CU06997 Fluid dynamics
Froude number (page 148)
5.9 Critical depth meters (page 155 – 158)
1
Specific Energy
V
Channel bed as datum [m]
Surface level [m]
Total head H or Specific energy Es [m]
y
V2/2g Velocity head [m]
y = Pressure head [m]
= water depth [m]
𝐸𝑠 = 𝑦 +
𝑉2
2𝑔
𝑉 = Mean Fluid Velocity [m/s]
y =
p
ρ∙g
= Pressure Head / water depth [m]
1
Critical Depth
V
Reference /datum [m]
Water depth y [m]
y
V2/2g Velocity head [m]
y
B
g
V
yH
2
2
 yBVQv 
22
2
2 yBg
Q
yH v


H
Suppose Q and B are given, what could by the value of H and y
Total head H or Specific energy Es [m]
2
P1 P1
22
2
2 yBg
Q
yH v


𝐻 = y +
𝑄2
2𝑔 ∙ 𝐵2
∙
1
𝑦2
Example
B= 2 m, Q = 6 m3/s
y
B
H
𝐻 = y + 0.45 ∙
1
𝑦2
2
0.00
1.00
2.00
3.00
4.00
5.00
6.00 0.300
0.590
0.880
1.170
1.460
1.750
2.040
2.330
2.620
2.910
3.200
3.490
3.780
4.070
H(totalhead)(m)
y (water depth) (m)
Sub-critical or Supercritical flow
Stromend of schietend water
Total head
H=3/2*h
Supercritical flow
Schietend water
Sub-critical flow
Stromend water
Example
B= 2 m, Q = 6 m3/s
2
cyH 2
3
min 
22
2
2 yBg
Q
yH v


𝐻 = y +
𝑄2
2𝑔 ∙ 𝐵2
∙
1
𝑦2
Differentiation [Differentiëren]
dH/dy = 0 gives
y
B
H
2
𝑦𝑐 =
𝑄2
𝑔 ∙ 𝐵2
3
Represents lowest point graph.
Means point with the lowest
H for a given Q and B
Critical Depth and Critical Velocity
cyH 2
3
min 
Sub-critical flow Supercritical flow
𝑦𝑐 =
𝑄2
𝑔 ∙ 𝐵2
3
𝑉𝑐 = 𝑔 ∙ 𝑦𝑐
2
3
h = y in this graph
Froude number
𝑦𝑐 =
𝑄2
𝑔 ∙ 𝐵2
3
𝑉𝑐 = 𝑔 ∙ 𝑦𝑐
2
𝐹𝑟 =
𝑉
𝑔𝑦𝑐
2
=
𝑉
𝑉𝑐
yc = critical depth [m]
Q = discharge [m3/s]
B = width [m]
Vc = critical velocity [m/s]
V = actual velocity [m/s]
Fr = Froude number [-]
Subcritical flow [stromend] Fr < 1 V < Vc
Supercritical flow [schietend] Fr > 1 V > Vc
3
Froude number
Fr>1
• Supercritical flow [schietend water]
• Water velocity > wave velocity
• Disturbances travel downstream
• Upstream water levels are unaffected by
downstream control
Fr<1
• Subcritical flow [stromend water]
• Water velocity < wave velocity
• Disturbances travel upstream and downstream
• Upstream water levels are affected by
downstream control
3
Froude number<1 Subcritical
[stromend]
Consequences for strategy to calculate water levels
What happens downstream affect the upstream water level
So most of the time you start downstream and go upstream
3
Question 3de
50 m
Ø300 PVC
Ø500 beton
Ø250 PVC
Pump=20 l/s
P4 P3 P2
GL +6.00 m
Rain=66 l/s
Waste=10 l/s
Rain=225 l/s
Waste=10 l/s
+5,5 m
Q=66 l/s
v=0,93 m/s
I=1:244
Q=291 l/s
v=1,48 m/s
I=1:166
Q=0 l/s
v=0 m/s
I=0
P1
In example m = 1,83
Froude number>1 Supercritical
[schietend]
Consequences for strategy to calculate water levels
What happens downstream does not affect the upstream
water level
So most of the time you start upstream and go downstream
3
Critical bed slope channel /river
Q and B (width channel) are given
Step 1 Calculate yc
Step 2 Calculate R and Vc
Step 3 Calculate Sc using Chezy or Manning
𝑦𝑐 =
𝑄2
𝑔 ∙ 𝐵2
3
𝑉𝑐 = 𝐶 ∙ 𝑅 ∙ 𝑆𝑐
𝑉𝑐 =
𝑅
2
3 ∙ 𝑆𝑐
1
2
𝑛
4
Critical bed slope channel /river
4
Hydraulic jump [watersprong]
When supercritical flow [schietend] changes to subcritical
flow [stromend] a hydraulic jump will occur
5
 
 21
2
2
3
21
vvv
vv
wa



Hydraulic jump, energy loss
5

Cu06997 lecture 10_froude

  • 1.
    CU06997 Fluid dynamics Froudenumber (page 148) 5.9 Critical depth meters (page 155 – 158) 1
  • 2.
    Specific Energy V Channel bedas datum [m] Surface level [m] Total head H or Specific energy Es [m] y V2/2g Velocity head [m] y = Pressure head [m] = water depth [m] 𝐸𝑠 = 𝑦 + 𝑉2 2𝑔 𝑉 = Mean Fluid Velocity [m/s] y = p ρ∙g = Pressure Head / water depth [m] 1
  • 3.
    Critical Depth V Reference /datum[m] Water depth y [m] y V2/2g Velocity head [m] y B g V yH 2 2  yBVQv  22 2 2 yBg Q yH v   H Suppose Q and B are given, what could by the value of H and y Total head H or Specific energy Es [m] 2 P1 P1
  • 4.
    22 2 2 yBg Q yH v   𝐻= y + 𝑄2 2𝑔 ∙ 𝐵2 ∙ 1 𝑦2 Example B= 2 m, Q = 6 m3/s y B H 𝐻 = y + 0.45 ∙ 1 𝑦2 2
  • 5.
    0.00 1.00 2.00 3.00 4.00 5.00 6.00 0.300 0.590 0.880 1.170 1.460 1.750 2.040 2.330 2.620 2.910 3.200 3.490 3.780 4.070 H(totalhead)(m) y (waterdepth) (m) Sub-critical or Supercritical flow Stromend of schietend water Total head H=3/2*h Supercritical flow Schietend water Sub-critical flow Stromend water Example B= 2 m, Q = 6 m3/s 2 cyH 2 3 min 
  • 6.
    22 2 2 yBg Q yH v   𝐻= y + 𝑄2 2𝑔 ∙ 𝐵2 ∙ 1 𝑦2 Differentiation [Differentiëren] dH/dy = 0 gives y B H 2 𝑦𝑐 = 𝑄2 𝑔 ∙ 𝐵2 3 Represents lowest point graph. Means point with the lowest H for a given Q and B
  • 7.
    Critical Depth andCritical Velocity cyH 2 3 min  Sub-critical flow Supercritical flow 𝑦𝑐 = 𝑄2 𝑔 ∙ 𝐵2 3 𝑉𝑐 = 𝑔 ∙ 𝑦𝑐 2 3 h = y in this graph
  • 8.
    Froude number 𝑦𝑐 = 𝑄2 𝑔∙ 𝐵2 3 𝑉𝑐 = 𝑔 ∙ 𝑦𝑐 2 𝐹𝑟 = 𝑉 𝑔𝑦𝑐 2 = 𝑉 𝑉𝑐 yc = critical depth [m] Q = discharge [m3/s] B = width [m] Vc = critical velocity [m/s] V = actual velocity [m/s] Fr = Froude number [-] Subcritical flow [stromend] Fr < 1 V < Vc Supercritical flow [schietend] Fr > 1 V > Vc 3
  • 9.
    Froude number Fr>1 • Supercriticalflow [schietend water] • Water velocity > wave velocity • Disturbances travel downstream • Upstream water levels are unaffected by downstream control Fr<1 • Subcritical flow [stromend water] • Water velocity < wave velocity • Disturbances travel upstream and downstream • Upstream water levels are affected by downstream control 3
  • 10.
    Froude number<1 Subcritical [stromend] Consequencesfor strategy to calculate water levels What happens downstream affect the upstream water level So most of the time you start downstream and go upstream 3
  • 11.
    Question 3de 50 m Ø300PVC Ø500 beton Ø250 PVC Pump=20 l/s P4 P3 P2 GL +6.00 m Rain=66 l/s Waste=10 l/s Rain=225 l/s Waste=10 l/s +5,5 m Q=66 l/s v=0,93 m/s I=1:244 Q=291 l/s v=1,48 m/s I=1:166 Q=0 l/s v=0 m/s I=0 P1 In example m = 1,83
  • 12.
    Froude number>1 Supercritical [schietend] Consequencesfor strategy to calculate water levels What happens downstream does not affect the upstream water level So most of the time you start upstream and go downstream 3
  • 13.
    Critical bed slopechannel /river Q and B (width channel) are given Step 1 Calculate yc Step 2 Calculate R and Vc Step 3 Calculate Sc using Chezy or Manning 𝑦𝑐 = 𝑄2 𝑔 ∙ 𝐵2 3 𝑉𝑐 = 𝐶 ∙ 𝑅 ∙ 𝑆𝑐 𝑉𝑐 = 𝑅 2 3 ∙ 𝑆𝑐 1 2 𝑛 4
  • 14.
    Critical bed slopechannel /river 4
  • 15.
    Hydraulic jump [watersprong] Whensupercritical flow [schietend] changes to subcritical flow [stromend] a hydraulic jump will occur 5
  • 16.