DEEP LEARNING JP
[DL Papers]
Disentangling by Factorising
Hirono Okamoto, Matsuo Lab
http://deeplearning.jp/
1
: Disentangling by Factorising
n 2018 ICML accepted
n : Hyunjik Kim, Andriy Mnih
n β-VAE disentanglement metric
n disentangle
n
rotation position x scale position y
Shape
( )
gif
https://github.com/1Konny/FactorVAE
: beta-VAE
n : β-VAE: LEARNING BASIC VISUAL CONCEPTS WITH A CONSTRAINED
VARIATIONAL FRAMEWORK
n ICLR 2017(poster)
n :
n VAE disentangle
n disentanglement VAE …
azimuth entangle
??
β-VAE :
n : disentangle
n ⇒
n p(z) N(0, I)
n β 1 βVAE VAE
n β z
disentangle
n β trade off …
β-VAE : disentangle
n accuracy disentangle
n 1. k ( scale)
n 2. L
n
n encode
n encode
n 3. 2 z ( )
y (y=Wz )
n disentangle z
y
n = metric score
n K-1 disentangle
100% …
Disentangle Metric
Scale Scale z
0
FactorVAE β-VAE ( )
n β-VAE disentanglement
n disentanglement
n ⇒ Total Correlation Penalty
n β-VAE disentanglement metric
n ( : L iteration )
n ( … )
n (K K-1 disentangle
100% )
n ⇒ a new metric for disentanglement
new metric
old metric
FactorVAE : Total Correlation Penalty
n FactorVAE
n Total Correlation (TC):
n GAN z
density-ratio trick
q(z)
¯q(z)
=
p(z|y = 1)
p(z|y = 0)
=
p(y = 1|z)
p(y = 0|z)
⇡
D(z)
1 D(z)
density-ratio trick
q(z) =
Z
pdata(x)q(z|x)dx
<latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit>
Total Correlation Penalty
VAE objective
FactorVAE : Total Correlation Penalty
n FactorVAE
n Total Correlation (TC):
n GAN z
density-ratio trick
q(z) =
Z
pdata(x)q(z|x)dx
<latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit>
z
GAN
z
FactorVAE : A New Metric for Disentanglement
n 1. k x L
n 2. x encode z
n 3. d k
Old metric
New metric
z
0
: β-VAE vs factorVAE, 2D Shapes
n β-VAE FactorVAE disentanglement metric
( )
n ( ) ( )
n
y
x
size
shape
shape entangle …
: InfoWGAN-GP, 2D Shapes
n Info-GAN + WGAN-GP
n
n infoGAN
( )
n (infoGAN
…( ))
InfoWGAN-GP β-VAE Factor-VAE
better
: β-VAE vs factorVAE, 3D Shapes
n disentangle factorVAE ( )
n shape scale disentangle ( )
: β-VAE vs factorVAE, 3D Chairs
βVAE …?
leg style ??
: β-VAE vs factorVAE, 3D Faces
βVAE …?
azimuth ??
: β-VAE vs factorVAE, CelebA
FactorVAE
n contribution
n 2D Shapes 3D Shapes factorVAE betaVAE
disentanglement scores
n β-VAE disentanglement metric metric
n failure mode
n VAE GAN
n limitation
n Total Correlation disentangling
n ex) q(z|x) p(z)=N(z|0,I) TC=0 x
n
n future work
n
n
n Adversarial Autoencoder
n infoGAN
: adversarial autoencoder
n
n AAE VAE
n ICLR 2016 workshop
: InfoGAN
n InfoGAN: Interpretable Representation Learning by Information Maximizing Generative
Adversarial Nets
n NIPS 2016
n
disentangle
n disentangle
n ex) mnist
:
n :
n I(X; Y) = H(X) - H(X|Y)
n H(X) H(X|Y) Y
X
n x, y
n KL
n p(x) p(x|y)
( )
n wikipedia
:
n : c
n :
n : I(c; G(c, z))
n GAN c c
n z
n disentangle …?
n L
:
n p(c|x)
Q(c|x)
n lemma A.1
P(c|x)
n Q D
: MNIST
n condition
n c ~ unif(-1, 1)
n 10
y ~ cat(10)
n D c c’
n https://github.com/znxlwm/pytorch-generative-model-
collections/blob/master/infoGAN.py
n
n c c’ disentangle
n c c’
: yz c ( ) yz c ( )
n s

[DL輪読会]Disentangling by Factorising

  • 1.
    DEEP LEARNING JP [DLPapers] Disentangling by Factorising Hirono Okamoto, Matsuo Lab http://deeplearning.jp/ 1
  • 2.
    : Disentangling byFactorising n 2018 ICML accepted n : Hyunjik Kim, Andriy Mnih n β-VAE disentanglement metric n disentangle n rotation position x scale position y Shape ( ) gif https://github.com/1Konny/FactorVAE
  • 3.
    : beta-VAE n :β-VAE: LEARNING BASIC VISUAL CONCEPTS WITH A CONSTRAINED VARIATIONAL FRAMEWORK n ICLR 2017(poster) n : n VAE disentangle n disentanglement VAE … azimuth entangle ??
  • 4.
    β-VAE : n :disentangle n ⇒ n p(z) N(0, I) n β 1 βVAE VAE n β z disentangle n β trade off …
  • 5.
    β-VAE : disentangle naccuracy disentangle n 1. k ( scale) n 2. L n n encode n encode n 3. 2 z ( ) y (y=Wz ) n disentangle z y n = metric score n K-1 disentangle 100% … Disentangle Metric Scale Scale z 0
  • 6.
    FactorVAE β-VAE () n β-VAE disentanglement n disentanglement n ⇒ Total Correlation Penalty n β-VAE disentanglement metric n ( : L iteration ) n ( … ) n (K K-1 disentangle 100% ) n ⇒ a new metric for disentanglement new metric old metric
  • 7.
    FactorVAE : TotalCorrelation Penalty n FactorVAE n Total Correlation (TC): n GAN z density-ratio trick q(z) ¯q(z) = p(z|y = 1) p(z|y = 0) = p(y = 1|z) p(y = 0|z) ⇡ D(z) 1 D(z) density-ratio trick q(z) = Z pdata(x)q(z|x)dx <latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit> Total Correlation Penalty VAE objective
  • 8.
    FactorVAE : TotalCorrelation Penalty n FactorVAE n Total Correlation (TC): n GAN z density-ratio trick q(z) = Z pdata(x)q(z|x)dx <latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit><latexit sha1_base64="PEMDYUO5OQ+UOtLO81MQvQtmmIU=">AAAChHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIF2pUaSrYKsRk5pUoFMRXpySWJNZqVGgChWsqNFMq4gWUDfQMwEABk2EIZSgzQEFAvsByhhiGFIZ8hmSGUoZchlSGPIYSIDuHIZGhGAijGQwZDBgKgGKxDNVAsSIgKxMsn8pQy8AF1FsKVJUKVJEIFM0GkulAXjRUNA/IB5lZDNadDLQlB4iLgDoVGFQNrhqsNPhscMJgtcFLgz84zaoGmwFySyWQToLoTS2I5++SCP5OUFcukC5hyEDowuvmEoY0BguwWzOBbi8Ai4B8kQzRX1Y1/XOwVZBqtZrBIoPXQPcvNLhpcBjog7yyL8lLA1ODZjNwASPAED24MRlhRnqGBnqGgSbKDk7QqOBgkGZQYtAAhrc5gwODB0MAQyjQ3laG1QxbGLYysTHpMBkzmUKUMjFC9QgzoAAmOwDSDpSU</latexit> z GAN z
  • 9.
    FactorVAE : ANew Metric for Disentanglement n 1. k x L n 2. x encode z n 3. d k Old metric New metric z 0
  • 10.
    : β-VAE vsfactorVAE, 2D Shapes n β-VAE FactorVAE disentanglement metric ( ) n ( ) ( ) n y x size shape shape entangle …
  • 11.
    : InfoWGAN-GP, 2DShapes n Info-GAN + WGAN-GP n n infoGAN ( ) n (infoGAN …( )) InfoWGAN-GP β-VAE Factor-VAE better
  • 12.
    : β-VAE vsfactorVAE, 3D Shapes n disentangle factorVAE ( ) n shape scale disentangle ( )
  • 13.
    : β-VAE vsfactorVAE, 3D Chairs βVAE …? leg style ??
  • 14.
    : β-VAE vsfactorVAE, 3D Faces βVAE …? azimuth ??
  • 15.
    : β-VAE vsfactorVAE, CelebA FactorVAE
  • 16.
    n contribution n 2DShapes 3D Shapes factorVAE betaVAE disentanglement scores n β-VAE disentanglement metric metric n failure mode n VAE GAN n limitation n Total Correlation disentangling n ex) q(z|x) p(z)=N(z|0,I) TC=0 x n n future work n n
  • 17.
  • 18.
    : adversarial autoencoder n nAAE VAE n ICLR 2016 workshop
  • 19.
    : InfoGAN n InfoGAN:Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets n NIPS 2016 n disentangle n disentangle n ex) mnist
  • 20.
    : n : n I(X;Y) = H(X) - H(X|Y) n H(X) H(X|Y) Y X n x, y n KL n p(x) p(x|y) ( ) n wikipedia
  • 21.
    : n : c n: n : I(c; G(c, z)) n GAN c c n z n disentangle …? n L
  • 22.
    : n p(c|x) Q(c|x) n lemmaA.1 P(c|x) n Q D
  • 23.
    : MNIST n condition nc ~ unif(-1, 1) n 10 y ~ cat(10) n D c c’ n https://github.com/znxlwm/pytorch-generative-model- collections/blob/master/infoGAN.py n n c c’ disentangle n c c’
  • 24.
    : yz c( ) yz c ( ) n s