SlideShare a Scribd company logo
1 of 28
Download to read offline
Rehearsal Hydrostatics




     p=0                  p=0




           p=F/A [N/m2]


1
Rehearsal Hydrostatics




    paverage≠0          paverage≠0   y




         p    g  y [N/m2]
1
CU06997 Fluid Dynamics
Principles of fluid flow / Conservation laws

2.2 Classification of flows (page 21,22)
2.3 Visualization of flow patterns (page 22,23,24)
2.4 Fundamental equations of fluid dynamics (page 24,25)
2.5 Application of the conservations laws to fluid flows (page 25-32)




2
Discharge / Flow rate [debiet]
In hydrology, the discharge or outflow [afvoer] of
a river is the volume of water transported by it in a
certain amount of time. Has to do with the outflow
of a catchment area.

The flow rate [debiet]in fluid dynamics, is the
volume of fluid which passes through a given
surface per unit time.
Q [m3/s]

2
Classification of flows
    Based on timescale
    • Steady (no change Q in time) [Eenparig]
    • Unsteady (change …) [Niet eenparig]
    Based on scale of distance
    • Uniform (no change A along the flow path)
      [Uniform]
    • Non-uniform (change….) [Niet uniform]


3
Classification of flows
    1. Steady uniform flow [Eenparig uniform]
      example: pipe with constant D and Q
      example: channel with constant A and Q
    2. Steady non-uniform flow
      example: pipe with different D and constant Q
      example: channel with different A and constant Q
    3. Unsteady uniform flow[Niet eenparig , uni..]
      example: pipe with constant D and different Q
      example: channel with constant A and different Q
    4. Unsteady non-uniform flow
      example: pipe with different D and Q
3     example; channel with different A and Q
Visualization of flow patterns
                     A streamline [stroomlijn] is a
                     line representing the direction
                     of flow. Streamlines can not
                     cross




                     A set of streamlines may
                     be arranged to form a
                     imaginary pipe. This is
                     called a streamtube
                     [stroombaan]

4
Example streamlines




4
One-, two- and three dimensional flow
     With three dimensional flow the streamlines
     changes in x, y and z directions. Calculations
     become difficult.

     Most of the time it is possible to simplify to
     one or two dimensional.

     Steady uniform flow in a pipe is considered
     to be one dimensional




4
Fundamental laws of physics
 1. Conservation of matter [Behoud van materie]
    (water can’t disappear of appear from nothing)
 2. Conservation of energy [Behoud van energie]
    (potential and kinetic energy)
 3. Conservation of momentum (impuls) [ Behoud van impuls]
    A body in motion cannot gain or lose momentum unless
    some external force is applied. Has to do with speed and
    mass




5
1. Conservation of matter

    Mass flow entering = Mass flow leaving

    Water is incompressible

    Q entering = Q leaving



5
Discharge / Flow rate

     𝑄= 𝑢∙ 𝐴

    𝑄 = Flow rate / Discharge [m3/s]
    𝑢 = Mean Fluid Velocity [m/s]
    𝐴 = Wetted Area           [m2]

    𝑢 = v [m/s]
    Both are used for velocity
5
Equation of Continuity

    The continuity equation is a mathematical statement
      that, in any steady state process, the rate at which
      mass enters a system is equal to the rate at which
      mass leaves the system


        𝑢1 ∙ 𝐴1 = 𝑢2 ∙ 𝐴2 = 𝑢3 ∙ 𝐴3 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡



5
2. Conservation of energy
      𝐸 𝑡𝑜𝑡𝑎𝑙 = 𝐸 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 + 𝐸 𝑘𝑖𝑛𝑒𝑡𝑖𝑐
            = 𝑚 ∙ 𝑔 ∙ 𝑑 + 1 𝑚 ∙ 𝑢2
                            2
            = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 [𝐽 = 𝑁𝑚]
    𝐸 𝑡𝑜𝑡𝑎𝑙          𝑢2       𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
              = 𝑑+        =              [m]
      𝑚∙𝑔            2𝑔          𝑚∙𝑔

                  𝑝
    𝑑= 𝑧+ 𝑦= 𝑧+      [𝑚]
                𝜌∙ 𝑔

                       𝑽𝟐       Total Head
    𝑯= 𝒚+ 𝒛+                [m]
6                     𝟐∙𝒈       [Energiehoogte]
Piezometric Head [Piezometrisch nivo]
    𝑧1 + 𝑦1 = 𝑧2 + 𝑦2 = 𝑧3 + 𝑦3
                                    Stagnant, not flowing


        𝑦3                               Piezometric Head
                             𝑦2     𝑦1   Surface / water level
                                         [druklijn]




Horizontal reference line / datum
          𝑝
     𝑦=           =Pressure Head[drukhoogte] [m]
        𝜌∙ 𝑔
6                 =Potential Head[plaatshoogte] [m]
3. Conservation of momentum

     You need an external force to change
     momentum (impuls)

     Newton’s Second Law of motion




7
Momentum equation
             𝐹𝑥 = 𝜌 ∙ 𝑄 𝑉2𝑥 − 𝑉1𝑥

     𝐹=     Force [N]
     𝜌=     fluid density [Kg/m3]
     𝑄=     Flow rate     [m3/s]
     𝑉1 =   Mean velocity before [m/s]
     𝑉2 =   Mean velocity after [m/s]



     Steady flow for a region of uniform velocity

7
2. Conservation of energy
      𝐸 𝑡𝑜𝑡𝑎𝑙 = 𝐸 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 + 𝐸 𝑘𝑖𝑛𝑒𝑡𝑖𝑐
            = 𝑚 ∙ 𝑔 ∙ 𝑑 + 1 𝑚 ∙ 𝑢2
                            2
            = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 [𝐽 = 𝑁𝑚]
    𝐸 𝑡𝑜𝑡𝑎𝑙          𝑢2       𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
              = 𝑑+        =              [m]
      𝑚∙𝑔            2𝑔          𝑚∙𝑔

                  𝑝
    𝑑= 𝑧+ 𝑦= 𝑧+      [𝑚]
                𝜌∙ 𝑔

                       𝑽𝟐       Total Head
    𝑯= 𝒚+ 𝒛+                [m]
8                     𝟐∙𝒈       [Energiehoogte]
Flowing water and total head
                       2
                   u
    H1  z1  y1      1
                      [m ]
                   2g
                             Total head H [m]
                  u12/2g     Velocity head [m]
                             Surface level [m]
                  y1         h = Pressure head [m]
    u1       P1
                  z1         z = Potential head [m]

                             Reference /datum [m]

8
Bernoulli’s law (without energy losses)

                        2                 2
                    u               u
y1  z1  y2  z2      y 3  z3 
                        2
                                        constant
                                          3
                    2g              2g
                                         Total Head [m]

 P1 y1             u22/2g         u32/2g Velocity head [m]

    z1             y2                    Surface Level [m]
              P2
 u1=0                          P3 y3
          u2>0     z2       u3>u2 z3
                                         Reference[m]
8
Bernoulli’s Equation
            2              2
           𝑢1             𝑢2
 𝑦1 + 𝑧1 +    = 𝑦2 + 𝑧2 +    = 𝐻 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡[𝑚]
           2𝑔             2𝑔

       p
 y=         =   Pressure Head[m] [drukhoogte]
      ρ∙g



        𝑧=      Potential Head[m] [plaatshoogte]

      V2
         =
      2g        Velocity Head[m]   [snelheidshoogte]
8
Pipe with no head loss
     2           2
     u           u
y1  1
           y4  4
                      H   Q  u1  A1  u4  A4
     2g 1        2g 4
                                               Total Head
                                               [Energiehoogte]



                                               Pressure Head
                                               [Drukhoogte]




                                      Reference / datum
Assume no energie loss, calculate
difference in pressure




     D=0,15 m     D=0,30 m

    Q=140 l/s
Solution

   u2/2g=3,14 m                  u2/2g=0,20 m

                     ∆p=3,14 – 0,20 = 2,94 m




  D=0,15 m        D=0,30 m


  Q=140 l/s
Assume no energie loss, calculate
difference in pressure




    D1=0.3m                D2=0.15m

                 Q=0.14 m3/s
Solution


   u2/2g=0,20 m        u2/2g=3,14 m


                      ∆p=0,20-3,14 = -2,94 m




   D1=0.3m                  D2=0.15m

                  Q=0.14 m3/s
Example book

More Related Content

What's hot

Cu06997 lecture 8_sewers
Cu06997 lecture 8_sewersCu06997 lecture 8_sewers
Cu06997 lecture 8_sewersHenk Massink
 
Cu06997 lecture 12_sediment transport and back water
Cu06997 lecture 12_sediment transport and back waterCu06997 lecture 12_sediment transport and back water
Cu06997 lecture 12_sediment transport and back waterHenk Massink
 
Cu06997 assignment 6 2014_answer
Cu06997 assignment 6 2014_answerCu06997 assignment 6 2014_answer
Cu06997 assignment 6 2014_answerHenk Massink
 
Cu06997 lecture 10_froude
Cu06997 lecture 10_froudeCu06997 lecture 10_froude
Cu06997 lecture 10_froudeHenk Massink
 
Cu06997 lecture 2_answer
Cu06997 lecture 2_answerCu06997 lecture 2_answer
Cu06997 lecture 2_answerHenk Massink
 
Cu06997 computation lecture3
Cu06997 computation lecture3Cu06997 computation lecture3
Cu06997 computation lecture3Henk Massink
 
(Part ii)- open channels
(Part ii)- open channels(Part ii)- open channels
(Part ii)- open channelsMohsin Siddique
 
Local Energy (Head) Losses (Lecture notes 03)
Local Energy (Head) Losses (Lecture notes 03)Local Energy (Head) Losses (Lecture notes 03)
Local Energy (Head) Losses (Lecture notes 03)Shekh Muhsen Uddin Ahmed
 
Flows under Pressure in Pipes (Lecture notes 02)
Flows under Pressure in Pipes  (Lecture notes 02)Flows under Pressure in Pipes  (Lecture notes 02)
Flows under Pressure in Pipes (Lecture notes 02)Shekh Muhsen Uddin Ahmed
 
Cu06997 lecture 9-10_exercises
Cu06997 lecture 9-10_exercisesCu06997 lecture 9-10_exercises
Cu06997 lecture 9-10_exercisesHenk Massink
 
A Seminar Topic On Boundary Layer
A Seminar Topic On Boundary LayerA Seminar Topic On Boundary Layer
A Seminar Topic On Boundary LayerRAJKUMAR PATRA
 
Liza anna jj309 fluid mechanics (buku kerja
Liza anna   jj309 fluid mechanics (buku kerjaLiza anna   jj309 fluid mechanics (buku kerja
Liza anna jj309 fluid mechanics (buku kerjalizaannaseri
 
Cu06997 lecture 8_exercise
Cu06997 lecture 8_exerciseCu06997 lecture 8_exercise
Cu06997 lecture 8_exerciseHenk Massink
 
Answers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanicsAnswers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanicsasghar123456
 
Answers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanicsAnswers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanicsasghar123456
 
Fluid Mechanics
Fluid MechanicsFluid Mechanics
Fluid Mechanicshotman1991
 

What's hot (20)

Cu06997 lecture 8_sewers
Cu06997 lecture 8_sewersCu06997 lecture 8_sewers
Cu06997 lecture 8_sewers
 
Cu06997 lecture 12_sediment transport and back water
Cu06997 lecture 12_sediment transport and back waterCu06997 lecture 12_sediment transport and back water
Cu06997 lecture 12_sediment transport and back water
 
Cu06997 assignment 6 2014_answer
Cu06997 assignment 6 2014_answerCu06997 assignment 6 2014_answer
Cu06997 assignment 6 2014_answer
 
Cu06997 exercise5
Cu06997 exercise5Cu06997 exercise5
Cu06997 exercise5
 
Cu06997 lecture 10_froude
Cu06997 lecture 10_froudeCu06997 lecture 10_froude
Cu06997 lecture 10_froude
 
Cu06997 lecture 2_answer
Cu06997 lecture 2_answerCu06997 lecture 2_answer
Cu06997 lecture 2_answer
 
Cu06997 computation lecture3
Cu06997 computation lecture3Cu06997 computation lecture3
Cu06997 computation lecture3
 
(Part ii)- open channels
(Part ii)- open channels(Part ii)- open channels
(Part ii)- open channels
 
Local Energy (Head) Losses (Lecture notes 03)
Local Energy (Head) Losses (Lecture notes 03)Local Energy (Head) Losses (Lecture notes 03)
Local Energy (Head) Losses (Lecture notes 03)
 
Flows under Pressure in Pipes (Lecture notes 02)
Flows under Pressure in Pipes  (Lecture notes 02)Flows under Pressure in Pipes  (Lecture notes 02)
Flows under Pressure in Pipes (Lecture notes 02)
 
CE-6451-Fluid_Mechanics.GVK
CE-6451-Fluid_Mechanics.GVKCE-6451-Fluid_Mechanics.GVK
CE-6451-Fluid_Mechanics.GVK
 
Cu06997 lecture 9-10_exercises
Cu06997 lecture 9-10_exercisesCu06997 lecture 9-10_exercises
Cu06997 lecture 9-10_exercises
 
A Seminar Topic On Boundary Layer
A Seminar Topic On Boundary LayerA Seminar Topic On Boundary Layer
A Seminar Topic On Boundary Layer
 
Liza anna jj309 fluid mechanics (buku kerja
Liza anna   jj309 fluid mechanics (buku kerjaLiza anna   jj309 fluid mechanics (buku kerja
Liza anna jj309 fluid mechanics (buku kerja
 
Cu06997 lecture 8_exercise
Cu06997 lecture 8_exerciseCu06997 lecture 8_exercise
Cu06997 lecture 8_exercise
 
Answers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanicsAnswers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanics
 
Lecture notes 05
Lecture notes 05Lecture notes 05
Lecture notes 05
 
Answers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanicsAnswers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanics
 
Lecture notes 04
Lecture notes 04Lecture notes 04
Lecture notes 04
 
Fluid Mechanics
Fluid MechanicsFluid Mechanics
Fluid Mechanics
 

Similar to Cu06997 lecture 3_principles_of_flow-17-2-2013

Fluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksksFluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksks9866560321sv
 
Unit 5 Fluid Mechanics
Unit 5 Fluid MechanicsUnit 5 Fluid Mechanics
Unit 5 Fluid MechanicsMalaysia
 
Chapter 3 thermodynamics final
Chapter 3 thermodynamics finalChapter 3 thermodynamics final
Chapter 3 thermodynamics finalAaba Tambe
 
WISWEC - A NEW CONCEPT FOR A WAVE ENERGY CONVERTER
WISWEC - A NEW CONCEPT FOR A WAVE ENERGY CONVERTERWISWEC - A NEW CONCEPT FOR A WAVE ENERGY CONVERTER
WISWEC - A NEW CONCEPT FOR A WAVE ENERGY CONVERTERALEXANDROS ANASTASSIADIS
 
2A- Hydraulics, Water Distribution and WW Collection_AC_W2022 (1).pdf
2A- Hydraulics, Water Distribution and WW Collection_AC_W2022 (1).pdf2A- Hydraulics, Water Distribution and WW Collection_AC_W2022 (1).pdf
2A- Hydraulics, Water Distribution and WW Collection_AC_W2022 (1).pdfBhargãv Pâtel
 
Hydraulics for engineers
Hydraulics for engineersHydraulics for engineers
Hydraulics for engineersYuri Melliza
 
Fluid Flow.pptx
Fluid Flow.pptxFluid Flow.pptx
Fluid Flow.pptxdhani71
 
009b (PPT) Viscous Flow -2.pdf .
009b (PPT) Viscous Flow -2.pdf           .009b (PPT) Viscous Flow -2.pdf           .
009b (PPT) Viscous Flow -2.pdf .happycocoman
 
Examples-Answers-all-Sections-2up
Examples-Answers-all-Sections-2upExamples-Answers-all-Sections-2up
Examples-Answers-all-Sections-2upsyed ahmed taran
 
FluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdfFluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdfJamesLumales
 
Lecture Ch 10
Lecture Ch 10Lecture Ch 10
Lecture Ch 10rtrujill
 
Fluid kinemtics by basnayake mis
Fluid kinemtics by basnayake misFluid kinemtics by basnayake mis
Fluid kinemtics by basnayake misEngMyKer
 
BASIC EQUATIONS FOR ONE-DIMENSIONAL FLOW (Chapter 04)
BASIC EQUATIONS FOR ONE-DIMENSIONAL FLOW (Chapter 04)BASIC EQUATIONS FOR ONE-DIMENSIONAL FLOW (Chapter 04)
BASIC EQUATIONS FOR ONE-DIMENSIONAL FLOW (Chapter 04)Shekh Muhsen Uddin Ahmed
 

Similar to Cu06997 lecture 3_principles_of_flow-17-2-2013 (20)

T2203
T2203T2203
T2203
 
Fluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksksFluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksks
 
Fluid Mechanics (2).pdf
Fluid Mechanics (2).pdfFluid Mechanics (2).pdf
Fluid Mechanics (2).pdf
 
Unit 5 Fluid Mechanics
Unit 5 Fluid MechanicsUnit 5 Fluid Mechanics
Unit 5 Fluid Mechanics
 
Chapter 3 thermodynamics final
Chapter 3 thermodynamics finalChapter 3 thermodynamics final
Chapter 3 thermodynamics final
 
WISWEC - A NEW CONCEPT FOR A WAVE ENERGY CONVERTER
WISWEC - A NEW CONCEPT FOR A WAVE ENERGY CONVERTERWISWEC - A NEW CONCEPT FOR A WAVE ENERGY CONVERTER
WISWEC - A NEW CONCEPT FOR A WAVE ENERGY CONVERTER
 
2A- Hydraulics, Water Distribution and WW Collection_AC_W2022 (1).pdf
2A- Hydraulics, Water Distribution and WW Collection_AC_W2022 (1).pdf2A- Hydraulics, Water Distribution and WW Collection_AC_W2022 (1).pdf
2A- Hydraulics, Water Distribution and WW Collection_AC_W2022 (1).pdf
 
Hydraulics for engineers
Hydraulics for engineersHydraulics for engineers
Hydraulics for engineers
 
Fluid Flow.pptx
Fluid Flow.pptxFluid Flow.pptx
Fluid Flow.pptx
 
Presentation 4 ce 801 OCF by Rabindraa ranjan Saha
Presentation 4 ce 801 OCF by Rabindraa ranjan SahaPresentation 4 ce 801 OCF by Rabindraa ranjan Saha
Presentation 4 ce 801 OCF by Rabindraa ranjan Saha
 
009b (PPT) Viscous Flow -2.pdf .
009b (PPT) Viscous Flow -2.pdf           .009b (PPT) Viscous Flow -2.pdf           .
009b (PPT) Viscous Flow -2.pdf .
 
Examples-Answers-all-Sections-2up
Examples-Answers-all-Sections-2upExamples-Answers-all-Sections-2up
Examples-Answers-all-Sections-2up
 
Momentum equation.pdf
 Momentum equation.pdf Momentum equation.pdf
Momentum equation.pdf
 
FluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdfFluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdf
 
Lecture Ch 10
Lecture Ch 10Lecture Ch 10
Lecture Ch 10
 
Fluid kinemtics by basnayake mis
Fluid kinemtics by basnayake misFluid kinemtics by basnayake mis
Fluid kinemtics by basnayake mis
 
01 manometers
01 manometers01 manometers
01 manometers
 
Chap 02
Chap 02Chap 02
Chap 02
 
Ch.1 fluid dynamic
Ch.1 fluid dynamicCh.1 fluid dynamic
Ch.1 fluid dynamic
 
BASIC EQUATIONS FOR ONE-DIMENSIONAL FLOW (Chapter 04)
BASIC EQUATIONS FOR ONE-DIMENSIONAL FLOW (Chapter 04)BASIC EQUATIONS FOR ONE-DIMENSIONAL FLOW (Chapter 04)
BASIC EQUATIONS FOR ONE-DIMENSIONAL FLOW (Chapter 04)
 

More from Henk Massink

Cu07821 ppt9 recapitulation
Cu07821 ppt9 recapitulationCu07821 ppt9 recapitulation
Cu07821 ppt9 recapitulationHenk Massink
 
Cu07821 10management and maintenance2015
Cu07821 10management and maintenance2015Cu07821 10management and maintenance2015
Cu07821 10management and maintenance2015Henk Massink
 
Cu07821 9 zoning plan2015
Cu07821 9 zoning plan2015Cu07821 9 zoning plan2015
Cu07821 9 zoning plan2015Henk Massink
 
Cu07821 7 culverts new
Cu07821 7 culverts newCu07821 7 culverts new
Cu07821 7 culverts newHenk Massink
 
Cu07821 6 pumping stations_update
Cu07821 6 pumping stations_updateCu07821 6 pumping stations_update
Cu07821 6 pumping stations_updateHenk Massink
 
Cu07821 5 drainage
Cu07821 5 drainageCu07821 5 drainage
Cu07821 5 drainageHenk Massink
 
Cu07821 3 precipitation and evapotranspiration
Cu07821 3  precipitation and evapotranspirationCu07821 3  precipitation and evapotranspiration
Cu07821 3 precipitation and evapotranspirationHenk Massink
 
Cu07821 1 intro_1415
Cu07821 1 intro_1415Cu07821 1 intro_1415
Cu07821 1 intro_1415Henk Massink
 
Research portfolio delta_academy_s2_2014_2015
Research portfolio delta_academy_s2_2014_2015Research portfolio delta_academy_s2_2014_2015
Research portfolio delta_academy_s2_2014_2015Henk Massink
 
Research portfolio da arc 2014-2015 s1
Research portfolio da arc  2014-2015 s1Research portfolio da arc  2014-2015 s1
Research portfolio da arc 2014-2015 s1Henk Massink
 
Research portfolios1 2013_2014 jan july 2014
Research portfolios1 2013_2014 jan july 2014Research portfolios1 2013_2014 jan july 2014
Research portfolios1 2013_2014 jan july 2014Henk Massink
 
Presentatie AET voor scholieren 15-11-2013
Presentatie AET voor scholieren 15-11-2013Presentatie AET voor scholieren 15-11-2013
Presentatie AET voor scholieren 15-11-2013Henk Massink
 
Final presentation spain quattro
Final presentation spain quattroFinal presentation spain quattro
Final presentation spain quattroHenk Massink
 
Final presentation group 3
Final presentation group 3Final presentation group 3
Final presentation group 3Henk Massink
 

More from Henk Massink (20)

Cu07821 ppt9 recapitulation
Cu07821 ppt9 recapitulationCu07821 ppt9 recapitulation
Cu07821 ppt9 recapitulation
 
Gastcollege mli
Gastcollege mliGastcollege mli
Gastcollege mli
 
Cu07821 10management and maintenance2015
Cu07821 10management and maintenance2015Cu07821 10management and maintenance2015
Cu07821 10management and maintenance2015
 
Cu07821 9 zoning plan2015
Cu07821 9 zoning plan2015Cu07821 9 zoning plan2015
Cu07821 9 zoning plan2015
 
Cu07821 8 weirs
Cu07821 8 weirsCu07821 8 weirs
Cu07821 8 weirs
 
Cu07821 7 culverts new
Cu07821 7 culverts newCu07821 7 culverts new
Cu07821 7 culverts new
 
Cu07821 6 pumping stations_update
Cu07821 6 pumping stations_updateCu07821 6 pumping stations_update
Cu07821 6 pumping stations_update
 
Cu07821 5 drainage
Cu07821 5 drainageCu07821 5 drainage
Cu07821 5 drainage
 
Cu07821 4 soil
Cu07821 4 soilCu07821 4 soil
Cu07821 4 soil
 
Cu07821 3 precipitation and evapotranspiration
Cu07821 3  precipitation and evapotranspirationCu07821 3  precipitation and evapotranspiration
Cu07821 3 precipitation and evapotranspiration
 
Cu07821 2 help
Cu07821 2 helpCu07821 2 help
Cu07821 2 help
 
Cu07821 1 intro_1415
Cu07821 1 intro_1415Cu07821 1 intro_1415
Cu07821 1 intro_1415
 
Research portfolio delta_academy_s2_2014_2015
Research portfolio delta_academy_s2_2014_2015Research portfolio delta_academy_s2_2014_2015
Research portfolio delta_academy_s2_2014_2015
 
Research portfolio da arc 2014-2015 s1
Research portfolio da arc  2014-2015 s1Research portfolio da arc  2014-2015 s1
Research portfolio da arc 2014-2015 s1
 
Jacobapolder
JacobapolderJacobapolder
Jacobapolder
 
Research portfolios1 2013_2014 jan july 2014
Research portfolios1 2013_2014 jan july 2014Research portfolios1 2013_2014 jan july 2014
Research portfolios1 2013_2014 jan july 2014
 
Presentatie AET voor scholieren 15-11-2013
Presentatie AET voor scholieren 15-11-2013Presentatie AET voor scholieren 15-11-2013
Presentatie AET voor scholieren 15-11-2013
 
Vision group1(5)
Vision group1(5)Vision group1(5)
Vision group1(5)
 
Final presentation spain quattro
Final presentation spain quattroFinal presentation spain quattro
Final presentation spain quattro
 
Final presentation group 3
Final presentation group 3Final presentation group 3
Final presentation group 3
 

Cu06997 lecture 3_principles_of_flow-17-2-2013

  • 1. Rehearsal Hydrostatics p=0 p=0 p=F/A [N/m2] 1
  • 2. Rehearsal Hydrostatics paverage≠0 paverage≠0 y p    g  y [N/m2] 1
  • 3. CU06997 Fluid Dynamics Principles of fluid flow / Conservation laws 2.2 Classification of flows (page 21,22) 2.3 Visualization of flow patterns (page 22,23,24) 2.4 Fundamental equations of fluid dynamics (page 24,25) 2.5 Application of the conservations laws to fluid flows (page 25-32) 2
  • 4. Discharge / Flow rate [debiet] In hydrology, the discharge or outflow [afvoer] of a river is the volume of water transported by it in a certain amount of time. Has to do with the outflow of a catchment area. The flow rate [debiet]in fluid dynamics, is the volume of fluid which passes through a given surface per unit time. Q [m3/s] 2
  • 5. Classification of flows Based on timescale • Steady (no change Q in time) [Eenparig] • Unsteady (change …) [Niet eenparig] Based on scale of distance • Uniform (no change A along the flow path) [Uniform] • Non-uniform (change….) [Niet uniform] 3
  • 6. Classification of flows 1. Steady uniform flow [Eenparig uniform] example: pipe with constant D and Q example: channel with constant A and Q 2. Steady non-uniform flow example: pipe with different D and constant Q example: channel with different A and constant Q 3. Unsteady uniform flow[Niet eenparig , uni..] example: pipe with constant D and different Q example: channel with constant A and different Q 4. Unsteady non-uniform flow example: pipe with different D and Q 3 example; channel with different A and Q
  • 7. Visualization of flow patterns A streamline [stroomlijn] is a line representing the direction of flow. Streamlines can not cross A set of streamlines may be arranged to form a imaginary pipe. This is called a streamtube [stroombaan] 4
  • 9. One-, two- and three dimensional flow With three dimensional flow the streamlines changes in x, y and z directions. Calculations become difficult. Most of the time it is possible to simplify to one or two dimensional. Steady uniform flow in a pipe is considered to be one dimensional 4
  • 10. Fundamental laws of physics 1. Conservation of matter [Behoud van materie] (water can’t disappear of appear from nothing) 2. Conservation of energy [Behoud van energie] (potential and kinetic energy) 3. Conservation of momentum (impuls) [ Behoud van impuls] A body in motion cannot gain or lose momentum unless some external force is applied. Has to do with speed and mass 5
  • 11. 1. Conservation of matter Mass flow entering = Mass flow leaving Water is incompressible Q entering = Q leaving 5
  • 12. Discharge / Flow rate 𝑄= 𝑢∙ 𝐴 𝑄 = Flow rate / Discharge [m3/s] 𝑢 = Mean Fluid Velocity [m/s] 𝐴 = Wetted Area [m2] 𝑢 = v [m/s] Both are used for velocity 5
  • 13. Equation of Continuity The continuity equation is a mathematical statement that, in any steady state process, the rate at which mass enters a system is equal to the rate at which mass leaves the system 𝑢1 ∙ 𝐴1 = 𝑢2 ∙ 𝐴2 = 𝑢3 ∙ 𝐴3 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 5
  • 14. 2. Conservation of energy 𝐸 𝑡𝑜𝑡𝑎𝑙 = 𝐸 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 + 𝐸 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 = 𝑚 ∙ 𝑔 ∙ 𝑑 + 1 𝑚 ∙ 𝑢2 2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 [𝐽 = 𝑁𝑚] 𝐸 𝑡𝑜𝑡𝑎𝑙 𝑢2 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑑+ = [m] 𝑚∙𝑔 2𝑔 𝑚∙𝑔 𝑝 𝑑= 𝑧+ 𝑦= 𝑧+ [𝑚] 𝜌∙ 𝑔 𝑽𝟐 Total Head 𝑯= 𝒚+ 𝒛+ [m] 6 𝟐∙𝒈 [Energiehoogte]
  • 15. Piezometric Head [Piezometrisch nivo] 𝑧1 + 𝑦1 = 𝑧2 + 𝑦2 = 𝑧3 + 𝑦3 Stagnant, not flowing 𝑦3 Piezometric Head 𝑦2 𝑦1 Surface / water level [druklijn] Horizontal reference line / datum 𝑝 𝑦= =Pressure Head[drukhoogte] [m] 𝜌∙ 𝑔 6 =Potential Head[plaatshoogte] [m]
  • 16. 3. Conservation of momentum You need an external force to change momentum (impuls) Newton’s Second Law of motion 7
  • 17. Momentum equation 𝐹𝑥 = 𝜌 ∙ 𝑄 𝑉2𝑥 − 𝑉1𝑥 𝐹= Force [N] 𝜌= fluid density [Kg/m3] 𝑄= Flow rate [m3/s] 𝑉1 = Mean velocity before [m/s] 𝑉2 = Mean velocity after [m/s] Steady flow for a region of uniform velocity 7
  • 18. 2. Conservation of energy 𝐸 𝑡𝑜𝑡𝑎𝑙 = 𝐸 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 + 𝐸 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 = 𝑚 ∙ 𝑔 ∙ 𝑑 + 1 𝑚 ∙ 𝑢2 2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 [𝐽 = 𝑁𝑚] 𝐸 𝑡𝑜𝑡𝑎𝑙 𝑢2 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑑+ = [m] 𝑚∙𝑔 2𝑔 𝑚∙𝑔 𝑝 𝑑= 𝑧+ 𝑦= 𝑧+ [𝑚] 𝜌∙ 𝑔 𝑽𝟐 Total Head 𝑯= 𝒚+ 𝒛+ [m] 8 𝟐∙𝒈 [Energiehoogte]
  • 19. Flowing water and total head 2 u H1  z1  y1  1 [m ] 2g Total head H [m] u12/2g Velocity head [m] Surface level [m] y1 h = Pressure head [m] u1 P1 z1 z = Potential head [m] Reference /datum [m] 8
  • 20. Bernoulli’s law (without energy losses) 2 2 u u y1  z1  y2  z2   y 3  z3  2  constant 3 2g 2g Total Head [m] P1 y1 u22/2g u32/2g Velocity head [m] z1 y2 Surface Level [m] P2 u1=0 P3 y3 u2>0 z2 u3>u2 z3 Reference[m] 8
  • 21. Bernoulli’s Equation 2 2 𝑢1 𝑢2 𝑦1 + 𝑧1 + = 𝑦2 + 𝑧2 + = 𝐻 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡[𝑚] 2𝑔 2𝑔 p y= = Pressure Head[m] [drukhoogte] ρ∙g 𝑧= Potential Head[m] [plaatshoogte] V2 = 2g Velocity Head[m] [snelheidshoogte] 8
  • 22.
  • 23. Pipe with no head loss 2 2 u u y1  1  y4  4 H Q  u1  A1  u4  A4 2g 1 2g 4 Total Head [Energiehoogte] Pressure Head [Drukhoogte] Reference / datum
  • 24. Assume no energie loss, calculate difference in pressure D=0,15 m D=0,30 m Q=140 l/s
  • 25. Solution u2/2g=3,14 m u2/2g=0,20 m ∆p=3,14 – 0,20 = 2,94 m D=0,15 m D=0,30 m Q=140 l/s
  • 26. Assume no energie loss, calculate difference in pressure D1=0.3m D2=0.15m Q=0.14 m3/s
  • 27. Solution u2/2g=0,20 m u2/2g=3,14 m ∆p=0,20-3,14 = -2,94 m D1=0.3m D2=0.15m Q=0.14 m3/s