to make the eigenvectors have length 1 (as in Matlab) i.e. to scale the eigenvectors as follows: ๐‘ข๐‘ข(1) = ๐‘๐‘(1) ๐‘๐‘ 1 , ๐‘ข๐‘ข(2) = ๐‘๐‘(2) ๐‘๐‘(2) , ๐‘ข๐‘ข(3) = ๐‘๐‘(3) ๐‘๐‘(3) , โ€ฆ , ๐‘ข๐‘ข(๐‘๐‘) = ๐‘๐‘(๐‘๐‘) ๐‘๐‘(๐‘๐‘) For the previous 3 x 3 system example, the unit-length normalised eigenvectors are: ๐‘ข๐‘ข(1) = ๐‘๐‘(1) ๐‘๐‘ 1 = 1 12+ 2 2 +12 ๏ฟฝ 1 2 1.0 2 1.0 = 1 2 1.0 2 1.0 = โ„ 1.0 2 ๏ฟฝ 1 2 โ„ 1 2 ๐‘–๐‘–. ๐‘’๐‘’. ๐‘ข๐‘ข(1) = 1
  • 23. FREE VIBRATION OF LINEAR MDOF SYSTEMS And ๐‘ข๐‘ข(2) = ๐‘๐‘(2) ๐‘๐‘ 2 = 1 12 + 02 + 12 ๏ฟฝ 1 2 1.0 0 โˆ’1.0 = 1 2 1.0 0 โˆ’1.0 = ๏ฟฝ 1.0 2 0 ๏ฟฝ โˆ’1 2 ๐‘ข๐‘ข(2) = 1 And ๐‘ข๐‘ข(3) = ๐‘๐‘(3) ๐‘๐‘ 3 = 1 12 + 2 2 + 12 ๏ฟฝ 1 2 1.0 โˆ’ 2 1.0 = 1 2 1.0 โˆ’ 2 โˆ’1.0 = ๏ฟฝ 1.0 2 ๏ฟฝ โˆ’1.0 2 ๏ฟฝ 1 2 ๐‘ข๐‘ข(3) = 1
  • 24. FREE VIBRATION OF LINEAR MDOF SYSTEMS The Modal Matrix It is common to arrange the Normalised eigenvectors into a special matrix as follows: U = ๐‘ข๐‘ข(1), ๐‘ข๐‘ข 2 , โ€ฆ , ๐‘ข๐‘ข(๐‘๐‘) For the 3 x 3 example, the modal matrix [U] is: U = โ„ 1 2 ๏ฟฝ 1 2 โ„ 1 2 ๏ฟฝ 1 2 0 ๏ฟฝ โˆ’1.0 2 โ„ 1 2 ๏ฟฝ โˆ’1 2 โ„ 1 2 The modal matrix for the previous example. The modal matrix [U] is an important matrix which allows a system of equations, under certain conditions, to be diagonalised. We will examine this feature in the next lecture.