SlideShare a Scribd company logo
Chapter 9
Problem Solutions

9.1
(a)
 vO = Ad ( v2 − v1 )
          (                  )
  1 = Ad 10−3 − ( −10−3 ) ⇒ Ad = 500
(b)
1 = 500 ( v2 − 10−3 ) = 1 + 0.5 = 500v2
                 v2 = 3 mV
(c)
5 = 500 (1 − v1 ) ⇒ 500v1 = 495
         v1 = 0.990 V
(d)           vO = 0
(e)
       − 3 = 500 ( v2 − ( −0.5 ) )
−250 − 3 = 500v2
      v2 = −0.506 V

9.2
(a)
     ⎛          ⎞
                ⎟ vI = ( 0.49975 × 10 ) ( 3)
           1                         −3
v2 = ⎜
     ⎝ 1 + 2000 ⎠
v2 = 1.49925 × 10−3
vO = Aod ( v2 − v1 ) = ( 5 × 103 )(1.49925 × 10−3 − 0 )
vO = 7.49625 V
(b)
 vO = Aod ( v2 − v1 )
3 = Aod (1.49925 × 10−3 − 0 )
Aod = 2 × 103

9.3
         R2
Av = −      = −12 ⇒ R2 = 12 R1
         R1
Ri = R1 = 25 kΩ ⇒ R2 = (12 )( 25 ) = 300 kΩ

9.3
(a)           v2 = 3.00 V
(b)
   vO = Aod ( v2 − v1 )
2.500 = Aod ( 3.010 − 3.00 )
  Aod = 250

9.4
⎛ Ri ⎞
vid = ⎜         ⎟ vI
      ⎝ Ri + 25 ⎠
         ⎛ Ri ⎞
0.790 = ⎜          ⎟ ( 0.80 )
         ⎝ Ri + 25 ⎠
0.9875 ( Ri + 25 ) = Ri
24.6875 = 0.0125 Ri
Ri = 1975 K

9.5
       200       ⎫
Av = −     = −10 ⎪
        20
                 ⎪
and              ⎬ for each case
Ri = 20 kΩ       ⎪
                 ⎪
                 ⎭

9.6
a.
        100
Av = −       = −10
         10
Ri = R1 = 10 kΩ
b.
        100 100
 Av = −           = −5
            10
Ri = R1 = 10 kΩ
c.
          100
 Av = −         = −5
        10 + 10
Ri = 10 + 10 = 20 K

9.7
vI        0.5
I1 =      ⇒ R1 =     ⇒ R1 = 5 K
       R1        0.1
R2
   = 15 ⇒ R2 = 75 K
R1

9.8
         R2
Av = −
         R1
(a)        Av = −10
(b)        Av = −1
(c)        Av = −0.20
(d)        Av = −10
(e)        Av = −2
(f)        Av = −1

9.9
         R2
Av = −
         R1
(a)       R1 = 20 K, R2 = 40 K
(b)       R1 = 20 K, R2 = 200 K
(c)       R1 = 20 K, R2 = 1000 K
(d)       R1 = 80 K, R2 = 20 K

9.10
         R2
Av = −      = −8 ⇒ R2 = 8 R1
         R1
                     1
For vI = −1, i1 =       = 15 μ A ⇒ R1 = 66.7 kΩ ⇒ R2 = 533.3 kΩ
                     R1

9.11
         R2
Av = −      = −30 ⇒ R2 = 30 R1
         R1
Set R2 = 1 MΩ ⇒ R1 = 33.3 kΩ

9.12
a.
       R2   1.05R2          ⎛R ⎞
Av =      ⇒         = 1.105 ⎜ 2 ⎟
       R1   0.95 R1         ⎝ R1 ⎠
0.95R2         ⎛R ⎞
       = 0.905 ⎜ 2 ⎟
1.05R1         ⎝ R1 ⎠
Deviation in gain is +10.5% and − 9.5%
b.
      1.01R2         ⎛R ⎞    0.99 R2        ⎛R ⎞
 Av ⇒         = 1.02 ⎜ 2 ⎟ ⇒         = 0.98 ⎜ 2 ⎟
      0.99 R1        ⎝ R1 ⎠  1.01R1         ⎝ R1 ⎠
Deviation in gain = ±2%

9.13
(a)
vO −15
Av =       =   = −15
        vl   1
vO = −15vl ⇒ vO = −150sin ω t ( mV )
(b)
            vI
i2 = i1 =      = 10sin ω t ( μ A )
            R1
       vO
iL =      ⇒ iL = −37.5sin ω t ( μ A )
       RL
iO = iL − i2
iO = −47.5sin ω t ( μ A )

9.14
            R2
Av = −
          R1 + R5
Av = −30 ± 2.5% ⇒ 29.25 ≤ Av ≤ 30.75
        R2                 R2
So            = 29.25 and        = 30.75
       R1 + 2             R1 + 1
We have 29.25 ( R1 + 2 ) = 30.75 ( R1 + 1)
Which yields R1 = 18.5 k Ω and R2 = 599.6 k Ω
For vI = 25 mV , then 0.731 ≤ vO ≤ 0.769 V

9.15
            R2          120
vO1 = −        , vI = −     ( 0.2 ) ⇒ vO1 = −1.2 V
            R1           20
         R4         ⎛ −75 ⎞
 vO = −     , vO1 = ⎜     ⎟ ( −1.2 ) ⇒ vO = +6 V
         R3         ⎝ 15 ⎠
          0.2
i1 = i2 =     ⇒ i1 = i2 = 10 μ A
          20
          v     −1.2
i3 = i4 = O1 =        ⇒ i3 = i4 = −80 μ A
          R3      15
1st op-amp: 90 μ A into output terminal
2nd op-amp: 80 μ A out of output terminal.

9.16
(a)
       R2     22
Av = −    =−     ⇒ Av = −22
       R1     1
(b)     From Eq. (9.23)
       R2         1                         1
 Av = − ⋅                    = −22 ⋅
       R1 ⎡     1 ⎛ R2 ⎞ ⎤           ⎡     1        ⎤
          ⎢1 +    ⎜1 + ⎟ ⎥           ⎢1 + 104 ( 23) ⎥
                                     ⎣              ⎦
          ⎣ Aod ⎝     R1 ⎠ ⎦
 Av = −21.95
(c)
Want Av = −22 ( 0.98 ) = −21.56
                    −22
 So − 21.56 =
                     1
                 1+     ( 23)
                    Aod
       1           22
1+        ( 23) =
      Aod         21.56
       1
          ( 23) = 0.020408 ⇒ Aod = 1127
      Aod

9.17
(a)
       R2              1
Av = −    ⋅
       R1 ⎡        1 ⎛ R2 ⎞ ⎤
            ⎢1 +       ⎜1 + ⎟ ⎥
            ⎣ Aod ⎝          R1 ⎠ ⎦
      100             1
   =−       ⋅
       25 ⎡           1          ⎤
              ⎢1 + 5 × 103 ( 5 ) ⎥
              ⎣                  ⎦
Av = −3.9960
(b)        vO = −3.9960 (1.00 ) ⇒ vO = −3.9960 V
            4 − 3.9960
(c)                    × 100% = 0.10%
                 4
(d)
 vO = Aod ( v2 − v1 ) = − Aod v1
         vO    − ( −3.9960 )
v1 = −       =
         Aod      5 × 10+3
v1 = 0.7992 mV

9.18
vO = Aod ( v2 − v1 ) = − Aod v1
      v          −5
v1 = − O =
      Aod 5 × 10+3
v1 = −1 mV

9.19
         R2 ⎛ R3 R3 ⎞
Av = −      ⎜1 + + ⎟
         R1 ⎝ R4 R2 ⎠
a.
           R2 ⎛ 100 100 ⎞
−10 = −       ⎜1 + +    ⎟
          100 ⎝ 100 R2 ⎠
         2 R2
  10 =        + 1 ⇒ R2 = 450 kΩ
         100
                  2R
b.          100 = 2 + 1 ⇒ R2 = 4.95 MΩ
                  100

9.20
a.
R2 ⎛ R3 R3 ⎞
Av = −    ⎜1 + + ⎟
       R1 ⎝ R4 R2 ⎠
R1 = 500 kΩ
     R2 ⎛ R3 R3 ⎞
80 =    ⎜1 +    + ⎟
    500 ⎝ R4 R2 ⎠
Set R2 = R3 = 500 kΩ
        ⎛ 500 ⎞             500
80 = 1⎜ 1 +      + 1⎟ = 2 +       ⇒ R4 = 6.41 kΩ
        ⎝    R4     ⎠        R4
b.
For vI = −0.05 V
           −0.05
i1 = i2 =          ⇒ i1 = i2 = −0.1 μ A
          500 kΩ
v X = −i2 R2 = − ( −0.1× 10−6 )( 500 × 103 ) = 0.05
         vX    0.05
i4 = −      =−      ⇒ i4 = −7.80 μ A
         R4    6.41
i3 = i2 + i4 = −0.1 − 7.80 ⇒ i3 = −7.90 μ A

9.21
(a)
                  − R2 −500
Av = −1000 =          =
                   R1   R1
R1 = 0.5 K
(b)
      − R2 ⎛ R3 R3 ⎞
Av =       ⎜1 +    + ⎟
       R1 ⎝ R4 R2 ⎠
          −250 ⎛ 500 500 ⎞ −1250
−1000 =         ⎜1 +   + ⎟=
            R1 ⎝ 250 250 ⎠   R1
R1 = 1.25 K

9.22




        vI
 i1 =      = i2
        R
                ⎛v ⎞
v A = −i2 R = − ⎜ I ⎟ R = −vI
                ⎝R⎠
        v     v
 i3 = − A = I
        R R
vA vA         2v       2v
 i4 = i2 + i3 = −   −     =− A = I
                  R R            R       R
                        ⎛ 2vI ⎞
vB = v A − i4 R = −vI − ⎜     ⎟ ( R ) = −3vI
                        ⎝ R ⎠
         vB      ( −3vI ) 3vI
 i5 = −      =−          =
         R          R        R
                2vI 3vI 5vI
 i6 = i4 + i5 =      +      =
                 R      R      R
                          ⎛ 5vI ⎞     v0
v0 = vB − i6 R = −3vI − ⎜       ⎟ R ⇒ v = −8
                          ⎝ R ⎠        I

From Figure 9.12 ⇒ Av = −3

9.23
(a)
        R2          1
Av = −     ⋅
        R1 ⎡      1 ⎛ R2 ⎞ ⎤
             ⎢1 +   ⎜1 + ⎟ ⎥
             ⎣ Aod ⎝       R1 ⎠ ⎦
        50            1
      =− ⋅                           ⇒ Av = −4.99985
        10 ⎡       1 ⎛ 50 ⎞ ⎤
              1+          1 + ⎟⎥
             ⎢ 2 × 105 ⎜ 10
             ⎣          ⎝         ⎠⎦
(b)        vO = − ( 4.99985 ) (100 × 10−3 ) ⇒ vO = −499.985 mV
                     0.5 − 0.499985
(c)        Error =                  × 100% ⇒ 0.003%
                           0.5

9.24
a.     From Equation (9.23)
      R2           1
Av = − ⋅
      R1 ⎡      1 ⎛ R2 ⎞ ⎤
          ⎢1 +     ⎜1 + ⎟ ⎥
          ⎣ Aod ⎝       R1 ⎠ ⎦
      100            1
   =−     ⋅                      = −0.9980
      100 ⎡      1 ⎛ 100 ⎞ ⎤
             1 + 3 ⎜1 +
            ⎢ 10              ⎟⎥
            ⎣       ⎝ 100 ⎠ ⎦
Then v0 = Av ⋅ vI = ( −0.9980 )( 2 ) ⇒ v0 = −1.9960 V
b.




 v0 = Aod ( v A − vB )
vB v0 − vB         ⎛ 1  1 ⎞ v
   =          ⇒ vB ⎜ + ⎟ = 0
R1     R2          ⎝ R1 R2 ⎠ R2
         v0
vB =
     ⎛ R2 ⎞
     ⎜1 + ⎟
     ⎝     R1 ⎠
Aod v0
Then v0 = Aod v A −
                       ⎛ R2 ⎞
                       ⎜1 + ⎟
                       ⎝   R1 ⎠
   ⎡           ⎤
   ⎢           ⎥
v0 ⎢1 +
        Aod ⎥
                 = Aod v A
   ⎢ ⎛ R ⎞⎥
   ⎢ ⎜1 + ⎟ ⎥
           2

   ⎢ ⎝
   ⎣      R1 ⎠ ⎥
               ⎦
   ⎡ ⎛ R2 ⎞             ⎤
   ⎢ ⎜ 1 + ⎟ + Aod ⎥
v0 ⎢ ⎝
           R1 ⎠         ⎥=A v
   ⎢ ⎛ R ⎞ ⎥                od A

   ⎢ ⎜1 + 2 ⎟ ⎥
   ⎢ ⎝
   ⎣           R1 ⎠ ⎥   ⎦
            ⎛ R2 ⎞
       Aod ⎜ 1 + ⎟ v A
v0 =        ⎝     R1 ⎠
              ⎛ R ⎞
        Aod + ⎜ 1 + 2 ⎟
              ⎝      R1 ⎠
          ⎛ R2 ⎞
          ⎜1 + ⎟ vA
v0 = ⎝
                R1 ⎠
             1 ⎛ R2 ⎞
       1+       ⎜1 + ⎟
           Aod ⎝      R1 ⎠
            ⎛ 10 ⎞ ⎛ vI ⎞
            ⎜1 + ⎟ ⎜ ⎟
So v0 = ⎝
                 10 ⎠ ⎝ 2 ⎠
                             = 0.9980vI
                1 ⎛ 10 ⎞
           1 + 3 ⎜1 + ⎟
               10 ⎝ 10 ⎠
For vI = 2 V
v0 = 1.9960 V

9.25
                   vl         v   v     R
(a)         ii =      = i2 = − O ⇒ O = − 2
                   R1         R2   vl   R1
(b)
        vl        v         1 ⎛ R2      ⎞
i2 = i1 =   = i3 + O = i3 +    ⎜ − ⋅ vl ⎟
        R1        RL        RL ⎝ R1     ⎠
           v ⎛ R ⎞
Then i3 = l ⎜ 1 + 2 ⎟
           R1 ⎝ RL ⎠

9.26
          ⎛ R3 R1 ⎞ + ⎛ 0.1 1 ⎞
                           ⎜ 0.1 1 + 10 ⎟ ( )
VX .max = ⎜           ⋅V = ⎜               10 ⇒ VX .max = 0.09008 V
          ⎜R R +R ⎟ ⎟                   ⎟
          ⎝ 3 1   4 ⎠      ⎝            ⎠
        R
vO = 2 ⋅ VX .max
        R1
       R2              R
10 =      ( 0.09008 ) ⇒ 2 = 111
       R1              R1
So R2 = 111 k Ω

9.27
(a)
⎛R           R           R          ⎞
vO = − ⎜ F ⋅ vI 1 + F ⋅ vI 2 + F ⋅ vI 3 ⎟
       ⎝ R1          R2          R3        ⎠
       ⎡⎛ 100 ⎞           ⎛ 100 ⎞            ⎛ 100 ⎞         ⎤
   = − ⎢⎜     ⎟ ( 0.5 ) + ⎜     ⎟ ( 0.75 ) + ⎜     ⎟ ( 2.5 ) ⎥
       ⎣ ⎝ 50 ⎠           ⎝ 20 ⎠             ⎝ 100 ⎠         ⎦
      = − [1 + 3.75 + 2.5]
vO = −7.25 V
(b)
       ⎡⎛ 100 ⎞       ⎛ 100 ⎞           ⎛ 100 ⎞ ⎤
−2 = − ⎢⎜     ⎟ (1) + ⎜     ⎟ ( 0.8 ) + ⎜     ⎟ vI 3 ⎥
       ⎣⎝ 50 ⎠        ⎝ 20 ⎠            ⎝ 100 ⎠ ⎦
 2 = 2 + 4 + vI 3
vI 3 = −4 V

9.28
        − RF         R          R
vo =         ⋅ vI 1 − F ⋅ vI 2 − F ⋅ vI 3
         R1          R2         R3
      = −4vI 1 − 8vI 2 − 2vI 3
RF            RF          RF
   =4            =8          =2
R1            R2          R3
Largest resistance = RF = 250 K ⇒ R1 = 62.5 K                    R2 = 31.25 K   R3 = 125 K

9.29
                                 RF       R
v0 = −4vI 1 − 0.5vI 2 = −           vI 1 − F vI 2
                                 R1       R2
RF            RF
   =4            = 0.5 ⇒ R1 is the smallest resistor
R1            R2
                    vI   2
i = 100 μ A =          =           ⇒ R1 = 20 kΩ
                    R1 R1
                                   ⇒ RF = 80 kΩ
                                   ⇒ R2 = 160 kΩ

9.30
vI 1 = ( 0.05 ) 2 sin ( 2π ft ) = 0.0707 sin ( 2π ft )
                        1                             1
  f = 1 kHz ⇒ T = 3 ⇒ 1 ms vI 2 ⇒ T2 =                  ⇒ 10 ms
                      10                           100
          R         R             10       10
vO = − F ⋅ vI 1 − F ⋅ vI 2 = − ⋅ vI 1 − ⋅ vI 2
          R1        R2             1        5
vO = − (10 ) ( 0.0707 sin ( 2π ft ) ) − ( 2 )( ±1 V )
vO = −0.707 sin ( 2π ft ) − ( ±2 V )
9.31
         RF         R          R
vO = −      ⋅ vI 1 − F ⋅ vI 2 − F ⋅ vI 3
         R1         R2         R3
       20          20         20
vO = −     ⋅ vI 1 − ⋅ vI 2 − ⋅ vI 3
       10          5           2
K sin ω t = −2vI 1 − 4 [ 2 + 100sin ω t ] − 0
Set vI 1 = −4 mV

9.32
Only two inputs.
       ⎡R          R         ⎤
vO = − ⎢ F ⋅ vI 1 + F ⋅ vI 2 ⎥
       ⎣ R1        R2        ⎦
        ⎡        1      ⎤
    = − ⎢3vI 1 + ⋅ vI 2 ⎥
        ⎣        4      ⎦
 RF        RF 1
     =3         =
 R1        R2 4
Smallest resistor = 10 K = R1
RF = 30 K       R2 = 120 K

9.33
       ⎡R           R        ⎤
vO = − ⎢ F ⋅ vI 1 + F ⋅ vI 2 ⎥
       ⎣ R1         R2       ⎦
                 − RF               −R          R               RF
−5 − 5sin ω t =       ( 2.5sin ω t ) F ⋅ ( 2 ) ⇒ F = 2             = 2.5
                  R1                 R2          R1             R2
RF = largest resistor ⇒ RF = 200 K
R1 = 100 K        R2 = 80 K

9.34
a.
         RF              R               R               R
v0 = −      ⋅ a3 ( −5 ) − F ⋅ a2 ( −5 ) − F ⋅ a1 ( −5 ) − F ⋅ a0 ( −5 )
         R3              R2              R1              R0
          RF ⎡ a3 a2 a1 a0 ⎤
So v0 =           + + +          ( 5)
          10 ⎢ 2 4 8 16 ⎥
              ⎣                ⎦
                     R 1
b.         v0 = 2.5 = F ⋅ ⋅ 5 ⇒ RF = 10 kΩ
                     10 2
c.
                  10 1
i.         v0 =     ⋅ ⋅ 5 ⇒ v0 = 0.3125 V
                  10 16
10 ⎡ 1 1 1 1 ⎤
ii.         v0 =         + + +     ( 5 ) ⇒ v0 = 4.6875 V
                   10 ⎢ 2 4 8 16 ⎥
                      ⎣          ⎦

9.35
(a)
       10
vO1 = −   ⋅ vI 1
        1
       20        20
vO = − ⋅ vO1 − ⋅ vI 2 = − ( 20 )( −10 ) vI 1 − ( 20 ) vI 2
       1          1
vO = 200vI 1 − 20vI 2
(b)
 vI 1 = 1 + 2sin ω t ( mV )
 vI 2 = −10 mV
 Then vO = 200 (1 + 2sin ω t ) − 20 ( −10 )
So vO = 0.4 + 0.4sin ω t (V )

9.36
For one-input




         v0
v1 = −
         Aod
vI 1 − v1     v1   v −v
          =       + 1 0
    R1      R2 R3    RF
VI 1      ⎡1     1    1 ⎤ v0
     = v1 ⎢ +       +   ⎥−
R1        ⎣ R1 R2 R3 RF ⎦ RF
           v0    ⎡1     1    1 ⎤ v0
      =−         ⎢ +       +   ⎥−
           Aod   ⎣ R1 R2 R3 RF ⎦ RF
            ⎧ 1
            ⎪         1   1 ⎛ 1    1 ⎞⎫  ⎪
      = −v0 ⎨       +   +   ⎜ +        ⎟⎬
            ⎪ Aod RF RF Aod ⎝ R1 R2 R3 ⎠ ⎪
            ⎩                            ⎭
           v0 ⎧ 1        1     RF    ⎫
      =−      ⎨     +1+    ⋅         ⎬
           RF ⎩ Aod     Aod R1 R2 R3 ⎭
                    ⎧             ⎫
                    ⎪             ⎪
        R           ⎪      1      ⎪
  v0 = − F ⋅ vI 1 ⋅ ⎨             ⎬ where RP = R1 R2 R3
        R1          ⎪1 + 1 ⎛ RF ⎞ ⎪
                             1+
                    ⎪ Aod ⎜ RP ⎟ ⎪
                           ⎝    ⎠⎭
                    ⎩
                                           −1       ⎛R          R          R         ⎞
Therefore, for three-inputs v0 =                  × ⎜ F ⋅ vI 1 + F ⋅ vI 2 + F ⋅ vI 3 ⎟
                                        1 ⎛ RF ⎞ ⎝ R1           R2         R3        ⎠
                                    1+     ⎜1 + ⎟
                                       Aod ⎝ RP ⎠

9.37
⎛ R ⎞        R
Av = 12 = ⎜ 1 + 2 ⎟ ⇒ 2 = 11
          ⎝    R1 ⎠    R1
       v           v     0.5
  i1 = I ⇒ R1 = I =
       R1           i1 0.15
          R1 = 3.33 K
          R2 = 36.7 K

9.38




     ⎛ 1 ⎞                      ⎛ 1 ⎞
vB = ⎜         ⎟ vI  v0 = Aod ⎜       ⎟ vi
     ⎝ 1 + 500 ⎠                ⎝ 501 ⎠
                    ⎛ 1 ⎞
a.        2.5 = Aod ⎜     ⎟ ( 5 ) ⇒ Aod = 250.5
                    ⎝ 501 ⎠
                     ⎛ 1 ⎞
b.        v0 = 5000 ⎜      ⎟ ( 5 ) ⇒ v0 = 49.9 V
                     ⎝ 501 ⎠

9.39
      ⎛ R ⎞
 Av = ⎜ 1 + 2 ⎟
      ⎝    R1 ⎠
(a)        Av = 11
(b)        Av = 2
(c)        Av = 1.2
(d)        Av = 11
(e)        Av = 3
(f)        Av = 2

9.40
           R2
(a)           = 1 ⇒ R1 = R2 = 20 K
           R1
           R2
(b)           = 9 ⇒ R1 = 20 K, R2 = 180 K
           R1
           R2
(c)           = 49 ⇒ R1 = 20 K, R2 = 980 K
           R1
           R2
(d)           = 0 can set R2 = 20 K, R1 = ∞ (open circuit)
           R1

9.41
     ⎛ 50 ⎞ ⎡⎛ 20 ⎞                ⎛ 40 ⎞ ⎤
v0 = ⎜ 1 + ⎟ ⎢⎜           ⎟ vI 2 + ⎜         ⎟ vI 1 ⎥
     ⎝ 50 ⎠ ⎣⎝ 20 + 40 ⎠           ⎝ 20 + 40 ⎠ ⎦
v0 = 1.33vI 1 + 0.667vI 2

9.42
(a)
vI 1 − v2 vI 2 − v2 v2
         +          =
    20        40      10
       ⎛ 100 ⎞
vO = ⎜ 1 +     ⎟ v2 = 3v2
       ⎝   50 ⎠
Now 2vI 1 − 2v2 + vI 2 − v2 = 4v2
                       ⎛v ⎞
2vI 1 + vI 2 = 7v2 = 7 ⎜ o ⎟
                       ⎝3⎠
            6      3
So vO = ⋅ vI 1 + ⋅ vI 2
            7      7

                 ( 0.2 ) + ⎛ ⎞ ( 0.3) ⇒ vO = 0.3 V
               6             3
(b)       vO =             ⎜ ⎟
               7           ⎝ 7⎠
               ⎛6⎞             ⎛ 3⎞
(c)       vO = ⎜ ⎟ ( 0.25 ) + ⎜ ⎟ ( −0.4 ) ⇒ vO = 42.86 mV
               ⎝7⎠             ⎝7⎠

9.43
     ⎛ R4 ⎞
v2 = ⎜         ⎟ vI
     ⎝ R3 + R4 ⎠
     ⎛ R ⎞         ⎛ R ⎞ ⎛ R4 ⎞
vO = ⎜1 + 2 ⎟ v2 = ⎜ 1 + 2 ⎟ ⎜        ⎟ vI
     ⎝   R1 ⎠      ⎝    R1 ⎠⎝ R3 + R4 ⎠
       vO ⎛ R2 ⎞ ⎛ R4 ⎞
Av =     = ⎜1 + ⎟ ⎜           ⎟
       vI ⎝    R1 ⎠ ⎝ R3 + R4 ⎠

9.44
(a)
 vO ⎛      50 x ⎞
    = ⎜1 +
      ⎜ (1 − x ) 50 ⎟
                    ⎟
 vI ⎝               ⎠
 vO ⎛         x ⎞ 1− x + x
    = ⎜1 +       ⎟=
 vI ⎝ 1 − x ⎠          1− x
      v        1
 Av = O =
      vI 1 − x
(b)       1 ≤ Av ≤ ∞
(c)       If x = 1, gain goes to infinity.

9.45
Change resister values as shown.
vI
i1 =      = i2
       R
                   ⎛v ⎞
vx = i2 2 R + vI = ⎜ I ⎟ 2 R + vI = 3vI
                   ⎝R⎠
     v x 3I
i3 = =
      R R
               v 3v        4v
i4 = i2 + i3 = I + I = I
               R     R       R
                   ⎛ 4vI ⎞
v0 = i4 2 R + vx = ⎜     ⎟ 2 R + 3vI
                   ⎝ R ⎠
v0
    = 11
vI

9.46
            vO
(a)             =1
             vI
(b)         From Exercise TYU9.7
              ⎛ R2 ⎞
              ⎜1 + ⎟
vO
   =          ⎝   R1 ⎠
vI ⎡       1 ⎛ R2 ⎞ ⎤
     ⎢1 +     ⎜1 + ⎟ ⎥
     ⎣ Aod ⎝      R1 ⎠ ⎦
But R2 = 0, R1 = ∞
vO     1           1        v
   =        =              ⇒ O = 0.999993
vI 1 +   1           1       vI
              1+
        Aod      1.5 × 105
                   vO              1
(b)         Want      = 0.990 =         ⇒ Aod = 99
                   vI                1
                                1+
                                    Aod

9.47
v0 = Aod ( vI − v0 )
⎛ 1      ⎞
⎜     + 1⎟ v0 = vI
⎝ Aod    ⎠
v0         1
   =
vI ⎛         1 ⎞
      ⎜1 +       ⎟
      ⎝     Aod ⎠
              v
Aod = 104 ; 0 = 0.99990
              vI
              v0
Aod = 103 ;      = 0.9990
              vI
               v0
Aod = 102 ;       = 0.990
               vI
              v0
Aod = 10;        = 0.909
              vI

9.48
       ⎛ R ⎞
v0 A = ⎜ 1 + 2 ⎟ vI
       ⎝    R1 ⎠
      ⎛ R ⎞                 ⎛ R ⎞
v01 = ⎜1 + 2 ⎟ vI , v02 = − ⎜ 1 + 2 ⎟ vI
      ⎝     R1 ⎠            ⎝    R1 ⎠
So v01 = −v02

9.49
                   vI
(a)         iL =
                   R1
(b)
 vO1 = iL RL + vI = iL RL + iL R1
 vOI ( max ) ≅ 10 V = iL (1 + 9 ) = 10iL
So iL ( max ) ≅ 1 mA
Then vI ( max ) ≅ iL R1 = (1)( 9 ) ⇒ vI ( max ) ≅ 9 V

9.50
(a)
     ⎛ 20 ⎞             ⎛ 20 ⎞
vX = ⎜         ⎟ ⋅ vI = ⎜ ⎟ ( 6 ) = 2
     ⎝ 20 + 40 ⎠        ⎝ 60 ⎠
vO = 2 V
(b)       Same as (a)
(c)
     ⎛ 6 ⎞
vX = ⎜        ⎟ ( 6 ) = 0.666 V
     ⎝ 6 + 48 ⎠
     ⎛ 10 ⎞
vO = ⎜ 1 + ⎟ ⋅ v X ⇒ vO = 1.33 V
     ⎝ 10 ⎠

9.51
a.
v1    v −v
Rin =      and 1 0 = i1 and v0 = − Aod v1
        i1      RF
          v1 − ( − Aod v1 )       v1 (1 + Aod )
So i1 =                       =
                RF                    RF
               v1   RF
Then Rin =        =
               i1 1 + Aod
b.
     ⎛ RS ⎞                               RF
i1 = ⎜          ⎟ iS and v0 = − Aod ⋅         ⋅ i1
     ⎝ RS + Rin ⎠                     1 + Aod
              ⎛ A ⎞⎛ RS ⎞
So v0 = − RF ⎜ od ⎟⎜                 ⎟ iS
              ⎝ 1 + Aod ⎠⎝ RS + Rin ⎠
          RF     10
Rin =          =     = 0.009990
        1 + Aod 1001
          ⎛ 1000 ⎞ ⎛       RS      ⎞
v0 = − RF ⎜      ⎟⎜                ⎟ iS
          ⎝ 1001 ⎠ ⎝ RS + 0.009990 ⎠
     ⎛ 1000 ⎞ ⎛       RS      ⎞
Want ⎜      ⎟⎜                ⎟ ≤ 0.990
     ⎝ 1001 ⎠ ⎝ RS + 0.009990 ⎠
which yields RS ≥ 1.099 kΩ

9.52




vO = iC RF , 0 ≤ iC ≤ 8 mA
For vO ( max ) = 8 V, Then RF = 1 k Ω

9.53
    v         10
i = I so 1 =     ⇒ R = 10 kΩ
     R         R
In the ideal op-amp, R1 has no influence.
                     ⎛ R ⎞
Output voltage: v0 = ⎜1 + 2 ⎟ vI
                     ⎝    R⎠
v0 must remain within the bias voltages of the op-amp; the larger the R2, the smaller the range of input
voltage vI in which the output is valid.

9.54
(a)
− vI
iL =
       R2
              − ( −10V )
10mA =
                 R2
R2 = 1 K
        1   R
Also      = F
        R2 R1 R3
vL = (10mA )( 0.05k ) = 0.5 V
      0.5
i2 =      = 0.5 mA
       1
iR 3 = 10 + 0.5 = 10.5 mA
                          v −v   13 − 0.5
Limit vo to 13V ⇒ R3 = O L =              R3 = 1.19 K
                            iR 3  10.5
         RF R3 1.19         R
Then       =   =    = 1.19 = F
         R1 R2   1           R1
For example, RF = 119 K, R1 = 100 K
(b)           From part (a), vO = 13 V when vI = −10 V

9.55
(a)
                      vx
i1 = i2 and i2 =         + iD , vx = −i2 RF
                      R2
               ⎛R       ⎞
Then i1 = −i1 ⎜ F       ⎟ + iD
               ⎝ R2     ⎠
           ⎛     R      ⎞
Or iD = i1 ⎜ 1 + F      ⎟
           ⎝     R2     ⎠
(b)
       vI 5
R1 =     = ⇒ R1 = 5 k Ω
       i1 1
         ⎛    R ⎞   R
12 = (1) ⎜ 1 + F ⎟ ⇒ F = 11
         ⎝    R2 ⎠  R2
For example, R2 = 5 k Ω, RF = 55 k Ω

9.56
                     VX VX − vO
(1)           IX =      +
                     R2   R3
              VX VX − vO
(2)              +       =0
              R1   RF
⎛ R ⎞
From (2) vO = VX ⎜ 1 + F ⎟
                 ⎝    R1 ⎠
                  ⎛ 1   1 ⎞ 1    ⎛ R ⎞
Then (1) I X = VX ⎜ + ⎟ − ⋅ VX ⎜1 + F ⎟
                  ⎝ R2 R3 ⎠ R3   ⎝   R1 ⎠
IX    1      1    1   1    R   1   R
   =     =     +     − − F =     − F
VX R0 R2 R3 R3 R1 R3 R2 R1 R3
           R1 R3 − R2 RF
       =
              R1 R2 R3
                 R1 R2 R3
or Ro =
              R1 R3 − R2 RF
                RF    1
Note: If            =   ⇒ R2 RF = R1 R3 then Ro = ∞, which corresponds to an ideal current source.
               R1 R3 R2

9.57
      R2 R4
Ad =     =     =5
      R1 R3
Minimum resistance seen by vI1 is R1.
Set R1 = R3 = 25 kΩ Then R2 = R4 = 125 kΩ
       v0
iL =      ⇒ v0 = iL RL = ( 0.5 )( 5 ) = 2.5 V
       RL
v0 = 5 ( vI 2 − vI 1 )
2.5 = 5 ( vI 2 − 2 ) ⇒ vI 2 = 2.5 V

9.58
           R2
vO =          ( vI 2 − vI 1 )
           R1
       R2      R     R
Ad =       and 2 = 4 with R2 = R4 and R1 = R3
       R1       R1 R3
Differential input resistance
                  R 20
 Ri = 2 R1 ⇒ R1 = i =      = 10 K
                   2     2
           R2
(a)           = 50 ⇒ R2 = R4 = 500 K
           R1
                                 R1 = R3 = 10 K
                R2
(b)                = 20 ⇒ R2 = R4 = 200 K
                R1
                                 R1 = R3 = 10 K
                R2
(c)                = 2 ⇒ R2 = R4 = 20 K
                R1
                                R1 = R3 = 10 K
                R2
(d)                = 0.5 ⇒ R2 = R4 = 5 K
                R1
                                 R1 = R3 = 10 K

9.59
We have
     ⎛ R ⎞⎛ R / R ⎞                 ⎛R ⎞         ⎛ R ⎞⎛           1      ⎞        ⎛ R2 ⎞
vO = ⎜ 1 + 2 ⎟ ⎜ 4 3 ⎟ vI 2 − ⎜ 2 ⎟ vI 1 or vO = ⎜ 1 + 2 ⎟ ⎜             ⎟ vI 2 − ⎜ ⎟ vI 1
     ⎝    R1 ⎠ ⎝ 1 + R4 / R3 ⎠      ⎝ R1 ⎠       ⎝    R1 ⎠ ⎝ 1 + R3 / R4 ⎠        ⎝ R1 ⎠
Set R2 = 50 (1 + x ) , R1 = 50 (1 − x )
      R3 = 50 (1 − x ) , R4 = 50 (1 + x )
                      ⎡              ⎤
     ⎡ ⎛ 1 + x ⎞⎤     ⎢              ⎥          1+ x ⎞
                                     ⎥ vI 2 − ⎛
                             1
vO = ⎢1 + ⎜       ⎟⎥ ⎢                        ⎜      ⎟ vI 1
     ⎣    ⎝ 1 − x ⎠ ⎦ ⎢1 + ⎛ 1 − x ⎞ ⎥        ⎝ 1− x ⎠
                      ⎢ ⎜ 1+ x ⎟ ⎥
                      ⎣ ⎝          ⎠⎦
     ⎡1 − x + (1 + x ) ⎤ ⎡         1+ x      ⎤        ⎛ 1+ x ⎞
vO = ⎢                   ⎥⋅⎢                 ⎥ vI 2 − ⎜      ⎟ vI 1
     ⎣      1− x         ⎦ ⎢1 + x + (1 − x ) ⎥
                           ⎣                 ⎦        ⎝ 1− x ⎠
     ⎛ 1+ x ⎞          ⎛1+ x ⎞
   =⎜         ⎟ vI 2 − ⎜      ⎟ vI 1
     ⎝1− x ⎠           ⎝ 1− x ⎠
For vI 1 = vI 2 ⇒ vO = 0
Set     R2 = 50 (1 + x )       R1 = 50 (1 − x )
        R3 = 50 (1 + x ) R4 = 50 (1 − x )
                     ⎛         ⎞
        ⎛ 1+ x ⎞⎜            1 ⎟      ⎛ 1+ x ⎞
 vO = ⎜1 +         ⎟ ⎜ 1 + x ⎟ vI 2 − ⎜      ⎟ vI 1
        ⎝ 1− x ⎠⎜1+            ⎟      ⎝ 1− x ⎠
                     ⎜         ⎟
                     ⎝ 1− x ⎠
               ⎛ 1+ x ⎞
      = vI 2 − ⎜      ⎟ vI 1
               ⎝ 1− x ⎠
 vI 1 = vI 2 = vcm
vO       1 + x 1 − x − (1 + x ) −2 x
    = 1−      =                =
vcm      1− x       1− x         1− x
Set     R2 = 50 (1 − x )       R1 = 50 (1 + x )
        R3 = 50 (1 − x ) R4 = 50 (1 + x )
               ⎛       ⎞
      ⎛ 1− x ⎞⎜    1 ⎟          ⎛ 1− x ⎞
 vO = ⎜ 1 +  ⎟ ⎜ 1 − x ⎟ vI 2 − ⎜      ⎟ vI 1
      ⎝ 1+ x ⎠⎜ 1+     ⎟        ⎝ 1+ x ⎠
               ⎜       ⎟
               ⎝ 1+ x ⎠
      ⎛ 1− x ⎞
    = ⎜1 −   ⎟ vcm
      ⎝ 1+ x ⎠
        1 + x − (1 − x )
                  2x
Acm =                      =
         1+ x    1+ x
Worst common-mode gain
        −2 x
Acm =
        1− x
(b)
−2 x −2 ( 0.01)
For x = 0.01,      Acm =      =           = −0.0202
                       1 − x 1 − 0.01
                       −2 ( 0.02 )
For x = 0.02, Acm =                = −0.04082
                        1 − 0.02
                       −2 ( 0.05 )
For x = 0.05, Acm =                = −0.1053
                        1 − 0.05
                                1          1
For this condition, set vI 2 = + , vI 1 = − ⇒ vd = 1 V
                                2          2
      1 ⎡ ⎛ 1 + x ⎞ ⎤ 1 ⎡1 − x + (1 + x ) ⎤ 1 2        1
Ad = ⎢1 + ⎜       ⎟⎥ = ⎢                  ⎥= ⋅      =
      2 ⎣ ⎝ 1 − x ⎠⎦ 2 ⎣        1− x      ⎦ 2 1− x 1− x
                                                              1.010
For x = 0.01 Ad = 1.010                C M R RdB = 20 log10          = 33.98 dB
                                                              0.0202
                       1                                       1.020
For x = 0.02, Ad =         = 1.020     C M R RdB = 20 log10           = 27.96 dB
                      0.98                                    0.04082
                       1                                 1.0526
For x = 0.05 Ad =          = 1.0526 C M R RdB = 20 log10        ≅ 20 dB
                      0.95                               0.1053

9.60
      ⎛ 10R ⎞          ⎛ 10 ⎞
vy = ⎜          ⎟ v2 = ⎜ ⎟ ( 2.65 ) ⇒ v y = vx = 2.40909 V
      ⎝ 10R+R ⎠        ⎝ 11 ⎠
           v2 − v y 2.65 − 2.40909
 i3 = i4 =          =                  = 0.0120 mA
              R               20
           v −v       2.50 − 2.40909
 i1 = i2 = 1 x =                       = 0.0045455 mA
              R              20
vO = vx − i2 (10R ) = ( 2.40909 ) − ( 0.0045455 )( 200 )
vO = 1.50 V

9.61
                                              10
iE = (1 + β )( iB ) = ( 81)( 2 ) = 162 mA =
                                               R
                 R = 61.73 Ω

9.62
a.      From superposition:
       R2
v01 = − ⋅ vI 1
       R1
      ⎛ R ⎞ ⎛ R1 ⎞
v02 = ⎜ 1 + 2 ⎟ ⎜          ⎟ vI 2
      ⎝     R1 ⎠ ⎝ R3 + R4 ⎠
Setting vI 1 = vI 2 = vcm
                 ⎡          ⎛         ⎞     ⎤
                 ⎢⎛ R ⎞ ⎜ 1           ⎟ R ⎥
v0 = v01 + v02 = ⎢⎜ 1 + 2 ⎟ ⎜         ⎟ − 2 ⎥ vcm
                 ⎢⎝    R1 ⎠ ⎜    R3   ⎟ R1 ⎥
                 ⎢          ⎜ 1+ R    ⎟     ⎥
                 ⎣          ⎝     4   ⎠     ⎦
⎛                ⎞
      v    R ⎛ R ⎞⎜ 1                    ⎟ R
Acm = 0 = 4 ⋅ ⎜ 1 + 2 ⎟ ⎜                ⎟− 2
     vcm R3 ⎝      R1 ⎠ ⎜    R4          ⎟ R1
                        ⎜ 1+ R           ⎟
                        ⎝     3          ⎠
     R4 ⎛ R2 ⎞ R2 ⎛ R4 ⎞
        ⎜1 + ⎟ − ⎜1 + ⎟
    = 3⎝
     R      R1 ⎠ R1 ⎝ R3 ⎠
            ⎛ R4 ⎞
            ⎜1 + ⎟
            ⎝ R3 ⎠
      R4 R2
         −
      R    R1
Acm = 3
     ⎛ R4 ⎞
     ⎜1 + ⎟
     ⎝ R3 ⎠
                                R4         R
b.         Max. Acm ⇒ Min.         and Max. 2
                                R3         R1
              47.5 52.5
                  −
Max. Acm    = 10.5 9.5 = 4.5238 − 5.5263 ⇒ A                = 0.1815
                            1 + 4.5238
                                            cm
                  47.5                                max
               1+
                  10.5

9.63




vI 1 − v A v A − vB vA − v0
          =        +                            (1)
R1 + R2       Rv      R2
vI 2 − vB vB − v A vB
         =        +                             (2)
R1 + R2     Rv      R2
     ⎛ R1 ⎞           ⎛ R2 ⎞
v− = ⎜         ⎟ vA + ⎜         ⎟ vI 1          (3)
     ⎝ R1 + R2 ⎠      ⎝ R1 + R2 ⎠
     ⎛ R1 ⎞           ⎛ R2 ⎞
v+ = ⎜         ⎟ vB + ⎜         ⎟ vI 2          (4)
     ⎝ R1 + R2 ⎠      ⎝ R1 + R2 ⎠
Now v− = v+ ⇒ R1vA + R2 vI 1 = R1vB + R2 vI 2
                  R
So that v A = vB + 2 ( vI 2 − vI 1 )
                  R1
  vI 1       ⎛ 1        1  1 ⎞ v  v
        = vA ⎜        +   + ⎟− B − 0                                                                (1)
R1 + R2      ⎝ R1 + R2 RV R2 ⎠ RV R2
  vI 2       ⎛ 1        1  1 ⎞ v
        = vB ⎜        +   + ⎟− A                                                                    ( 2)
R1 + R2      ⎝ R1 + R2 RV R2 ⎠ RV
Then
   vI 1          ⎛ 1            1      1 ⎞ v      v ⎛ R ⎞⎛ 1                1   1 ⎞
         = vB ⎜              +      + ⎟ − B − 0 + ⎜ 2 ⎟⎜                  +   + ⎟ ( vI 2 − vI 1 )   (1)
 R1 + R2         ⎝ R1 + R2 RV R2 ⎠ RV R2 ⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠
   vI 2          ⎛ 1            1      1 ⎞ 1 ⎡        R2              ⎤
         = vB ⎜              +      + ⎟−       ⎢ vB + ( vI 2 − vI 1 ) ⎥                             (2)
 R1 + R2         ⎝ R1 + R2 RV R2 ⎠ RV ⎣               R1              ⎦
Subtract (2) from (1)
    1                      ⎛ R ⎞⎛ 1          1      1 ⎞                 v    1 R2
         ( vI 1 − vI 2 ) = ⎜ 2 ⎟ ⎜         +     + ⎟ ( vI 2 − vI 1 ) − 0 +     ⋅ ( vI 2 − vI 1 )
 R1 + R2                   ⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠                     R2 RV R1
v0                   ⎧⎛ R ⎞ ⎛ 1
                     ⎪                  1  1 ⎞    1          ⎫
                                                        1 R2 ⎪
   = ( vI 2 − vI 1 ) ⎨⎜ 2 ⎟ ⎜         +   + ⎟+        +   ⋅ ⎬
R2                   ⎪⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠ R1 + R2 RV R1 ⎪
                     ⎩                                       ⎭
                     ⎛ R ⎞ ⎧ R2       R         R1   R ⎫
v0 = ( vI 2 − vI 1 ) ⎜ 2 ⎟ ⎨         + 2 +1+        + 2⎬
                     ⎝ R1 ⎠ ⎩ R1 + R2 RV     R1 + R2 RV ⎭
       2 R2 ⎛    R2 ⎞
v0 =        ⎜1 +    ⎟ ( vI 2 − vI 1 )
        R1 ⎝ RV ⎠

9.64
vI 1 − vI 2 ( 0.50 − 0.030sin ω t ) − ( 0.50 + 0.030sin ω t )
i1 =              =
            R1                            20
     −0.060sin ω t
  =
            20
i1 = −3sin ω t ( μ A )
vO1 = i1 R2 + vI 1 = ( −0.0030sin ω t )(115 ) + 0.50 − 0.030sin ω t
vO1 = 0.50 − 0.375sin ω t
vO 2 = vI 2 − i1 R2 = 0.50 + 0.030sin ω t − ( −0.003sin ω t )(115 )
vO 2 = 0.50 + 0.375sin ω t
        R4                  200
vO =       ( vO 2 − vO1 ) =     ⎡ 0.50 + 0.375sin ω t − ( 0.50 − 0.375sin ω t ) ⎤
        R3                  50 ⎣                                                ⎦
vO = 3sin ω t ( V )
         vO 2    0.50 + 0.375sin ω t
i3 =           =
       R3 + R4        50 + 200
i3 = 2 + 1.5sin ω t ( μ A )
       vO1 − vO ( 0.5 − 0.375sin ω t ) − ( 3sin ω t )
i2 =           =
       R3 + R4                250
i2 = 2 − 13.5sin ω t ( μ A )

9.65
                  ⎛ 40 ⎞
(a)         vOB = ⎜1 + ⎟ vI = 2.1667 sin ω t
                  ⎝ 12 ⎠
                    30
(b)         vOC = − vI = −1.25sin ω t
                    12
(c)
 vO = vOB − vOC = 2.1667 sin ω t − ( −1.25sin ω t )
vO = 3.417 sin ω t
            vO 3.417
(d)            =     = 6.83
            vI   0.5

9.66
       vI
iO =
       R

9.67
         vO      R ⎛ 2R ⎞
Ad =            = 4 ⎜1 + 2 ⎟
     vI 2 − vI 1 R3 ⎝       R1 ⎠
      200 ⎛ 2 (115 ) ⎞
vO =        ⎜1 +        ⎟ ( 0.06sin ω t )
      50 ⎝        R1 ⎠
                 230
For vO = 0.5          = 1.0833 ⇒ R1 = 212.3 K
                  R1
                    230
vO = 8 V                = 32.33 ⇒ R1 = 7.11 K ⇒ R1 f = 7.11 K, R1 (potentiometer) = 205.2 K
                     R1

9.68
⎛ 2 R2 ⎞
       R4
vO =    ⎜1 +    ⎟ ( vI 2 − vI 1 )
        ⎝
       R3    R1 ⎠
Set R2 = 15 K, Set R1 = 2 K + 100 k ( Rot )
         R4
Want        ≈8       Set R3 = 10 K
         R3
                     R 4 = 75 K
Now
                   75 ⎛ 2 (15 ) ⎞
 Gain (min) =         ⎜1 +      ⎟ = 9.71
                   10 ⎝    102 ⎠
                   75 ⎛ 2 (15 ) ⎞
Gain ( max ) =        ⎜1 +      ⎟ = 120
                   10 ⎝    2 ⎠

9.69
For a common-mode gain, vcm = vI 1 = vI 2
Then
      ⎛ R ⎞          R
v01 = ⎜ 1 + 2 ⎟ vcm − 2 vcm = vcm
      ⎝    R1 ⎠      R1
      ⎛ R ⎞          R
v02 = ⎜ 1 + 2 ⎟ vcm − 2 vcm = vcm
      ⎝    R1 ⎠      R1
From Problem 9.62 we can write
        R4 R4
           −
        R3 R3  ′
Acm =
       ⎛    R4 ⎞
       ⎜1 + ⎟
       ⎝    R3 ⎠
                    ′
R3 = R4 = 20 kΩ, R3 = 20 kΩ ± 5%
          20
      1−
          R3 1 ⎛ 20 ⎞
            ′
Acm =         = ⎜1 − ⎟
      (1 + 1) 2 ⎝     ′
                     R3 ⎠
     ′
For R3 = 20 kΩ − 5% = 19 kΩ
      1 ⎛ 20 ⎞
Acm =    ⎜ 1 − ⎟ = −0.0263
       2 ⎝ 19 ⎠
     ′
For R3 = 20 kΩ + 5% = 21 kΩ
     1 ⎛ 20 ⎞
Acm =  ⎜ 1 − ⎟ = 0.0238
     2⎝      21 ⎠
So Acm max = 0.0263

9.70
a.
         1
           ⋅ vI ( t ′ ) dt ′
       R1C2 ∫
v0 =

                       0.5
∫ 0.5sin ω t dt = − ω          cos ω t

                 1 ( 0.5 )      0.5
v0 = 0.5 =         ⋅       =
               R1C2 ω        2π R1C2 f
          1                 1
f =           =                             ⇒ f = 31.8 Hz
       2π R1C2 2π ( 50 × 103 )( 0.1× 10−6 )
Output signal lags input signal by 90°
b.
                                   0.5
i.            f =                                   ⇒ f = 15.9 Hz
                    2π ( 50 × 103 )( 0.1× 10−6 )
                                         0.5
ii.           f =                                          ⇒ f = 159 Hz
                    ( 0.1)( 2π ) ( 50 ×103 )( 0.1×10−6 )

9.71
        1                − vI ⋅ t
vO = −
       RC ∫ vI ( t ) dt = RC
vI = −0.2
Now
      − ( −0.2 )( 2 )
8=
           RC
(a)         RC = 0.05 s
                    ( 0.2 ) t
(b)         14 =                ⇒ t = 3.5 s
                     0.05

9.72
a.
                 1                          1
       − R2                        R2 ⋅
v0             jω C2                      jω C2
   =                    =−
vI            R1                   ⎛        1 ⎞
                                R1 ⎜ R2 +       ⎟
                                   ⎝      jω C2 ⎠
v0   R       1
   =− 2⋅
vI   R1 1 + jω R2 C2
              v0   R
b.               =− 2
              vI   R1
                       1
c.            f =
                    2π R2 C2

9.73
a.
 v0     − R2      R ( jω C1 )
    =           =− 2
 vI R + 1         1 + jω R1C1
          jω C1
      1


v0   R     jω R1C1
   =− 2⋅
vI   R1 1 + jω R1C1
              v0   R
b.               =− 2
              vI   R1
                       1
c.            f =
                    2π R1C1

9.74
Assuming the Zener diode is in breakdown,
R2         1
vO = −      ⋅ Vz = − ( 6.8 ) ⇒ vO = −6.8 V
         R1         1
        0 − vO 0 − ( −6.8 )
 i2 =         =             ⇒ i2 = 6.8 mA
          R2        1
     10 − Vz         10 − 6.8
 iz =         − i2 =          − 6.8 ⇒ iz = −6.2 mA!!!
        Rs              5.6
Circuit is not in breakdown. Now
 10 − 0            10
         = i2 =         ⇒ i2 = 1.52 mA
Rs + R1         5.6 + 1
vO = −i2 R2 = − (1.52 )(1) ⇒ vO = −1.52 V
iz = 0

9.75
            ⎛ v ⎞                  ⎡     v      ⎤               ⎛ vI ⎞
vO = −VT ln ⎜ I ⎟ = − ( 0.026 ) ln ⎢ −14 I 4 ⎥ ⇒ vO = −0.026 ln ⎜ −10 ⎟
            ⎝ I s R1 ⎠             ⎢ (10 )(10 ) ⎥
                                   ⎣            ⎦               ⎝ 10 ⎠
For vI = 20 mV , vO = 0.497 V
For vI = 2 V , vO = 0.617 V




9.76
⎛ 333 ⎞
v0 = ⎜     ⎟ ( v01 − v02 ) = 16.65 ( v01 − v02 )
     ⎝ 20 ⎠
                        ⎛i ⎞
v01 = −vBE1 = −VT ln ⎜ C1 ⎟
                        ⎝ IS ⎠
                        ⎛i ⎞
v02 = −vBE 2 = −VT ln ⎜ C 2 ⎟
                        ⎝ IS ⎠
                   ⎛i ⎞           ⎛i ⎞
v01 − v02 = −VT ln ⎜ C1 ⎟ = VT ln ⎜ C 2 ⎟
                   ⎝ iC 2 ⎠       ⎝ iC1 ⎠
       v           v
iC 2 = 2 , iC1 = 1
       R2          R1
                     ⎛v R ⎞
So v01 − v02 = VT ln ⎜ 2 ⋅ 1 ⎟
                     ⎝ R2 v1 ⎠
Then
                          ⎛v R ⎞
v0 = (16.65 )( 0.026 ) ln ⎜ 2 ⋅ 1 ⎟
                          ⎝ v1 R2 ⎠
                ⎛v R ⎞
v0 = 0.4329 ln ⎜ 2 ⋅ 1 ⎟
                ⎝ v1 R2 ⎠
ln ( x ) = log e ( x ) = ⎡ log10 ( x ) ⎤ ⋅ ⎡log e (10 ) ⎤
                         ⎣             ⎦ ⎣              ⎦
        = 2.3026 log10 ( x )
                       ⎛v R ⎞
Then v0 ≅ (1.0 ) log10 ⎜ 2 ⋅ 1 ⎟
                       ⎝ v1 R2 ⎠

9.77
              (            )
vO = − I s R evI / VT = − (10−14 )(104 ) evI / VT
 vO = (10   −10
                  )e   vI / 0.026



For vI = 0.30 V ,               vo = 1.03 × 10−5 V
For vI = 0.60 V ,               vo = 1.05 V

More Related Content

What's hot

Ejercicio 9 y 10 libro de baldor
Ejercicio 9 y 10 libro de baldorEjercicio 9 y 10 libro de baldor
Ejercicio 9 y 10 libro de baldor
Ivan Lobato Baltazar
 
ejercicio 130 libro de baldor
ejercicio 130 libro de baldorejercicio 130 libro de baldor
ejercicio 130 libro de baldor
Ivan Lobato Baltazar
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidez
Jhayson Carvalho
 
An empirical investigation of economic growth and debt
An empirical investigation of economic growth and debtAn empirical investigation of economic growth and debt
An empirical investigation of economic growth and debt
Angela Ouroutsi
 
Kuncisoal mtk-un-smk-prwsta
Kuncisoal mtk-un-smk-prwstaKuncisoal mtk-un-smk-prwsta
Kuncisoal mtk-un-smk-prwsta
mardiyanto83
 
BS1501 tutorial 2
BS1501 tutorial 2BS1501 tutorial 2
BS1501 tutorial 2
Champ Pairach
 
SSC-CGL Mains Test Paper With Solutions
SSC-CGL Mains Test Paper With SolutionsSSC-CGL Mains Test Paper With Solutions
SSC-CGL Mains Test Paper With Solutions
Hansraj Academy
 
45 model non linear prediksi
45 model non linear prediksi45 model non linear prediksi
45 model non linear prediksi
AminullahAssagaf3
 
ejercicio 140 libro de baldor resuelto
ejercicio 140 libro de baldor resueltoejercicio 140 libro de baldor resuelto
ejercicio 140 libro de baldor resuelto
Ivan Lobato Baltazar
 
Ch13 12
Ch13 12Ch13 12
Ch13 12
schibu20
 

What's hot (10)

Ejercicio 9 y 10 libro de baldor
Ejercicio 9 y 10 libro de baldorEjercicio 9 y 10 libro de baldor
Ejercicio 9 y 10 libro de baldor
 
ejercicio 130 libro de baldor
ejercicio 130 libro de baldorejercicio 130 libro de baldor
ejercicio 130 libro de baldor
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidez
 
An empirical investigation of economic growth and debt
An empirical investigation of economic growth and debtAn empirical investigation of economic growth and debt
An empirical investigation of economic growth and debt
 
Kuncisoal mtk-un-smk-prwsta
Kuncisoal mtk-un-smk-prwstaKuncisoal mtk-un-smk-prwsta
Kuncisoal mtk-un-smk-prwsta
 
BS1501 tutorial 2
BS1501 tutorial 2BS1501 tutorial 2
BS1501 tutorial 2
 
SSC-CGL Mains Test Paper With Solutions
SSC-CGL Mains Test Paper With SolutionsSSC-CGL Mains Test Paper With Solutions
SSC-CGL Mains Test Paper With Solutions
 
45 model non linear prediksi
45 model non linear prediksi45 model non linear prediksi
45 model non linear prediksi
 
ejercicio 140 libro de baldor resuelto
ejercicio 140 libro de baldor resueltoejercicio 140 libro de baldor resuelto
ejercicio 140 libro de baldor resuelto
 
Ch13 12
Ch13 12Ch13 12
Ch13 12
 

Viewers also liked

Ch12p
Ch12pCh12p
Ch04p
Ch04pCh04p
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
Bilal Sarwar
 
Ch06s
Ch06sCh06s
Ch10p
Ch10pCh10p
Ch08s
Ch08sCh08s
Ch14p
Ch14pCh14p
Ch08p
Ch08pCh08p
Ch11p
Ch11pCh11p
Ch15p
Ch15pCh15p
Ch16s
Ch16sCh16s
Ch02s
Ch02sCh02s
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
Bilal Sarwar
 
Ch05p
Ch05pCh05p
Ch10s
Ch10sCh10s
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Ontico
 
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Ontico
 
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Ontico
 
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Ontico
 

Viewers also liked (19)

Ch12p
Ch12pCh12p
Ch12p
 
Ch04p
Ch04pCh04p
Ch04p
 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
 
Ch06s
Ch06sCh06s
Ch06s
 
Ch10p
Ch10pCh10p
Ch10p
 
Ch08s
Ch08sCh08s
Ch08s
 
Ch14p
Ch14pCh14p
Ch14p
 
Ch08p
Ch08pCh08p
Ch08p
 
Ch11p
Ch11pCh11p
Ch11p
 
Ch15p
Ch15pCh15p
Ch15p
 
Ch16s
Ch16sCh16s
Ch16s
 
Ch02s
Ch02sCh02s
Ch02s
 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
 
Ch05p
Ch05pCh05p
Ch05p
 
Ch10s
Ch10sCh10s
Ch10s
 
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
 
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
 
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
 
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
 

Similar to Ch09s

Ch11s
Ch11sCh11s
Ch02p
Ch02pCh02p
Ch06p
Ch06pCh06p
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Gallian394
 
Ch16p
Ch16pCh16p
งานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เคงานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เค
krookay2012
 
Ch05s
Ch05sCh05s
Ch04s
Ch04sCh04s
William hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solution
Salman Salman
 
Shi20396 ch04
Shi20396 ch04Shi20396 ch04
Shi20396 ch04
Paralafakyou Mens
 
6161103 2.9 dot product
6161103 2.9 dot product6161103 2.9 dot product
6161103 2.9 dot product
etcenterrbru
 
A.gate by-rk-kanodia
A.gate by-rk-kanodiaA.gate by-rk-kanodia
A.gate by-rk-kanodia
Venugopala Rao P
 
Capítulo 04 carga e análise de tensão
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensão
Jhayson Carvalho
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
명중 김
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
명중 김
 
Ch03s
Ch03sCh03s
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
cideni
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 Functions
Hareem Aslam
 

Similar to Ch09s (18)

Ch11s
Ch11sCh11s
Ch11s
 
Ch02p
Ch02pCh02p
Ch02p
 
Ch06p
Ch06pCh06p
Ch06p
 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...
 
Ch16p
Ch16pCh16p
Ch16p
 
งานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เคงานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เค
 
Ch05s
Ch05sCh05s
Ch05s
 
Ch04s
Ch04sCh04s
Ch04s
 
William hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solution
 
Shi20396 ch04
Shi20396 ch04Shi20396 ch04
Shi20396 ch04
 
6161103 2.9 dot product
6161103 2.9 dot product6161103 2.9 dot product
6161103 2.9 dot product
 
A.gate by-rk-kanodia
A.gate by-rk-kanodiaA.gate by-rk-kanodia
A.gate by-rk-kanodia
 
Capítulo 04 carga e análise de tensão
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensão
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
 
Ch03s
Ch03sCh03s
Ch03s
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 Functions
 

More from Bilal Sarwar

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
Bilal Sarwar
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
Bilal Sarwar
 
Ramey soft
Ramey softRamey soft
Ramey soft
Bilal Sarwar
 
Ch15s
Ch15sCh15s
Ch07s
Ch07sCh07s
Ch07p
Ch07pCh07p

More from Bilal Sarwar (6)

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
 
Ramey soft
Ramey softRamey soft
Ramey soft
 
Ch15s
Ch15sCh15s
Ch15s
 
Ch07s
Ch07sCh07s
Ch07s
 
Ch07p
Ch07pCh07p
Ch07p
 

Recently uploaded

Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
Aftab Hussain
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
Safe Software
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
danishmna97
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
panagenda
 
GraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracyGraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracy
Tomaz Bratanic
 
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
Edge AI and Vision Alliance
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems S.M.S.A.
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
Adtran
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
Neo4j
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
Quotidiano Piemontese
 
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy SurveyTrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
Alpen-Adria-Universität
 
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success StoryDriving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Safe Software
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
Zilliz
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
Matthew Sinclair
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
Uni Systems S.M.S.A.
 
AI 101: An Introduction to the Basics and Impact of Artificial Intelligence
AI 101: An Introduction to the Basics and Impact of Artificial IntelligenceAI 101: An Introduction to the Basics and Impact of Artificial Intelligence
AI 101: An Introduction to the Basics and Impact of Artificial Intelligence
IndexBug
 
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with SlackLet's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
shyamraj55
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Malak Abu Hammad
 
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
Neo4j
 

Recently uploaded (20)

Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
 
How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
 
GraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracyGraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracy
 
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
 
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy SurveyTrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy Survey
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
 
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success StoryDriving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success Story
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
 
AI 101: An Introduction to the Basics and Impact of Artificial Intelligence
AI 101: An Introduction to the Basics and Impact of Artificial IntelligenceAI 101: An Introduction to the Basics and Impact of Artificial Intelligence
AI 101: An Introduction to the Basics and Impact of Artificial Intelligence
 
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with SlackLet's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
 
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
 

Ch09s

  • 1. Chapter 9 Problem Solutions 9.1 (a) vO = Ad ( v2 − v1 ) ( ) 1 = Ad 10−3 − ( −10−3 ) ⇒ Ad = 500 (b) 1 = 500 ( v2 − 10−3 ) = 1 + 0.5 = 500v2 v2 = 3 mV (c) 5 = 500 (1 − v1 ) ⇒ 500v1 = 495 v1 = 0.990 V (d) vO = 0 (e) − 3 = 500 ( v2 − ( −0.5 ) ) −250 − 3 = 500v2 v2 = −0.506 V 9.2 (a) ⎛ ⎞ ⎟ vI = ( 0.49975 × 10 ) ( 3) 1 −3 v2 = ⎜ ⎝ 1 + 2000 ⎠ v2 = 1.49925 × 10−3 vO = Aod ( v2 − v1 ) = ( 5 × 103 )(1.49925 × 10−3 − 0 ) vO = 7.49625 V (b) vO = Aod ( v2 − v1 ) 3 = Aod (1.49925 × 10−3 − 0 ) Aod = 2 × 103 9.3 R2 Av = − = −12 ⇒ R2 = 12 R1 R1 Ri = R1 = 25 kΩ ⇒ R2 = (12 )( 25 ) = 300 kΩ 9.3 (a) v2 = 3.00 V (b) vO = Aod ( v2 − v1 ) 2.500 = Aod ( 3.010 − 3.00 ) Aod = 250 9.4
  • 2. ⎛ Ri ⎞ vid = ⎜ ⎟ vI ⎝ Ri + 25 ⎠ ⎛ Ri ⎞ 0.790 = ⎜ ⎟ ( 0.80 ) ⎝ Ri + 25 ⎠ 0.9875 ( Ri + 25 ) = Ri 24.6875 = 0.0125 Ri Ri = 1975 K 9.5 200 ⎫ Av = − = −10 ⎪ 20 ⎪ and ⎬ for each case Ri = 20 kΩ ⎪ ⎪ ⎭ 9.6 a. 100 Av = − = −10 10 Ri = R1 = 10 kΩ b. 100 100 Av = − = −5 10 Ri = R1 = 10 kΩ c. 100 Av = − = −5 10 + 10 Ri = 10 + 10 = 20 K 9.7
  • 3. vI 0.5 I1 = ⇒ R1 = ⇒ R1 = 5 K R1 0.1 R2 = 15 ⇒ R2 = 75 K R1 9.8 R2 Av = − R1 (a) Av = −10 (b) Av = −1 (c) Av = −0.20 (d) Av = −10 (e) Av = −2 (f) Av = −1 9.9 R2 Av = − R1 (a) R1 = 20 K, R2 = 40 K (b) R1 = 20 K, R2 = 200 K (c) R1 = 20 K, R2 = 1000 K (d) R1 = 80 K, R2 = 20 K 9.10 R2 Av = − = −8 ⇒ R2 = 8 R1 R1 1 For vI = −1, i1 = = 15 μ A ⇒ R1 = 66.7 kΩ ⇒ R2 = 533.3 kΩ R1 9.11 R2 Av = − = −30 ⇒ R2 = 30 R1 R1 Set R2 = 1 MΩ ⇒ R1 = 33.3 kΩ 9.12 a. R2 1.05R2 ⎛R ⎞ Av = ⇒ = 1.105 ⎜ 2 ⎟ R1 0.95 R1 ⎝ R1 ⎠ 0.95R2 ⎛R ⎞ = 0.905 ⎜ 2 ⎟ 1.05R1 ⎝ R1 ⎠ Deviation in gain is +10.5% and − 9.5% b. 1.01R2 ⎛R ⎞ 0.99 R2 ⎛R ⎞ Av ⇒ = 1.02 ⎜ 2 ⎟ ⇒ = 0.98 ⎜ 2 ⎟ 0.99 R1 ⎝ R1 ⎠ 1.01R1 ⎝ R1 ⎠ Deviation in gain = ±2% 9.13 (a)
  • 4. vO −15 Av = = = −15 vl 1 vO = −15vl ⇒ vO = −150sin ω t ( mV ) (b) vI i2 = i1 = = 10sin ω t ( μ A ) R1 vO iL = ⇒ iL = −37.5sin ω t ( μ A ) RL iO = iL − i2 iO = −47.5sin ω t ( μ A ) 9.14 R2 Av = − R1 + R5 Av = −30 ± 2.5% ⇒ 29.25 ≤ Av ≤ 30.75 R2 R2 So = 29.25 and = 30.75 R1 + 2 R1 + 1 We have 29.25 ( R1 + 2 ) = 30.75 ( R1 + 1) Which yields R1 = 18.5 k Ω and R2 = 599.6 k Ω For vI = 25 mV , then 0.731 ≤ vO ≤ 0.769 V 9.15 R2 120 vO1 = − , vI = − ( 0.2 ) ⇒ vO1 = −1.2 V R1 20 R4 ⎛ −75 ⎞ vO = − , vO1 = ⎜ ⎟ ( −1.2 ) ⇒ vO = +6 V R3 ⎝ 15 ⎠ 0.2 i1 = i2 = ⇒ i1 = i2 = 10 μ A 20 v −1.2 i3 = i4 = O1 = ⇒ i3 = i4 = −80 μ A R3 15 1st op-amp: 90 μ A into output terminal 2nd op-amp: 80 μ A out of output terminal. 9.16 (a) R2 22 Av = − =− ⇒ Av = −22 R1 1 (b) From Eq. (9.23) R2 1 1 Av = − ⋅ = −22 ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎡ 1 ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎢1 + 104 ( 23) ⎥ ⎣ ⎦ ⎣ Aod ⎝ R1 ⎠ ⎦ Av = −21.95 (c)
  • 5. Want Av = −22 ( 0.98 ) = −21.56 −22 So − 21.56 = 1 1+ ( 23) Aod 1 22 1+ ( 23) = Aod 21.56 1 ( 23) = 0.020408 ⇒ Aod = 1127 Aod 9.17 (a) R2 1 Av = − ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Aod ⎝ R1 ⎠ ⎦ 100 1 =− ⋅ 25 ⎡ 1 ⎤ ⎢1 + 5 × 103 ( 5 ) ⎥ ⎣ ⎦ Av = −3.9960 (b) vO = −3.9960 (1.00 ) ⇒ vO = −3.9960 V 4 − 3.9960 (c) × 100% = 0.10% 4 (d) vO = Aod ( v2 − v1 ) = − Aod v1 vO − ( −3.9960 ) v1 = − = Aod 5 × 10+3 v1 = 0.7992 mV 9.18 vO = Aod ( v2 − v1 ) = − Aod v1 v −5 v1 = − O = Aod 5 × 10+3 v1 = −1 mV 9.19 R2 ⎛ R3 R3 ⎞ Av = − ⎜1 + + ⎟ R1 ⎝ R4 R2 ⎠ a. R2 ⎛ 100 100 ⎞ −10 = − ⎜1 + + ⎟ 100 ⎝ 100 R2 ⎠ 2 R2 10 = + 1 ⇒ R2 = 450 kΩ 100 2R b. 100 = 2 + 1 ⇒ R2 = 4.95 MΩ 100 9.20 a.
  • 6. R2 ⎛ R3 R3 ⎞ Av = − ⎜1 + + ⎟ R1 ⎝ R4 R2 ⎠ R1 = 500 kΩ R2 ⎛ R3 R3 ⎞ 80 = ⎜1 + + ⎟ 500 ⎝ R4 R2 ⎠ Set R2 = R3 = 500 kΩ ⎛ 500 ⎞ 500 80 = 1⎜ 1 + + 1⎟ = 2 + ⇒ R4 = 6.41 kΩ ⎝ R4 ⎠ R4 b. For vI = −0.05 V −0.05 i1 = i2 = ⇒ i1 = i2 = −0.1 μ A 500 kΩ v X = −i2 R2 = − ( −0.1× 10−6 )( 500 × 103 ) = 0.05 vX 0.05 i4 = − =− ⇒ i4 = −7.80 μ A R4 6.41 i3 = i2 + i4 = −0.1 − 7.80 ⇒ i3 = −7.90 μ A 9.21 (a) − R2 −500 Av = −1000 = = R1 R1 R1 = 0.5 K (b) − R2 ⎛ R3 R3 ⎞ Av = ⎜1 + + ⎟ R1 ⎝ R4 R2 ⎠ −250 ⎛ 500 500 ⎞ −1250 −1000 = ⎜1 + + ⎟= R1 ⎝ 250 250 ⎠ R1 R1 = 1.25 K 9.22 vI i1 = = i2 R ⎛v ⎞ v A = −i2 R = − ⎜ I ⎟ R = −vI ⎝R⎠ v v i3 = − A = I R R
  • 7. vA vA 2v 2v i4 = i2 + i3 = − − =− A = I R R R R ⎛ 2vI ⎞ vB = v A − i4 R = −vI − ⎜ ⎟ ( R ) = −3vI ⎝ R ⎠ vB ( −3vI ) 3vI i5 = − =− = R R R 2vI 3vI 5vI i6 = i4 + i5 = + = R R R ⎛ 5vI ⎞ v0 v0 = vB − i6 R = −3vI − ⎜ ⎟ R ⇒ v = −8 ⎝ R ⎠ I From Figure 9.12 ⇒ Av = −3 9.23 (a) R2 1 Av = − ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Aod ⎝ R1 ⎠ ⎦ 50 1 =− ⋅ ⇒ Av = −4.99985 10 ⎡ 1 ⎛ 50 ⎞ ⎤ 1+ 1 + ⎟⎥ ⎢ 2 × 105 ⎜ 10 ⎣ ⎝ ⎠⎦ (b) vO = − ( 4.99985 ) (100 × 10−3 ) ⇒ vO = −499.985 mV 0.5 − 0.499985 (c) Error = × 100% ⇒ 0.003% 0.5 9.24 a. From Equation (9.23) R2 1 Av = − ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Aod ⎝ R1 ⎠ ⎦ 100 1 =− ⋅ = −0.9980 100 ⎡ 1 ⎛ 100 ⎞ ⎤ 1 + 3 ⎜1 + ⎢ 10 ⎟⎥ ⎣ ⎝ 100 ⎠ ⎦ Then v0 = Av ⋅ vI = ( −0.9980 )( 2 ) ⇒ v0 = −1.9960 V b. v0 = Aod ( v A − vB ) vB v0 − vB ⎛ 1 1 ⎞ v = ⇒ vB ⎜ + ⎟ = 0 R1 R2 ⎝ R1 R2 ⎠ R2 v0 vB = ⎛ R2 ⎞ ⎜1 + ⎟ ⎝ R1 ⎠
  • 8. Aod v0 Then v0 = Aod v A − ⎛ R2 ⎞ ⎜1 + ⎟ ⎝ R1 ⎠ ⎡ ⎤ ⎢ ⎥ v0 ⎢1 + Aod ⎥ = Aod v A ⎢ ⎛ R ⎞⎥ ⎢ ⎜1 + ⎟ ⎥ 2 ⎢ ⎝ ⎣ R1 ⎠ ⎥ ⎦ ⎡ ⎛ R2 ⎞ ⎤ ⎢ ⎜ 1 + ⎟ + Aod ⎥ v0 ⎢ ⎝ R1 ⎠ ⎥=A v ⎢ ⎛ R ⎞ ⎥ od A ⎢ ⎜1 + 2 ⎟ ⎥ ⎢ ⎝ ⎣ R1 ⎠ ⎥ ⎦ ⎛ R2 ⎞ Aod ⎜ 1 + ⎟ v A v0 = ⎝ R1 ⎠ ⎛ R ⎞ Aod + ⎜ 1 + 2 ⎟ ⎝ R1 ⎠ ⎛ R2 ⎞ ⎜1 + ⎟ vA v0 = ⎝ R1 ⎠ 1 ⎛ R2 ⎞ 1+ ⎜1 + ⎟ Aod ⎝ R1 ⎠ ⎛ 10 ⎞ ⎛ vI ⎞ ⎜1 + ⎟ ⎜ ⎟ So v0 = ⎝ 10 ⎠ ⎝ 2 ⎠ = 0.9980vI 1 ⎛ 10 ⎞ 1 + 3 ⎜1 + ⎟ 10 ⎝ 10 ⎠ For vI = 2 V v0 = 1.9960 V 9.25 vl v v R (a) ii = = i2 = − O ⇒ O = − 2 R1 R2 vl R1 (b) vl v 1 ⎛ R2 ⎞ i2 = i1 = = i3 + O = i3 + ⎜ − ⋅ vl ⎟ R1 RL RL ⎝ R1 ⎠ v ⎛ R ⎞ Then i3 = l ⎜ 1 + 2 ⎟ R1 ⎝ RL ⎠ 9.26 ⎛ R3 R1 ⎞ + ⎛ 0.1 1 ⎞ ⎜ 0.1 1 + 10 ⎟ ( ) VX .max = ⎜ ⋅V = ⎜ 10 ⇒ VX .max = 0.09008 V ⎜R R +R ⎟ ⎟ ⎟ ⎝ 3 1 4 ⎠ ⎝ ⎠ R vO = 2 ⋅ VX .max R1 R2 R 10 = ( 0.09008 ) ⇒ 2 = 111 R1 R1 So R2 = 111 k Ω 9.27 (a)
  • 9. ⎛R R R ⎞ vO = − ⎜ F ⋅ vI 1 + F ⋅ vI 2 + F ⋅ vI 3 ⎟ ⎝ R1 R2 R3 ⎠ ⎡⎛ 100 ⎞ ⎛ 100 ⎞ ⎛ 100 ⎞ ⎤ = − ⎢⎜ ⎟ ( 0.5 ) + ⎜ ⎟ ( 0.75 ) + ⎜ ⎟ ( 2.5 ) ⎥ ⎣ ⎝ 50 ⎠ ⎝ 20 ⎠ ⎝ 100 ⎠ ⎦ = − [1 + 3.75 + 2.5] vO = −7.25 V (b) ⎡⎛ 100 ⎞ ⎛ 100 ⎞ ⎛ 100 ⎞ ⎤ −2 = − ⎢⎜ ⎟ (1) + ⎜ ⎟ ( 0.8 ) + ⎜ ⎟ vI 3 ⎥ ⎣⎝ 50 ⎠ ⎝ 20 ⎠ ⎝ 100 ⎠ ⎦ 2 = 2 + 4 + vI 3 vI 3 = −4 V 9.28 − RF R R vo = ⋅ vI 1 − F ⋅ vI 2 − F ⋅ vI 3 R1 R2 R3 = −4vI 1 − 8vI 2 − 2vI 3 RF RF RF =4 =8 =2 R1 R2 R3 Largest resistance = RF = 250 K ⇒ R1 = 62.5 K R2 = 31.25 K R3 = 125 K 9.29 RF R v0 = −4vI 1 − 0.5vI 2 = − vI 1 − F vI 2 R1 R2 RF RF =4 = 0.5 ⇒ R1 is the smallest resistor R1 R2 vI 2 i = 100 μ A = = ⇒ R1 = 20 kΩ R1 R1 ⇒ RF = 80 kΩ ⇒ R2 = 160 kΩ 9.30 vI 1 = ( 0.05 ) 2 sin ( 2π ft ) = 0.0707 sin ( 2π ft ) 1 1 f = 1 kHz ⇒ T = 3 ⇒ 1 ms vI 2 ⇒ T2 = ⇒ 10 ms 10 100 R R 10 10 vO = − F ⋅ vI 1 − F ⋅ vI 2 = − ⋅ vI 1 − ⋅ vI 2 R1 R2 1 5 vO = − (10 ) ( 0.0707 sin ( 2π ft ) ) − ( 2 )( ±1 V ) vO = −0.707 sin ( 2π ft ) − ( ±2 V )
  • 10. 9.31 RF R R vO = − ⋅ vI 1 − F ⋅ vI 2 − F ⋅ vI 3 R1 R2 R3 20 20 20 vO = − ⋅ vI 1 − ⋅ vI 2 − ⋅ vI 3 10 5 2 K sin ω t = −2vI 1 − 4 [ 2 + 100sin ω t ] − 0 Set vI 1 = −4 mV 9.32 Only two inputs. ⎡R R ⎤ vO = − ⎢ F ⋅ vI 1 + F ⋅ vI 2 ⎥ ⎣ R1 R2 ⎦ ⎡ 1 ⎤ = − ⎢3vI 1 + ⋅ vI 2 ⎥ ⎣ 4 ⎦ RF RF 1 =3 = R1 R2 4 Smallest resistor = 10 K = R1 RF = 30 K R2 = 120 K 9.33 ⎡R R ⎤ vO = − ⎢ F ⋅ vI 1 + F ⋅ vI 2 ⎥ ⎣ R1 R2 ⎦ − RF −R R RF −5 − 5sin ω t = ( 2.5sin ω t ) F ⋅ ( 2 ) ⇒ F = 2 = 2.5 R1 R2 R1 R2 RF = largest resistor ⇒ RF = 200 K R1 = 100 K R2 = 80 K 9.34 a. RF R R R v0 = − ⋅ a3 ( −5 ) − F ⋅ a2 ( −5 ) − F ⋅ a1 ( −5 ) − F ⋅ a0 ( −5 ) R3 R2 R1 R0 RF ⎡ a3 a2 a1 a0 ⎤ So v0 = + + + ( 5) 10 ⎢ 2 4 8 16 ⎥ ⎣ ⎦ R 1 b. v0 = 2.5 = F ⋅ ⋅ 5 ⇒ RF = 10 kΩ 10 2 c. 10 1 i. v0 = ⋅ ⋅ 5 ⇒ v0 = 0.3125 V 10 16
  • 11. 10 ⎡ 1 1 1 1 ⎤ ii. v0 = + + + ( 5 ) ⇒ v0 = 4.6875 V 10 ⎢ 2 4 8 16 ⎥ ⎣ ⎦ 9.35 (a) 10 vO1 = − ⋅ vI 1 1 20 20 vO = − ⋅ vO1 − ⋅ vI 2 = − ( 20 )( −10 ) vI 1 − ( 20 ) vI 2 1 1 vO = 200vI 1 − 20vI 2 (b) vI 1 = 1 + 2sin ω t ( mV ) vI 2 = −10 mV Then vO = 200 (1 + 2sin ω t ) − 20 ( −10 ) So vO = 0.4 + 0.4sin ω t (V ) 9.36 For one-input v0 v1 = − Aod vI 1 − v1 v1 v −v = + 1 0 R1 R2 R3 RF VI 1 ⎡1 1 1 ⎤ v0 = v1 ⎢ + + ⎥− R1 ⎣ R1 R2 R3 RF ⎦ RF v0 ⎡1 1 1 ⎤ v0 =− ⎢ + + ⎥− Aod ⎣ R1 R2 R3 RF ⎦ RF ⎧ 1 ⎪ 1 1 ⎛ 1 1 ⎞⎫ ⎪ = −v0 ⎨ + + ⎜ + ⎟⎬ ⎪ Aod RF RF Aod ⎝ R1 R2 R3 ⎠ ⎪ ⎩ ⎭ v0 ⎧ 1 1 RF ⎫ =− ⎨ +1+ ⋅ ⎬ RF ⎩ Aod Aod R1 R2 R3 ⎭ ⎧ ⎫ ⎪ ⎪ R ⎪ 1 ⎪ v0 = − F ⋅ vI 1 ⋅ ⎨ ⎬ where RP = R1 R2 R3 R1 ⎪1 + 1 ⎛ RF ⎞ ⎪ 1+ ⎪ Aod ⎜ RP ⎟ ⎪ ⎝ ⎠⎭ ⎩ −1 ⎛R R R ⎞ Therefore, for three-inputs v0 = × ⎜ F ⋅ vI 1 + F ⋅ vI 2 + F ⋅ vI 3 ⎟ 1 ⎛ RF ⎞ ⎝ R1 R2 R3 ⎠ 1+ ⎜1 + ⎟ Aod ⎝ RP ⎠ 9.37
  • 12. ⎛ R ⎞ R Av = 12 = ⎜ 1 + 2 ⎟ ⇒ 2 = 11 ⎝ R1 ⎠ R1 v v 0.5 i1 = I ⇒ R1 = I = R1 i1 0.15 R1 = 3.33 K R2 = 36.7 K 9.38 ⎛ 1 ⎞ ⎛ 1 ⎞ vB = ⎜ ⎟ vI v0 = Aod ⎜ ⎟ vi ⎝ 1 + 500 ⎠ ⎝ 501 ⎠ ⎛ 1 ⎞ a. 2.5 = Aod ⎜ ⎟ ( 5 ) ⇒ Aod = 250.5 ⎝ 501 ⎠ ⎛ 1 ⎞ b. v0 = 5000 ⎜ ⎟ ( 5 ) ⇒ v0 = 49.9 V ⎝ 501 ⎠ 9.39 ⎛ R ⎞ Av = ⎜ 1 + 2 ⎟ ⎝ R1 ⎠ (a) Av = 11 (b) Av = 2 (c) Av = 1.2 (d) Av = 11 (e) Av = 3 (f) Av = 2 9.40 R2 (a) = 1 ⇒ R1 = R2 = 20 K R1 R2 (b) = 9 ⇒ R1 = 20 K, R2 = 180 K R1 R2 (c) = 49 ⇒ R1 = 20 K, R2 = 980 K R1 R2 (d) = 0 can set R2 = 20 K, R1 = ∞ (open circuit) R1 9.41 ⎛ 50 ⎞ ⎡⎛ 20 ⎞ ⎛ 40 ⎞ ⎤ v0 = ⎜ 1 + ⎟ ⎢⎜ ⎟ vI 2 + ⎜ ⎟ vI 1 ⎥ ⎝ 50 ⎠ ⎣⎝ 20 + 40 ⎠ ⎝ 20 + 40 ⎠ ⎦ v0 = 1.33vI 1 + 0.667vI 2 9.42 (a)
  • 13. vI 1 − v2 vI 2 − v2 v2 + = 20 40 10 ⎛ 100 ⎞ vO = ⎜ 1 + ⎟ v2 = 3v2 ⎝ 50 ⎠ Now 2vI 1 − 2v2 + vI 2 − v2 = 4v2 ⎛v ⎞ 2vI 1 + vI 2 = 7v2 = 7 ⎜ o ⎟ ⎝3⎠ 6 3 So vO = ⋅ vI 1 + ⋅ vI 2 7 7 ( 0.2 ) + ⎛ ⎞ ( 0.3) ⇒ vO = 0.3 V 6 3 (b) vO = ⎜ ⎟ 7 ⎝ 7⎠ ⎛6⎞ ⎛ 3⎞ (c) vO = ⎜ ⎟ ( 0.25 ) + ⎜ ⎟ ( −0.4 ) ⇒ vO = 42.86 mV ⎝7⎠ ⎝7⎠ 9.43 ⎛ R4 ⎞ v2 = ⎜ ⎟ vI ⎝ R3 + R4 ⎠ ⎛ R ⎞ ⎛ R ⎞ ⎛ R4 ⎞ vO = ⎜1 + 2 ⎟ v2 = ⎜ 1 + 2 ⎟ ⎜ ⎟ vI ⎝ R1 ⎠ ⎝ R1 ⎠⎝ R3 + R4 ⎠ vO ⎛ R2 ⎞ ⎛ R4 ⎞ Av = = ⎜1 + ⎟ ⎜ ⎟ vI ⎝ R1 ⎠ ⎝ R3 + R4 ⎠ 9.44 (a) vO ⎛ 50 x ⎞ = ⎜1 + ⎜ (1 − x ) 50 ⎟ ⎟ vI ⎝ ⎠ vO ⎛ x ⎞ 1− x + x = ⎜1 + ⎟= vI ⎝ 1 − x ⎠ 1− x v 1 Av = O = vI 1 − x (b) 1 ≤ Av ≤ ∞ (c) If x = 1, gain goes to infinity. 9.45 Change resister values as shown.
  • 14. vI i1 = = i2 R ⎛v ⎞ vx = i2 2 R + vI = ⎜ I ⎟ 2 R + vI = 3vI ⎝R⎠ v x 3I i3 = = R R v 3v 4v i4 = i2 + i3 = I + I = I R R R ⎛ 4vI ⎞ v0 = i4 2 R + vx = ⎜ ⎟ 2 R + 3vI ⎝ R ⎠ v0 = 11 vI 9.46 vO (a) =1 vI (b) From Exercise TYU9.7 ⎛ R2 ⎞ ⎜1 + ⎟ vO = ⎝ R1 ⎠ vI ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Aod ⎝ R1 ⎠ ⎦ But R2 = 0, R1 = ∞ vO 1 1 v = = ⇒ O = 0.999993 vI 1 + 1 1 vI 1+ Aod 1.5 × 105 vO 1 (b) Want = 0.990 = ⇒ Aod = 99 vI 1 1+ Aod 9.47
  • 15. v0 = Aod ( vI − v0 ) ⎛ 1 ⎞ ⎜ + 1⎟ v0 = vI ⎝ Aod ⎠ v0 1 = vI ⎛ 1 ⎞ ⎜1 + ⎟ ⎝ Aod ⎠ v Aod = 104 ; 0 = 0.99990 vI v0 Aod = 103 ; = 0.9990 vI v0 Aod = 102 ; = 0.990 vI v0 Aod = 10; = 0.909 vI 9.48 ⎛ R ⎞ v0 A = ⎜ 1 + 2 ⎟ vI ⎝ R1 ⎠ ⎛ R ⎞ ⎛ R ⎞ v01 = ⎜1 + 2 ⎟ vI , v02 = − ⎜ 1 + 2 ⎟ vI ⎝ R1 ⎠ ⎝ R1 ⎠ So v01 = −v02 9.49 vI (a) iL = R1 (b) vO1 = iL RL + vI = iL RL + iL R1 vOI ( max ) ≅ 10 V = iL (1 + 9 ) = 10iL So iL ( max ) ≅ 1 mA Then vI ( max ) ≅ iL R1 = (1)( 9 ) ⇒ vI ( max ) ≅ 9 V 9.50 (a) ⎛ 20 ⎞ ⎛ 20 ⎞ vX = ⎜ ⎟ ⋅ vI = ⎜ ⎟ ( 6 ) = 2 ⎝ 20 + 40 ⎠ ⎝ 60 ⎠ vO = 2 V (b) Same as (a) (c) ⎛ 6 ⎞ vX = ⎜ ⎟ ( 6 ) = 0.666 V ⎝ 6 + 48 ⎠ ⎛ 10 ⎞ vO = ⎜ 1 + ⎟ ⋅ v X ⇒ vO = 1.33 V ⎝ 10 ⎠ 9.51 a.
  • 16. v1 v −v Rin = and 1 0 = i1 and v0 = − Aod v1 i1 RF v1 − ( − Aod v1 ) v1 (1 + Aod ) So i1 = = RF RF v1 RF Then Rin = = i1 1 + Aod b. ⎛ RS ⎞ RF i1 = ⎜ ⎟ iS and v0 = − Aod ⋅ ⋅ i1 ⎝ RS + Rin ⎠ 1 + Aod ⎛ A ⎞⎛ RS ⎞ So v0 = − RF ⎜ od ⎟⎜ ⎟ iS ⎝ 1 + Aod ⎠⎝ RS + Rin ⎠ RF 10 Rin = = = 0.009990 1 + Aod 1001 ⎛ 1000 ⎞ ⎛ RS ⎞ v0 = − RF ⎜ ⎟⎜ ⎟ iS ⎝ 1001 ⎠ ⎝ RS + 0.009990 ⎠ ⎛ 1000 ⎞ ⎛ RS ⎞ Want ⎜ ⎟⎜ ⎟ ≤ 0.990 ⎝ 1001 ⎠ ⎝ RS + 0.009990 ⎠ which yields RS ≥ 1.099 kΩ 9.52 vO = iC RF , 0 ≤ iC ≤ 8 mA For vO ( max ) = 8 V, Then RF = 1 k Ω 9.53 v 10 i = I so 1 = ⇒ R = 10 kΩ R R In the ideal op-amp, R1 has no influence. ⎛ R ⎞ Output voltage: v0 = ⎜1 + 2 ⎟ vI ⎝ R⎠ v0 must remain within the bias voltages of the op-amp; the larger the R2, the smaller the range of input voltage vI in which the output is valid. 9.54 (a)
  • 17. − vI iL = R2 − ( −10V ) 10mA = R2 R2 = 1 K 1 R Also = F R2 R1 R3 vL = (10mA )( 0.05k ) = 0.5 V 0.5 i2 = = 0.5 mA 1 iR 3 = 10 + 0.5 = 10.5 mA v −v 13 − 0.5 Limit vo to 13V ⇒ R3 = O L = R3 = 1.19 K iR 3 10.5 RF R3 1.19 R Then = = = 1.19 = F R1 R2 1 R1 For example, RF = 119 K, R1 = 100 K (b) From part (a), vO = 13 V when vI = −10 V 9.55 (a) vx i1 = i2 and i2 = + iD , vx = −i2 RF R2 ⎛R ⎞ Then i1 = −i1 ⎜ F ⎟ + iD ⎝ R2 ⎠ ⎛ R ⎞ Or iD = i1 ⎜ 1 + F ⎟ ⎝ R2 ⎠ (b) vI 5 R1 = = ⇒ R1 = 5 k Ω i1 1 ⎛ R ⎞ R 12 = (1) ⎜ 1 + F ⎟ ⇒ F = 11 ⎝ R2 ⎠ R2 For example, R2 = 5 k Ω, RF = 55 k Ω 9.56 VX VX − vO (1) IX = + R2 R3 VX VX − vO (2) + =0 R1 RF
  • 18. ⎛ R ⎞ From (2) vO = VX ⎜ 1 + F ⎟ ⎝ R1 ⎠ ⎛ 1 1 ⎞ 1 ⎛ R ⎞ Then (1) I X = VX ⎜ + ⎟ − ⋅ VX ⎜1 + F ⎟ ⎝ R2 R3 ⎠ R3 ⎝ R1 ⎠ IX 1 1 1 1 R 1 R = = + − − F = − F VX R0 R2 R3 R3 R1 R3 R2 R1 R3 R1 R3 − R2 RF = R1 R2 R3 R1 R2 R3 or Ro = R1 R3 − R2 RF RF 1 Note: If = ⇒ R2 RF = R1 R3 then Ro = ∞, which corresponds to an ideal current source. R1 R3 R2 9.57 R2 R4 Ad = = =5 R1 R3 Minimum resistance seen by vI1 is R1. Set R1 = R3 = 25 kΩ Then R2 = R4 = 125 kΩ v0 iL = ⇒ v0 = iL RL = ( 0.5 )( 5 ) = 2.5 V RL v0 = 5 ( vI 2 − vI 1 ) 2.5 = 5 ( vI 2 − 2 ) ⇒ vI 2 = 2.5 V 9.58 R2 vO = ( vI 2 − vI 1 ) R1 R2 R R Ad = and 2 = 4 with R2 = R4 and R1 = R3 R1 R1 R3 Differential input resistance R 20 Ri = 2 R1 ⇒ R1 = i = = 10 K 2 2 R2 (a) = 50 ⇒ R2 = R4 = 500 K R1 R1 = R3 = 10 K R2 (b) = 20 ⇒ R2 = R4 = 200 K R1 R1 = R3 = 10 K R2 (c) = 2 ⇒ R2 = R4 = 20 K R1 R1 = R3 = 10 K R2 (d) = 0.5 ⇒ R2 = R4 = 5 K R1 R1 = R3 = 10 K 9.59
  • 19. We have ⎛ R ⎞⎛ R / R ⎞ ⎛R ⎞ ⎛ R ⎞⎛ 1 ⎞ ⎛ R2 ⎞ vO = ⎜ 1 + 2 ⎟ ⎜ 4 3 ⎟ vI 2 − ⎜ 2 ⎟ vI 1 or vO = ⎜ 1 + 2 ⎟ ⎜ ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝ R1 ⎠ ⎝ 1 + R4 / R3 ⎠ ⎝ R1 ⎠ ⎝ R1 ⎠ ⎝ 1 + R3 / R4 ⎠ ⎝ R1 ⎠ Set R2 = 50 (1 + x ) , R1 = 50 (1 − x ) R3 = 50 (1 − x ) , R4 = 50 (1 + x ) ⎡ ⎤ ⎡ ⎛ 1 + x ⎞⎤ ⎢ ⎥ 1+ x ⎞ ⎥ vI 2 − ⎛ 1 vO = ⎢1 + ⎜ ⎟⎥ ⎢ ⎜ ⎟ vI 1 ⎣ ⎝ 1 − x ⎠ ⎦ ⎢1 + ⎛ 1 − x ⎞ ⎥ ⎝ 1− x ⎠ ⎢ ⎜ 1+ x ⎟ ⎥ ⎣ ⎝ ⎠⎦ ⎡1 − x + (1 + x ) ⎤ ⎡ 1+ x ⎤ ⎛ 1+ x ⎞ vO = ⎢ ⎥⋅⎢ ⎥ vI 2 − ⎜ ⎟ vI 1 ⎣ 1− x ⎦ ⎢1 + x + (1 − x ) ⎥ ⎣ ⎦ ⎝ 1− x ⎠ ⎛ 1+ x ⎞ ⎛1+ x ⎞ =⎜ ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝1− x ⎠ ⎝ 1− x ⎠ For vI 1 = vI 2 ⇒ vO = 0 Set R2 = 50 (1 + x ) R1 = 50 (1 − x ) R3 = 50 (1 + x ) R4 = 50 (1 − x ) ⎛ ⎞ ⎛ 1+ x ⎞⎜ 1 ⎟ ⎛ 1+ x ⎞ vO = ⎜1 + ⎟ ⎜ 1 + x ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝ 1− x ⎠⎜1+ ⎟ ⎝ 1− x ⎠ ⎜ ⎟ ⎝ 1− x ⎠ ⎛ 1+ x ⎞ = vI 2 − ⎜ ⎟ vI 1 ⎝ 1− x ⎠ vI 1 = vI 2 = vcm vO 1 + x 1 − x − (1 + x ) −2 x = 1− = = vcm 1− x 1− x 1− x Set R2 = 50 (1 − x ) R1 = 50 (1 + x ) R3 = 50 (1 − x ) R4 = 50 (1 + x ) ⎛ ⎞ ⎛ 1− x ⎞⎜ 1 ⎟ ⎛ 1− x ⎞ vO = ⎜ 1 + ⎟ ⎜ 1 − x ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝ 1+ x ⎠⎜ 1+ ⎟ ⎝ 1+ x ⎠ ⎜ ⎟ ⎝ 1+ x ⎠ ⎛ 1− x ⎞ = ⎜1 − ⎟ vcm ⎝ 1+ x ⎠ 1 + x − (1 − x ) 2x Acm = = 1+ x 1+ x Worst common-mode gain −2 x Acm = 1− x (b)
  • 20. −2 x −2 ( 0.01) For x = 0.01, Acm = = = −0.0202 1 − x 1 − 0.01 −2 ( 0.02 ) For x = 0.02, Acm = = −0.04082 1 − 0.02 −2 ( 0.05 ) For x = 0.05, Acm = = −0.1053 1 − 0.05 1 1 For this condition, set vI 2 = + , vI 1 = − ⇒ vd = 1 V 2 2 1 ⎡ ⎛ 1 + x ⎞ ⎤ 1 ⎡1 − x + (1 + x ) ⎤ 1 2 1 Ad = ⎢1 + ⎜ ⎟⎥ = ⎢ ⎥= ⋅ = 2 ⎣ ⎝ 1 − x ⎠⎦ 2 ⎣ 1− x ⎦ 2 1− x 1− x 1.010 For x = 0.01 Ad = 1.010 C M R RdB = 20 log10 = 33.98 dB 0.0202 1 1.020 For x = 0.02, Ad = = 1.020 C M R RdB = 20 log10 = 27.96 dB 0.98 0.04082 1 1.0526 For x = 0.05 Ad = = 1.0526 C M R RdB = 20 log10 ≅ 20 dB 0.95 0.1053 9.60 ⎛ 10R ⎞ ⎛ 10 ⎞ vy = ⎜ ⎟ v2 = ⎜ ⎟ ( 2.65 ) ⇒ v y = vx = 2.40909 V ⎝ 10R+R ⎠ ⎝ 11 ⎠ v2 − v y 2.65 − 2.40909 i3 = i4 = = = 0.0120 mA R 20 v −v 2.50 − 2.40909 i1 = i2 = 1 x = = 0.0045455 mA R 20 vO = vx − i2 (10R ) = ( 2.40909 ) − ( 0.0045455 )( 200 ) vO = 1.50 V 9.61 10 iE = (1 + β )( iB ) = ( 81)( 2 ) = 162 mA = R R = 61.73 Ω 9.62 a. From superposition: R2 v01 = − ⋅ vI 1 R1 ⎛ R ⎞ ⎛ R1 ⎞ v02 = ⎜ 1 + 2 ⎟ ⎜ ⎟ vI 2 ⎝ R1 ⎠ ⎝ R3 + R4 ⎠ Setting vI 1 = vI 2 = vcm ⎡ ⎛ ⎞ ⎤ ⎢⎛ R ⎞ ⎜ 1 ⎟ R ⎥ v0 = v01 + v02 = ⎢⎜ 1 + 2 ⎟ ⎜ ⎟ − 2 ⎥ vcm ⎢⎝ R1 ⎠ ⎜ R3 ⎟ R1 ⎥ ⎢ ⎜ 1+ R ⎟ ⎥ ⎣ ⎝ 4 ⎠ ⎦
  • 21. ⎞ v R ⎛ R ⎞⎜ 1 ⎟ R Acm = 0 = 4 ⋅ ⎜ 1 + 2 ⎟ ⎜ ⎟− 2 vcm R3 ⎝ R1 ⎠ ⎜ R4 ⎟ R1 ⎜ 1+ R ⎟ ⎝ 3 ⎠ R4 ⎛ R2 ⎞ R2 ⎛ R4 ⎞ ⎜1 + ⎟ − ⎜1 + ⎟ = 3⎝ R R1 ⎠ R1 ⎝ R3 ⎠ ⎛ R4 ⎞ ⎜1 + ⎟ ⎝ R3 ⎠ R4 R2 − R R1 Acm = 3 ⎛ R4 ⎞ ⎜1 + ⎟ ⎝ R3 ⎠ R4 R b. Max. Acm ⇒ Min. and Max. 2 R3 R1 47.5 52.5 − Max. Acm = 10.5 9.5 = 4.5238 − 5.5263 ⇒ A = 0.1815 1 + 4.5238 cm 47.5 max 1+ 10.5 9.63 vI 1 − v A v A − vB vA − v0 = + (1) R1 + R2 Rv R2 vI 2 − vB vB − v A vB = + (2) R1 + R2 Rv R2 ⎛ R1 ⎞ ⎛ R2 ⎞ v− = ⎜ ⎟ vA + ⎜ ⎟ vI 1 (3) ⎝ R1 + R2 ⎠ ⎝ R1 + R2 ⎠ ⎛ R1 ⎞ ⎛ R2 ⎞ v+ = ⎜ ⎟ vB + ⎜ ⎟ vI 2 (4) ⎝ R1 + R2 ⎠ ⎝ R1 + R2 ⎠
  • 22. Now v− = v+ ⇒ R1vA + R2 vI 1 = R1vB + R2 vI 2 R So that v A = vB + 2 ( vI 2 − vI 1 ) R1 vI 1 ⎛ 1 1 1 ⎞ v v = vA ⎜ + + ⎟− B − 0 (1) R1 + R2 ⎝ R1 + R2 RV R2 ⎠ RV R2 vI 2 ⎛ 1 1 1 ⎞ v = vB ⎜ + + ⎟− A ( 2) R1 + R2 ⎝ R1 + R2 RV R2 ⎠ RV Then vI 1 ⎛ 1 1 1 ⎞ v v ⎛ R ⎞⎛ 1 1 1 ⎞ = vB ⎜ + + ⎟ − B − 0 + ⎜ 2 ⎟⎜ + + ⎟ ( vI 2 − vI 1 ) (1) R1 + R2 ⎝ R1 + R2 RV R2 ⎠ RV R2 ⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠ vI 2 ⎛ 1 1 1 ⎞ 1 ⎡ R2 ⎤ = vB ⎜ + + ⎟− ⎢ vB + ( vI 2 − vI 1 ) ⎥ (2) R1 + R2 ⎝ R1 + R2 RV R2 ⎠ RV ⎣ R1 ⎦ Subtract (2) from (1) 1 ⎛ R ⎞⎛ 1 1 1 ⎞ v 1 R2 ( vI 1 − vI 2 ) = ⎜ 2 ⎟ ⎜ + + ⎟ ( vI 2 − vI 1 ) − 0 + ⋅ ( vI 2 − vI 1 ) R1 + R2 ⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠ R2 RV R1 v0 ⎧⎛ R ⎞ ⎛ 1 ⎪ 1 1 ⎞ 1 ⎫ 1 R2 ⎪ = ( vI 2 − vI 1 ) ⎨⎜ 2 ⎟ ⎜ + + ⎟+ + ⋅ ⎬ R2 ⎪⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠ R1 + R2 RV R1 ⎪ ⎩ ⎭ ⎛ R ⎞ ⎧ R2 R R1 R ⎫ v0 = ( vI 2 − vI 1 ) ⎜ 2 ⎟ ⎨ + 2 +1+ + 2⎬ ⎝ R1 ⎠ ⎩ R1 + R2 RV R1 + R2 RV ⎭ 2 R2 ⎛ R2 ⎞ v0 = ⎜1 + ⎟ ( vI 2 − vI 1 ) R1 ⎝ RV ⎠ 9.64
  • 23. vI 1 − vI 2 ( 0.50 − 0.030sin ω t ) − ( 0.50 + 0.030sin ω t ) i1 = = R1 20 −0.060sin ω t = 20 i1 = −3sin ω t ( μ A ) vO1 = i1 R2 + vI 1 = ( −0.0030sin ω t )(115 ) + 0.50 − 0.030sin ω t vO1 = 0.50 − 0.375sin ω t vO 2 = vI 2 − i1 R2 = 0.50 + 0.030sin ω t − ( −0.003sin ω t )(115 ) vO 2 = 0.50 + 0.375sin ω t R4 200 vO = ( vO 2 − vO1 ) = ⎡ 0.50 + 0.375sin ω t − ( 0.50 − 0.375sin ω t ) ⎤ R3 50 ⎣ ⎦ vO = 3sin ω t ( V ) vO 2 0.50 + 0.375sin ω t i3 = = R3 + R4 50 + 200 i3 = 2 + 1.5sin ω t ( μ A ) vO1 − vO ( 0.5 − 0.375sin ω t ) − ( 3sin ω t ) i2 = = R3 + R4 250 i2 = 2 − 13.5sin ω t ( μ A ) 9.65 ⎛ 40 ⎞ (a) vOB = ⎜1 + ⎟ vI = 2.1667 sin ω t ⎝ 12 ⎠ 30 (b) vOC = − vI = −1.25sin ω t 12 (c) vO = vOB − vOC = 2.1667 sin ω t − ( −1.25sin ω t ) vO = 3.417 sin ω t vO 3.417 (d) = = 6.83 vI 0.5 9.66 vI iO = R 9.67 vO R ⎛ 2R ⎞ Ad = = 4 ⎜1 + 2 ⎟ vI 2 − vI 1 R3 ⎝ R1 ⎠ 200 ⎛ 2 (115 ) ⎞ vO = ⎜1 + ⎟ ( 0.06sin ω t ) 50 ⎝ R1 ⎠ 230 For vO = 0.5 = 1.0833 ⇒ R1 = 212.3 K R1 230 vO = 8 V = 32.33 ⇒ R1 = 7.11 K ⇒ R1 f = 7.11 K, R1 (potentiometer) = 205.2 K R1 9.68
  • 24. ⎛ 2 R2 ⎞ R4 vO = ⎜1 + ⎟ ( vI 2 − vI 1 ) ⎝ R3 R1 ⎠ Set R2 = 15 K, Set R1 = 2 K + 100 k ( Rot ) R4 Want ≈8 Set R3 = 10 K R3 R 4 = 75 K Now 75 ⎛ 2 (15 ) ⎞ Gain (min) = ⎜1 + ⎟ = 9.71 10 ⎝ 102 ⎠ 75 ⎛ 2 (15 ) ⎞ Gain ( max ) = ⎜1 + ⎟ = 120 10 ⎝ 2 ⎠ 9.69 For a common-mode gain, vcm = vI 1 = vI 2 Then ⎛ R ⎞ R v01 = ⎜ 1 + 2 ⎟ vcm − 2 vcm = vcm ⎝ R1 ⎠ R1 ⎛ R ⎞ R v02 = ⎜ 1 + 2 ⎟ vcm − 2 vcm = vcm ⎝ R1 ⎠ R1 From Problem 9.62 we can write R4 R4 − R3 R3 ′ Acm = ⎛ R4 ⎞ ⎜1 + ⎟ ⎝ R3 ⎠ ′ R3 = R4 = 20 kΩ, R3 = 20 kΩ ± 5% 20 1− R3 1 ⎛ 20 ⎞ ′ Acm = = ⎜1 − ⎟ (1 + 1) 2 ⎝ ′ R3 ⎠ ′ For R3 = 20 kΩ − 5% = 19 kΩ 1 ⎛ 20 ⎞ Acm = ⎜ 1 − ⎟ = −0.0263 2 ⎝ 19 ⎠ ′ For R3 = 20 kΩ + 5% = 21 kΩ 1 ⎛ 20 ⎞ Acm = ⎜ 1 − ⎟ = 0.0238 2⎝ 21 ⎠ So Acm max = 0.0263 9.70 a. 1 ⋅ vI ( t ′ ) dt ′ R1C2 ∫ v0 = 0.5 ∫ 0.5sin ω t dt = − ω cos ω t 1 ( 0.5 ) 0.5 v0 = 0.5 = ⋅ = R1C2 ω 2π R1C2 f 1 1 f = = ⇒ f = 31.8 Hz 2π R1C2 2π ( 50 × 103 )( 0.1× 10−6 ) Output signal lags input signal by 90°
  • 25. b. 0.5 i. f = ⇒ f = 15.9 Hz 2π ( 50 × 103 )( 0.1× 10−6 ) 0.5 ii. f = ⇒ f = 159 Hz ( 0.1)( 2π ) ( 50 ×103 )( 0.1×10−6 ) 9.71 1 − vI ⋅ t vO = − RC ∫ vI ( t ) dt = RC vI = −0.2 Now − ( −0.2 )( 2 ) 8= RC (a) RC = 0.05 s ( 0.2 ) t (b) 14 = ⇒ t = 3.5 s 0.05 9.72 a. 1 1 − R2 R2 ⋅ v0 jω C2 jω C2 = =− vI R1 ⎛ 1 ⎞ R1 ⎜ R2 + ⎟ ⎝ jω C2 ⎠ v0 R 1 =− 2⋅ vI R1 1 + jω R2 C2 v0 R b. =− 2 vI R1 1 c. f = 2π R2 C2 9.73 a. v0 − R2 R ( jω C1 ) = =− 2 vI R + 1 1 + jω R1C1 jω C1 1 v0 R jω R1C1 =− 2⋅ vI R1 1 + jω R1C1 v0 R b. =− 2 vI R1 1 c. f = 2π R1C1 9.74 Assuming the Zener diode is in breakdown,
  • 26. R2 1 vO = − ⋅ Vz = − ( 6.8 ) ⇒ vO = −6.8 V R1 1 0 − vO 0 − ( −6.8 ) i2 = = ⇒ i2 = 6.8 mA R2 1 10 − Vz 10 − 6.8 iz = − i2 = − 6.8 ⇒ iz = −6.2 mA!!! Rs 5.6 Circuit is not in breakdown. Now 10 − 0 10 = i2 = ⇒ i2 = 1.52 mA Rs + R1 5.6 + 1 vO = −i2 R2 = − (1.52 )(1) ⇒ vO = −1.52 V iz = 0 9.75 ⎛ v ⎞ ⎡ v ⎤ ⎛ vI ⎞ vO = −VT ln ⎜ I ⎟ = − ( 0.026 ) ln ⎢ −14 I 4 ⎥ ⇒ vO = −0.026 ln ⎜ −10 ⎟ ⎝ I s R1 ⎠ ⎢ (10 )(10 ) ⎥ ⎣ ⎦ ⎝ 10 ⎠ For vI = 20 mV , vO = 0.497 V For vI = 2 V , vO = 0.617 V 9.76
  • 27. ⎛ 333 ⎞ v0 = ⎜ ⎟ ( v01 − v02 ) = 16.65 ( v01 − v02 ) ⎝ 20 ⎠ ⎛i ⎞ v01 = −vBE1 = −VT ln ⎜ C1 ⎟ ⎝ IS ⎠ ⎛i ⎞ v02 = −vBE 2 = −VT ln ⎜ C 2 ⎟ ⎝ IS ⎠ ⎛i ⎞ ⎛i ⎞ v01 − v02 = −VT ln ⎜ C1 ⎟ = VT ln ⎜ C 2 ⎟ ⎝ iC 2 ⎠ ⎝ iC1 ⎠ v v iC 2 = 2 , iC1 = 1 R2 R1 ⎛v R ⎞ So v01 − v02 = VT ln ⎜ 2 ⋅ 1 ⎟ ⎝ R2 v1 ⎠ Then ⎛v R ⎞ v0 = (16.65 )( 0.026 ) ln ⎜ 2 ⋅ 1 ⎟ ⎝ v1 R2 ⎠ ⎛v R ⎞ v0 = 0.4329 ln ⎜ 2 ⋅ 1 ⎟ ⎝ v1 R2 ⎠ ln ( x ) = log e ( x ) = ⎡ log10 ( x ) ⎤ ⋅ ⎡log e (10 ) ⎤ ⎣ ⎦ ⎣ ⎦ = 2.3026 log10 ( x ) ⎛v R ⎞ Then v0 ≅ (1.0 ) log10 ⎜ 2 ⋅ 1 ⎟ ⎝ v1 R2 ⎠ 9.77 ( ) vO = − I s R evI / VT = − (10−14 )(104 ) evI / VT vO = (10 −10 )e vI / 0.026 For vI = 0.30 V , vo = 1.03 × 10−5 V For vI = 0.60 V , vo = 1.05 V