SlideShare a Scribd company logo
DEEP LEARNING JP
[DL Papers]
Geometric Unsupervised Domain Adaptation for Semantic
Segmentation
Yuting Lin, Kokusai Kogyo Co., Ltd.(国際航業)
http://deeplearning.jp/
1
書誌情報
• タイトル
– Geometric Unsupervised Domain Adaptation for Semantic Segmentation
• 著者
– Vitor Guizilini, Jie Li Rares, Ambrus, Adrien Gaidon (TRI)
• ICCV2021(poster)に採択
• Paper
– https://openaccess.thecvf.com/content/ICCV2021/papers/Guizilini_Geometric_Uns
upervised_Domain_Adaptation_for_Semantic_Segmentation_ICCV_2021_paper.pdf
• Code
– https://github.com/tri-ml/packnet-sfm(別のプロジェクト?)
2
概要
• Unsupervised Domain Adaptation (UDA)の課題
• 多くの手法は、敵対的な学習を採用
• 識別器の学習が難しい
• domainのsemanticに関するギャップを接近させにくい
– proxy/pretext taskで性能を向上
• segmentation以外のタスクも同時に学習(回転角度を予測)
• Global表現より、画素レベルの表現の学習が必要
• 本論文は、画素レベルの表現学習を実現するproxy taskを利用したUDA手
法を提案
3
既往研究 - UDA
• 基本は、self supervised learning (a.k.a pseudo label)で行う
– pixel/feature/outputレベルで、sourceとtargetをalignment
– 直接domainの分布に対した方法の効果は限定的
• proxy taskの活用
– source domainの他のmodalityを利用し、学習をガイド
– SPIGANは疑似的depth情報を追加の正則項で学習
– GIO-Adaはdepthとnormal情報で、targetへのstyle transferを学習
– DADAはdepthとsegmentationをshared encoderで推定
– 提案手法は、target domain(video)においても、depthを同時に推定することで
(geometricな情報を利用)、性能を向上
4
既往研究 - Self-supervised learning (SSL)
• 主な流派
– pre-training + fine-tuning
– multi-task learning: rotation, patch jigsaw puzzlesなど
• domain-invariant & fine-grained特徴を学習できる
• 汎化性能が高い
– GUDAは後者を採用
5
提案手法
• Preliminary
– Depth: 𝑓𝐷: 𝐼 → ෡
𝐷
– Semantic: 𝑓𝑆: 𝐼 → መ
𝑆 (𝑓𝐷, 𝑓𝑠のencoderはshared)
– Pose: 𝑓𝑇: 𝐼𝑎, 𝐼𝑏 → ෢
𝑇𝑎
𝑏
– 損失関数
ℒ = ℒ𝑅 + λ𝑉ℒ𝑉
– Mixed batch: 𝐵𝑉, 𝐵𝑅
– 連続3フレームで学習 𝐼𝑡−1, 𝐼𝑡, 𝐼𝑡+1
– 内部パラメータKを既知とする
6
提案手法
• Real sample処理
– Loss関数
ℒ𝑅 = ℒ𝑃 + λ𝑃𝐿ℒ𝑃𝐿
where ℒ𝑃: self-supervised photometric loss
ℒ𝑃𝐿: optional pseudo-label loss
7
提案手法
• Real sample処理:Self-Supervised Photometric Loss
– Self-Supervised depthとpose推定は、view synthesis問題
෡
𝐼𝑡 = 𝐼𝑡′ 𝜋 ෢
𝐷𝑡, ෢
𝑇𝑡
𝑡′
, 𝐾
where ෡
𝐼𝑡=predicted target image, 𝐼𝑡′=reference image, ෢
𝐷𝑡=predicted depth map, ෢
𝑇𝑡
𝑡′
=relative transformation,
𝜋=projection operation
– 再構築誤差は、structural similarity (SSIM) とL1 distance in pixel spaceで構成され
るstandard photometric lossで求める
ℒ𝑃 𝐼𝑡, ෡
𝐼𝑡 = 𝛼
1 − 𝑆𝑆𝐼𝑀 𝐼𝑡, ෡
𝐼𝑡
2
+ 1 − 𝛼 𝐼𝑡 − ෡
𝐼𝑡 1
• SSIMは解像度が異なるoutputの平均を取る
• auto-maskingと最小再投影誤差で、動物体とオクルージョンによる影響を抑える
8
提案手法
• Real sample処理: Pseudo-Label Distillation
– Pseudo-Labelを教師とし、Cross Entropy Lossでrealデータのセグメンテーションを学
習
ℒ𝑃𝐿 = ℒ𝑆
መ
𝑆, 𝑆𝑃𝐿
where መ
𝑆=predicted semantic map, 𝑆𝑃𝐿
=Pseudo Label of same sample
9
提案手法
• Virtual sample処理
– Loss関数
ℒ𝑉 = ℒ𝐷 + λ𝑆ℒ𝑆 + λ𝑁ℒ𝑁 + λ𝑃𝑃ℒ𝑃𝑃
where ℒ𝐷: supervised depth loss
ℒ𝑆: supervised semantic loss
ℒ𝑁: surface normal regularization term
ℒ𝑃𝑃: optional partially-supervised photometric loss
10
提案手法
• Virtual sample処理: Supervised Semantic Loss
– bootstrapped cross-entropy loss: scoreが低いK(0.3×H×W)の推定結果のみ逆伝
播に
ℒ𝑆 = −
1
𝐾
෍
𝑢=1
𝐻
෍
𝑣=1
𝑊
෍
𝑐=1
𝐶
𝕝 𝑐=𝑦𝑢,𝑣,𝑝𝑢,𝑣
𝑐 <𝑡 log 𝑝𝑢,𝑣
𝑐
where t=run-time threshold
11
提案手法
• Virtual sample処理: Supervised Depth Loss
– Scale-Invariant Logarithmic loss (SILog)
ℒ𝑆 =
1
𝑃
෍
𝑑∈𝐷
∆𝑑2 −
𝜆
𝑃2
෍
𝑑∈𝐷
∆𝑑
2
where ∆𝑑 = log 𝑑 − log መ
𝑑
P: depthがvalidの画素数
12
提案手法
• Virtual sample処理: Surface Normal Regularization
– Depth推定は画素ごとに行うため、smoothingをかけた方が性能が良い
– Depthから計算したNormalをsmoothing
𝒏 = 𝑷𝑢+1,𝑣 − 𝑷𝑢,𝑣 × 𝑷𝑢,𝑣+1 − 𝑷𝑢,𝑣
where 𝑷 = ∅ 𝒑, 𝑑, 𝐾 画像上の点pを3Dに投影した点P
– Cosine類似度でnormal正則化を行う
ℒ𝑁 =
1
2𝑃
෍
𝒑∈𝐷
1 −
ෝ
𝒏 ∙ 𝒏
ෝ
𝒏 𝒏
– Geometricな情報を学習できるようになった
• 境界の鮮明化
• 遠い物体の精度向上
13
提案手法
• Virtual sample処理: Partially-Supervised Photometric Loss
– Virtualデータも連続画像の場合、Self-Supervised Photometric Lossも適用できる
– depth/poseごとの教師があるため、depth/poseにdecouple
– Original: ෡
𝐼𝑡 = 𝐼𝑡′ 𝜋 ෢
𝐷𝑡, ෢
𝑇𝑡
𝑡′
, 𝐾
– Depth:෢
𝐼𝑡
𝐷
= 𝐼𝑡′ 𝜋 𝐷𝑡, ෢
𝑇𝑡
𝑡′
, 𝐾
– Pose: ෡
𝐼𝑡
𝑇
= 𝐼𝑡′ 𝜋 ෢
𝐷𝑡, 𝑇𝑡
𝑡′
, 𝐾
ℒ𝑃𝑃 =
1
3
ℒ𝑃 𝐼𝑡, ෡
𝐼𝑡 + ℒ𝑃 𝐼𝑡, ෢
𝐼𝑡
𝐷
+ ℒ𝑃 𝐼𝑡, ෡
𝐼𝑡
𝑇
14
実験の設定
• ネットワーク
– Shared backbone: ResNet101 w/ ImageNet pre-trained
– Depth/semantic decoder: [1]
– Pose encoder: ResNet18 w/ ImageNet pre-trained
– Pose decoder: conv layers数個
• Datasets
– Real datasets: Cityscapes, KITTI, DDAD
– Virtual datasets: SYNTHIA, VKITTI2, Parallel Domain, GTA5
15
[1] Digging Into Self-Supervised Monocular Depth Estimation. https://arxiv.org/pdf/1806.01260.pdf
実験結果
• UDA Semantic Segmentation on Cityscapes
– SOTAを達成
• 動画からのself-supervised geometric constraintsを用いたDepth推
定を2つドメインで行うことで、モデルの汎化性能を向上
• road, sidewalk, building等、境界が明確なクラスの精度が従来手法
より高い
• Static環境を仮定するため、レアな動物体(motorcycle)が課題
• Pseudo labelで改善
16
実験結果
• UDA Semantic Segmentation on other datasets
– VKITTI2 to KITTI
– Parallel Domain to DDAD
– 初の検討
17
実験結果
• データの量・質による影響
– 性能向上を線形とする場合、提案手法は、200kのvirtualデータでdomain gapを埋め
られる(DANNは350k)
18
実験結果
• Ablation Study
– Geometric supervisionは性能向上に貢献
– 提案手法の有効性を確認
19
実験結果
• Depth Estimation
– Fine-tuneより精度が高い
– GUDAはscale-aware情報を保持
– Encoderを大きいネットワークに変えると、更なる改善を見込める
20
実験結果
• 定性評価
21
まとめ
• geometric taskをセグメンテーションとのmulti-task learningにすることがDAに
有効
• Self-supervised learningで、教師なしかつ、ドメイン情報を学習する必要がな
いDAを実現
• 動画を対象になるため、単写真タスクは適用できない(?)
22

More Related Content

What's hot

SSII2019企画: 点群深層学習の研究動向
SSII2019企画: 点群深層学習の研究動向SSII2019企画: 点群深層学習の研究動向
SSII2019企画: 点群深層学習の研究動向
SSII
 
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...
Deep Learning JP
 
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
Deep Learning JP
 
[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations
Deep Learning JP
 
【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
Deep Learning JP
 
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門
tmtm otm
 
Transformer 動向調査 in 画像認識(修正版)
Transformer 動向調査 in 画像認識(修正版)Transformer 動向調査 in 画像認識(修正版)
Transformer 動向調査 in 画像認識(修正版)
Kazuki Maeno
 
0から理解するニューラルネットアーキテクチャサーチ(NAS)
0から理解するニューラルネットアーキテクチャサーチ(NAS)0から理解するニューラルネットアーキテクチャサーチ(NAS)
0から理解するニューラルネットアーキテクチャサーチ(NAS)
MasanoriSuganuma
 
[DL輪読会]World Models
[DL輪読会]World Models[DL輪読会]World Models
[DL輪読会]World Models
Deep Learning JP
 
[DL輪読会]When Does Label Smoothing Help?
[DL輪読会]When Does Label Smoothing Help?[DL輪読会]When Does Label Smoothing Help?
[DL輪読会]When Does Label Smoothing Help?
Deep Learning JP
 
GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)
Masahiro Suzuki
 
[DL輪読会]近年のエネルギーベースモデルの進展
[DL輪読会]近年のエネルギーベースモデルの進展[DL輪読会]近年のエネルギーベースモデルの進展
[DL輪読会]近年のエネルギーベースモデルの進展
Deep Learning JP
 
近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer
Yusuke Uchida
 
[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection
Deep Learning JP
 
Anomaly detection 系の論文を一言でまとめた
Anomaly detection 系の論文を一言でまとめたAnomaly detection 系の論文を一言でまとめた
Anomaly detection 系の論文を一言でまとめた
ぱんいち すみもと
 
【論文読み会】Self-Attention Generative Adversarial Networks
【論文読み会】Self-Attention Generative  Adversarial Networks【論文読み会】Self-Attention Generative  Adversarial Networks
【論文読み会】Self-Attention Generative Adversarial Networks
ARISE analytics
 
【DL輪読会】Factory: Fast Contact for Robotic Assembly
【DL輪読会】Factory: Fast Contact for Robotic Assembly【DL輪読会】Factory: Fast Contact for Robotic Assembly
【DL輪読会】Factory: Fast Contact for Robotic Assembly
Deep Learning JP
 
[DL輪読会]ドメイン転移と不変表現に関するサーベイ
[DL輪読会]ドメイン転移と不変表現に関するサーベイ[DL輪読会]ドメイン転移と不変表現に関するサーベイ
[DL輪読会]ドメイン転移と不変表現に関するサーベイ
Deep Learning JP
 
【DL輪読会】Incorporating group update for speech enhancement based on convolutio...
【DL輪読会】Incorporating group update for speech enhancement  based on convolutio...【DL輪読会】Incorporating group update for speech enhancement  based on convolutio...
【DL輪読会】Incorporating group update for speech enhancement based on convolutio...
Deep Learning JP
 

What's hot (20)

SSII2019企画: 点群深層学習の研究動向
SSII2019企画: 点群深層学習の研究動向SSII2019企画: 点群深層学習の研究動向
SSII2019企画: 点群深層学習の研究動向
 
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...
 
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
 
[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations
 
【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
 
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
SSII2020SS: グラフデータでも深層学習 〜 Graph Neural Networks 入門 〜
 
PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門PRML学習者から入る深層生成モデル入門
PRML学習者から入る深層生成モデル入門
 
Transformer 動向調査 in 画像認識(修正版)
Transformer 動向調査 in 画像認識(修正版)Transformer 動向調査 in 画像認識(修正版)
Transformer 動向調査 in 画像認識(修正版)
 
0から理解するニューラルネットアーキテクチャサーチ(NAS)
0から理解するニューラルネットアーキテクチャサーチ(NAS)0から理解するニューラルネットアーキテクチャサーチ(NAS)
0から理解するニューラルネットアーキテクチャサーチ(NAS)
 
[DL輪読会]World Models
[DL輪読会]World Models[DL輪読会]World Models
[DL輪読会]World Models
 
[DL輪読会]When Does Label Smoothing Help?
[DL輪読会]When Does Label Smoothing Help?[DL輪読会]When Does Label Smoothing Help?
[DL輪読会]When Does Label Smoothing Help?
 
GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)
 
[DL輪読会]近年のエネルギーベースモデルの進展
[DL輪読会]近年のエネルギーベースモデルの進展[DL輪読会]近年のエネルギーベースモデルの進展
[DL輪読会]近年のエネルギーベースモデルの進展
 
近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer近年のHierarchical Vision Transformer
近年のHierarchical Vision Transformer
 
[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection
 
Anomaly detection 系の論文を一言でまとめた
Anomaly detection 系の論文を一言でまとめたAnomaly detection 系の論文を一言でまとめた
Anomaly detection 系の論文を一言でまとめた
 
【論文読み会】Self-Attention Generative Adversarial Networks
【論文読み会】Self-Attention Generative  Adversarial Networks【論文読み会】Self-Attention Generative  Adversarial Networks
【論文読み会】Self-Attention Generative Adversarial Networks
 
【DL輪読会】Factory: Fast Contact for Robotic Assembly
【DL輪読会】Factory: Fast Contact for Robotic Assembly【DL輪読会】Factory: Fast Contact for Robotic Assembly
【DL輪読会】Factory: Fast Contact for Robotic Assembly
 
[DL輪読会]ドメイン転移と不変表現に関するサーベイ
[DL輪読会]ドメイン転移と不変表現に関するサーベイ[DL輪読会]ドメイン転移と不変表現に関するサーベイ
[DL輪読会]ドメイン転移と不変表現に関するサーベイ
 
【DL輪読会】Incorporating group update for speech enhancement based on convolutio...
【DL輪読会】Incorporating group update for speech enhancement  based on convolutio...【DL輪読会】Incorporating group update for speech enhancement  based on convolutio...
【DL輪読会】Incorporating group update for speech enhancement based on convolutio...
 

Similar to [DL輪読会]Geometric Unsupervised Domain Adaptation for Semantic Segmentation

[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representatio...
[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representatio...[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representatio...
[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representatio...
Deep Learning JP
 
【DL輪読会】HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentat...
【DL輪読会】HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentat...【DL輪読会】HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentat...
【DL輪読会】HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentat...
Deep Learning JP
 
NeurIPS'21参加報告 tanimoto_public
NeurIPS'21参加報告 tanimoto_publicNeurIPS'21参加報告 tanimoto_public
NeurIPS'21参加報告 tanimoto_public
Akira Tanimoto
 
[DL輪読会]Convolutional Sequence to Sequence Learning
[DL輪読会]Convolutional Sequence to Sequence Learning[DL輪読会]Convolutional Sequence to Sequence Learning
[DL輪読会]Convolutional Sequence to Sequence Learning
Deep Learning JP
 
Image net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural NetworksImage net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural Networks
Shingo Horiuchi
 
Unity名古屋セミナー [Shadowgun]
Unity名古屋セミナー [Shadowgun]Unity名古屋セミナー [Shadowgun]
Unity名古屋セミナー [Shadowgun]
MakotoItoh
 
2012-03-08 MSS研究会
2012-03-08 MSS研究会2012-03-08 MSS研究会
2012-03-08 MSS研究会
Kimikazu Kato
 
第11回 配信講義 計算科学技術特論B(2022)
第11回 配信講義 計算科学技術特論B(2022)第11回 配信講義 計算科学技術特論B(2022)
第11回 配信講義 計算科学技術特論B(2022)
RCCSRENKEI
 
ICCV2019読み会「Learning Meshes for Dense Visual SLAM」
ICCV2019読み会「Learning Meshes for Dense Visual SLAM」ICCV2019読み会「Learning Meshes for Dense Visual SLAM」
ICCV2019読み会「Learning Meshes for Dense Visual SLAM」
Sho Kagami
 
Deep learning実装の基礎と実践
Deep learning実装の基礎と実践Deep learning実装の基礎と実践
Deep learning実装の基礎と実践
Seiya Tokui
 
[DL輪読会]Learning to Act by Predicting the Future
[DL輪読会]Learning to Act by Predicting the Future[DL輪読会]Learning to Act by Predicting the Future
[DL輪読会]Learning to Act by Predicting the Future
Deep Learning JP
 
シリコンスタジオの最新テクノロジーデモ技術解説
シリコンスタジオの最新テクノロジーデモ技術解説シリコンスタジオの最新テクノロジーデモ技術解説
シリコンスタジオの最新テクノロジーデモ技術解説Silicon Studio Corporation
 
文献紹介:Selective Feature Compression for Efficient Activity Recognition Inference
文献紹介:Selective Feature Compression for Efficient Activity Recognition Inference文献紹介:Selective Feature Compression for Efficient Activity Recognition Inference
文献紹介:Selective Feature Compression for Efficient Activity Recognition Inference
Toru Tamaki
 
Cvim saisentan-6-4-tomoaki
Cvim saisentan-6-4-tomoakiCvim saisentan-6-4-tomoaki
Cvim saisentan-6-4-tomoaki
tomoaki0705
 
2値化CNN on FPGAでGPUとガチンコバトル(公開版)
2値化CNN on FPGAでGPUとガチンコバトル(公開版)2値化CNN on FPGAでGPUとガチンコバトル(公開版)
2値化CNN on FPGAでGPUとガチンコバトル(公開版)
Hiroki Nakahara
 
Rainbow
RainbowRainbow
Globally and Locally Consistent Image Completion
Globally and Locally Consistent Image CompletionGlobally and Locally Consistent Image Completion
Globally and Locally Consistent Image Completion
harmonylab
 
2014/02/23 CV勉強会発表資料 nksm_r
2014/02/23 CV勉強会発表資料 nksm_r2014/02/23 CV勉強会発表資料 nksm_r
2014/02/23 CV勉強会発表資料 nksm_rnakari1124
 
文献紹介:TinyVIRAT: Low-resolution Video Action Recognition
文献紹介:TinyVIRAT: Low-resolution Video Action Recognition文献紹介:TinyVIRAT: Low-resolution Video Action Recognition
文献紹介:TinyVIRAT: Low-resolution Video Action Recognition
Toru Tamaki
 
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
Hiroki Nakahara
 

Similar to [DL輪読会]Geometric Unsupervised Domain Adaptation for Semantic Segmentation (20)

[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representatio...
[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representatio...[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representatio...
[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representatio...
 
【DL輪読会】HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentat...
【DL輪読会】HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentat...【DL輪読会】HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentat...
【DL輪読会】HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentat...
 
NeurIPS'21参加報告 tanimoto_public
NeurIPS'21参加報告 tanimoto_publicNeurIPS'21参加報告 tanimoto_public
NeurIPS'21参加報告 tanimoto_public
 
[DL輪読会]Convolutional Sequence to Sequence Learning
[DL輪読会]Convolutional Sequence to Sequence Learning[DL輪読会]Convolutional Sequence to Sequence Learning
[DL輪読会]Convolutional Sequence to Sequence Learning
 
Image net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural NetworksImage net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural Networks
 
Unity名古屋セミナー [Shadowgun]
Unity名古屋セミナー [Shadowgun]Unity名古屋セミナー [Shadowgun]
Unity名古屋セミナー [Shadowgun]
 
2012-03-08 MSS研究会
2012-03-08 MSS研究会2012-03-08 MSS研究会
2012-03-08 MSS研究会
 
第11回 配信講義 計算科学技術特論B(2022)
第11回 配信講義 計算科学技術特論B(2022)第11回 配信講義 計算科学技術特論B(2022)
第11回 配信講義 計算科学技術特論B(2022)
 
ICCV2019読み会「Learning Meshes for Dense Visual SLAM」
ICCV2019読み会「Learning Meshes for Dense Visual SLAM」ICCV2019読み会「Learning Meshes for Dense Visual SLAM」
ICCV2019読み会「Learning Meshes for Dense Visual SLAM」
 
Deep learning実装の基礎と実践
Deep learning実装の基礎と実践Deep learning実装の基礎と実践
Deep learning実装の基礎と実践
 
[DL輪読会]Learning to Act by Predicting the Future
[DL輪読会]Learning to Act by Predicting the Future[DL輪読会]Learning to Act by Predicting the Future
[DL輪読会]Learning to Act by Predicting the Future
 
シリコンスタジオの最新テクノロジーデモ技術解説
シリコンスタジオの最新テクノロジーデモ技術解説シリコンスタジオの最新テクノロジーデモ技術解説
シリコンスタジオの最新テクノロジーデモ技術解説
 
文献紹介:Selective Feature Compression for Efficient Activity Recognition Inference
文献紹介:Selective Feature Compression for Efficient Activity Recognition Inference文献紹介:Selective Feature Compression for Efficient Activity Recognition Inference
文献紹介:Selective Feature Compression for Efficient Activity Recognition Inference
 
Cvim saisentan-6-4-tomoaki
Cvim saisentan-6-4-tomoakiCvim saisentan-6-4-tomoaki
Cvim saisentan-6-4-tomoaki
 
2値化CNN on FPGAでGPUとガチンコバトル(公開版)
2値化CNN on FPGAでGPUとガチンコバトル(公開版)2値化CNN on FPGAでGPUとガチンコバトル(公開版)
2値化CNN on FPGAでGPUとガチンコバトル(公開版)
 
Rainbow
RainbowRainbow
Rainbow
 
Globally and Locally Consistent Image Completion
Globally and Locally Consistent Image CompletionGlobally and Locally Consistent Image Completion
Globally and Locally Consistent Image Completion
 
2014/02/23 CV勉強会発表資料 nksm_r
2014/02/23 CV勉強会発表資料 nksm_r2014/02/23 CV勉強会発表資料 nksm_r
2014/02/23 CV勉強会発表資料 nksm_r
 
文献紹介:TinyVIRAT: Low-resolution Video Action Recognition
文献紹介:TinyVIRAT: Low-resolution Video Action Recognition文献紹介:TinyVIRAT: Low-resolution Video Action Recognition
文献紹介:TinyVIRAT: Low-resolution Video Action Recognition
 
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
 

More from Deep Learning JP

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
Deep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
Deep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
Deep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
Deep Learning JP
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
Deep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
Deep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
Deep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
Deep Learning JP
 

More from Deep Learning JP (20)

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
 

Recently uploaded

キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援しますキンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
Takayuki Nakayama
 
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
Toru Tamaki
 
Generating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language ModelsGenerating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language Models
harmonylab
 
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさJSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
0207sukipio
 
遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
t m
 
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアルLoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
CRI Japan, Inc.
 
This is the company presentation material of RIZAP Technologies, Inc.
This is the company presentation material of RIZAP Technologies, Inc.This is the company presentation material of RIZAP Technologies, Inc.
This is the company presentation material of RIZAP Technologies, Inc.
chiefujita1
 
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
Toru Tamaki
 
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
Matsushita Laboratory
 

Recently uploaded (9)

キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援しますキンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
 
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
論文紹介:When Visual Prompt Tuning Meets Source-Free Domain Adaptive Semantic Seg...
 
Generating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language ModelsGenerating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language Models
 
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさJSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
JSAI_類似画像マッチングによる器への印象付与手法の妥当性検証_ver.3_高橋りさ
 
遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
 
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアルLoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
 
This is the company presentation material of RIZAP Technologies, Inc.
This is the company presentation material of RIZAP Technologies, Inc.This is the company presentation material of RIZAP Technologies, Inc.
This is the company presentation material of RIZAP Technologies, Inc.
 
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
 
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
 

[DL輪読会]Geometric Unsupervised Domain Adaptation for Semantic Segmentation

  • 1. DEEP LEARNING JP [DL Papers] Geometric Unsupervised Domain Adaptation for Semantic Segmentation Yuting Lin, Kokusai Kogyo Co., Ltd.(国際航業) http://deeplearning.jp/ 1
  • 2. 書誌情報 • タイトル – Geometric Unsupervised Domain Adaptation for Semantic Segmentation • 著者 – Vitor Guizilini, Jie Li Rares, Ambrus, Adrien Gaidon (TRI) • ICCV2021(poster)に採択 • Paper – https://openaccess.thecvf.com/content/ICCV2021/papers/Guizilini_Geometric_Uns upervised_Domain_Adaptation_for_Semantic_Segmentation_ICCV_2021_paper.pdf • Code – https://github.com/tri-ml/packnet-sfm(別のプロジェクト?) 2
  • 3. 概要 • Unsupervised Domain Adaptation (UDA)の課題 • 多くの手法は、敵対的な学習を採用 • 識別器の学習が難しい • domainのsemanticに関するギャップを接近させにくい – proxy/pretext taskで性能を向上 • segmentation以外のタスクも同時に学習(回転角度を予測) • Global表現より、画素レベルの表現の学習が必要 • 本論文は、画素レベルの表現学習を実現するproxy taskを利用したUDA手 法を提案 3
  • 4. 既往研究 - UDA • 基本は、self supervised learning (a.k.a pseudo label)で行う – pixel/feature/outputレベルで、sourceとtargetをalignment – 直接domainの分布に対した方法の効果は限定的 • proxy taskの活用 – source domainの他のmodalityを利用し、学習をガイド – SPIGANは疑似的depth情報を追加の正則項で学習 – GIO-Adaはdepthとnormal情報で、targetへのstyle transferを学習 – DADAはdepthとsegmentationをshared encoderで推定 – 提案手法は、target domain(video)においても、depthを同時に推定することで (geometricな情報を利用)、性能を向上 4
  • 5. 既往研究 - Self-supervised learning (SSL) • 主な流派 – pre-training + fine-tuning – multi-task learning: rotation, patch jigsaw puzzlesなど • domain-invariant & fine-grained特徴を学習できる • 汎化性能が高い – GUDAは後者を採用 5
  • 6. 提案手法 • Preliminary – Depth: 𝑓𝐷: 𝐼 → ෡ 𝐷 – Semantic: 𝑓𝑆: 𝐼 → መ 𝑆 (𝑓𝐷, 𝑓𝑠のencoderはshared) – Pose: 𝑓𝑇: 𝐼𝑎, 𝐼𝑏 → ෢ 𝑇𝑎 𝑏 – 損失関数 ℒ = ℒ𝑅 + λ𝑉ℒ𝑉 – Mixed batch: 𝐵𝑉, 𝐵𝑅 – 連続3フレームで学習 𝐼𝑡−1, 𝐼𝑡, 𝐼𝑡+1 – 内部パラメータKを既知とする 6
  • 7. 提案手法 • Real sample処理 – Loss関数 ℒ𝑅 = ℒ𝑃 + λ𝑃𝐿ℒ𝑃𝐿 where ℒ𝑃: self-supervised photometric loss ℒ𝑃𝐿: optional pseudo-label loss 7
  • 8. 提案手法 • Real sample処理:Self-Supervised Photometric Loss – Self-Supervised depthとpose推定は、view synthesis問題 ෡ 𝐼𝑡 = 𝐼𝑡′ 𝜋 ෢ 𝐷𝑡, ෢ 𝑇𝑡 𝑡′ , 𝐾 where ෡ 𝐼𝑡=predicted target image, 𝐼𝑡′=reference image, ෢ 𝐷𝑡=predicted depth map, ෢ 𝑇𝑡 𝑡′ =relative transformation, 𝜋=projection operation – 再構築誤差は、structural similarity (SSIM) とL1 distance in pixel spaceで構成され るstandard photometric lossで求める ℒ𝑃 𝐼𝑡, ෡ 𝐼𝑡 = 𝛼 1 − 𝑆𝑆𝐼𝑀 𝐼𝑡, ෡ 𝐼𝑡 2 + 1 − 𝛼 𝐼𝑡 − ෡ 𝐼𝑡 1 • SSIMは解像度が異なるoutputの平均を取る • auto-maskingと最小再投影誤差で、動物体とオクルージョンによる影響を抑える 8
  • 9. 提案手法 • Real sample処理: Pseudo-Label Distillation – Pseudo-Labelを教師とし、Cross Entropy Lossでrealデータのセグメンテーションを学 習 ℒ𝑃𝐿 = ℒ𝑆 መ 𝑆, 𝑆𝑃𝐿 where መ 𝑆=predicted semantic map, 𝑆𝑃𝐿 =Pseudo Label of same sample 9
  • 10. 提案手法 • Virtual sample処理 – Loss関数 ℒ𝑉 = ℒ𝐷 + λ𝑆ℒ𝑆 + λ𝑁ℒ𝑁 + λ𝑃𝑃ℒ𝑃𝑃 where ℒ𝐷: supervised depth loss ℒ𝑆: supervised semantic loss ℒ𝑁: surface normal regularization term ℒ𝑃𝑃: optional partially-supervised photometric loss 10
  • 11. 提案手法 • Virtual sample処理: Supervised Semantic Loss – bootstrapped cross-entropy loss: scoreが低いK(0.3×H×W)の推定結果のみ逆伝 播に ℒ𝑆 = − 1 𝐾 ෍ 𝑢=1 𝐻 ෍ 𝑣=1 𝑊 ෍ 𝑐=1 𝐶 𝕝 𝑐=𝑦𝑢,𝑣,𝑝𝑢,𝑣 𝑐 <𝑡 log 𝑝𝑢,𝑣 𝑐 where t=run-time threshold 11
  • 12. 提案手法 • Virtual sample処理: Supervised Depth Loss – Scale-Invariant Logarithmic loss (SILog) ℒ𝑆 = 1 𝑃 ෍ 𝑑∈𝐷 ∆𝑑2 − 𝜆 𝑃2 ෍ 𝑑∈𝐷 ∆𝑑 2 where ∆𝑑 = log 𝑑 − log መ 𝑑 P: depthがvalidの画素数 12
  • 13. 提案手法 • Virtual sample処理: Surface Normal Regularization – Depth推定は画素ごとに行うため、smoothingをかけた方が性能が良い – Depthから計算したNormalをsmoothing 𝒏 = 𝑷𝑢+1,𝑣 − 𝑷𝑢,𝑣 × 𝑷𝑢,𝑣+1 − 𝑷𝑢,𝑣 where 𝑷 = ∅ 𝒑, 𝑑, 𝐾 画像上の点pを3Dに投影した点P – Cosine類似度でnormal正則化を行う ℒ𝑁 = 1 2𝑃 ෍ 𝒑∈𝐷 1 − ෝ 𝒏 ∙ 𝒏 ෝ 𝒏 𝒏 – Geometricな情報を学習できるようになった • 境界の鮮明化 • 遠い物体の精度向上 13
  • 14. 提案手法 • Virtual sample処理: Partially-Supervised Photometric Loss – Virtualデータも連続画像の場合、Self-Supervised Photometric Lossも適用できる – depth/poseごとの教師があるため、depth/poseにdecouple – Original: ෡ 𝐼𝑡 = 𝐼𝑡′ 𝜋 ෢ 𝐷𝑡, ෢ 𝑇𝑡 𝑡′ , 𝐾 – Depth:෢ 𝐼𝑡 𝐷 = 𝐼𝑡′ 𝜋 𝐷𝑡, ෢ 𝑇𝑡 𝑡′ , 𝐾 – Pose: ෡ 𝐼𝑡 𝑇 = 𝐼𝑡′ 𝜋 ෢ 𝐷𝑡, 𝑇𝑡 𝑡′ , 𝐾 ℒ𝑃𝑃 = 1 3 ℒ𝑃 𝐼𝑡, ෡ 𝐼𝑡 + ℒ𝑃 𝐼𝑡, ෢ 𝐼𝑡 𝐷 + ℒ𝑃 𝐼𝑡, ෡ 𝐼𝑡 𝑇 14
  • 15. 実験の設定 • ネットワーク – Shared backbone: ResNet101 w/ ImageNet pre-trained – Depth/semantic decoder: [1] – Pose encoder: ResNet18 w/ ImageNet pre-trained – Pose decoder: conv layers数個 • Datasets – Real datasets: Cityscapes, KITTI, DDAD – Virtual datasets: SYNTHIA, VKITTI2, Parallel Domain, GTA5 15 [1] Digging Into Self-Supervised Monocular Depth Estimation. https://arxiv.org/pdf/1806.01260.pdf
  • 16. 実験結果 • UDA Semantic Segmentation on Cityscapes – SOTAを達成 • 動画からのself-supervised geometric constraintsを用いたDepth推 定を2つドメインで行うことで、モデルの汎化性能を向上 • road, sidewalk, building等、境界が明確なクラスの精度が従来手法 より高い • Static環境を仮定するため、レアな動物体(motorcycle)が課題 • Pseudo labelで改善 16
  • 17. 実験結果 • UDA Semantic Segmentation on other datasets – VKITTI2 to KITTI – Parallel Domain to DDAD – 初の検討 17
  • 19. 実験結果 • Ablation Study – Geometric supervisionは性能向上に貢献 – 提案手法の有効性を確認 19
  • 20. 実験結果 • Depth Estimation – Fine-tuneより精度が高い – GUDAはscale-aware情報を保持 – Encoderを大きいネットワークに変えると、更なる改善を見込める 20
  • 22. まとめ • geometric taskをセグメンテーションとのmulti-task learningにすることがDAに 有効 • Self-supervised learningで、教師なしかつ、ドメイン情報を学習する必要がな いDAを実現 • 動画を対象になるため、単写真タスクは適用できない(?) 22