SlideShare a Scribd company logo
CU06997 Fluid Dynamics
Principles of fluid flow
2.5 Application of the conservations laws to fluid flows (page 25-32)
2.6 Application of the energy equation (page 32 -36)
2.8 Velocity and discharge measurement (page 42 – 48)




1
Flowing water and energy
                       2
                   u
    H1  z1  y1      1
                      [m ]
                   2g
                             Total head H [m]
                  u12/2g     Velocity head [m], [snelheidsh..]
                             Surface level [m]
                  y1         y = Pressure head [m]
    u1       P1                  [drukhoogte]

                  z1         z = Potential head [m]
                             .   [plaatshoogte]
                             Reference /datum [m]

1
Bernoulli’s Equation, no energy losses
            2              2
           𝑢1             𝑢2
 𝑦1 + 𝑧1 +    = 𝑦2 + 𝑧2 +    = 𝐻 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡[𝑚]
           2𝑔             2𝑔

       p
 y=         =   Pressure Head[m] [drukhoogte]
      ρ∙g



        𝑧=      Potential Head[m] [plaatshoogte]

      u2
         =
      2g        Velocity Head[m]   [snelheidshoogte]
2
Bernoulli’s law (without energy losses)

                        2                2
                    u               u
y1  z1  y2  z2      y 3  z3 
                        2
                                        constant
                                         3
                    2g              2g
                                         Total Head [m]

 P1 y1             u22/2g         u32/2g Velocity head [m]

    z1             y2                    Surface Level [m]
              P2
 u1=0                          P3 y3
          u2>0     z2       u3>u2 z3
                                         Reference[m]
2
Pitot




3
Pitot


    𝑢2
ℎ=
   2∙ 𝑔




3
Pitot

          2
     𝑢=       2∙ 𝑔∙ℎ

    𝑢=    Fluid Velocity [m/s]
    𝑔=    earths gravity [m/s2]
    h=    Difference in pressure [m]




3
Flowing water and energy
                    2
                  u
   H1  z1  y1    1
                     [m ]
                  2g
                               Total Head [m]
                 v12/2g        Velocity head [m]
                               Surface Level [m]
            h1
    u=0
                  P1
            z1            u1   Prandtl buis
                               Reference / datum [m]
Torricelli
                       u12               2
                                        u2
             y1  z1       y 2  z2 
                       2g               2g

             u1=0 m/s
             y2=0 m
             y1+z1-z2=x




              u2  2 g  x
4
Small orifice [Kleine doorlaat]




4
Small orifice [Kleine doorlaat]




4
Small orifice
                           2
    𝑄 = 𝐶 𝑣 ∙ 𝐶 𝑐 ∙ 𝐴0 ∙       2𝑔 ∙ ℎ

 𝑄=      Flow rate       [m3/s]
 𝐴=      Wetted Area [m2]
 𝐶𝑣 =    velocity coefficient (0,97-0,99)      [-]
 𝐶𝑐 =    contraction coefficient (0,61-0,66)   [-]
 𝑔=      earths gravity [m/s2]
 h=      Difference in pressure [m]




4
Large orifice
                     3    3
       2     2
                     2    2
    𝑄 = ∙ 𝑏 ∙ 2𝑔 ∙ (ℎ2 − ℎ1 )
       3



  𝑄=    Flow rate      [m3/s]
  𝑏=    Width orifice [m2]
  𝑔=    earths gravity [m/s2]
 h1 =   Difference in pressure from top    [m]
 h2 =   Difference in pressure from bottom [m]


5
Bernoulli’s law, with head loss
                    2                 2
                   u               u
         y1  z1   1
                       y 2  z2      H12
                                      2
                   2g              2g
                                               Head loss [m]
          u12/2g                 ΔH
                                               Total Head H [m]
          y1                u22/2g             Velocity Head [m]
    P1
               u1                              Surfacelevel y +z [m]
          z1                              y2
                                 P2
                         u2>u1            z2

6                                              Reference [m]
Pipe with head loss
     2         2
     v         v
h1  1
         h4  4
                   H14
     2g        2g         Q  v1  A1  v4  A4

                                             Head loss



                                     Total
                                     Head

                                     Pressure
                                     Head




6
Open channel
     u12              2
                     u2
h1       z1  h2      z2  H12
     2g              2g
                                        Q  v1  A1  v2  A2

                                                       Head loss




                       Reference line

6
Bernoulli expressed in m (head)
      𝐸 𝑡𝑜𝑡𝑎𝑙 = 𝐸 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 + 𝐸 𝑘𝑖𝑛𝑒𝑡𝑖𝑐
            = 𝑚 ∙ 𝑔 ∙ 𝑑 + 1 𝑚 ∙ 𝑢2
                            2
            = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 [𝐽 = 𝑁𝑚]
    𝐸 𝑡𝑜𝑡𝑎𝑙          𝑢2       𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
              = 𝑑+        =              [m]
      𝑚∙𝑔            2𝑔          𝑚∙𝑔

                  𝑝
    𝑑= 𝑧+ 𝑦= 𝑧+      [𝑚]
                𝜌∙ 𝑔

                       𝑽𝟐       Total Head
    𝑯= 𝒚+ 𝒛+                [m]
7                     𝟐∙𝒈
𝑢2
𝐻 = 𝑦+ 𝑧+          [m]
             2∙𝑔


You also could express the energy in Pa (N/m2) instead of m.

𝑝= 𝜌∙ 𝑔∙ 𝑦


If you combine 1 en 2 by multiply al parameters with 𝜌 ∙ 𝑔 (they don’t
change)
                                                     𝑢2
             𝜌∙ 𝑔∙ 𝐻 = 𝜌∙ 𝑔∙ 𝑦+ 𝜌∙ 𝑔∙ 𝑧+ 𝜌∙ 𝑔∙
                                                    2∙ 𝑔
                                          𝑢2
                   𝐻 = 𝑝+ 𝜌∙ 𝑔∙ 𝑧+ 𝜌∙        [𝑃𝑎]
                                          2



7
Bernoulli expressed in Pa (pressure)
                              𝑢2
    𝐻 = 𝑝+ 𝜌∙ 𝑔∙ 𝑧+ 𝜌∙             [𝑃𝑎]
                              2


                             H energy [Pa]
                        𝑢2
                     𝜌∙
                        2
                             Surface level
                p1           p = pressure [Pa]
    u1     P1
                z1           𝜌 ∙ 𝑔 ∙ 𝑧 = “potential” [Pa]

7                            Reference /datum [m]

More Related Content

What's hot

Cu06997 lecture 5_reynolds_and_r
Cu06997 lecture 5_reynolds_and_rCu06997 lecture 5_reynolds_and_r
Cu06997 lecture 5_reynolds_and_r
Henk Massink
 
Cu06997 computation lecture3
Cu06997 computation lecture3Cu06997 computation lecture3
Cu06997 computation lecture3
Henk Massink
 
Cu06997 lecture 8_sewers
Cu06997 lecture 8_sewersCu06997 lecture 8_sewers
Cu06997 lecture 8_sewers
Henk Massink
 
Cu06997 lecture 12_sediment transport and back water
Cu06997 lecture 12_sediment transport and back waterCu06997 lecture 12_sediment transport and back water
Cu06997 lecture 12_sediment transport and back water
Henk Massink
 
T2203
T2203T2203
T2203
7aboub
 
Cu06997 exercise5
Cu06997 exercise5Cu06997 exercise5
Cu06997 exercise5
Henk Massink
 
Cu06997 lecture 2_answer
Cu06997 lecture 2_answerCu06997 lecture 2_answer
Cu06997 lecture 2_answer
Henk Massink
 
Physics LO 4
Physics LO 4Physics LO 4
Physics LO 4
Victoria Purcell
 
Answers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanicsAnswers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanics
asghar123456
 
Answers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanicsAnswers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanics
asghar123456
 
Free convection heat and mass transfer
Free convection heat and mass transferFree convection heat and mass transfer
Free convection heat and mass transfer
Trupesh Upadhyay
 
Solution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chinSolution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chin
Salehkhanovic
 
Solutions Manual for Water-Resources Engineering 3rd Edition by Chin
Solutions Manual for Water-Resources Engineering 3rd Edition by ChinSolutions Manual for Water-Resources Engineering 3rd Edition by Chin
Solutions Manual for Water-Resources Engineering 3rd Edition by Chin
MolinaLan
 
(Part ii)- open channels
(Part ii)- open channels(Part ii)- open channels
(Part ii)- open channels
Mohsin Siddique
 
Francis turbine
Francis turbineFrancis turbine
Francis turbine
Vishal Patel
 
Pelton turbine (1)
Pelton turbine (1)Pelton turbine (1)
Pelton turbine (1)
Muhammad Ukasha
 
Drift flux
Drift fluxDrift flux
Drift flux
fiyghar.com
 
Cu06997 lecture 8_exercise
Cu06997 lecture 8_exerciseCu06997 lecture 8_exercise
Cu06997 lecture 8_exercise
Henk Massink
 
Solved sample-paper4
Solved sample-paper4Solved sample-paper4
Solved sample-paper4
RAHUL-CSE
 
Boundary layer theory 4
Boundary layer theory 4Boundary layer theory 4
Boundary layer theory 4
sistec
 

What's hot (20)

Cu06997 lecture 5_reynolds_and_r
Cu06997 lecture 5_reynolds_and_rCu06997 lecture 5_reynolds_and_r
Cu06997 lecture 5_reynolds_and_r
 
Cu06997 computation lecture3
Cu06997 computation lecture3Cu06997 computation lecture3
Cu06997 computation lecture3
 
Cu06997 lecture 8_sewers
Cu06997 lecture 8_sewersCu06997 lecture 8_sewers
Cu06997 lecture 8_sewers
 
Cu06997 lecture 12_sediment transport and back water
Cu06997 lecture 12_sediment transport and back waterCu06997 lecture 12_sediment transport and back water
Cu06997 lecture 12_sediment transport and back water
 
T2203
T2203T2203
T2203
 
Cu06997 exercise5
Cu06997 exercise5Cu06997 exercise5
Cu06997 exercise5
 
Cu06997 lecture 2_answer
Cu06997 lecture 2_answerCu06997 lecture 2_answer
Cu06997 lecture 2_answer
 
Physics LO 4
Physics LO 4Physics LO 4
Physics LO 4
 
Answers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanicsAnswers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanics
 
Answers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanicsAnswers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanics
 
Free convection heat and mass transfer
Free convection heat and mass transferFree convection heat and mass transfer
Free convection heat and mass transfer
 
Solution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chinSolution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chin
 
Solutions Manual for Water-Resources Engineering 3rd Edition by Chin
Solutions Manual for Water-Resources Engineering 3rd Edition by ChinSolutions Manual for Water-Resources Engineering 3rd Edition by Chin
Solutions Manual for Water-Resources Engineering 3rd Edition by Chin
 
(Part ii)- open channels
(Part ii)- open channels(Part ii)- open channels
(Part ii)- open channels
 
Francis turbine
Francis turbineFrancis turbine
Francis turbine
 
Pelton turbine (1)
Pelton turbine (1)Pelton turbine (1)
Pelton turbine (1)
 
Drift flux
Drift fluxDrift flux
Drift flux
 
Cu06997 lecture 8_exercise
Cu06997 lecture 8_exerciseCu06997 lecture 8_exercise
Cu06997 lecture 8_exercise
 
Solved sample-paper4
Solved sample-paper4Solved sample-paper4
Solved sample-paper4
 
Boundary layer theory 4
Boundary layer theory 4Boundary layer theory 4
Boundary layer theory 4
 

Viewers also liked

Cu06997 table pipe_block 5
Cu06997 table pipe_block 5Cu06997 table pipe_block 5
Cu06997 table pipe_block 5Henk Massink
 
Cu06997 1 basic_calculations_6_2_2012
Cu06997 1 basic_calculations_6_2_2012Cu06997 1 basic_calculations_6_2_2012
Cu06997 1 basic_calculations_6_2_2012
Henk Massink
 
Cu06997 lecture 11_hydraulic_structures
Cu06997 lecture 11_hydraulic_structuresCu06997 lecture 11_hydraulic_structures
Cu06997 lecture 11_hydraulic_structures
Henk Massink
 
Computation exam
Computation examComputation exam
Computation exam
Henk Massink
 
Cu06997 exam5jun2013
Cu06997 exam5jun2013Cu06997 exam5jun2013
Cu06997 exam5jun2013
Henk Massink
 
Cu06997 the basics_26052013
Cu06997 the basics_26052013Cu06997 the basics_26052013
Cu06997 the basics_26052013
Henk Massink
 

Viewers also liked (6)

Cu06997 table pipe_block 5
Cu06997 table pipe_block 5Cu06997 table pipe_block 5
Cu06997 table pipe_block 5
 
Cu06997 1 basic_calculations_6_2_2012
Cu06997 1 basic_calculations_6_2_2012Cu06997 1 basic_calculations_6_2_2012
Cu06997 1 basic_calculations_6_2_2012
 
Cu06997 lecture 11_hydraulic_structures
Cu06997 lecture 11_hydraulic_structuresCu06997 lecture 11_hydraulic_structures
Cu06997 lecture 11_hydraulic_structures
 
Computation exam
Computation examComputation exam
Computation exam
 
Cu06997 exam5jun2013
Cu06997 exam5jun2013Cu06997 exam5jun2013
Cu06997 exam5jun2013
 
Cu06997 the basics_26052013
Cu06997 the basics_26052013Cu06997 the basics_26052013
Cu06997 the basics_26052013
 

More from Henk Massink

Cu07821 ppt9 recapitulation
Cu07821 ppt9 recapitulationCu07821 ppt9 recapitulation
Cu07821 ppt9 recapitulation
Henk Massink
 
Gastcollege mli
Gastcollege mliGastcollege mli
Gastcollege mli
Henk Massink
 
Cu07821 10management and maintenance2015
Cu07821 10management and maintenance2015Cu07821 10management and maintenance2015
Cu07821 10management and maintenance2015
Henk Massink
 
Cu07821 9 zoning plan2015
Cu07821 9 zoning plan2015Cu07821 9 zoning plan2015
Cu07821 9 zoning plan2015
Henk Massink
 
Cu07821 8 weirs
Cu07821 8 weirsCu07821 8 weirs
Cu07821 8 weirs
Henk Massink
 
Cu07821 7 culverts new
Cu07821 7 culverts newCu07821 7 culverts new
Cu07821 7 culverts new
Henk Massink
 
Cu07821 6 pumping stations_update
Cu07821 6 pumping stations_updateCu07821 6 pumping stations_update
Cu07821 6 pumping stations_update
Henk Massink
 
Cu07821 5 drainage
Cu07821 5 drainageCu07821 5 drainage
Cu07821 5 drainage
Henk Massink
 
Cu07821 4 soil
Cu07821 4 soilCu07821 4 soil
Cu07821 4 soil
Henk Massink
 
Cu07821 3 precipitation and evapotranspiration
Cu07821 3  precipitation and evapotranspirationCu07821 3  precipitation and evapotranspiration
Cu07821 3 precipitation and evapotranspiration
Henk Massink
 
Cu07821 2 help
Cu07821 2 helpCu07821 2 help
Cu07821 2 help
Henk Massink
 
Cu07821 1 intro_1415
Cu07821 1 intro_1415Cu07821 1 intro_1415
Cu07821 1 intro_1415
Henk Massink
 
Research portfolio delta_academy_s2_2014_2015
Research portfolio delta_academy_s2_2014_2015Research portfolio delta_academy_s2_2014_2015
Research portfolio delta_academy_s2_2014_2015
Henk Massink
 
Research portfolio da arc 2014-2015 s1
Research portfolio da arc  2014-2015 s1Research portfolio da arc  2014-2015 s1
Research portfolio da arc 2014-2015 s1
Henk Massink
 
Research portfolios1 2013_2014 jan july 2014
Research portfolios1 2013_2014 jan july 2014Research portfolios1 2013_2014 jan july 2014
Research portfolios1 2013_2014 jan july 2014
Henk Massink
 
Presentatie AET voor scholieren 15-11-2013
Presentatie AET voor scholieren 15-11-2013Presentatie AET voor scholieren 15-11-2013
Presentatie AET voor scholieren 15-11-2013
Henk Massink
 
Vision group1(5)
Vision group1(5)Vision group1(5)
Vision group1(5)
Henk Massink
 
Final presentation spain quattro
Final presentation spain quattroFinal presentation spain quattro
Final presentation spain quattro
Henk Massink
 
Final presentation group 3
Final presentation group 3Final presentation group 3
Final presentation group 3
Henk Massink
 

More from Henk Massink (20)

Cu07821 ppt9 recapitulation
Cu07821 ppt9 recapitulationCu07821 ppt9 recapitulation
Cu07821 ppt9 recapitulation
 
Gastcollege mli
Gastcollege mliGastcollege mli
Gastcollege mli
 
Cu07821 10management and maintenance2015
Cu07821 10management and maintenance2015Cu07821 10management and maintenance2015
Cu07821 10management and maintenance2015
 
Cu07821 9 zoning plan2015
Cu07821 9 zoning plan2015Cu07821 9 zoning plan2015
Cu07821 9 zoning plan2015
 
Cu07821 8 weirs
Cu07821 8 weirsCu07821 8 weirs
Cu07821 8 weirs
 
Cu07821 7 culverts new
Cu07821 7 culverts newCu07821 7 culverts new
Cu07821 7 culverts new
 
Cu07821 6 pumping stations_update
Cu07821 6 pumping stations_updateCu07821 6 pumping stations_update
Cu07821 6 pumping stations_update
 
Cu07821 5 drainage
Cu07821 5 drainageCu07821 5 drainage
Cu07821 5 drainage
 
Cu07821 4 soil
Cu07821 4 soilCu07821 4 soil
Cu07821 4 soil
 
Cu07821 3 precipitation and evapotranspiration
Cu07821 3  precipitation and evapotranspirationCu07821 3  precipitation and evapotranspiration
Cu07821 3 precipitation and evapotranspiration
 
Cu07821 2 help
Cu07821 2 helpCu07821 2 help
Cu07821 2 help
 
Cu07821 1 intro_1415
Cu07821 1 intro_1415Cu07821 1 intro_1415
Cu07821 1 intro_1415
 
Research portfolio delta_academy_s2_2014_2015
Research portfolio delta_academy_s2_2014_2015Research portfolio delta_academy_s2_2014_2015
Research portfolio delta_academy_s2_2014_2015
 
Research portfolio da arc 2014-2015 s1
Research portfolio da arc  2014-2015 s1Research portfolio da arc  2014-2015 s1
Research portfolio da arc 2014-2015 s1
 
Jacobapolder
JacobapolderJacobapolder
Jacobapolder
 
Research portfolios1 2013_2014 jan july 2014
Research portfolios1 2013_2014 jan july 2014Research portfolios1 2013_2014 jan july 2014
Research portfolios1 2013_2014 jan july 2014
 
Presentatie AET voor scholieren 15-11-2013
Presentatie AET voor scholieren 15-11-2013Presentatie AET voor scholieren 15-11-2013
Presentatie AET voor scholieren 15-11-2013
 
Vision group1(5)
Vision group1(5)Vision group1(5)
Vision group1(5)
 
Final presentation spain quattro
Final presentation spain quattroFinal presentation spain quattro
Final presentation spain quattro
 
Final presentation group 3
Final presentation group 3Final presentation group 3
Final presentation group 3
 

Cu06997 lecture 4_bernoulli-17-2-2013

  • 1. CU06997 Fluid Dynamics Principles of fluid flow 2.5 Application of the conservations laws to fluid flows (page 25-32) 2.6 Application of the energy equation (page 32 -36) 2.8 Velocity and discharge measurement (page 42 – 48) 1
  • 2. Flowing water and energy 2 u H1  z1  y1  1 [m ] 2g Total head H [m] u12/2g Velocity head [m], [snelheidsh..] Surface level [m] y1 y = Pressure head [m] u1 P1 [drukhoogte] z1 z = Potential head [m] . [plaatshoogte] Reference /datum [m] 1
  • 3. Bernoulli’s Equation, no energy losses 2 2 𝑢1 𝑢2 𝑦1 + 𝑧1 + = 𝑦2 + 𝑧2 + = 𝐻 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡[𝑚] 2𝑔 2𝑔 p y= = Pressure Head[m] [drukhoogte] ρ∙g 𝑧= Potential Head[m] [plaatshoogte] u2 = 2g Velocity Head[m] [snelheidshoogte] 2
  • 4. Bernoulli’s law (without energy losses) 2 2 u u y1  z1  y2  z2   y 3  z3  2  constant 3 2g 2g Total Head [m] P1 y1 u22/2g u32/2g Velocity head [m] z1 y2 Surface Level [m] P2 u1=0 P3 y3 u2>0 z2 u3>u2 z3 Reference[m] 2
  • 6. Pitot 𝑢2 ℎ= 2∙ 𝑔 3
  • 7. Pitot 2 𝑢= 2∙ 𝑔∙ℎ 𝑢= Fluid Velocity [m/s] 𝑔= earths gravity [m/s2] h= Difference in pressure [m] 3
  • 8. Flowing water and energy 2 u H1  z1  y1  1 [m ] 2g Total Head [m] v12/2g Velocity head [m] Surface Level [m] h1 u=0 P1 z1 u1 Prandtl buis Reference / datum [m]
  • 9. Torricelli u12 2 u2 y1  z1   y 2  z2  2g 2g u1=0 m/s y2=0 m y1+z1-z2=x u2  2 g  x 4
  • 10. Small orifice [Kleine doorlaat] 4
  • 11. Small orifice [Kleine doorlaat] 4
  • 12. Small orifice 2 𝑄 = 𝐶 𝑣 ∙ 𝐶 𝑐 ∙ 𝐴0 ∙ 2𝑔 ∙ ℎ 𝑄= Flow rate [m3/s] 𝐴= Wetted Area [m2] 𝐶𝑣 = velocity coefficient (0,97-0,99) [-] 𝐶𝑐 = contraction coefficient (0,61-0,66) [-] 𝑔= earths gravity [m/s2] h= Difference in pressure [m] 4
  • 13. Large orifice 3 3 2 2 2 2 𝑄 = ∙ 𝑏 ∙ 2𝑔 ∙ (ℎ2 − ℎ1 ) 3 𝑄= Flow rate [m3/s] 𝑏= Width orifice [m2] 𝑔= earths gravity [m/s2] h1 = Difference in pressure from top [m] h2 = Difference in pressure from bottom [m] 5
  • 14. Bernoulli’s law, with head loss 2 2 u u y1  z1  1  y 2  z2   H12 2 2g 2g Head loss [m] u12/2g ΔH Total Head H [m] y1 u22/2g Velocity Head [m] P1 u1 Surfacelevel y +z [m] z1 y2 P2 u2>u1 z2 6 Reference [m]
  • 15. Pipe with head loss 2 2 v v h1  1  h4  4  H14 2g 2g Q  v1  A1  v4  A4 Head loss Total Head Pressure Head 6
  • 16. Open channel u12 2 u2 h1   z1  h2   z2  H12 2g 2g Q  v1  A1  v2  A2 Head loss Reference line 6
  • 17. Bernoulli expressed in m (head) 𝐸 𝑡𝑜𝑡𝑎𝑙 = 𝐸 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 + 𝐸 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 = 𝑚 ∙ 𝑔 ∙ 𝑑 + 1 𝑚 ∙ 𝑢2 2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 [𝐽 = 𝑁𝑚] 𝐸 𝑡𝑜𝑡𝑎𝑙 𝑢2 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑑+ = [m] 𝑚∙𝑔 2𝑔 𝑚∙𝑔 𝑝 𝑑= 𝑧+ 𝑦= 𝑧+ [𝑚] 𝜌∙ 𝑔 𝑽𝟐 Total Head 𝑯= 𝒚+ 𝒛+ [m] 7 𝟐∙𝒈
  • 18. 𝑢2 𝐻 = 𝑦+ 𝑧+ [m] 2∙𝑔 You also could express the energy in Pa (N/m2) instead of m. 𝑝= 𝜌∙ 𝑔∙ 𝑦 If you combine 1 en 2 by multiply al parameters with 𝜌 ∙ 𝑔 (they don’t change) 𝑢2 𝜌∙ 𝑔∙ 𝐻 = 𝜌∙ 𝑔∙ 𝑦+ 𝜌∙ 𝑔∙ 𝑧+ 𝜌∙ 𝑔∙ 2∙ 𝑔 𝑢2 𝐻 = 𝑝+ 𝜌∙ 𝑔∙ 𝑧+ 𝜌∙ [𝑃𝑎] 2 7
  • 19. Bernoulli expressed in Pa (pressure) 𝑢2 𝐻 = 𝑝+ 𝜌∙ 𝑔∙ 𝑧+ 𝜌∙ [𝑃𝑎] 2 H energy [Pa] 𝑢2 𝜌∙ 2 Surface level p1 p = pressure [Pa] u1 P1 z1 𝜌 ∙ 𝑔 ∙ 𝑧 = “potential” [Pa] 7 Reference /datum [m]