SlideShare a Scribd company logo
1 of 110
Download to read offline
Generative Adversarial Networks ( GAN )
The coolest idea in ML in the last twenty years - Yann Lecun
2017.03 Namju Kim (namju.kim@kakaobrainl.com)
Introduction
Taxonomy of ML
Introduction
From David silver, Reinforcement learning (UCL course on RL, 2015).
Supervised Learning
• Find deterministic function f : y = f(x), x : data, y : label
Introduction
Catf F18f
Supervised Learning
• How to implement the following function prototype.
Introduction
Supervised Learning
• Challenges
– Image is high dimensional data
• 224 x 224 x 3 = 150,528
– Many variations
• viewpoint, illumination, deformation, occlusion,
background clutter, intraclass variation
Introduction
Supervised Learning
• Solution
– Feature Vector
• 150,528 → 2,048
– Synonyms
• Latent Vector, Hidden Vector, Unobservable Vector,
Feature, Representation
Introduction
Supervised Learning
Introduction
Supervised Learning
• More flexible solution
– Get probability of the label for given data instead of label
itself
Introduction
Cat : 0.98
Cake : 0.02
Dog : 0.00
f
Supervised Learning
Introduction
Supervised Learning
• Mathematical notation of optimization
– y : label, x : data, z : latent, : learnable parameter
Introduction
given parameterized byprobabilityget when P is maximum
Optimal
Supervised Learning
• Mathematical notation of classifying ( greedy policy )
– y : label, x : data, z : latent, : fixed optimal parameter
Introduction
given parameterized byprobabilityget y when P is maximum
Optimal
label
prediction
Unsupervised Learning
• Find deterministic function f : z = f(x), x : data, z : latent
Introduction
[0.1, 0.3, -0.8, 0.4, … ]f
Good features
• Less redundancy
• Similar features for similar data
• High fidelity
From Yann Lecun, Predictive Learning (NIPS tutorial, 2016).
RL ( cherry )
SL ( icing )
UL ( cake )
Good Bad
Introduction
Unsupervised Learning
Introduction
From Ian Goodfellow, Deep Learning (MIT press, 2016).
E2E
(end-to-end)
Unsupervised Learning
• More challenging than supervised learning :
– No label or curriculum → self learning
• Some NN solutions :
– Boltzmann machine
– Auto-encoder or Variational Inference
– Generative Adversarial Network
Introduction
Generative Model
• Find generation function g : x = g(z), x : data, z : latent
Introduction
[0.1, 0.3, -0.8, 0.4, … ]
g
Unsupervised learning vs. Generative model
• z = f(x) vs. x = g(z)
• P(z|x) vs. P(x|z)
• Encoder vs. Decoder ( Generator )
– P(x, z) needed. ( cf : P(y|x) in supervised learning )
• P(z|x) = P(x, z) / P(x) → P(x) is intractable ( ELBO )
• P(x|z) = P(x, z) / P(z) → P(z) is given. ( prior )
Introduction
Autoencoders
Stacked autoencoder - SAE
• Use data itself as label → Convert UL into reconstruction SL
• z = f(x), x=g(z) → x = g(f(x))
• https://github.com/buriburisuri/sugartensor/blob/master/sugartensor/example/mnist_sae.py
Autoencoders
f
(enc)
g
(dec)
x
x
’z
Supervised learning
with L2 loss ( = MSE )
Denoising autoencoder - DAE
• Almost same as SAE
• Add random noise to input data → Convert UL into denoising SL
• https://github.com/buriburisuri/sugartensor/blob/master/sugartensor/example/mnist_dae.py
Autoencoders
f
(enc)
g
(dec)
x + noise
x
’z
Supervised learning
with L2 loss ( = MSE )
Variational autoencoder - VAE
• Kingma et al, “Auto-Encoding Variational Bayes”, 2013.
• Generative Model + Stacked Autoencoder
– Based on Variational approximation
– other approaches :
• Point estimation ( MAP )
• Markov Chain Monte Carlo ( MCMC )
Autoencoders
Variational autoencoder - VAE
• Training
• https://github.com/buriburisuri/sugartensor/blob/master/sugartensor/example/mnist_vae.py
Autoencoders
f
(enc)
g
(dec)
x
x
’
z :
Supervised learning
with L2 loss ( = MSE ) +
KL regularizer
z+
Variational autoencoder - VAE
• Generating
• https://github.com/buriburisuri/sugartensor/blob/master/sugartensor/example/mnist_vae_eval.py
Autoencoders
g
(dec)
z :
Variational autoencoder - VAE
• Question :
• Solution :
– p(z|x) is intractable but MCMC is slow.
– Introduce auxiliary variational function q(z|x)
– Approximate q(z|x) to p(z|x) by ELBO
– Make q(z|x)
Autoencoders
z = z → p(z|x) =+
Variational autoencoder - VAE
• Simply : → 0, → 1
• KLD Regularizer :
–
– Gaussian case :
• -
• If we fix = 1, ( Practical approach )
– → MSE ( )
Autoencoders
Variational autoencoder - VAE
• KLD ( Kullback-Leibler divergence )
• A sort of distribution difference measure
– cf : KS (Kolmogorov-smirov) test, JSD(Jensen-shannon Divergence)
Autoencoders
Variational autoencoder - VAE
• Find problems in the following code
Autoencoders
Variational autoencoder - VAE
• Reparameterization trick
– Enable back propagation
– Reduce variances of gradients
Autoencoders
f
(enc)
g
(dec)
z :
z+f
(enc)
g
(dec)
z :
Variational autoencoder - VAE
• This is called ‘Reparameterization trick’
Autoencoders
Variational autoencoder - VAE
• Results
Autoencoders
Generative Adversarial Networks
Generative Adversarial Networks - GAN
• Ian Goodfellow et al, “Generative Adversarial Networks”, 2014.
– Learnable cost function
– Mini-Max game based on Nash Equilibrium
• Little assumption
• High fidelity
– Hard to training - no guarantee to equilibrium.
GAN
Generative Adversarial Networks - GAN
• Alternate training
• https://github.com/buriburisuri/sugartensor/blob/master/sugartensor/example/mnist_gan.py
GAN
G
(generator)
z :
D
(discriminator)
real image
fake image
1(Real)
0(fake)
1(real)
Discriminator training
Generator training
Generative Adversarial Networks - GAN
• Generating
• https://github.com/buriburisuri/sugartensor/blob/master/sugartensor/example/mnist_gan_eval.py
GAN
G
(generator)
z :
Generative Adversarial Networks - GAN
• Mathematical notation
GAN
x is sampled
from real data
z is sampled
from N(0, I)
Expectation prob. of D(real) prob. of D(fake)
Maximize DMinimize G
Value of
fake
Generative Adversarial Networks - GAN
• Mathematical notation - discriminator
GAN
Maximize prob. of D(real) Minimize prob. of D(fake)
BCE(binary cross entropy) with label 1 for real, 0 for fake.
( Practically, CE will be OK. or more plausible. )
Generative Adversarial Networks - GAN
• Mathematical notation - generator
GAN
Maximize prob. of D(fake)
BCE(binary cross entropy) with label 1 for fake.
( Practically, CE will be OK. or more plausible. )
Generative Adversarial Networks - GAN
• Mathematical notation - equilibrium
GAN
Jansen-Shannon divergence
0.5
Generative Adversarial Networks - GAN
GAN
Generative Adversarial Networks - GAN
• Result
GAN
Generative Adversarial Networks - GAN
• Why blurry and why sharper ?
GAN
From Ian Goodfellow, Deep Learning (MIT press, 2016) From Christian et al, Photo-realistic single image super-resolution using
generative adversarial networks, 2016
Training GANs
Training GANs
Pitfall of GAN
• No guarantee to equilibrium
– Mode collapsing
– Oscillation
– No indicator when to finish
• All generative model
– Evaluation metrics ( Human turing test )
– Overfitting test ( Nearest Neighbor ) → GAN is robust !!!
– Diversity test
– Wu et al, On the quantitative analysis of decoder-based generative model, 2016
DCGAN
• Radford et al, Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks, 2015
– Tricks for gradient flow
• Max pooling → Strided convolution or average pooling
• Use LeakyReLU instead of ReLU
– Other tricks
• Use batch normal both generator and discriminator
• Use Adam optimizer ( lr = 0.0002, a = 0.9, b=0.5 )
Training GANs
DCGAN
• Results
Training GAN
DCGAN
• Latent vector arithmetic
Training GAN
Pitfall of GAN
Training GANs
mode collapsing oscillating
Escaping mode collapsing
• Minibatch discrimination ( Salimans et al, 2016 ) ← slow
• Replay memory ( Shrivastava et al, 2016 ) ← controversial
• Pull-away term regularizer ( Zhao et al, 2016 ) ← not so good
• Unrolled GAN ( Metz et al, 2016 ) ← not so good
Training GANs
Escaping mode collapsing
• Discriminator ensemble ( Durugkar, 2016) ← not tested
• Latent-Image pair discrimination ( Donahue et al, 2016,
Dumoulin et al, 2016 ) ← Good ( additional computing time )
• InfoGAN ( Chen et al, 2016 ) ← Good
Training GANs
Escaping mode collapsing
Training GANs
Other tricks
• Salimans et al, Improved Techniques for Training GANs, 2016
• https://github.com/soumith/ganhacks
– One-sided label smoothing ← not sure
– Historical averaging ← Unrolled GAN is better
– Feature matching ← working
– Use noise or dropout into real/fake image ← working
– Don’t balance D and G loss ← I agree
Training GANs
Batch normalization in GAN
• Use in G but cautious in D
• Do not use at last layer of G
and first layer of D
• IMHO, don’t use BN in D
• Reference BN or Virtual BN
( Not sure )
Training GANs
Variants of GANs
Taxonomy of Generative Models
Variants of GANs
From Ian Goodfellow, NIPS 2016 Tutorial : Generative
Adversarial Netorks, 2016
SOTA !!!
AR based model :
PixelRNN
WaveNet
Variants of GANs
From Ordena et al, Conditional Image Synthesis With
Auxiliary Classifier GANs, 2016
SOTA with LabelSOTA without Label
Taxonomy of GANs
AFL, ALI
• Donahue et al, Adversarial Feature Learning, 2016
• Domoulin et al, Adversarial Learned Inference, 2016
Variants of GANs
AFL, ALI
• Results
Variants of GANs
InfoGAN
• Chen et al, InfoGAN : Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets, 2016
Variants of GANs
InfoGAN
• Results
• My implementation : https://github.com/buriburisuri/sugartensor/blob/master/sugartensor/example/mnist_info_gan.py
Variants of GANs
EBGAN
• Junbo et al, Energy-based generative adversarial networks,
2016
Variants of GANs
EBGAN
• Results
Variants of GANs
EBGAN
• My implementation : https://github.com/buriburisuri/ebgan
Variants of GANs
ACGAN
• Ordena et al, Conditional Image Synthesis with Auxiliary
Classifier GANs, 2016
Variants of GANs
ACGAN
• Results
Variants of GANs
ACGAN
• My implementation : https://github.com/buriburisuri/ac-gan
Variants of GANs
WGAN
• Martin et al, Wasserstein GAN, 2017
Variants of GANs
G
(generator)
z :
C
(critic)
real image
fake image
High value
Low value
High value
Critic training
Generator training
Weight Clamping
( No BCE )
WGAN
• Martin et al, Wasserstein GAN, 2017
– JSD → Earth Mover Distance(=Wasserstein-1 distance)
– Prevent the gradient vanishing by using weak distance metrics
– Provide the parsimonious training indicator.
Variants of GANs
WGAN
• Results
Variants of GANs
BGAN
• R Devon et al, Boundary-Seeking GAN, 2017
– Importance Sampling + Boundary Seeking
– Discrete GAN training possible
– Stabilized continuous GAN training
Variants of GANs
Application of GANs
Generating image
• Wang et al, Generative Image Modeling using Style and
Structure Adversarial Networks, 2016
Application of GANs
Generating image
• Wang et al : Results
Application of GANs
Generating image
• Jamonglab, 128x96 face image generation, 2016.11
Application of GANs
Generating image
• Two-step generation : Sketch → Color
• Binomial random seed instead of gaussian
Application of GANs
Generating image
• Zhang et al, StackGAN : Text to Photo-realistic Image Synthesis
with Stacked GANs, 2016
Application of GANs
Generating image
• Zhang et al : Results
Application of GANs
Generating image
• Reed et al, Learning What and Where to Draw, 2016
Application of GANs
Generating image
• Reed et al : Results
Application of GANs
Generating image
• Nguyen et al, Plug & Play Generative Networks, 2016
– Complex langevin sampling via DAE
Application of GANs
Generating image
• Arici et al, Associative Adversarial Networks, 2016
–
Application of GANs
p(z|x) =
Generating image
• Arici et al : Results
Application of GANs
Translating image
• Perarnau et al, Invertible Conditional GANs for image editing,
2016
Application of GANs
Translating image
• Perarnau et al : results
Application of GANs
Translating image
• Isola et al, Image-to-image translation with convolutional
adversarial networks, 2016
Application of GANs
Translating image
• Isola et al : Results
Application of GANs
Translating image
• Ledig et al, Photo-Realistic Single Image Super-Resolution
Using a GAN, 2016
Application of GANs
Translating image
• Ledig et al : Results
Application of GANs
Translating image
• Sajjadi et al, EnhanceNet : Single Image Super-Resolution
through Automated Texture Synthesis, 2016
– SRGAN + Gram metrics loss
Application of GANs
Domain adaptation
• Taigman et al, Unsupervised cross-domain image generation,
2016
Application of GANs
Domain adaptation
• Taigman et al, Unsupervised cross-domain image generation,
2016
Application of GANs
Domain adaptation
• Bousmalis et al, Unsupervised Pixel-Level Domain Adaptation
with Generative Adversarial Networks, 2016
Application of GANs
Domain adaptation
• Bousmalis et al : Results
Application of GANs
Domain adaptation
• Shrivastava et al, Learning from simulated and unsupervised
images through adversarial training, 2016
Application of GANs
Domain adaptation
• Shrivastava et al : Results
Application of GANs
Domain adaptation
• Taeksoo Kim et al, Learning to Discover Cross-Domain
Relations with Generative Adversarial Networks, 2017
Application of GANs
Domain adaptation
• Extended Taigman’s idea
using smart bijective mapping
Application of GANs
Unsupervised clustering
• Jamonglab : https://github.com/buriburisuri/timeseries_gan
– Using InfoGAN
Application of GANs
Real Fake
Unsupervised clustering
Application of GANs
Text generation
• Yu et al, SeqGAN : Sequence Generative Adversarial Nets with
Policy Gradient, 2016
Application of GANs
Text generation
• Maddison et al, The concrete distribution : A continous
relaxation of discrete random variables, 2016
• Kusner et al, GANs for sequences of discrete elements with the
Gumbel-softmax distribution, 2016
Application of GANs
Text generation
• Zhang et al, Generating text via Adversarial Training, 2016
Application of GANs
Imitation learning ( IRL or Optimal control )
• Ho et al, Model-free imitation learning with policy optimization, 2016
• Finn et al, A connection between generative adversarial networks,
Inverse Reinforcement Learning, and Energy-based models, 2016
Application of GANs
Future of GANs
Pre-trained unified features
• Unified features by unsupervised learning
• Pre-trained and shipped on mobile chip as default
Future of GANs
E
(pre-trained
encoder)
z
x C
(classifier)
1(Good)
0(Bad)
Personalization at scale
• Environment ( User ) simulator
Future of GANs
Personalization at scale
• Intelligent agent using RL
Future of GANs
Personalization at scale
• For example, cardiac simulator using GAN
Future of GANs
Conclusion
• Unsupervised learning is next frontier in AI
– Same algos, multiple domains
• Creativity and experience are no longer human temperament
Towards Artificial General Intelligence
Future of GANs
Thank you.
http://www.slideshare.net/ssuser77ee21/generative-adversarial-networks-70896091

More Related Content

What's hot

Generative Adversarial Network (GAN)
Generative Adversarial Network (GAN)Generative Adversarial Network (GAN)
Generative Adversarial Network (GAN)Prakhar Rastogi
 
Generative Adversarial Networks
Generative Adversarial NetworksGenerative Adversarial Networks
Generative Adversarial NetworksMark Chang
 
A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs)
 A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs) A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs)
A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs)Thomas da Silva Paula
 
Introduction to Graph Neural Networks: Basics and Applications - Katsuhiko Is...
Introduction to Graph Neural Networks: Basics and Applications - Katsuhiko Is...Introduction to Graph Neural Networks: Basics and Applications - Katsuhiko Is...
Introduction to Graph Neural Networks: Basics and Applications - Katsuhiko Is...Preferred Networks
 
Generative Adversarial Networks (GANs) - Ian Goodfellow, OpenAI
Generative Adversarial Networks (GANs) - Ian Goodfellow, OpenAIGenerative Adversarial Networks (GANs) - Ian Goodfellow, OpenAI
Generative Adversarial Networks (GANs) - Ian Goodfellow, OpenAIWithTheBest
 
Introduction to PyTorch
Introduction to PyTorchIntroduction to PyTorch
Introduction to PyTorchJun Young Park
 
Deep neural networks
Deep neural networksDeep neural networks
Deep neural networksSi Haem
 
Generative Adversarial Networks (GANs)
Generative Adversarial Networks (GANs)Generative Adversarial Networks (GANs)
Generative Adversarial Networks (GANs)Amol Patil
 
Introduction to Deep Learning
Introduction to Deep LearningIntroduction to Deep Learning
Introduction to Deep LearningOswald Campesato
 
Variational Autoencoder
Variational AutoencoderVariational Autoencoder
Variational AutoencoderMark Chang
 
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...Simplilearn
 
GANs Presentation.pptx
GANs Presentation.pptxGANs Presentation.pptx
GANs Presentation.pptxMAHMOUD729246
 
Generative Adversarial Networks and Their Medical Imaging Applications
Generative Adversarial Networks and Their Medical Imaging ApplicationsGenerative Adversarial Networks and Their Medical Imaging Applications
Generative Adversarial Networks and Their Medical Imaging ApplicationsKyuhwan Jung
 
Introduction to Generative Adversarial Networks
Introduction to Generative Adversarial NetworksIntroduction to Generative Adversarial Networks
Introduction to Generative Adversarial NetworksBennoG1
 
Research Trends in Editing image using GAN (TAGAN, Editable GAN)
Research Trends in Editing image using GAN (TAGAN, Editable GAN)Research Trends in Editing image using GAN (TAGAN, Editable GAN)
Research Trends in Editing image using GAN (TAGAN, Editable GAN)DaeJin Kim
 
A Short Introduction to Generative Adversarial Networks
A Short Introduction to Generative Adversarial NetworksA Short Introduction to Generative Adversarial Networks
A Short Introduction to Generative Adversarial NetworksJong Wook Kim
 
Deep learning - A Visual Introduction
Deep learning - A Visual IntroductionDeep learning - A Visual Introduction
Deep learning - A Visual IntroductionLukas Masuch
 
Convolutional Neural Network Models - Deep Learning
Convolutional Neural Network Models - Deep LearningConvolutional Neural Network Models - Deep Learning
Convolutional Neural Network Models - Deep LearningMohamed Loey
 

What's hot (20)

Generative Adversarial Network (GAN)
Generative Adversarial Network (GAN)Generative Adversarial Network (GAN)
Generative Adversarial Network (GAN)
 
Generative Adversarial Networks
Generative Adversarial NetworksGenerative Adversarial Networks
Generative Adversarial Networks
 
A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs)
 A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs) A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs)
A (Very) Gentle Introduction to Generative Adversarial Networks (a.k.a GANs)
 
Introduction to Graph Neural Networks: Basics and Applications - Katsuhiko Is...
Introduction to Graph Neural Networks: Basics and Applications - Katsuhiko Is...Introduction to Graph Neural Networks: Basics and Applications - Katsuhiko Is...
Introduction to Graph Neural Networks: Basics and Applications - Katsuhiko Is...
 
Generative Adversarial Networks (GANs) - Ian Goodfellow, OpenAI
Generative Adversarial Networks (GANs) - Ian Goodfellow, OpenAIGenerative Adversarial Networks (GANs) - Ian Goodfellow, OpenAI
Generative Adversarial Networks (GANs) - Ian Goodfellow, OpenAI
 
Cnn
CnnCnn
Cnn
 
Introduction to PyTorch
Introduction to PyTorchIntroduction to PyTorch
Introduction to PyTorch
 
Deep neural networks
Deep neural networksDeep neural networks
Deep neural networks
 
Generative Adversarial Networks (GANs)
Generative Adversarial Networks (GANs)Generative Adversarial Networks (GANs)
Generative Adversarial Networks (GANs)
 
Style gan
Style ganStyle gan
Style gan
 
Introduction to Deep Learning
Introduction to Deep LearningIntroduction to Deep Learning
Introduction to Deep Learning
 
Variational Autoencoder
Variational AutoencoderVariational Autoencoder
Variational Autoencoder
 
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
 
GANs Presentation.pptx
GANs Presentation.pptxGANs Presentation.pptx
GANs Presentation.pptx
 
Generative Adversarial Networks and Their Medical Imaging Applications
Generative Adversarial Networks and Their Medical Imaging ApplicationsGenerative Adversarial Networks and Their Medical Imaging Applications
Generative Adversarial Networks and Their Medical Imaging Applications
 
Introduction to Generative Adversarial Networks
Introduction to Generative Adversarial NetworksIntroduction to Generative Adversarial Networks
Introduction to Generative Adversarial Networks
 
Research Trends in Editing image using GAN (TAGAN, Editable GAN)
Research Trends in Editing image using GAN (TAGAN, Editable GAN)Research Trends in Editing image using GAN (TAGAN, Editable GAN)
Research Trends in Editing image using GAN (TAGAN, Editable GAN)
 
A Short Introduction to Generative Adversarial Networks
A Short Introduction to Generative Adversarial NetworksA Short Introduction to Generative Adversarial Networks
A Short Introduction to Generative Adversarial Networks
 
Deep learning - A Visual Introduction
Deep learning - A Visual IntroductionDeep learning - A Visual Introduction
Deep learning - A Visual Introduction
 
Convolutional Neural Network Models - Deep Learning
Convolutional Neural Network Models - Deep LearningConvolutional Neural Network Models - Deep Learning
Convolutional Neural Network Models - Deep Learning
 

Viewers also liked

A pixel to-pixel segmentation method of DILD without masks using CNN and perl...
A pixel to-pixel segmentation method of DILD without masks using CNN and perl...A pixel to-pixel segmentation method of DILD without masks using CNN and perl...
A pixel to-pixel segmentation method of DILD without masks using CNN and perl...남주 김
 
Convolutional neural network in practice
Convolutional neural network in practiceConvolutional neural network in practice
Convolutional neural network in practice남주 김
 
Introduction to Generative Adversarial Networks (GAN) with Apache MXNet
Introduction to Generative Adversarial Networks (GAN) with Apache MXNetIntroduction to Generative Adversarial Networks (GAN) with Apache MXNet
Introduction to Generative Adversarial Networks (GAN) with Apache MXNetAmazon Web Services
 
Unsupervised learning represenation with DCGAN
Unsupervised learning represenation with DCGANUnsupervised learning represenation with DCGAN
Unsupervised learning represenation with DCGANShyam Krishna Khadka
 
Deep Convolutional Generative Adversarial Networks - Nextremer勉強会資料
Deep Convolutional Generative Adversarial Networks - Nextremer勉強会資料Deep Convolutional Generative Adversarial Networks - Nextremer勉強会資料
Deep Convolutional Generative Adversarial Networks - Nextremer勉強会資料tm_2648
 
지적 대화를 위한 깊고 넓은 딥러닝 PyCon APAC 2016
지적 대화를 위한 깊고 넓은 딥러닝 PyCon APAC 2016지적 대화를 위한 깊고 넓은 딥러닝 PyCon APAC 2016
지적 대화를 위한 깊고 넓은 딥러닝 PyCon APAC 2016Taehoon Kim
 

Viewers also liked (6)

A pixel to-pixel segmentation method of DILD without masks using CNN and perl...
A pixel to-pixel segmentation method of DILD without masks using CNN and perl...A pixel to-pixel segmentation method of DILD without masks using CNN and perl...
A pixel to-pixel segmentation method of DILD without masks using CNN and perl...
 
Convolutional neural network in practice
Convolutional neural network in practiceConvolutional neural network in practice
Convolutional neural network in practice
 
Introduction to Generative Adversarial Networks (GAN) with Apache MXNet
Introduction to Generative Adversarial Networks (GAN) with Apache MXNetIntroduction to Generative Adversarial Networks (GAN) with Apache MXNet
Introduction to Generative Adversarial Networks (GAN) with Apache MXNet
 
Unsupervised learning represenation with DCGAN
Unsupervised learning represenation with DCGANUnsupervised learning represenation with DCGAN
Unsupervised learning represenation with DCGAN
 
Deep Convolutional Generative Adversarial Networks - Nextremer勉強会資料
Deep Convolutional Generative Adversarial Networks - Nextremer勉強会資料Deep Convolutional Generative Adversarial Networks - Nextremer勉強会資料
Deep Convolutional Generative Adversarial Networks - Nextremer勉強会資料
 
지적 대화를 위한 깊고 넓은 딥러닝 PyCon APAC 2016
지적 대화를 위한 깊고 넓은 딥러닝 PyCon APAC 2016지적 대화를 위한 깊고 넓은 딥러닝 PyCon APAC 2016
지적 대화를 위한 깊고 넓은 딥러닝 PyCon APAC 2016
 

Similar to Generative adversarial networks

Reading group gan - 20170417
Reading group   gan - 20170417Reading group   gan - 20170417
Reading group gan - 20170417Shuai Zhang
 
Generative Adversarial Network (+Laplacian Pyramid GAN)
Generative Adversarial Network (+Laplacian Pyramid GAN)Generative Adversarial Network (+Laplacian Pyramid GAN)
Generative Adversarial Network (+Laplacian Pyramid GAN)NamHyuk Ahn
 
Vladislav Kolbasin “Introduction to Generative Adversarial Networks (GANs)”
Vladislav Kolbasin “Introduction to Generative Adversarial Networks (GANs)”Vladislav Kolbasin “Introduction to Generative Adversarial Networks (GANs)”
Vladislav Kolbasin “Introduction to Generative Adversarial Networks (GANs)”Lviv Startup Club
 
GANs Deep Learning Summer School
GANs Deep Learning Summer SchoolGANs Deep Learning Summer School
GANs Deep Learning Summer SchoolRubens Zimbres, PhD
 
Machine Learning workshop by GDSC Amity University Chhattisgarh
Machine Learning workshop by GDSC Amity University ChhattisgarhMachine Learning workshop by GDSC Amity University Chhattisgarh
Machine Learning workshop by GDSC Amity University ChhattisgarhPoorabpatel
 
DeepLearningLecture.pptx
DeepLearningLecture.pptxDeepLearningLecture.pptx
DeepLearningLecture.pptxssuserf07225
 
Generative modeling with Convolutional Neural Networks
Generative modeling with Convolutional Neural NetworksGenerative modeling with Convolutional Neural Networks
Generative modeling with Convolutional Neural NetworksDenis Dus
 
Hadoop Summit 2010 Machine Learning Using Hadoop
Hadoop Summit 2010 Machine Learning Using HadoopHadoop Summit 2010 Machine Learning Using Hadoop
Hadoop Summit 2010 Machine Learning Using HadoopYahoo Developer Network
 
Tutorial on Theory and Application of Generative Adversarial Networks
Tutorial on Theory and Application of Generative Adversarial NetworksTutorial on Theory and Application of Generative Adversarial Networks
Tutorial on Theory and Application of Generative Adversarial NetworksMLReview
 
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)Universitat Politècnica de Catalunya
 
Understanding Basics of Machine Learning
Understanding Basics of Machine LearningUnderstanding Basics of Machine Learning
Understanding Basics of Machine LearningPranav Ainavolu
 
Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...
Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...
Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...Universitat Politècnica de Catalunya
 
Number Crunching in Python
Number Crunching in PythonNumber Crunching in Python
Number Crunching in PythonValerio Maggio
 
Machine Learning on Azure - AzureConf
Machine Learning on Azure - AzureConfMachine Learning on Azure - AzureConf
Machine Learning on Azure - AzureConfSeth Juarez
 
GDC2019 - SEED - Towards Deep Generative Models in Game Development
GDC2019 - SEED - Towards Deep Generative Models in Game DevelopmentGDC2019 - SEED - Towards Deep Generative Models in Game Development
GDC2019 - SEED - Towards Deep Generative Models in Game DevelopmentElectronic Arts / DICE
 

Similar to Generative adversarial networks (20)

gan.pdf
gan.pdfgan.pdf
gan.pdf
 
Reading group gan - 20170417
Reading group   gan - 20170417Reading group   gan - 20170417
Reading group gan - 20170417
 
Generative Adversarial Network (+Laplacian Pyramid GAN)
Generative Adversarial Network (+Laplacian Pyramid GAN)Generative Adversarial Network (+Laplacian Pyramid GAN)
Generative Adversarial Network (+Laplacian Pyramid GAN)
 
Vladislav Kolbasin “Introduction to Generative Adversarial Networks (GANs)”
Vladislav Kolbasin “Introduction to Generative Adversarial Networks (GANs)”Vladislav Kolbasin “Introduction to Generative Adversarial Networks (GANs)”
Vladislav Kolbasin “Introduction to Generative Adversarial Networks (GANs)”
 
GANs Deep Learning Summer School
GANs Deep Learning Summer SchoolGANs Deep Learning Summer School
GANs Deep Learning Summer School
 
Machine Learning workshop by GDSC Amity University Chhattisgarh
Machine Learning workshop by GDSC Amity University ChhattisgarhMachine Learning workshop by GDSC Amity University Chhattisgarh
Machine Learning workshop by GDSC Amity University Chhattisgarh
 
DeepLearningLecture.pptx
DeepLearningLecture.pptxDeepLearningLecture.pptx
DeepLearningLecture.pptx
 
Generative modeling with Convolutional Neural Networks
Generative modeling with Convolutional Neural NetworksGenerative modeling with Convolutional Neural Networks
Generative modeling with Convolutional Neural Networks
 
Hadoop Summit 2010 Machine Learning Using Hadoop
Hadoop Summit 2010 Machine Learning Using HadoopHadoop Summit 2010 Machine Learning Using Hadoop
Hadoop Summit 2010 Machine Learning Using Hadoop
 
"Let us talk about output features! by Florence d’Alché-Buc, LTCI & Full Prof...
"Let us talk about output features! by Florence d’Alché-Buc, LTCI & Full Prof..."Let us talk about output features! by Florence d’Alché-Buc, LTCI & Full Prof...
"Let us talk about output features! by Florence d’Alché-Buc, LTCI & Full Prof...
 
Tutorial on Theory and Application of Generative Adversarial Networks
Tutorial on Theory and Application of Generative Adversarial NetworksTutorial on Theory and Application of Generative Adversarial Networks
Tutorial on Theory and Application of Generative Adversarial Networks
 
DiscoGAN
DiscoGANDiscoGAN
DiscoGAN
 
Semi-Supervised Learning with GANs by Olga Petrova, Machine Learning Engineer...
Semi-Supervised Learning with GANs by Olga Petrova, Machine Learning Engineer...Semi-Supervised Learning with GANs by Olga Petrova, Machine Learning Engineer...
Semi-Supervised Learning with GANs by Olga Petrova, Machine Learning Engineer...
 
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
 
Understanding Basics of Machine Learning
Understanding Basics of Machine LearningUnderstanding Basics of Machine Learning
Understanding Basics of Machine Learning
 
Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...
Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...
Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...
 
Number Crunching in Python
Number Crunching in PythonNumber Crunching in Python
Number Crunching in Python
 
Machine Learning on Azure - AzureConf
Machine Learning on Azure - AzureConfMachine Learning on Azure - AzureConf
Machine Learning on Azure - AzureConf
 
Paris Data Geeks
Paris Data GeeksParis Data Geeks
Paris Data Geeks
 
GDC2019 - SEED - Towards Deep Generative Models in Game Development
GDC2019 - SEED - Towards Deep Generative Models in Game DevelopmentGDC2019 - SEED - Towards Deep Generative Models in Game Development
GDC2019 - SEED - Towards Deep Generative Models in Game Development
 

Recently uploaded

Understanding Flamingo - DeepMind's VLM Architecture
Understanding Flamingo - DeepMind's VLM ArchitectureUnderstanding Flamingo - DeepMind's VLM Architecture
Understanding Flamingo - DeepMind's VLM Architecturerahul_net
 
Post Quantum Cryptography – The Impact on Identity
Post Quantum Cryptography – The Impact on IdentityPost Quantum Cryptography – The Impact on Identity
Post Quantum Cryptography – The Impact on Identityteam-WIBU
 
Powering Real-Time Decisions with Continuous Data Streams
Powering Real-Time Decisions with Continuous Data StreamsPowering Real-Time Decisions with Continuous Data Streams
Powering Real-Time Decisions with Continuous Data StreamsSafe Software
 
Best Angular 17 Classroom & Online training - Naresh IT
Best Angular 17 Classroom & Online training - Naresh ITBest Angular 17 Classroom & Online training - Naresh IT
Best Angular 17 Classroom & Online training - Naresh ITmanoharjgpsolutions
 
What’s New in VictoriaMetrics: Q1 2024 Updates
What’s New in VictoriaMetrics: Q1 2024 UpdatesWhat’s New in VictoriaMetrics: Q1 2024 Updates
What’s New in VictoriaMetrics: Q1 2024 UpdatesVictoriaMetrics
 
Comparing Linux OS Image Update Models - EOSS 2024.pdf
Comparing Linux OS Image Update Models - EOSS 2024.pdfComparing Linux OS Image Update Models - EOSS 2024.pdf
Comparing Linux OS Image Update Models - EOSS 2024.pdfDrew Moseley
 
OpenChain Education Work Group Monthly Meeting - 2024-04-10 - Full Recording
OpenChain Education Work Group Monthly Meeting - 2024-04-10 - Full RecordingOpenChain Education Work Group Monthly Meeting - 2024-04-10 - Full Recording
OpenChain Education Work Group Monthly Meeting - 2024-04-10 - Full RecordingShane Coughlan
 
Leveraging AI for Mobile App Testing on Real Devices | Applitools + Kobiton
Leveraging AI for Mobile App Testing on Real Devices | Applitools + KobitonLeveraging AI for Mobile App Testing on Real Devices | Applitools + Kobiton
Leveraging AI for Mobile App Testing on Real Devices | Applitools + KobitonApplitools
 
Strategies for using alternative queries to mitigate zero results
Strategies for using alternative queries to mitigate zero resultsStrategies for using alternative queries to mitigate zero results
Strategies for using alternative queries to mitigate zero resultsJean Silva
 
Simplifying Microservices & Apps - The art of effortless development - Meetup...
Simplifying Microservices & Apps - The art of effortless development - Meetup...Simplifying Microservices & Apps - The art of effortless development - Meetup...
Simplifying Microservices & Apps - The art of effortless development - Meetup...Rob Geurden
 
Ronisha Informatics Private Limited Catalogue
Ronisha Informatics Private Limited CatalogueRonisha Informatics Private Limited Catalogue
Ronisha Informatics Private Limited Catalogueitservices996
 
Introduction to Firebase Workshop Slides
Introduction to Firebase Workshop SlidesIntroduction to Firebase Workshop Slides
Introduction to Firebase Workshop Slidesvaideheekore1
 
2024-04-09 - From Complexity to Clarity - AWS Summit AMS.pdf
2024-04-09 - From Complexity to Clarity - AWS Summit AMS.pdf2024-04-09 - From Complexity to Clarity - AWS Summit AMS.pdf
2024-04-09 - From Complexity to Clarity - AWS Summit AMS.pdfAndrey Devyatkin
 
Real-time Tracking and Monitoring with Cargo Cloud Solutions.pptx
Real-time Tracking and Monitoring with Cargo Cloud Solutions.pptxReal-time Tracking and Monitoring with Cargo Cloud Solutions.pptx
Real-time Tracking and Monitoring with Cargo Cloud Solutions.pptxRTS corp
 
VictoriaMetrics Q1 Meet Up '24 - Community & News Update
VictoriaMetrics Q1 Meet Up '24 - Community & News UpdateVictoriaMetrics Q1 Meet Up '24 - Community & News Update
VictoriaMetrics Q1 Meet Up '24 - Community & News UpdateVictoriaMetrics
 
Amazon Bedrock in Action - presentation of the Bedrock's capabilities
Amazon Bedrock in Action - presentation of the Bedrock's capabilitiesAmazon Bedrock in Action - presentation of the Bedrock's capabilities
Amazon Bedrock in Action - presentation of the Bedrock's capabilitiesKrzysztofKkol1
 
SAM Training Session - How to use EXCEL ?
SAM Training Session - How to use EXCEL ?SAM Training Session - How to use EXCEL ?
SAM Training Session - How to use EXCEL ?Alexandre Beguel
 
2024 DevNexus Patterns for Resiliency: Shuffle shards
2024 DevNexus Patterns for Resiliency: Shuffle shards2024 DevNexus Patterns for Resiliency: Shuffle shards
2024 DevNexus Patterns for Resiliency: Shuffle shardsChristopher Curtin
 
Revolutionizing the Digital Transformation Office - Leveraging OnePlan’s AI a...
Revolutionizing the Digital Transformation Office - Leveraging OnePlan’s AI a...Revolutionizing the Digital Transformation Office - Leveraging OnePlan’s AI a...
Revolutionizing the Digital Transformation Office - Leveraging OnePlan’s AI a...OnePlan Solutions
 
Machine Learning Software Engineering Patterns and Their Engineering
Machine Learning Software Engineering Patterns and Their EngineeringMachine Learning Software Engineering Patterns and Their Engineering
Machine Learning Software Engineering Patterns and Their EngineeringHironori Washizaki
 

Recently uploaded (20)

Understanding Flamingo - DeepMind's VLM Architecture
Understanding Flamingo - DeepMind's VLM ArchitectureUnderstanding Flamingo - DeepMind's VLM Architecture
Understanding Flamingo - DeepMind's VLM Architecture
 
Post Quantum Cryptography – The Impact on Identity
Post Quantum Cryptography – The Impact on IdentityPost Quantum Cryptography – The Impact on Identity
Post Quantum Cryptography – The Impact on Identity
 
Powering Real-Time Decisions with Continuous Data Streams
Powering Real-Time Decisions with Continuous Data StreamsPowering Real-Time Decisions with Continuous Data Streams
Powering Real-Time Decisions with Continuous Data Streams
 
Best Angular 17 Classroom & Online training - Naresh IT
Best Angular 17 Classroom & Online training - Naresh ITBest Angular 17 Classroom & Online training - Naresh IT
Best Angular 17 Classroom & Online training - Naresh IT
 
What’s New in VictoriaMetrics: Q1 2024 Updates
What’s New in VictoriaMetrics: Q1 2024 UpdatesWhat’s New in VictoriaMetrics: Q1 2024 Updates
What’s New in VictoriaMetrics: Q1 2024 Updates
 
Comparing Linux OS Image Update Models - EOSS 2024.pdf
Comparing Linux OS Image Update Models - EOSS 2024.pdfComparing Linux OS Image Update Models - EOSS 2024.pdf
Comparing Linux OS Image Update Models - EOSS 2024.pdf
 
OpenChain Education Work Group Monthly Meeting - 2024-04-10 - Full Recording
OpenChain Education Work Group Monthly Meeting - 2024-04-10 - Full RecordingOpenChain Education Work Group Monthly Meeting - 2024-04-10 - Full Recording
OpenChain Education Work Group Monthly Meeting - 2024-04-10 - Full Recording
 
Leveraging AI for Mobile App Testing on Real Devices | Applitools + Kobiton
Leveraging AI for Mobile App Testing on Real Devices | Applitools + KobitonLeveraging AI for Mobile App Testing on Real Devices | Applitools + Kobiton
Leveraging AI for Mobile App Testing on Real Devices | Applitools + Kobiton
 
Strategies for using alternative queries to mitigate zero results
Strategies for using alternative queries to mitigate zero resultsStrategies for using alternative queries to mitigate zero results
Strategies for using alternative queries to mitigate zero results
 
Simplifying Microservices & Apps - The art of effortless development - Meetup...
Simplifying Microservices & Apps - The art of effortless development - Meetup...Simplifying Microservices & Apps - The art of effortless development - Meetup...
Simplifying Microservices & Apps - The art of effortless development - Meetup...
 
Ronisha Informatics Private Limited Catalogue
Ronisha Informatics Private Limited CatalogueRonisha Informatics Private Limited Catalogue
Ronisha Informatics Private Limited Catalogue
 
Introduction to Firebase Workshop Slides
Introduction to Firebase Workshop SlidesIntroduction to Firebase Workshop Slides
Introduction to Firebase Workshop Slides
 
2024-04-09 - From Complexity to Clarity - AWS Summit AMS.pdf
2024-04-09 - From Complexity to Clarity - AWS Summit AMS.pdf2024-04-09 - From Complexity to Clarity - AWS Summit AMS.pdf
2024-04-09 - From Complexity to Clarity - AWS Summit AMS.pdf
 
Real-time Tracking and Monitoring with Cargo Cloud Solutions.pptx
Real-time Tracking and Monitoring with Cargo Cloud Solutions.pptxReal-time Tracking and Monitoring with Cargo Cloud Solutions.pptx
Real-time Tracking and Monitoring with Cargo Cloud Solutions.pptx
 
VictoriaMetrics Q1 Meet Up '24 - Community & News Update
VictoriaMetrics Q1 Meet Up '24 - Community & News UpdateVictoriaMetrics Q1 Meet Up '24 - Community & News Update
VictoriaMetrics Q1 Meet Up '24 - Community & News Update
 
Amazon Bedrock in Action - presentation of the Bedrock's capabilities
Amazon Bedrock in Action - presentation of the Bedrock's capabilitiesAmazon Bedrock in Action - presentation of the Bedrock's capabilities
Amazon Bedrock in Action - presentation of the Bedrock's capabilities
 
SAM Training Session - How to use EXCEL ?
SAM Training Session - How to use EXCEL ?SAM Training Session - How to use EXCEL ?
SAM Training Session - How to use EXCEL ?
 
2024 DevNexus Patterns for Resiliency: Shuffle shards
2024 DevNexus Patterns for Resiliency: Shuffle shards2024 DevNexus Patterns for Resiliency: Shuffle shards
2024 DevNexus Patterns for Resiliency: Shuffle shards
 
Revolutionizing the Digital Transformation Office - Leveraging OnePlan’s AI a...
Revolutionizing the Digital Transformation Office - Leveraging OnePlan’s AI a...Revolutionizing the Digital Transformation Office - Leveraging OnePlan’s AI a...
Revolutionizing the Digital Transformation Office - Leveraging OnePlan’s AI a...
 
Machine Learning Software Engineering Patterns and Their Engineering
Machine Learning Software Engineering Patterns and Their EngineeringMachine Learning Software Engineering Patterns and Their Engineering
Machine Learning Software Engineering Patterns and Their Engineering
 

Generative adversarial networks