Chapter 9
Problem Solutions

9.1
(a)
 vO = Ad ( v2 − v1 )
          (                  )
  1 = Ad 10−3 − ( −10−3 ) ⇒ Ad = 500
(b)
1 = 500 ( v2 − 10−3 ) = 1 + 0.5 = 500v2
                 v2 = 3 mV
(c)
5 = 500 (1 − v1 ) ⇒ 500v1 = 495
         v1 = 0.990 V
(d)           vO = 0
(e)
       − 3 = 500 ( v2 − ( −0.5 ) )
−250 − 3 = 500v2
      v2 = −0.506 V

9.2
(a)
     ⎛          ⎞
                ⎟ vI = ( 0.49975 × 10 ) ( 3)
           1                         −3
v2 = ⎜
     ⎝ 1 + 2000 ⎠
v2 = 1.49925 × 10−3
vO = Aod ( v2 − v1 ) = ( 5 × 103 )(1.49925 × 10−3 − 0 )
vO = 7.49625 V
(b)
 vO = Aod ( v2 − v1 )
3 = Aod (1.49925 × 10−3 − 0 )
Aod = 2 × 103

9.3
         R2
Av = −      = −12 ⇒ R2 = 12 R1
         R1
Ri = R1 = 25 kΩ ⇒ R2 = (12 )( 25 ) = 300 kΩ

9.3
(a)           v2 = 3.00 V
(b)
   vO = Aod ( v2 − v1 )
2.500 = Aod ( 3.010 − 3.00 )
  Aod = 250

9.4
⎛ Ri ⎞
vid = ⎜         ⎟ vI
      ⎝ Ri + 25 ⎠
         ⎛ Ri ⎞
0.790 = ⎜          ⎟ ( 0.80 )
         ⎝ Ri + 25 ⎠
0.9875 ( Ri + 25 ) = Ri
24.6875 = 0.0125 Ri
Ri = 1975 K

9.5
       200       ⎫
Av = −     = −10 ⎪
        20
                 ⎪
and              ⎬ for each case
Ri = 20 kΩ       ⎪
                 ⎪
                 ⎭

9.6
a.
        100
Av = −       = −10
         10
Ri = R1 = 10 kΩ
b.
        100 100
 Av = −           = −5
            10
Ri = R1 = 10 kΩ
c.
          100
 Av = −         = −5
        10 + 10
Ri = 10 + 10 = 20 K

9.7
vI        0.5
I1 =      ⇒ R1 =     ⇒ R1 = 5 K
       R1        0.1
R2
   = 15 ⇒ R2 = 75 K
R1

9.8
         R2
Av = −
         R1
(a)        Av = −10
(b)        Av = −1
(c)        Av = −0.20
(d)        Av = −10
(e)        Av = −2
(f)        Av = −1

9.9
         R2
Av = −
         R1
(a)       R1 = 20 K, R2 = 40 K
(b)       R1 = 20 K, R2 = 200 K
(c)       R1 = 20 K, R2 = 1000 K
(d)       R1 = 80 K, R2 = 20 K

9.10
         R2
Av = −      = −8 ⇒ R2 = 8 R1
         R1
                     1
For vI = −1, i1 =       = 15 μ A ⇒ R1 = 66.7 kΩ ⇒ R2 = 533.3 kΩ
                     R1

9.11
         R2
Av = −      = −30 ⇒ R2 = 30 R1
         R1
Set R2 = 1 MΩ ⇒ R1 = 33.3 kΩ

9.12
a.
       R2   1.05R2          ⎛R ⎞
Av =      ⇒         = 1.105 ⎜ 2 ⎟
       R1   0.95 R1         ⎝ R1 ⎠
0.95R2         ⎛R ⎞
       = 0.905 ⎜ 2 ⎟
1.05R1         ⎝ R1 ⎠
Deviation in gain is +10.5% and − 9.5%
b.
      1.01R2         ⎛R ⎞    0.99 R2        ⎛R ⎞
 Av ⇒         = 1.02 ⎜ 2 ⎟ ⇒         = 0.98 ⎜ 2 ⎟
      0.99 R1        ⎝ R1 ⎠  1.01R1         ⎝ R1 ⎠
Deviation in gain = ±2%

9.13
(a)
vO −15
Av =       =   = −15
        vl   1
vO = −15vl ⇒ vO = −150sin ω t ( mV )
(b)
            vI
i2 = i1 =      = 10sin ω t ( μ A )
            R1
       vO
iL =      ⇒ iL = −37.5sin ω t ( μ A )
       RL
iO = iL − i2
iO = −47.5sin ω t ( μ A )

9.14
            R2
Av = −
          R1 + R5
Av = −30 ± 2.5% ⇒ 29.25 ≤ Av ≤ 30.75
        R2                 R2
So            = 29.25 and        = 30.75
       R1 + 2             R1 + 1
We have 29.25 ( R1 + 2 ) = 30.75 ( R1 + 1)
Which yields R1 = 18.5 k Ω and R2 = 599.6 k Ω
For vI = 25 mV , then 0.731 ≤ vO ≤ 0.769 V

9.15
            R2          120
vO1 = −        , vI = −     ( 0.2 ) ⇒ vO1 = −1.2 V
            R1           20
         R4         ⎛ −75 ⎞
 vO = −     , vO1 = ⎜     ⎟ ( −1.2 ) ⇒ vO = +6 V
         R3         ⎝ 15 ⎠
          0.2
i1 = i2 =     ⇒ i1 = i2 = 10 μ A
          20
          v     −1.2
i3 = i4 = O1 =        ⇒ i3 = i4 = −80 μ A
          R3      15
1st op-amp: 90 μ A into output terminal
2nd op-amp: 80 μ A out of output terminal.

9.16
(a)
       R2     22
Av = −    =−     ⇒ Av = −22
       R1     1
(b)     From Eq. (9.23)
       R2         1                         1
 Av = − ⋅                    = −22 ⋅
       R1 ⎡     1 ⎛ R2 ⎞ ⎤           ⎡     1        ⎤
          ⎢1 +    ⎜1 + ⎟ ⎥           ⎢1 + 104 ( 23) ⎥
                                     ⎣              ⎦
          ⎣ Aod ⎝     R1 ⎠ ⎦
 Av = −21.95
(c)
Want Av = −22 ( 0.98 ) = −21.56
                    −22
 So − 21.56 =
                     1
                 1+     ( 23)
                    Aod
       1           22
1+        ( 23) =
      Aod         21.56
       1
          ( 23) = 0.020408 ⇒ Aod = 1127
      Aod

9.17
(a)
       R2              1
Av = −    ⋅
       R1 ⎡        1 ⎛ R2 ⎞ ⎤
            ⎢1 +       ⎜1 + ⎟ ⎥
            ⎣ Aod ⎝          R1 ⎠ ⎦
      100             1
   =−       ⋅
       25 ⎡           1          ⎤
              ⎢1 + 5 × 103 ( 5 ) ⎥
              ⎣                  ⎦
Av = −3.9960
(b)        vO = −3.9960 (1.00 ) ⇒ vO = −3.9960 V
            4 − 3.9960
(c)                    × 100% = 0.10%
                 4
(d)
 vO = Aod ( v2 − v1 ) = − Aod v1
         vO    − ( −3.9960 )
v1 = −       =
         Aod      5 × 10+3
v1 = 0.7992 mV

9.18
vO = Aod ( v2 − v1 ) = − Aod v1
      v          −5
v1 = − O =
      Aod 5 × 10+3
v1 = −1 mV

9.19
         R2 ⎛ R3 R3 ⎞
Av = −      ⎜1 + + ⎟
         R1 ⎝ R4 R2 ⎠
a.
           R2 ⎛ 100 100 ⎞
−10 = −       ⎜1 + +    ⎟
          100 ⎝ 100 R2 ⎠
         2 R2
  10 =        + 1 ⇒ R2 = 450 kΩ
         100
                  2R
b.          100 = 2 + 1 ⇒ R2 = 4.95 MΩ
                  100

9.20
a.
R2 ⎛ R3 R3 ⎞
Av = −    ⎜1 + + ⎟
       R1 ⎝ R4 R2 ⎠
R1 = 500 kΩ
     R2 ⎛ R3 R3 ⎞
80 =    ⎜1 +    + ⎟
    500 ⎝ R4 R2 ⎠
Set R2 = R3 = 500 kΩ
        ⎛ 500 ⎞             500
80 = 1⎜ 1 +      + 1⎟ = 2 +       ⇒ R4 = 6.41 kΩ
        ⎝    R4     ⎠        R4
b.
For vI = −0.05 V
           −0.05
i1 = i2 =          ⇒ i1 = i2 = −0.1 μ A
          500 kΩ
v X = −i2 R2 = − ( −0.1× 10−6 )( 500 × 103 ) = 0.05
         vX    0.05
i4 = −      =−      ⇒ i4 = −7.80 μ A
         R4    6.41
i3 = i2 + i4 = −0.1 − 7.80 ⇒ i3 = −7.90 μ A

9.21
(a)
                  − R2 −500
Av = −1000 =          =
                   R1   R1
R1 = 0.5 K
(b)
      − R2 ⎛ R3 R3 ⎞
Av =       ⎜1 +    + ⎟
       R1 ⎝ R4 R2 ⎠
          −250 ⎛ 500 500 ⎞ −1250
−1000 =         ⎜1 +   + ⎟=
            R1 ⎝ 250 250 ⎠   R1
R1 = 1.25 K

9.22




        vI
 i1 =      = i2
        R
                ⎛v ⎞
v A = −i2 R = − ⎜ I ⎟ R = −vI
                ⎝R⎠
        v     v
 i3 = − A = I
        R R
vA vA         2v       2v
 i4 = i2 + i3 = −   −     =− A = I
                  R R            R       R
                        ⎛ 2vI ⎞
vB = v A − i4 R = −vI − ⎜     ⎟ ( R ) = −3vI
                        ⎝ R ⎠
         vB      ( −3vI ) 3vI
 i5 = −      =−          =
         R          R        R
                2vI 3vI 5vI
 i6 = i4 + i5 =      +      =
                 R      R      R
                          ⎛ 5vI ⎞     v0
v0 = vB − i6 R = −3vI − ⎜       ⎟ R ⇒ v = −8
                          ⎝ R ⎠        I

From Figure 9.12 ⇒ Av = −3

9.23
(a)
        R2          1
Av = −     ⋅
        R1 ⎡      1 ⎛ R2 ⎞ ⎤
             ⎢1 +   ⎜1 + ⎟ ⎥
             ⎣ Aod ⎝       R1 ⎠ ⎦
        50            1
      =− ⋅                           ⇒ Av = −4.99985
        10 ⎡       1 ⎛ 50 ⎞ ⎤
              1+          1 + ⎟⎥
             ⎢ 2 × 105 ⎜ 10
             ⎣          ⎝         ⎠⎦
(b)        vO = − ( 4.99985 ) (100 × 10−3 ) ⇒ vO = −499.985 mV
                     0.5 − 0.499985
(c)        Error =                  × 100% ⇒ 0.003%
                           0.5

9.24
a.     From Equation (9.23)
      R2           1
Av = − ⋅
      R1 ⎡      1 ⎛ R2 ⎞ ⎤
          ⎢1 +     ⎜1 + ⎟ ⎥
          ⎣ Aod ⎝       R1 ⎠ ⎦
      100            1
   =−     ⋅                      = −0.9980
      100 ⎡      1 ⎛ 100 ⎞ ⎤
             1 + 3 ⎜1 +
            ⎢ 10              ⎟⎥
            ⎣       ⎝ 100 ⎠ ⎦
Then v0 = Av ⋅ vI = ( −0.9980 )( 2 ) ⇒ v0 = −1.9960 V
b.




 v0 = Aod ( v A − vB )
vB v0 − vB         ⎛ 1  1 ⎞ v
   =          ⇒ vB ⎜ + ⎟ = 0
R1     R2          ⎝ R1 R2 ⎠ R2
         v0
vB =
     ⎛ R2 ⎞
     ⎜1 + ⎟
     ⎝     R1 ⎠
Aod v0
Then v0 = Aod v A −
                       ⎛ R2 ⎞
                       ⎜1 + ⎟
                       ⎝   R1 ⎠
   ⎡           ⎤
   ⎢           ⎥
v0 ⎢1 +
        Aod ⎥
                 = Aod v A
   ⎢ ⎛ R ⎞⎥
   ⎢ ⎜1 + ⎟ ⎥
           2

   ⎢ ⎝
   ⎣      R1 ⎠ ⎥
               ⎦
   ⎡ ⎛ R2 ⎞             ⎤
   ⎢ ⎜ 1 + ⎟ + Aod ⎥
v0 ⎢ ⎝
           R1 ⎠         ⎥=A v
   ⎢ ⎛ R ⎞ ⎥                od A

   ⎢ ⎜1 + 2 ⎟ ⎥
   ⎢ ⎝
   ⎣           R1 ⎠ ⎥   ⎦
            ⎛ R2 ⎞
       Aod ⎜ 1 + ⎟ v A
v0 =        ⎝     R1 ⎠
              ⎛ R ⎞
        Aod + ⎜ 1 + 2 ⎟
              ⎝      R1 ⎠
          ⎛ R2 ⎞
          ⎜1 + ⎟ vA
v0 = ⎝
                R1 ⎠
             1 ⎛ R2 ⎞
       1+       ⎜1 + ⎟
           Aod ⎝      R1 ⎠
            ⎛ 10 ⎞ ⎛ vI ⎞
            ⎜1 + ⎟ ⎜ ⎟
So v0 = ⎝
                 10 ⎠ ⎝ 2 ⎠
                             = 0.9980vI
                1 ⎛ 10 ⎞
           1 + 3 ⎜1 + ⎟
               10 ⎝ 10 ⎠
For vI = 2 V
v0 = 1.9960 V

9.25
                   vl         v   v     R
(a)         ii =      = i2 = − O ⇒ O = − 2
                   R1         R2   vl   R1
(b)
        vl        v         1 ⎛ R2      ⎞
i2 = i1 =   = i3 + O = i3 +    ⎜ − ⋅ vl ⎟
        R1        RL        RL ⎝ R1     ⎠
           v ⎛ R ⎞
Then i3 = l ⎜ 1 + 2 ⎟
           R1 ⎝ RL ⎠

9.26
          ⎛ R3 R1 ⎞ + ⎛ 0.1 1 ⎞
                           ⎜ 0.1 1 + 10 ⎟ ( )
VX .max = ⎜           ⋅V = ⎜               10 ⇒ VX .max = 0.09008 V
          ⎜R R +R ⎟ ⎟                   ⎟
          ⎝ 3 1   4 ⎠      ⎝            ⎠
        R
vO = 2 ⋅ VX .max
        R1
       R2              R
10 =      ( 0.09008 ) ⇒ 2 = 111
       R1              R1
So R2 = 111 k Ω

9.27
(a)
⎛R           R           R          ⎞
vO = − ⎜ F ⋅ vI 1 + F ⋅ vI 2 + F ⋅ vI 3 ⎟
       ⎝ R1          R2          R3        ⎠
       ⎡⎛ 100 ⎞           ⎛ 100 ⎞            ⎛ 100 ⎞         ⎤
   = − ⎢⎜     ⎟ ( 0.5 ) + ⎜     ⎟ ( 0.75 ) + ⎜     ⎟ ( 2.5 ) ⎥
       ⎣ ⎝ 50 ⎠           ⎝ 20 ⎠             ⎝ 100 ⎠         ⎦
      = − [1 + 3.75 + 2.5]
vO = −7.25 V
(b)
       ⎡⎛ 100 ⎞       ⎛ 100 ⎞           ⎛ 100 ⎞ ⎤
−2 = − ⎢⎜     ⎟ (1) + ⎜     ⎟ ( 0.8 ) + ⎜     ⎟ vI 3 ⎥
       ⎣⎝ 50 ⎠        ⎝ 20 ⎠            ⎝ 100 ⎠ ⎦
 2 = 2 + 4 + vI 3
vI 3 = −4 V

9.28
        − RF         R          R
vo =         ⋅ vI 1 − F ⋅ vI 2 − F ⋅ vI 3
         R1          R2         R3
      = −4vI 1 − 8vI 2 − 2vI 3
RF            RF          RF
   =4            =8          =2
R1            R2          R3
Largest resistance = RF = 250 K ⇒ R1 = 62.5 K                    R2 = 31.25 K   R3 = 125 K

9.29
                                 RF       R
v0 = −4vI 1 − 0.5vI 2 = −           vI 1 − F vI 2
                                 R1       R2
RF            RF
   =4            = 0.5 ⇒ R1 is the smallest resistor
R1            R2
                    vI   2
i = 100 μ A =          =           ⇒ R1 = 20 kΩ
                    R1 R1
                                   ⇒ RF = 80 kΩ
                                   ⇒ R2 = 160 kΩ

9.30
vI 1 = ( 0.05 ) 2 sin ( 2π ft ) = 0.0707 sin ( 2π ft )
                        1                             1
  f = 1 kHz ⇒ T = 3 ⇒ 1 ms vI 2 ⇒ T2 =                  ⇒ 10 ms
                      10                           100
          R         R             10       10
vO = − F ⋅ vI 1 − F ⋅ vI 2 = − ⋅ vI 1 − ⋅ vI 2
          R1        R2             1        5
vO = − (10 ) ( 0.0707 sin ( 2π ft ) ) − ( 2 )( ±1 V )
vO = −0.707 sin ( 2π ft ) − ( ±2 V )
9.31
         RF         R          R
vO = −      ⋅ vI 1 − F ⋅ vI 2 − F ⋅ vI 3
         R1         R2         R3
       20          20         20
vO = −     ⋅ vI 1 − ⋅ vI 2 − ⋅ vI 3
       10          5           2
K sin ω t = −2vI 1 − 4 [ 2 + 100sin ω t ] − 0
Set vI 1 = −4 mV

9.32
Only two inputs.
       ⎡R          R         ⎤
vO = − ⎢ F ⋅ vI 1 + F ⋅ vI 2 ⎥
       ⎣ R1        R2        ⎦
        ⎡        1      ⎤
    = − ⎢3vI 1 + ⋅ vI 2 ⎥
        ⎣        4      ⎦
 RF        RF 1
     =3         =
 R1        R2 4
Smallest resistor = 10 K = R1
RF = 30 K       R2 = 120 K

9.33
       ⎡R           R        ⎤
vO = − ⎢ F ⋅ vI 1 + F ⋅ vI 2 ⎥
       ⎣ R1         R2       ⎦
                 − RF               −R          R               RF
−5 − 5sin ω t =       ( 2.5sin ω t ) F ⋅ ( 2 ) ⇒ F = 2             = 2.5
                  R1                 R2          R1             R2
RF = largest resistor ⇒ RF = 200 K
R1 = 100 K        R2 = 80 K

9.34
a.
         RF              R               R               R
v0 = −      ⋅ a3 ( −5 ) − F ⋅ a2 ( −5 ) − F ⋅ a1 ( −5 ) − F ⋅ a0 ( −5 )
         R3              R2              R1              R0
          RF ⎡ a3 a2 a1 a0 ⎤
So v0 =           + + +          ( 5)
          10 ⎢ 2 4 8 16 ⎥
              ⎣                ⎦
                     R 1
b.         v0 = 2.5 = F ⋅ ⋅ 5 ⇒ RF = 10 kΩ
                     10 2
c.
                  10 1
i.         v0 =     ⋅ ⋅ 5 ⇒ v0 = 0.3125 V
                  10 16
10 ⎡ 1 1 1 1 ⎤
ii.         v0 =         + + +     ( 5 ) ⇒ v0 = 4.6875 V
                   10 ⎢ 2 4 8 16 ⎥
                      ⎣          ⎦

9.35
(a)
       10
vO1 = −   ⋅ vI 1
        1
       20        20
vO = − ⋅ vO1 − ⋅ vI 2 = − ( 20 )( −10 ) vI 1 − ( 20 ) vI 2
       1          1
vO = 200vI 1 − 20vI 2
(b)
 vI 1 = 1 + 2sin ω t ( mV )
 vI 2 = −10 mV
 Then vO = 200 (1 + 2sin ω t ) − 20 ( −10 )
So vO = 0.4 + 0.4sin ω t (V )

9.36
For one-input




         v0
v1 = −
         Aod
vI 1 − v1     v1   v −v
          =       + 1 0
    R1      R2 R3    RF
VI 1      ⎡1     1    1 ⎤ v0
     = v1 ⎢ +       +   ⎥−
R1        ⎣ R1 R2 R3 RF ⎦ RF
           v0    ⎡1     1    1 ⎤ v0
      =−         ⎢ +       +   ⎥−
           Aod   ⎣ R1 R2 R3 RF ⎦ RF
            ⎧ 1
            ⎪         1   1 ⎛ 1    1 ⎞⎫  ⎪
      = −v0 ⎨       +   +   ⎜ +        ⎟⎬
            ⎪ Aod RF RF Aod ⎝ R1 R2 R3 ⎠ ⎪
            ⎩                            ⎭
           v0 ⎧ 1        1     RF    ⎫
      =−      ⎨     +1+    ⋅         ⎬
           RF ⎩ Aod     Aod R1 R2 R3 ⎭
                    ⎧             ⎫
                    ⎪             ⎪
        R           ⎪      1      ⎪
  v0 = − F ⋅ vI 1 ⋅ ⎨             ⎬ where RP = R1 R2 R3
        R1          ⎪1 + 1 ⎛ RF ⎞ ⎪
                             1+
                    ⎪ Aod ⎜ RP ⎟ ⎪
                           ⎝    ⎠⎭
                    ⎩
                                           −1       ⎛R          R          R         ⎞
Therefore, for three-inputs v0 =                  × ⎜ F ⋅ vI 1 + F ⋅ vI 2 + F ⋅ vI 3 ⎟
                                        1 ⎛ RF ⎞ ⎝ R1           R2         R3        ⎠
                                    1+     ⎜1 + ⎟
                                       Aod ⎝ RP ⎠

9.37
⎛ R ⎞        R
Av = 12 = ⎜ 1 + 2 ⎟ ⇒ 2 = 11
          ⎝    R1 ⎠    R1
       v           v     0.5
  i1 = I ⇒ R1 = I =
       R1           i1 0.15
          R1 = 3.33 K
          R2 = 36.7 K

9.38




     ⎛ 1 ⎞                      ⎛ 1 ⎞
vB = ⎜         ⎟ vI  v0 = Aod ⎜       ⎟ vi
     ⎝ 1 + 500 ⎠                ⎝ 501 ⎠
                    ⎛ 1 ⎞
a.        2.5 = Aod ⎜     ⎟ ( 5 ) ⇒ Aod = 250.5
                    ⎝ 501 ⎠
                     ⎛ 1 ⎞
b.        v0 = 5000 ⎜      ⎟ ( 5 ) ⇒ v0 = 49.9 V
                     ⎝ 501 ⎠

9.39
      ⎛ R ⎞
 Av = ⎜ 1 + 2 ⎟
      ⎝    R1 ⎠
(a)        Av = 11
(b)        Av = 2
(c)        Av = 1.2
(d)        Av = 11
(e)        Av = 3
(f)        Av = 2

9.40
           R2
(a)           = 1 ⇒ R1 = R2 = 20 K
           R1
           R2
(b)           = 9 ⇒ R1 = 20 K, R2 = 180 K
           R1
           R2
(c)           = 49 ⇒ R1 = 20 K, R2 = 980 K
           R1
           R2
(d)           = 0 can set R2 = 20 K, R1 = ∞ (open circuit)
           R1

9.41
     ⎛ 50 ⎞ ⎡⎛ 20 ⎞                ⎛ 40 ⎞ ⎤
v0 = ⎜ 1 + ⎟ ⎢⎜           ⎟ vI 2 + ⎜         ⎟ vI 1 ⎥
     ⎝ 50 ⎠ ⎣⎝ 20 + 40 ⎠           ⎝ 20 + 40 ⎠ ⎦
v0 = 1.33vI 1 + 0.667vI 2

9.42
(a)
vI 1 − v2 vI 2 − v2 v2
         +          =
    20        40      10
       ⎛ 100 ⎞
vO = ⎜ 1 +     ⎟ v2 = 3v2
       ⎝   50 ⎠
Now 2vI 1 − 2v2 + vI 2 − v2 = 4v2
                       ⎛v ⎞
2vI 1 + vI 2 = 7v2 = 7 ⎜ o ⎟
                       ⎝3⎠
            6      3
So vO = ⋅ vI 1 + ⋅ vI 2
            7      7

                 ( 0.2 ) + ⎛ ⎞ ( 0.3) ⇒ vO = 0.3 V
               6             3
(b)       vO =             ⎜ ⎟
               7           ⎝ 7⎠
               ⎛6⎞             ⎛ 3⎞
(c)       vO = ⎜ ⎟ ( 0.25 ) + ⎜ ⎟ ( −0.4 ) ⇒ vO = 42.86 mV
               ⎝7⎠             ⎝7⎠

9.43
     ⎛ R4 ⎞
v2 = ⎜         ⎟ vI
     ⎝ R3 + R4 ⎠
     ⎛ R ⎞         ⎛ R ⎞ ⎛ R4 ⎞
vO = ⎜1 + 2 ⎟ v2 = ⎜ 1 + 2 ⎟ ⎜        ⎟ vI
     ⎝   R1 ⎠      ⎝    R1 ⎠⎝ R3 + R4 ⎠
       vO ⎛ R2 ⎞ ⎛ R4 ⎞
Av =     = ⎜1 + ⎟ ⎜           ⎟
       vI ⎝    R1 ⎠ ⎝ R3 + R4 ⎠

9.44
(a)
 vO ⎛      50 x ⎞
    = ⎜1 +
      ⎜ (1 − x ) 50 ⎟
                    ⎟
 vI ⎝               ⎠
 vO ⎛         x ⎞ 1− x + x
    = ⎜1 +       ⎟=
 vI ⎝ 1 − x ⎠          1− x
      v        1
 Av = O =
      vI 1 − x
(b)       1 ≤ Av ≤ ∞
(c)       If x = 1, gain goes to infinity.

9.45
Change resister values as shown.
vI
i1 =      = i2
       R
                   ⎛v ⎞
vx = i2 2 R + vI = ⎜ I ⎟ 2 R + vI = 3vI
                   ⎝R⎠
     v x 3I
i3 = =
      R R
               v 3v        4v
i4 = i2 + i3 = I + I = I
               R     R       R
                   ⎛ 4vI ⎞
v0 = i4 2 R + vx = ⎜     ⎟ 2 R + 3vI
                   ⎝ R ⎠
v0
    = 11
vI

9.46
            vO
(a)             =1
             vI
(b)         From Exercise TYU9.7
              ⎛ R2 ⎞
              ⎜1 + ⎟
vO
   =          ⎝   R1 ⎠
vI ⎡       1 ⎛ R2 ⎞ ⎤
     ⎢1 +     ⎜1 + ⎟ ⎥
     ⎣ Aod ⎝      R1 ⎠ ⎦
But R2 = 0, R1 = ∞
vO     1           1        v
   =        =              ⇒ O = 0.999993
vI 1 +   1           1       vI
              1+
        Aod      1.5 × 105
                   vO              1
(b)         Want      = 0.990 =         ⇒ Aod = 99
                   vI                1
                                1+
                                    Aod

9.47
v0 = Aod ( vI − v0 )
⎛ 1      ⎞
⎜     + 1⎟ v0 = vI
⎝ Aod    ⎠
v0         1
   =
vI ⎛         1 ⎞
      ⎜1 +       ⎟
      ⎝     Aod ⎠
              v
Aod = 104 ; 0 = 0.99990
              vI
              v0
Aod = 103 ;      = 0.9990
              vI
               v0
Aod = 102 ;       = 0.990
               vI
              v0
Aod = 10;        = 0.909
              vI

9.48
       ⎛ R ⎞
v0 A = ⎜ 1 + 2 ⎟ vI
       ⎝    R1 ⎠
      ⎛ R ⎞                 ⎛ R ⎞
v01 = ⎜1 + 2 ⎟ vI , v02 = − ⎜ 1 + 2 ⎟ vI
      ⎝     R1 ⎠            ⎝    R1 ⎠
So v01 = −v02

9.49
                   vI
(a)         iL =
                   R1
(b)
 vO1 = iL RL + vI = iL RL + iL R1
 vOI ( max ) ≅ 10 V = iL (1 + 9 ) = 10iL
So iL ( max ) ≅ 1 mA
Then vI ( max ) ≅ iL R1 = (1)( 9 ) ⇒ vI ( max ) ≅ 9 V

9.50
(a)
     ⎛ 20 ⎞             ⎛ 20 ⎞
vX = ⎜         ⎟ ⋅ vI = ⎜ ⎟ ( 6 ) = 2
     ⎝ 20 + 40 ⎠        ⎝ 60 ⎠
vO = 2 V
(b)       Same as (a)
(c)
     ⎛ 6 ⎞
vX = ⎜        ⎟ ( 6 ) = 0.666 V
     ⎝ 6 + 48 ⎠
     ⎛ 10 ⎞
vO = ⎜ 1 + ⎟ ⋅ v X ⇒ vO = 1.33 V
     ⎝ 10 ⎠

9.51
a.
v1    v −v
Rin =      and 1 0 = i1 and v0 = − Aod v1
        i1      RF
          v1 − ( − Aod v1 )       v1 (1 + Aod )
So i1 =                       =
                RF                    RF
               v1   RF
Then Rin =        =
               i1 1 + Aod
b.
     ⎛ RS ⎞                               RF
i1 = ⎜          ⎟ iS and v0 = − Aod ⋅         ⋅ i1
     ⎝ RS + Rin ⎠                     1 + Aod
              ⎛ A ⎞⎛ RS ⎞
So v0 = − RF ⎜ od ⎟⎜                 ⎟ iS
              ⎝ 1 + Aod ⎠⎝ RS + Rin ⎠
          RF     10
Rin =          =     = 0.009990
        1 + Aod 1001
          ⎛ 1000 ⎞ ⎛       RS      ⎞
v0 = − RF ⎜      ⎟⎜                ⎟ iS
          ⎝ 1001 ⎠ ⎝ RS + 0.009990 ⎠
     ⎛ 1000 ⎞ ⎛       RS      ⎞
Want ⎜      ⎟⎜                ⎟ ≤ 0.990
     ⎝ 1001 ⎠ ⎝ RS + 0.009990 ⎠
which yields RS ≥ 1.099 kΩ

9.52




vO = iC RF , 0 ≤ iC ≤ 8 mA
For vO ( max ) = 8 V, Then RF = 1 k Ω

9.53
    v         10
i = I so 1 =     ⇒ R = 10 kΩ
     R         R
In the ideal op-amp, R1 has no influence.
                     ⎛ R ⎞
Output voltage: v0 = ⎜1 + 2 ⎟ vI
                     ⎝    R⎠
v0 must remain within the bias voltages of the op-amp; the larger the R2, the smaller the range of input
voltage vI in which the output is valid.

9.54
(a)
− vI
iL =
       R2
              − ( −10V )
10mA =
                 R2
R2 = 1 K
        1   R
Also      = F
        R2 R1 R3
vL = (10mA )( 0.05k ) = 0.5 V
      0.5
i2 =      = 0.5 mA
       1
iR 3 = 10 + 0.5 = 10.5 mA
                          v −v   13 − 0.5
Limit vo to 13V ⇒ R3 = O L =              R3 = 1.19 K
                            iR 3  10.5
         RF R3 1.19         R
Then       =   =    = 1.19 = F
         R1 R2   1           R1
For example, RF = 119 K, R1 = 100 K
(b)           From part (a), vO = 13 V when vI = −10 V

9.55
(a)
                      vx
i1 = i2 and i2 =         + iD , vx = −i2 RF
                      R2
               ⎛R       ⎞
Then i1 = −i1 ⎜ F       ⎟ + iD
               ⎝ R2     ⎠
           ⎛     R      ⎞
Or iD = i1 ⎜ 1 + F      ⎟
           ⎝     R2     ⎠
(b)
       vI 5
R1 =     = ⇒ R1 = 5 k Ω
       i1 1
         ⎛    R ⎞   R
12 = (1) ⎜ 1 + F ⎟ ⇒ F = 11
         ⎝    R2 ⎠  R2
For example, R2 = 5 k Ω, RF = 55 k Ω

9.56
                     VX VX − vO
(1)           IX =      +
                     R2   R3
              VX VX − vO
(2)              +       =0
              R1   RF
⎛ R ⎞
From (2) vO = VX ⎜ 1 + F ⎟
                 ⎝    R1 ⎠
                  ⎛ 1   1 ⎞ 1    ⎛ R ⎞
Then (1) I X = VX ⎜ + ⎟ − ⋅ VX ⎜1 + F ⎟
                  ⎝ R2 R3 ⎠ R3   ⎝   R1 ⎠
IX    1      1    1   1    R   1   R
   =     =     +     − − F =     − F
VX R0 R2 R3 R3 R1 R3 R2 R1 R3
           R1 R3 − R2 RF
       =
              R1 R2 R3
                 R1 R2 R3
or Ro =
              R1 R3 − R2 RF
                RF    1
Note: If            =   ⇒ R2 RF = R1 R3 then Ro = ∞, which corresponds to an ideal current source.
               R1 R3 R2

9.57
      R2 R4
Ad =     =     =5
      R1 R3
Minimum resistance seen by vI1 is R1.
Set R1 = R3 = 25 kΩ Then R2 = R4 = 125 kΩ
       v0
iL =      ⇒ v0 = iL RL = ( 0.5 )( 5 ) = 2.5 V
       RL
v0 = 5 ( vI 2 − vI 1 )
2.5 = 5 ( vI 2 − 2 ) ⇒ vI 2 = 2.5 V

9.58
           R2
vO =          ( vI 2 − vI 1 )
           R1
       R2      R     R
Ad =       and 2 = 4 with R2 = R4 and R1 = R3
       R1       R1 R3
Differential input resistance
                  R 20
 Ri = 2 R1 ⇒ R1 = i =      = 10 K
                   2     2
           R2
(a)           = 50 ⇒ R2 = R4 = 500 K
           R1
                                 R1 = R3 = 10 K
                R2
(b)                = 20 ⇒ R2 = R4 = 200 K
                R1
                                 R1 = R3 = 10 K
                R2
(c)                = 2 ⇒ R2 = R4 = 20 K
                R1
                                R1 = R3 = 10 K
                R2
(d)                = 0.5 ⇒ R2 = R4 = 5 K
                R1
                                 R1 = R3 = 10 K

9.59
We have
     ⎛ R ⎞⎛ R / R ⎞                 ⎛R ⎞         ⎛ R ⎞⎛           1      ⎞        ⎛ R2 ⎞
vO = ⎜ 1 + 2 ⎟ ⎜ 4 3 ⎟ vI 2 − ⎜ 2 ⎟ vI 1 or vO = ⎜ 1 + 2 ⎟ ⎜             ⎟ vI 2 − ⎜ ⎟ vI 1
     ⎝    R1 ⎠ ⎝ 1 + R4 / R3 ⎠      ⎝ R1 ⎠       ⎝    R1 ⎠ ⎝ 1 + R3 / R4 ⎠        ⎝ R1 ⎠
Set R2 = 50 (1 + x ) , R1 = 50 (1 − x )
      R3 = 50 (1 − x ) , R4 = 50 (1 + x )
                      ⎡              ⎤
     ⎡ ⎛ 1 + x ⎞⎤     ⎢              ⎥          1+ x ⎞
                                     ⎥ vI 2 − ⎛
                             1
vO = ⎢1 + ⎜       ⎟⎥ ⎢                        ⎜      ⎟ vI 1
     ⎣    ⎝ 1 − x ⎠ ⎦ ⎢1 + ⎛ 1 − x ⎞ ⎥        ⎝ 1− x ⎠
                      ⎢ ⎜ 1+ x ⎟ ⎥
                      ⎣ ⎝          ⎠⎦
     ⎡1 − x + (1 + x ) ⎤ ⎡         1+ x      ⎤        ⎛ 1+ x ⎞
vO = ⎢                   ⎥⋅⎢                 ⎥ vI 2 − ⎜      ⎟ vI 1
     ⎣      1− x         ⎦ ⎢1 + x + (1 − x ) ⎥
                           ⎣                 ⎦        ⎝ 1− x ⎠
     ⎛ 1+ x ⎞          ⎛1+ x ⎞
   =⎜         ⎟ vI 2 − ⎜      ⎟ vI 1
     ⎝1− x ⎠           ⎝ 1− x ⎠
For vI 1 = vI 2 ⇒ vO = 0
Set     R2 = 50 (1 + x )       R1 = 50 (1 − x )
        R3 = 50 (1 + x ) R4 = 50 (1 − x )
                     ⎛         ⎞
        ⎛ 1+ x ⎞⎜            1 ⎟      ⎛ 1+ x ⎞
 vO = ⎜1 +         ⎟ ⎜ 1 + x ⎟ vI 2 − ⎜      ⎟ vI 1
        ⎝ 1− x ⎠⎜1+            ⎟      ⎝ 1− x ⎠
                     ⎜         ⎟
                     ⎝ 1− x ⎠
               ⎛ 1+ x ⎞
      = vI 2 − ⎜      ⎟ vI 1
               ⎝ 1− x ⎠
 vI 1 = vI 2 = vcm
vO       1 + x 1 − x − (1 + x ) −2 x
    = 1−      =                =
vcm      1− x       1− x         1− x
Set     R2 = 50 (1 − x )       R1 = 50 (1 + x )
        R3 = 50 (1 − x ) R4 = 50 (1 + x )
               ⎛       ⎞
      ⎛ 1− x ⎞⎜    1 ⎟          ⎛ 1− x ⎞
 vO = ⎜ 1 +  ⎟ ⎜ 1 − x ⎟ vI 2 − ⎜      ⎟ vI 1
      ⎝ 1+ x ⎠⎜ 1+     ⎟        ⎝ 1+ x ⎠
               ⎜       ⎟
               ⎝ 1+ x ⎠
      ⎛ 1− x ⎞
    = ⎜1 −   ⎟ vcm
      ⎝ 1+ x ⎠
        1 + x − (1 − x )
                  2x
Acm =                      =
         1+ x    1+ x
Worst common-mode gain
        −2 x
Acm =
        1− x
(b)
−2 x −2 ( 0.01)
For x = 0.01,      Acm =      =           = −0.0202
                       1 − x 1 − 0.01
                       −2 ( 0.02 )
For x = 0.02, Acm =                = −0.04082
                        1 − 0.02
                       −2 ( 0.05 )
For x = 0.05, Acm =                = −0.1053
                        1 − 0.05
                                1          1
For this condition, set vI 2 = + , vI 1 = − ⇒ vd = 1 V
                                2          2
      1 ⎡ ⎛ 1 + x ⎞ ⎤ 1 ⎡1 − x + (1 + x ) ⎤ 1 2        1
Ad = ⎢1 + ⎜       ⎟⎥ = ⎢                  ⎥= ⋅      =
      2 ⎣ ⎝ 1 − x ⎠⎦ 2 ⎣        1− x      ⎦ 2 1− x 1− x
                                                              1.010
For x = 0.01 Ad = 1.010                C M R RdB = 20 log10          = 33.98 dB
                                                              0.0202
                       1                                       1.020
For x = 0.02, Ad =         = 1.020     C M R RdB = 20 log10           = 27.96 dB
                      0.98                                    0.04082
                       1                                 1.0526
For x = 0.05 Ad =          = 1.0526 C M R RdB = 20 log10        ≅ 20 dB
                      0.95                               0.1053

9.60
      ⎛ 10R ⎞          ⎛ 10 ⎞
vy = ⎜          ⎟ v2 = ⎜ ⎟ ( 2.65 ) ⇒ v y = vx = 2.40909 V
      ⎝ 10R+R ⎠        ⎝ 11 ⎠
           v2 − v y 2.65 − 2.40909
 i3 = i4 =          =                  = 0.0120 mA
              R               20
           v −v       2.50 − 2.40909
 i1 = i2 = 1 x =                       = 0.0045455 mA
              R              20
vO = vx − i2 (10R ) = ( 2.40909 ) − ( 0.0045455 )( 200 )
vO = 1.50 V

9.61
                                              10
iE = (1 + β )( iB ) = ( 81)( 2 ) = 162 mA =
                                               R
                 R = 61.73 Ω

9.62
a.      From superposition:
       R2
v01 = − ⋅ vI 1
       R1
      ⎛ R ⎞ ⎛ R1 ⎞
v02 = ⎜ 1 + 2 ⎟ ⎜          ⎟ vI 2
      ⎝     R1 ⎠ ⎝ R3 + R4 ⎠
Setting vI 1 = vI 2 = vcm
                 ⎡          ⎛         ⎞     ⎤
                 ⎢⎛ R ⎞ ⎜ 1           ⎟ R ⎥
v0 = v01 + v02 = ⎢⎜ 1 + 2 ⎟ ⎜         ⎟ − 2 ⎥ vcm
                 ⎢⎝    R1 ⎠ ⎜    R3   ⎟ R1 ⎥
                 ⎢          ⎜ 1+ R    ⎟     ⎥
                 ⎣          ⎝     4   ⎠     ⎦
⎛                ⎞
      v    R ⎛ R ⎞⎜ 1                    ⎟ R
Acm = 0 = 4 ⋅ ⎜ 1 + 2 ⎟ ⎜                ⎟− 2
     vcm R3 ⎝      R1 ⎠ ⎜    R4          ⎟ R1
                        ⎜ 1+ R           ⎟
                        ⎝     3          ⎠
     R4 ⎛ R2 ⎞ R2 ⎛ R4 ⎞
        ⎜1 + ⎟ − ⎜1 + ⎟
    = 3⎝
     R      R1 ⎠ R1 ⎝ R3 ⎠
            ⎛ R4 ⎞
            ⎜1 + ⎟
            ⎝ R3 ⎠
      R4 R2
         −
      R    R1
Acm = 3
     ⎛ R4 ⎞
     ⎜1 + ⎟
     ⎝ R3 ⎠
                                R4         R
b.         Max. Acm ⇒ Min.         and Max. 2
                                R3         R1
              47.5 52.5
                  −
Max. Acm    = 10.5 9.5 = 4.5238 − 5.5263 ⇒ A                = 0.1815
                            1 + 4.5238
                                            cm
                  47.5                                max
               1+
                  10.5

9.63




vI 1 − v A v A − vB vA − v0
          =        +                            (1)
R1 + R2       Rv      R2
vI 2 − vB vB − v A vB
         =        +                             (2)
R1 + R2     Rv      R2
     ⎛ R1 ⎞           ⎛ R2 ⎞
v− = ⎜         ⎟ vA + ⎜         ⎟ vI 1          (3)
     ⎝ R1 + R2 ⎠      ⎝ R1 + R2 ⎠
     ⎛ R1 ⎞           ⎛ R2 ⎞
v+ = ⎜         ⎟ vB + ⎜         ⎟ vI 2          (4)
     ⎝ R1 + R2 ⎠      ⎝ R1 + R2 ⎠
Now v− = v+ ⇒ R1vA + R2 vI 1 = R1vB + R2 vI 2
                  R
So that v A = vB + 2 ( vI 2 − vI 1 )
                  R1
  vI 1       ⎛ 1        1  1 ⎞ v  v
        = vA ⎜        +   + ⎟− B − 0                                                                (1)
R1 + R2      ⎝ R1 + R2 RV R2 ⎠ RV R2
  vI 2       ⎛ 1        1  1 ⎞ v
        = vB ⎜        +   + ⎟− A                                                                    ( 2)
R1 + R2      ⎝ R1 + R2 RV R2 ⎠ RV
Then
   vI 1          ⎛ 1            1      1 ⎞ v      v ⎛ R ⎞⎛ 1                1   1 ⎞
         = vB ⎜              +      + ⎟ − B − 0 + ⎜ 2 ⎟⎜                  +   + ⎟ ( vI 2 − vI 1 )   (1)
 R1 + R2         ⎝ R1 + R2 RV R2 ⎠ RV R2 ⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠
   vI 2          ⎛ 1            1      1 ⎞ 1 ⎡        R2              ⎤
         = vB ⎜              +      + ⎟−       ⎢ vB + ( vI 2 − vI 1 ) ⎥                             (2)
 R1 + R2         ⎝ R1 + R2 RV R2 ⎠ RV ⎣               R1              ⎦
Subtract (2) from (1)
    1                      ⎛ R ⎞⎛ 1          1      1 ⎞                 v    1 R2
         ( vI 1 − vI 2 ) = ⎜ 2 ⎟ ⎜         +     + ⎟ ( vI 2 − vI 1 ) − 0 +     ⋅ ( vI 2 − vI 1 )
 R1 + R2                   ⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠                     R2 RV R1
v0                   ⎧⎛ R ⎞ ⎛ 1
                     ⎪                  1  1 ⎞    1          ⎫
                                                        1 R2 ⎪
   = ( vI 2 − vI 1 ) ⎨⎜ 2 ⎟ ⎜         +   + ⎟+        +   ⋅ ⎬
R2                   ⎪⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠ R1 + R2 RV R1 ⎪
                     ⎩                                       ⎭
                     ⎛ R ⎞ ⎧ R2       R         R1   R ⎫
v0 = ( vI 2 − vI 1 ) ⎜ 2 ⎟ ⎨         + 2 +1+        + 2⎬
                     ⎝ R1 ⎠ ⎩ R1 + R2 RV     R1 + R2 RV ⎭
       2 R2 ⎛    R2 ⎞
v0 =        ⎜1 +    ⎟ ( vI 2 − vI 1 )
        R1 ⎝ RV ⎠

9.64
vI 1 − vI 2 ( 0.50 − 0.030sin ω t ) − ( 0.50 + 0.030sin ω t )
i1 =              =
            R1                            20
     −0.060sin ω t
  =
            20
i1 = −3sin ω t ( μ A )
vO1 = i1 R2 + vI 1 = ( −0.0030sin ω t )(115 ) + 0.50 − 0.030sin ω t
vO1 = 0.50 − 0.375sin ω t
vO 2 = vI 2 − i1 R2 = 0.50 + 0.030sin ω t − ( −0.003sin ω t )(115 )
vO 2 = 0.50 + 0.375sin ω t
        R4                  200
vO =       ( vO 2 − vO1 ) =     ⎡ 0.50 + 0.375sin ω t − ( 0.50 − 0.375sin ω t ) ⎤
        R3                  50 ⎣                                                ⎦
vO = 3sin ω t ( V )
         vO 2    0.50 + 0.375sin ω t
i3 =           =
       R3 + R4        50 + 200
i3 = 2 + 1.5sin ω t ( μ A )
       vO1 − vO ( 0.5 − 0.375sin ω t ) − ( 3sin ω t )
i2 =           =
       R3 + R4                250
i2 = 2 − 13.5sin ω t ( μ A )

9.65
                  ⎛ 40 ⎞
(a)         vOB = ⎜1 + ⎟ vI = 2.1667 sin ω t
                  ⎝ 12 ⎠
                    30
(b)         vOC = − vI = −1.25sin ω t
                    12
(c)
 vO = vOB − vOC = 2.1667 sin ω t − ( −1.25sin ω t )
vO = 3.417 sin ω t
            vO 3.417
(d)            =     = 6.83
            vI   0.5

9.66
       vI
iO =
       R

9.67
         vO      R ⎛ 2R ⎞
Ad =            = 4 ⎜1 + 2 ⎟
     vI 2 − vI 1 R3 ⎝       R1 ⎠
      200 ⎛ 2 (115 ) ⎞
vO =        ⎜1 +        ⎟ ( 0.06sin ω t )
      50 ⎝        R1 ⎠
                 230
For vO = 0.5          = 1.0833 ⇒ R1 = 212.3 K
                  R1
                    230
vO = 8 V                = 32.33 ⇒ R1 = 7.11 K ⇒ R1 f = 7.11 K, R1 (potentiometer) = 205.2 K
                     R1

9.68
⎛ 2 R2 ⎞
       R4
vO =    ⎜1 +    ⎟ ( vI 2 − vI 1 )
        ⎝
       R3    R1 ⎠
Set R2 = 15 K, Set R1 = 2 K + 100 k ( Rot )
         R4
Want        ≈8       Set R3 = 10 K
         R3
                     R 4 = 75 K
Now
                   75 ⎛ 2 (15 ) ⎞
 Gain (min) =         ⎜1 +      ⎟ = 9.71
                   10 ⎝    102 ⎠
                   75 ⎛ 2 (15 ) ⎞
Gain ( max ) =        ⎜1 +      ⎟ = 120
                   10 ⎝    2 ⎠

9.69
For a common-mode gain, vcm = vI 1 = vI 2
Then
      ⎛ R ⎞          R
v01 = ⎜ 1 + 2 ⎟ vcm − 2 vcm = vcm
      ⎝    R1 ⎠      R1
      ⎛ R ⎞          R
v02 = ⎜ 1 + 2 ⎟ vcm − 2 vcm = vcm
      ⎝    R1 ⎠      R1
From Problem 9.62 we can write
        R4 R4
           −
        R3 R3  ′
Acm =
       ⎛    R4 ⎞
       ⎜1 + ⎟
       ⎝    R3 ⎠
                    ′
R3 = R4 = 20 kΩ, R3 = 20 kΩ ± 5%
          20
      1−
          R3 1 ⎛ 20 ⎞
            ′
Acm =         = ⎜1 − ⎟
      (1 + 1) 2 ⎝     ′
                     R3 ⎠
     ′
For R3 = 20 kΩ − 5% = 19 kΩ
      1 ⎛ 20 ⎞
Acm =    ⎜ 1 − ⎟ = −0.0263
       2 ⎝ 19 ⎠
     ′
For R3 = 20 kΩ + 5% = 21 kΩ
     1 ⎛ 20 ⎞
Acm =  ⎜ 1 − ⎟ = 0.0238
     2⎝      21 ⎠
So Acm max = 0.0263

9.70
a.
         1
           ⋅ vI ( t ′ ) dt ′
       R1C2 ∫
v0 =

                       0.5
∫ 0.5sin ω t dt = − ω          cos ω t

                 1 ( 0.5 )      0.5
v0 = 0.5 =         ⋅       =
               R1C2 ω        2π R1C2 f
          1                 1
f =           =                             ⇒ f = 31.8 Hz
       2π R1C2 2π ( 50 × 103 )( 0.1× 10−6 )
Output signal lags input signal by 90°
b.
                                   0.5
i.            f =                                   ⇒ f = 15.9 Hz
                    2π ( 50 × 103 )( 0.1× 10−6 )
                                         0.5
ii.           f =                                          ⇒ f = 159 Hz
                    ( 0.1)( 2π ) ( 50 ×103 )( 0.1×10−6 )

9.71
        1                − vI ⋅ t
vO = −
       RC ∫ vI ( t ) dt = RC
vI = −0.2
Now
      − ( −0.2 )( 2 )
8=
           RC
(a)         RC = 0.05 s
                    ( 0.2 ) t
(b)         14 =                ⇒ t = 3.5 s
                     0.05

9.72
a.
                 1                          1
       − R2                        R2 ⋅
v0             jω C2                      jω C2
   =                    =−
vI            R1                   ⎛        1 ⎞
                                R1 ⎜ R2 +       ⎟
                                   ⎝      jω C2 ⎠
v0   R       1
   =− 2⋅
vI   R1 1 + jω R2 C2
              v0   R
b.               =− 2
              vI   R1
                       1
c.            f =
                    2π R2 C2

9.73
a.
 v0     − R2      R ( jω C1 )
    =           =− 2
 vI R + 1         1 + jω R1C1
          jω C1
      1


v0   R     jω R1C1
   =− 2⋅
vI   R1 1 + jω R1C1
              v0   R
b.               =− 2
              vI   R1
                       1
c.            f =
                    2π R1C1

9.74
Assuming the Zener diode is in breakdown,
R2         1
vO = −      ⋅ Vz = − ( 6.8 ) ⇒ vO = −6.8 V
         R1         1
        0 − vO 0 − ( −6.8 )
 i2 =         =             ⇒ i2 = 6.8 mA
          R2        1
     10 − Vz         10 − 6.8
 iz =         − i2 =          − 6.8 ⇒ iz = −6.2 mA!!!
        Rs              5.6
Circuit is not in breakdown. Now
 10 − 0            10
         = i2 =         ⇒ i2 = 1.52 mA
Rs + R1         5.6 + 1
vO = −i2 R2 = − (1.52 )(1) ⇒ vO = −1.52 V
iz = 0

9.75
            ⎛ v ⎞                  ⎡     v      ⎤               ⎛ vI ⎞
vO = −VT ln ⎜ I ⎟ = − ( 0.026 ) ln ⎢ −14 I 4 ⎥ ⇒ vO = −0.026 ln ⎜ −10 ⎟
            ⎝ I s R1 ⎠             ⎢ (10 )(10 ) ⎥
                                   ⎣            ⎦               ⎝ 10 ⎠
For vI = 20 mV , vO = 0.497 V
For vI = 2 V , vO = 0.617 V




9.76
⎛ 333 ⎞
v0 = ⎜     ⎟ ( v01 − v02 ) = 16.65 ( v01 − v02 )
     ⎝ 20 ⎠
                        ⎛i ⎞
v01 = −vBE1 = −VT ln ⎜ C1 ⎟
                        ⎝ IS ⎠
                        ⎛i ⎞
v02 = −vBE 2 = −VT ln ⎜ C 2 ⎟
                        ⎝ IS ⎠
                   ⎛i ⎞           ⎛i ⎞
v01 − v02 = −VT ln ⎜ C1 ⎟ = VT ln ⎜ C 2 ⎟
                   ⎝ iC 2 ⎠       ⎝ iC1 ⎠
       v           v
iC 2 = 2 , iC1 = 1
       R2          R1
                     ⎛v R ⎞
So v01 − v02 = VT ln ⎜ 2 ⋅ 1 ⎟
                     ⎝ R2 v1 ⎠
Then
                          ⎛v R ⎞
v0 = (16.65 )( 0.026 ) ln ⎜ 2 ⋅ 1 ⎟
                          ⎝ v1 R2 ⎠
                ⎛v R ⎞
v0 = 0.4329 ln ⎜ 2 ⋅ 1 ⎟
                ⎝ v1 R2 ⎠
ln ( x ) = log e ( x ) = ⎡ log10 ( x ) ⎤ ⋅ ⎡log e (10 ) ⎤
                         ⎣             ⎦ ⎣              ⎦
        = 2.3026 log10 ( x )
                       ⎛v R ⎞
Then v0 ≅ (1.0 ) log10 ⎜ 2 ⋅ 1 ⎟
                       ⎝ v1 R2 ⎠

9.77
              (            )
vO = − I s R evI / VT = − (10−14 )(104 ) evI / VT
 vO = (10   −10
                  )e   vI / 0.026



For vI = 0.30 V ,               vo = 1.03 × 10−5 V
For vI = 0.60 V ,               vo = 1.05 V

Ch09s

  • 1.
    Chapter 9 Problem Solutions 9.1 (a) vO = Ad ( v2 − v1 ) ( ) 1 = Ad 10−3 − ( −10−3 ) ⇒ Ad = 500 (b) 1 = 500 ( v2 − 10−3 ) = 1 + 0.5 = 500v2 v2 = 3 mV (c) 5 = 500 (1 − v1 ) ⇒ 500v1 = 495 v1 = 0.990 V (d) vO = 0 (e) − 3 = 500 ( v2 − ( −0.5 ) ) −250 − 3 = 500v2 v2 = −0.506 V 9.2 (a) ⎛ ⎞ ⎟ vI = ( 0.49975 × 10 ) ( 3) 1 −3 v2 = ⎜ ⎝ 1 + 2000 ⎠ v2 = 1.49925 × 10−3 vO = Aod ( v2 − v1 ) = ( 5 × 103 )(1.49925 × 10−3 − 0 ) vO = 7.49625 V (b) vO = Aod ( v2 − v1 ) 3 = Aod (1.49925 × 10−3 − 0 ) Aod = 2 × 103 9.3 R2 Av = − = −12 ⇒ R2 = 12 R1 R1 Ri = R1 = 25 kΩ ⇒ R2 = (12 )( 25 ) = 300 kΩ 9.3 (a) v2 = 3.00 V (b) vO = Aod ( v2 − v1 ) 2.500 = Aod ( 3.010 − 3.00 ) Aod = 250 9.4
  • 2.
    ⎛ Ri ⎞ vid= ⎜ ⎟ vI ⎝ Ri + 25 ⎠ ⎛ Ri ⎞ 0.790 = ⎜ ⎟ ( 0.80 ) ⎝ Ri + 25 ⎠ 0.9875 ( Ri + 25 ) = Ri 24.6875 = 0.0125 Ri Ri = 1975 K 9.5 200 ⎫ Av = − = −10 ⎪ 20 ⎪ and ⎬ for each case Ri = 20 kΩ ⎪ ⎪ ⎭ 9.6 a. 100 Av = − = −10 10 Ri = R1 = 10 kΩ b. 100 100 Av = − = −5 10 Ri = R1 = 10 kΩ c. 100 Av = − = −5 10 + 10 Ri = 10 + 10 = 20 K 9.7
  • 3.
    vI 0.5 I1 = ⇒ R1 = ⇒ R1 = 5 K R1 0.1 R2 = 15 ⇒ R2 = 75 K R1 9.8 R2 Av = − R1 (a) Av = −10 (b) Av = −1 (c) Av = −0.20 (d) Av = −10 (e) Av = −2 (f) Av = −1 9.9 R2 Av = − R1 (a) R1 = 20 K, R2 = 40 K (b) R1 = 20 K, R2 = 200 K (c) R1 = 20 K, R2 = 1000 K (d) R1 = 80 K, R2 = 20 K 9.10 R2 Av = − = −8 ⇒ R2 = 8 R1 R1 1 For vI = −1, i1 = = 15 μ A ⇒ R1 = 66.7 kΩ ⇒ R2 = 533.3 kΩ R1 9.11 R2 Av = − = −30 ⇒ R2 = 30 R1 R1 Set R2 = 1 MΩ ⇒ R1 = 33.3 kΩ 9.12 a. R2 1.05R2 ⎛R ⎞ Av = ⇒ = 1.105 ⎜ 2 ⎟ R1 0.95 R1 ⎝ R1 ⎠ 0.95R2 ⎛R ⎞ = 0.905 ⎜ 2 ⎟ 1.05R1 ⎝ R1 ⎠ Deviation in gain is +10.5% and − 9.5% b. 1.01R2 ⎛R ⎞ 0.99 R2 ⎛R ⎞ Av ⇒ = 1.02 ⎜ 2 ⎟ ⇒ = 0.98 ⎜ 2 ⎟ 0.99 R1 ⎝ R1 ⎠ 1.01R1 ⎝ R1 ⎠ Deviation in gain = ±2% 9.13 (a)
  • 4.
    vO −15 Av = = = −15 vl 1 vO = −15vl ⇒ vO = −150sin ω t ( mV ) (b) vI i2 = i1 = = 10sin ω t ( μ A ) R1 vO iL = ⇒ iL = −37.5sin ω t ( μ A ) RL iO = iL − i2 iO = −47.5sin ω t ( μ A ) 9.14 R2 Av = − R1 + R5 Av = −30 ± 2.5% ⇒ 29.25 ≤ Av ≤ 30.75 R2 R2 So = 29.25 and = 30.75 R1 + 2 R1 + 1 We have 29.25 ( R1 + 2 ) = 30.75 ( R1 + 1) Which yields R1 = 18.5 k Ω and R2 = 599.6 k Ω For vI = 25 mV , then 0.731 ≤ vO ≤ 0.769 V 9.15 R2 120 vO1 = − , vI = − ( 0.2 ) ⇒ vO1 = −1.2 V R1 20 R4 ⎛ −75 ⎞ vO = − , vO1 = ⎜ ⎟ ( −1.2 ) ⇒ vO = +6 V R3 ⎝ 15 ⎠ 0.2 i1 = i2 = ⇒ i1 = i2 = 10 μ A 20 v −1.2 i3 = i4 = O1 = ⇒ i3 = i4 = −80 μ A R3 15 1st op-amp: 90 μ A into output terminal 2nd op-amp: 80 μ A out of output terminal. 9.16 (a) R2 22 Av = − =− ⇒ Av = −22 R1 1 (b) From Eq. (9.23) R2 1 1 Av = − ⋅ = −22 ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎡ 1 ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎢1 + 104 ( 23) ⎥ ⎣ ⎦ ⎣ Aod ⎝ R1 ⎠ ⎦ Av = −21.95 (c)
  • 5.
    Want Av =−22 ( 0.98 ) = −21.56 −22 So − 21.56 = 1 1+ ( 23) Aod 1 22 1+ ( 23) = Aod 21.56 1 ( 23) = 0.020408 ⇒ Aod = 1127 Aod 9.17 (a) R2 1 Av = − ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Aod ⎝ R1 ⎠ ⎦ 100 1 =− ⋅ 25 ⎡ 1 ⎤ ⎢1 + 5 × 103 ( 5 ) ⎥ ⎣ ⎦ Av = −3.9960 (b) vO = −3.9960 (1.00 ) ⇒ vO = −3.9960 V 4 − 3.9960 (c) × 100% = 0.10% 4 (d) vO = Aod ( v2 − v1 ) = − Aod v1 vO − ( −3.9960 ) v1 = − = Aod 5 × 10+3 v1 = 0.7992 mV 9.18 vO = Aod ( v2 − v1 ) = − Aod v1 v −5 v1 = − O = Aod 5 × 10+3 v1 = −1 mV 9.19 R2 ⎛ R3 R3 ⎞ Av = − ⎜1 + + ⎟ R1 ⎝ R4 R2 ⎠ a. R2 ⎛ 100 100 ⎞ −10 = − ⎜1 + + ⎟ 100 ⎝ 100 R2 ⎠ 2 R2 10 = + 1 ⇒ R2 = 450 kΩ 100 2R b. 100 = 2 + 1 ⇒ R2 = 4.95 MΩ 100 9.20 a.
  • 6.
    R2 ⎛ R3R3 ⎞ Av = − ⎜1 + + ⎟ R1 ⎝ R4 R2 ⎠ R1 = 500 kΩ R2 ⎛ R3 R3 ⎞ 80 = ⎜1 + + ⎟ 500 ⎝ R4 R2 ⎠ Set R2 = R3 = 500 kΩ ⎛ 500 ⎞ 500 80 = 1⎜ 1 + + 1⎟ = 2 + ⇒ R4 = 6.41 kΩ ⎝ R4 ⎠ R4 b. For vI = −0.05 V −0.05 i1 = i2 = ⇒ i1 = i2 = −0.1 μ A 500 kΩ v X = −i2 R2 = − ( −0.1× 10−6 )( 500 × 103 ) = 0.05 vX 0.05 i4 = − =− ⇒ i4 = −7.80 μ A R4 6.41 i3 = i2 + i4 = −0.1 − 7.80 ⇒ i3 = −7.90 μ A 9.21 (a) − R2 −500 Av = −1000 = = R1 R1 R1 = 0.5 K (b) − R2 ⎛ R3 R3 ⎞ Av = ⎜1 + + ⎟ R1 ⎝ R4 R2 ⎠ −250 ⎛ 500 500 ⎞ −1250 −1000 = ⎜1 + + ⎟= R1 ⎝ 250 250 ⎠ R1 R1 = 1.25 K 9.22 vI i1 = = i2 R ⎛v ⎞ v A = −i2 R = − ⎜ I ⎟ R = −vI ⎝R⎠ v v i3 = − A = I R R
  • 7.
    vA vA 2v 2v i4 = i2 + i3 = − − =− A = I R R R R ⎛ 2vI ⎞ vB = v A − i4 R = −vI − ⎜ ⎟ ( R ) = −3vI ⎝ R ⎠ vB ( −3vI ) 3vI i5 = − =− = R R R 2vI 3vI 5vI i6 = i4 + i5 = + = R R R ⎛ 5vI ⎞ v0 v0 = vB − i6 R = −3vI − ⎜ ⎟ R ⇒ v = −8 ⎝ R ⎠ I From Figure 9.12 ⇒ Av = −3 9.23 (a) R2 1 Av = − ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Aod ⎝ R1 ⎠ ⎦ 50 1 =− ⋅ ⇒ Av = −4.99985 10 ⎡ 1 ⎛ 50 ⎞ ⎤ 1+ 1 + ⎟⎥ ⎢ 2 × 105 ⎜ 10 ⎣ ⎝ ⎠⎦ (b) vO = − ( 4.99985 ) (100 × 10−3 ) ⇒ vO = −499.985 mV 0.5 − 0.499985 (c) Error = × 100% ⇒ 0.003% 0.5 9.24 a. From Equation (9.23) R2 1 Av = − ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Aod ⎝ R1 ⎠ ⎦ 100 1 =− ⋅ = −0.9980 100 ⎡ 1 ⎛ 100 ⎞ ⎤ 1 + 3 ⎜1 + ⎢ 10 ⎟⎥ ⎣ ⎝ 100 ⎠ ⎦ Then v0 = Av ⋅ vI = ( −0.9980 )( 2 ) ⇒ v0 = −1.9960 V b. v0 = Aod ( v A − vB ) vB v0 − vB ⎛ 1 1 ⎞ v = ⇒ vB ⎜ + ⎟ = 0 R1 R2 ⎝ R1 R2 ⎠ R2 v0 vB = ⎛ R2 ⎞ ⎜1 + ⎟ ⎝ R1 ⎠
  • 8.
    Aod v0 Then v0= Aod v A − ⎛ R2 ⎞ ⎜1 + ⎟ ⎝ R1 ⎠ ⎡ ⎤ ⎢ ⎥ v0 ⎢1 + Aod ⎥ = Aod v A ⎢ ⎛ R ⎞⎥ ⎢ ⎜1 + ⎟ ⎥ 2 ⎢ ⎝ ⎣ R1 ⎠ ⎥ ⎦ ⎡ ⎛ R2 ⎞ ⎤ ⎢ ⎜ 1 + ⎟ + Aod ⎥ v0 ⎢ ⎝ R1 ⎠ ⎥=A v ⎢ ⎛ R ⎞ ⎥ od A ⎢ ⎜1 + 2 ⎟ ⎥ ⎢ ⎝ ⎣ R1 ⎠ ⎥ ⎦ ⎛ R2 ⎞ Aod ⎜ 1 + ⎟ v A v0 = ⎝ R1 ⎠ ⎛ R ⎞ Aod + ⎜ 1 + 2 ⎟ ⎝ R1 ⎠ ⎛ R2 ⎞ ⎜1 + ⎟ vA v0 = ⎝ R1 ⎠ 1 ⎛ R2 ⎞ 1+ ⎜1 + ⎟ Aod ⎝ R1 ⎠ ⎛ 10 ⎞ ⎛ vI ⎞ ⎜1 + ⎟ ⎜ ⎟ So v0 = ⎝ 10 ⎠ ⎝ 2 ⎠ = 0.9980vI 1 ⎛ 10 ⎞ 1 + 3 ⎜1 + ⎟ 10 ⎝ 10 ⎠ For vI = 2 V v0 = 1.9960 V 9.25 vl v v R (a) ii = = i2 = − O ⇒ O = − 2 R1 R2 vl R1 (b) vl v 1 ⎛ R2 ⎞ i2 = i1 = = i3 + O = i3 + ⎜ − ⋅ vl ⎟ R1 RL RL ⎝ R1 ⎠ v ⎛ R ⎞ Then i3 = l ⎜ 1 + 2 ⎟ R1 ⎝ RL ⎠ 9.26 ⎛ R3 R1 ⎞ + ⎛ 0.1 1 ⎞ ⎜ 0.1 1 + 10 ⎟ ( ) VX .max = ⎜ ⋅V = ⎜ 10 ⇒ VX .max = 0.09008 V ⎜R R +R ⎟ ⎟ ⎟ ⎝ 3 1 4 ⎠ ⎝ ⎠ R vO = 2 ⋅ VX .max R1 R2 R 10 = ( 0.09008 ) ⇒ 2 = 111 R1 R1 So R2 = 111 k Ω 9.27 (a)
  • 9.
    ⎛R R R ⎞ vO = − ⎜ F ⋅ vI 1 + F ⋅ vI 2 + F ⋅ vI 3 ⎟ ⎝ R1 R2 R3 ⎠ ⎡⎛ 100 ⎞ ⎛ 100 ⎞ ⎛ 100 ⎞ ⎤ = − ⎢⎜ ⎟ ( 0.5 ) + ⎜ ⎟ ( 0.75 ) + ⎜ ⎟ ( 2.5 ) ⎥ ⎣ ⎝ 50 ⎠ ⎝ 20 ⎠ ⎝ 100 ⎠ ⎦ = − [1 + 3.75 + 2.5] vO = −7.25 V (b) ⎡⎛ 100 ⎞ ⎛ 100 ⎞ ⎛ 100 ⎞ ⎤ −2 = − ⎢⎜ ⎟ (1) + ⎜ ⎟ ( 0.8 ) + ⎜ ⎟ vI 3 ⎥ ⎣⎝ 50 ⎠ ⎝ 20 ⎠ ⎝ 100 ⎠ ⎦ 2 = 2 + 4 + vI 3 vI 3 = −4 V 9.28 − RF R R vo = ⋅ vI 1 − F ⋅ vI 2 − F ⋅ vI 3 R1 R2 R3 = −4vI 1 − 8vI 2 − 2vI 3 RF RF RF =4 =8 =2 R1 R2 R3 Largest resistance = RF = 250 K ⇒ R1 = 62.5 K R2 = 31.25 K R3 = 125 K 9.29 RF R v0 = −4vI 1 − 0.5vI 2 = − vI 1 − F vI 2 R1 R2 RF RF =4 = 0.5 ⇒ R1 is the smallest resistor R1 R2 vI 2 i = 100 μ A = = ⇒ R1 = 20 kΩ R1 R1 ⇒ RF = 80 kΩ ⇒ R2 = 160 kΩ 9.30 vI 1 = ( 0.05 ) 2 sin ( 2π ft ) = 0.0707 sin ( 2π ft ) 1 1 f = 1 kHz ⇒ T = 3 ⇒ 1 ms vI 2 ⇒ T2 = ⇒ 10 ms 10 100 R R 10 10 vO = − F ⋅ vI 1 − F ⋅ vI 2 = − ⋅ vI 1 − ⋅ vI 2 R1 R2 1 5 vO = − (10 ) ( 0.0707 sin ( 2π ft ) ) − ( 2 )( ±1 V ) vO = −0.707 sin ( 2π ft ) − ( ±2 V )
  • 10.
    9.31 RF R R vO = − ⋅ vI 1 − F ⋅ vI 2 − F ⋅ vI 3 R1 R2 R3 20 20 20 vO = − ⋅ vI 1 − ⋅ vI 2 − ⋅ vI 3 10 5 2 K sin ω t = −2vI 1 − 4 [ 2 + 100sin ω t ] − 0 Set vI 1 = −4 mV 9.32 Only two inputs. ⎡R R ⎤ vO = − ⎢ F ⋅ vI 1 + F ⋅ vI 2 ⎥ ⎣ R1 R2 ⎦ ⎡ 1 ⎤ = − ⎢3vI 1 + ⋅ vI 2 ⎥ ⎣ 4 ⎦ RF RF 1 =3 = R1 R2 4 Smallest resistor = 10 K = R1 RF = 30 K R2 = 120 K 9.33 ⎡R R ⎤ vO = − ⎢ F ⋅ vI 1 + F ⋅ vI 2 ⎥ ⎣ R1 R2 ⎦ − RF −R R RF −5 − 5sin ω t = ( 2.5sin ω t ) F ⋅ ( 2 ) ⇒ F = 2 = 2.5 R1 R2 R1 R2 RF = largest resistor ⇒ RF = 200 K R1 = 100 K R2 = 80 K 9.34 a. RF R R R v0 = − ⋅ a3 ( −5 ) − F ⋅ a2 ( −5 ) − F ⋅ a1 ( −5 ) − F ⋅ a0 ( −5 ) R3 R2 R1 R0 RF ⎡ a3 a2 a1 a0 ⎤ So v0 = + + + ( 5) 10 ⎢ 2 4 8 16 ⎥ ⎣ ⎦ R 1 b. v0 = 2.5 = F ⋅ ⋅ 5 ⇒ RF = 10 kΩ 10 2 c. 10 1 i. v0 = ⋅ ⋅ 5 ⇒ v0 = 0.3125 V 10 16
  • 11.
    10 ⎡ 11 1 1 ⎤ ii. v0 = + + + ( 5 ) ⇒ v0 = 4.6875 V 10 ⎢ 2 4 8 16 ⎥ ⎣ ⎦ 9.35 (a) 10 vO1 = − ⋅ vI 1 1 20 20 vO = − ⋅ vO1 − ⋅ vI 2 = − ( 20 )( −10 ) vI 1 − ( 20 ) vI 2 1 1 vO = 200vI 1 − 20vI 2 (b) vI 1 = 1 + 2sin ω t ( mV ) vI 2 = −10 mV Then vO = 200 (1 + 2sin ω t ) − 20 ( −10 ) So vO = 0.4 + 0.4sin ω t (V ) 9.36 For one-input v0 v1 = − Aod vI 1 − v1 v1 v −v = + 1 0 R1 R2 R3 RF VI 1 ⎡1 1 1 ⎤ v0 = v1 ⎢ + + ⎥− R1 ⎣ R1 R2 R3 RF ⎦ RF v0 ⎡1 1 1 ⎤ v0 =− ⎢ + + ⎥− Aod ⎣ R1 R2 R3 RF ⎦ RF ⎧ 1 ⎪ 1 1 ⎛ 1 1 ⎞⎫ ⎪ = −v0 ⎨ + + ⎜ + ⎟⎬ ⎪ Aod RF RF Aod ⎝ R1 R2 R3 ⎠ ⎪ ⎩ ⎭ v0 ⎧ 1 1 RF ⎫ =− ⎨ +1+ ⋅ ⎬ RF ⎩ Aod Aod R1 R2 R3 ⎭ ⎧ ⎫ ⎪ ⎪ R ⎪ 1 ⎪ v0 = − F ⋅ vI 1 ⋅ ⎨ ⎬ where RP = R1 R2 R3 R1 ⎪1 + 1 ⎛ RF ⎞ ⎪ 1+ ⎪ Aod ⎜ RP ⎟ ⎪ ⎝ ⎠⎭ ⎩ −1 ⎛R R R ⎞ Therefore, for three-inputs v0 = × ⎜ F ⋅ vI 1 + F ⋅ vI 2 + F ⋅ vI 3 ⎟ 1 ⎛ RF ⎞ ⎝ R1 R2 R3 ⎠ 1+ ⎜1 + ⎟ Aod ⎝ RP ⎠ 9.37
  • 12.
    ⎛ R ⎞ R Av = 12 = ⎜ 1 + 2 ⎟ ⇒ 2 = 11 ⎝ R1 ⎠ R1 v v 0.5 i1 = I ⇒ R1 = I = R1 i1 0.15 R1 = 3.33 K R2 = 36.7 K 9.38 ⎛ 1 ⎞ ⎛ 1 ⎞ vB = ⎜ ⎟ vI v0 = Aod ⎜ ⎟ vi ⎝ 1 + 500 ⎠ ⎝ 501 ⎠ ⎛ 1 ⎞ a. 2.5 = Aod ⎜ ⎟ ( 5 ) ⇒ Aod = 250.5 ⎝ 501 ⎠ ⎛ 1 ⎞ b. v0 = 5000 ⎜ ⎟ ( 5 ) ⇒ v0 = 49.9 V ⎝ 501 ⎠ 9.39 ⎛ R ⎞ Av = ⎜ 1 + 2 ⎟ ⎝ R1 ⎠ (a) Av = 11 (b) Av = 2 (c) Av = 1.2 (d) Av = 11 (e) Av = 3 (f) Av = 2 9.40 R2 (a) = 1 ⇒ R1 = R2 = 20 K R1 R2 (b) = 9 ⇒ R1 = 20 K, R2 = 180 K R1 R2 (c) = 49 ⇒ R1 = 20 K, R2 = 980 K R1 R2 (d) = 0 can set R2 = 20 K, R1 = ∞ (open circuit) R1 9.41 ⎛ 50 ⎞ ⎡⎛ 20 ⎞ ⎛ 40 ⎞ ⎤ v0 = ⎜ 1 + ⎟ ⎢⎜ ⎟ vI 2 + ⎜ ⎟ vI 1 ⎥ ⎝ 50 ⎠ ⎣⎝ 20 + 40 ⎠ ⎝ 20 + 40 ⎠ ⎦ v0 = 1.33vI 1 + 0.667vI 2 9.42 (a)
  • 13.
    vI 1 −v2 vI 2 − v2 v2 + = 20 40 10 ⎛ 100 ⎞ vO = ⎜ 1 + ⎟ v2 = 3v2 ⎝ 50 ⎠ Now 2vI 1 − 2v2 + vI 2 − v2 = 4v2 ⎛v ⎞ 2vI 1 + vI 2 = 7v2 = 7 ⎜ o ⎟ ⎝3⎠ 6 3 So vO = ⋅ vI 1 + ⋅ vI 2 7 7 ( 0.2 ) + ⎛ ⎞ ( 0.3) ⇒ vO = 0.3 V 6 3 (b) vO = ⎜ ⎟ 7 ⎝ 7⎠ ⎛6⎞ ⎛ 3⎞ (c) vO = ⎜ ⎟ ( 0.25 ) + ⎜ ⎟ ( −0.4 ) ⇒ vO = 42.86 mV ⎝7⎠ ⎝7⎠ 9.43 ⎛ R4 ⎞ v2 = ⎜ ⎟ vI ⎝ R3 + R4 ⎠ ⎛ R ⎞ ⎛ R ⎞ ⎛ R4 ⎞ vO = ⎜1 + 2 ⎟ v2 = ⎜ 1 + 2 ⎟ ⎜ ⎟ vI ⎝ R1 ⎠ ⎝ R1 ⎠⎝ R3 + R4 ⎠ vO ⎛ R2 ⎞ ⎛ R4 ⎞ Av = = ⎜1 + ⎟ ⎜ ⎟ vI ⎝ R1 ⎠ ⎝ R3 + R4 ⎠ 9.44 (a) vO ⎛ 50 x ⎞ = ⎜1 + ⎜ (1 − x ) 50 ⎟ ⎟ vI ⎝ ⎠ vO ⎛ x ⎞ 1− x + x = ⎜1 + ⎟= vI ⎝ 1 − x ⎠ 1− x v 1 Av = O = vI 1 − x (b) 1 ≤ Av ≤ ∞ (c) If x = 1, gain goes to infinity. 9.45 Change resister values as shown.
  • 14.
    vI i1 = = i2 R ⎛v ⎞ vx = i2 2 R + vI = ⎜ I ⎟ 2 R + vI = 3vI ⎝R⎠ v x 3I i3 = = R R v 3v 4v i4 = i2 + i3 = I + I = I R R R ⎛ 4vI ⎞ v0 = i4 2 R + vx = ⎜ ⎟ 2 R + 3vI ⎝ R ⎠ v0 = 11 vI 9.46 vO (a) =1 vI (b) From Exercise TYU9.7 ⎛ R2 ⎞ ⎜1 + ⎟ vO = ⎝ R1 ⎠ vI ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Aod ⎝ R1 ⎠ ⎦ But R2 = 0, R1 = ∞ vO 1 1 v = = ⇒ O = 0.999993 vI 1 + 1 1 vI 1+ Aod 1.5 × 105 vO 1 (b) Want = 0.990 = ⇒ Aod = 99 vI 1 1+ Aod 9.47
  • 15.
    v0 = Aod( vI − v0 ) ⎛ 1 ⎞ ⎜ + 1⎟ v0 = vI ⎝ Aod ⎠ v0 1 = vI ⎛ 1 ⎞ ⎜1 + ⎟ ⎝ Aod ⎠ v Aod = 104 ; 0 = 0.99990 vI v0 Aod = 103 ; = 0.9990 vI v0 Aod = 102 ; = 0.990 vI v0 Aod = 10; = 0.909 vI 9.48 ⎛ R ⎞ v0 A = ⎜ 1 + 2 ⎟ vI ⎝ R1 ⎠ ⎛ R ⎞ ⎛ R ⎞ v01 = ⎜1 + 2 ⎟ vI , v02 = − ⎜ 1 + 2 ⎟ vI ⎝ R1 ⎠ ⎝ R1 ⎠ So v01 = −v02 9.49 vI (a) iL = R1 (b) vO1 = iL RL + vI = iL RL + iL R1 vOI ( max ) ≅ 10 V = iL (1 + 9 ) = 10iL So iL ( max ) ≅ 1 mA Then vI ( max ) ≅ iL R1 = (1)( 9 ) ⇒ vI ( max ) ≅ 9 V 9.50 (a) ⎛ 20 ⎞ ⎛ 20 ⎞ vX = ⎜ ⎟ ⋅ vI = ⎜ ⎟ ( 6 ) = 2 ⎝ 20 + 40 ⎠ ⎝ 60 ⎠ vO = 2 V (b) Same as (a) (c) ⎛ 6 ⎞ vX = ⎜ ⎟ ( 6 ) = 0.666 V ⎝ 6 + 48 ⎠ ⎛ 10 ⎞ vO = ⎜ 1 + ⎟ ⋅ v X ⇒ vO = 1.33 V ⎝ 10 ⎠ 9.51 a.
  • 16.
    v1 v −v Rin = and 1 0 = i1 and v0 = − Aod v1 i1 RF v1 − ( − Aod v1 ) v1 (1 + Aod ) So i1 = = RF RF v1 RF Then Rin = = i1 1 + Aod b. ⎛ RS ⎞ RF i1 = ⎜ ⎟ iS and v0 = − Aod ⋅ ⋅ i1 ⎝ RS + Rin ⎠ 1 + Aod ⎛ A ⎞⎛ RS ⎞ So v0 = − RF ⎜ od ⎟⎜ ⎟ iS ⎝ 1 + Aod ⎠⎝ RS + Rin ⎠ RF 10 Rin = = = 0.009990 1 + Aod 1001 ⎛ 1000 ⎞ ⎛ RS ⎞ v0 = − RF ⎜ ⎟⎜ ⎟ iS ⎝ 1001 ⎠ ⎝ RS + 0.009990 ⎠ ⎛ 1000 ⎞ ⎛ RS ⎞ Want ⎜ ⎟⎜ ⎟ ≤ 0.990 ⎝ 1001 ⎠ ⎝ RS + 0.009990 ⎠ which yields RS ≥ 1.099 kΩ 9.52 vO = iC RF , 0 ≤ iC ≤ 8 mA For vO ( max ) = 8 V, Then RF = 1 k Ω 9.53 v 10 i = I so 1 = ⇒ R = 10 kΩ R R In the ideal op-amp, R1 has no influence. ⎛ R ⎞ Output voltage: v0 = ⎜1 + 2 ⎟ vI ⎝ R⎠ v0 must remain within the bias voltages of the op-amp; the larger the R2, the smaller the range of input voltage vI in which the output is valid. 9.54 (a)
  • 17.
    − vI iL = R2 − ( −10V ) 10mA = R2 R2 = 1 K 1 R Also = F R2 R1 R3 vL = (10mA )( 0.05k ) = 0.5 V 0.5 i2 = = 0.5 mA 1 iR 3 = 10 + 0.5 = 10.5 mA v −v 13 − 0.5 Limit vo to 13V ⇒ R3 = O L = R3 = 1.19 K iR 3 10.5 RF R3 1.19 R Then = = = 1.19 = F R1 R2 1 R1 For example, RF = 119 K, R1 = 100 K (b) From part (a), vO = 13 V when vI = −10 V 9.55 (a) vx i1 = i2 and i2 = + iD , vx = −i2 RF R2 ⎛R ⎞ Then i1 = −i1 ⎜ F ⎟ + iD ⎝ R2 ⎠ ⎛ R ⎞ Or iD = i1 ⎜ 1 + F ⎟ ⎝ R2 ⎠ (b) vI 5 R1 = = ⇒ R1 = 5 k Ω i1 1 ⎛ R ⎞ R 12 = (1) ⎜ 1 + F ⎟ ⇒ F = 11 ⎝ R2 ⎠ R2 For example, R2 = 5 k Ω, RF = 55 k Ω 9.56 VX VX − vO (1) IX = + R2 R3 VX VX − vO (2) + =0 R1 RF
  • 18.
    ⎛ R ⎞ From(2) vO = VX ⎜ 1 + F ⎟ ⎝ R1 ⎠ ⎛ 1 1 ⎞ 1 ⎛ R ⎞ Then (1) I X = VX ⎜ + ⎟ − ⋅ VX ⎜1 + F ⎟ ⎝ R2 R3 ⎠ R3 ⎝ R1 ⎠ IX 1 1 1 1 R 1 R = = + − − F = − F VX R0 R2 R3 R3 R1 R3 R2 R1 R3 R1 R3 − R2 RF = R1 R2 R3 R1 R2 R3 or Ro = R1 R3 − R2 RF RF 1 Note: If = ⇒ R2 RF = R1 R3 then Ro = ∞, which corresponds to an ideal current source. R1 R3 R2 9.57 R2 R4 Ad = = =5 R1 R3 Minimum resistance seen by vI1 is R1. Set R1 = R3 = 25 kΩ Then R2 = R4 = 125 kΩ v0 iL = ⇒ v0 = iL RL = ( 0.5 )( 5 ) = 2.5 V RL v0 = 5 ( vI 2 − vI 1 ) 2.5 = 5 ( vI 2 − 2 ) ⇒ vI 2 = 2.5 V 9.58 R2 vO = ( vI 2 − vI 1 ) R1 R2 R R Ad = and 2 = 4 with R2 = R4 and R1 = R3 R1 R1 R3 Differential input resistance R 20 Ri = 2 R1 ⇒ R1 = i = = 10 K 2 2 R2 (a) = 50 ⇒ R2 = R4 = 500 K R1 R1 = R3 = 10 K R2 (b) = 20 ⇒ R2 = R4 = 200 K R1 R1 = R3 = 10 K R2 (c) = 2 ⇒ R2 = R4 = 20 K R1 R1 = R3 = 10 K R2 (d) = 0.5 ⇒ R2 = R4 = 5 K R1 R1 = R3 = 10 K 9.59
  • 19.
    We have ⎛ R ⎞⎛ R / R ⎞ ⎛R ⎞ ⎛ R ⎞⎛ 1 ⎞ ⎛ R2 ⎞ vO = ⎜ 1 + 2 ⎟ ⎜ 4 3 ⎟ vI 2 − ⎜ 2 ⎟ vI 1 or vO = ⎜ 1 + 2 ⎟ ⎜ ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝ R1 ⎠ ⎝ 1 + R4 / R3 ⎠ ⎝ R1 ⎠ ⎝ R1 ⎠ ⎝ 1 + R3 / R4 ⎠ ⎝ R1 ⎠ Set R2 = 50 (1 + x ) , R1 = 50 (1 − x ) R3 = 50 (1 − x ) , R4 = 50 (1 + x ) ⎡ ⎤ ⎡ ⎛ 1 + x ⎞⎤ ⎢ ⎥ 1+ x ⎞ ⎥ vI 2 − ⎛ 1 vO = ⎢1 + ⎜ ⎟⎥ ⎢ ⎜ ⎟ vI 1 ⎣ ⎝ 1 − x ⎠ ⎦ ⎢1 + ⎛ 1 − x ⎞ ⎥ ⎝ 1− x ⎠ ⎢ ⎜ 1+ x ⎟ ⎥ ⎣ ⎝ ⎠⎦ ⎡1 − x + (1 + x ) ⎤ ⎡ 1+ x ⎤ ⎛ 1+ x ⎞ vO = ⎢ ⎥⋅⎢ ⎥ vI 2 − ⎜ ⎟ vI 1 ⎣ 1− x ⎦ ⎢1 + x + (1 − x ) ⎥ ⎣ ⎦ ⎝ 1− x ⎠ ⎛ 1+ x ⎞ ⎛1+ x ⎞ =⎜ ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝1− x ⎠ ⎝ 1− x ⎠ For vI 1 = vI 2 ⇒ vO = 0 Set R2 = 50 (1 + x ) R1 = 50 (1 − x ) R3 = 50 (1 + x ) R4 = 50 (1 − x ) ⎛ ⎞ ⎛ 1+ x ⎞⎜ 1 ⎟ ⎛ 1+ x ⎞ vO = ⎜1 + ⎟ ⎜ 1 + x ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝ 1− x ⎠⎜1+ ⎟ ⎝ 1− x ⎠ ⎜ ⎟ ⎝ 1− x ⎠ ⎛ 1+ x ⎞ = vI 2 − ⎜ ⎟ vI 1 ⎝ 1− x ⎠ vI 1 = vI 2 = vcm vO 1 + x 1 − x − (1 + x ) −2 x = 1− = = vcm 1− x 1− x 1− x Set R2 = 50 (1 − x ) R1 = 50 (1 + x ) R3 = 50 (1 − x ) R4 = 50 (1 + x ) ⎛ ⎞ ⎛ 1− x ⎞⎜ 1 ⎟ ⎛ 1− x ⎞ vO = ⎜ 1 + ⎟ ⎜ 1 − x ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝ 1+ x ⎠⎜ 1+ ⎟ ⎝ 1+ x ⎠ ⎜ ⎟ ⎝ 1+ x ⎠ ⎛ 1− x ⎞ = ⎜1 − ⎟ vcm ⎝ 1+ x ⎠ 1 + x − (1 − x ) 2x Acm = = 1+ x 1+ x Worst common-mode gain −2 x Acm = 1− x (b)
  • 20.
    −2 x −2( 0.01) For x = 0.01, Acm = = = −0.0202 1 − x 1 − 0.01 −2 ( 0.02 ) For x = 0.02, Acm = = −0.04082 1 − 0.02 −2 ( 0.05 ) For x = 0.05, Acm = = −0.1053 1 − 0.05 1 1 For this condition, set vI 2 = + , vI 1 = − ⇒ vd = 1 V 2 2 1 ⎡ ⎛ 1 + x ⎞ ⎤ 1 ⎡1 − x + (1 + x ) ⎤ 1 2 1 Ad = ⎢1 + ⎜ ⎟⎥ = ⎢ ⎥= ⋅ = 2 ⎣ ⎝ 1 − x ⎠⎦ 2 ⎣ 1− x ⎦ 2 1− x 1− x 1.010 For x = 0.01 Ad = 1.010 C M R RdB = 20 log10 = 33.98 dB 0.0202 1 1.020 For x = 0.02, Ad = = 1.020 C M R RdB = 20 log10 = 27.96 dB 0.98 0.04082 1 1.0526 For x = 0.05 Ad = = 1.0526 C M R RdB = 20 log10 ≅ 20 dB 0.95 0.1053 9.60 ⎛ 10R ⎞ ⎛ 10 ⎞ vy = ⎜ ⎟ v2 = ⎜ ⎟ ( 2.65 ) ⇒ v y = vx = 2.40909 V ⎝ 10R+R ⎠ ⎝ 11 ⎠ v2 − v y 2.65 − 2.40909 i3 = i4 = = = 0.0120 mA R 20 v −v 2.50 − 2.40909 i1 = i2 = 1 x = = 0.0045455 mA R 20 vO = vx − i2 (10R ) = ( 2.40909 ) − ( 0.0045455 )( 200 ) vO = 1.50 V 9.61 10 iE = (1 + β )( iB ) = ( 81)( 2 ) = 162 mA = R R = 61.73 Ω 9.62 a. From superposition: R2 v01 = − ⋅ vI 1 R1 ⎛ R ⎞ ⎛ R1 ⎞ v02 = ⎜ 1 + 2 ⎟ ⎜ ⎟ vI 2 ⎝ R1 ⎠ ⎝ R3 + R4 ⎠ Setting vI 1 = vI 2 = vcm ⎡ ⎛ ⎞ ⎤ ⎢⎛ R ⎞ ⎜ 1 ⎟ R ⎥ v0 = v01 + v02 = ⎢⎜ 1 + 2 ⎟ ⎜ ⎟ − 2 ⎥ vcm ⎢⎝ R1 ⎠ ⎜ R3 ⎟ R1 ⎥ ⎢ ⎜ 1+ R ⎟ ⎥ ⎣ ⎝ 4 ⎠ ⎦
  • 21.
    ⎞ v R ⎛ R ⎞⎜ 1 ⎟ R Acm = 0 = 4 ⋅ ⎜ 1 + 2 ⎟ ⎜ ⎟− 2 vcm R3 ⎝ R1 ⎠ ⎜ R4 ⎟ R1 ⎜ 1+ R ⎟ ⎝ 3 ⎠ R4 ⎛ R2 ⎞ R2 ⎛ R4 ⎞ ⎜1 + ⎟ − ⎜1 + ⎟ = 3⎝ R R1 ⎠ R1 ⎝ R3 ⎠ ⎛ R4 ⎞ ⎜1 + ⎟ ⎝ R3 ⎠ R4 R2 − R R1 Acm = 3 ⎛ R4 ⎞ ⎜1 + ⎟ ⎝ R3 ⎠ R4 R b. Max. Acm ⇒ Min. and Max. 2 R3 R1 47.5 52.5 − Max. Acm = 10.5 9.5 = 4.5238 − 5.5263 ⇒ A = 0.1815 1 + 4.5238 cm 47.5 max 1+ 10.5 9.63 vI 1 − v A v A − vB vA − v0 = + (1) R1 + R2 Rv R2 vI 2 − vB vB − v A vB = + (2) R1 + R2 Rv R2 ⎛ R1 ⎞ ⎛ R2 ⎞ v− = ⎜ ⎟ vA + ⎜ ⎟ vI 1 (3) ⎝ R1 + R2 ⎠ ⎝ R1 + R2 ⎠ ⎛ R1 ⎞ ⎛ R2 ⎞ v+ = ⎜ ⎟ vB + ⎜ ⎟ vI 2 (4) ⎝ R1 + R2 ⎠ ⎝ R1 + R2 ⎠
  • 22.
    Now v− =v+ ⇒ R1vA + R2 vI 1 = R1vB + R2 vI 2 R So that v A = vB + 2 ( vI 2 − vI 1 ) R1 vI 1 ⎛ 1 1 1 ⎞ v v = vA ⎜ + + ⎟− B − 0 (1) R1 + R2 ⎝ R1 + R2 RV R2 ⎠ RV R2 vI 2 ⎛ 1 1 1 ⎞ v = vB ⎜ + + ⎟− A ( 2) R1 + R2 ⎝ R1 + R2 RV R2 ⎠ RV Then vI 1 ⎛ 1 1 1 ⎞ v v ⎛ R ⎞⎛ 1 1 1 ⎞ = vB ⎜ + + ⎟ − B − 0 + ⎜ 2 ⎟⎜ + + ⎟ ( vI 2 − vI 1 ) (1) R1 + R2 ⎝ R1 + R2 RV R2 ⎠ RV R2 ⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠ vI 2 ⎛ 1 1 1 ⎞ 1 ⎡ R2 ⎤ = vB ⎜ + + ⎟− ⎢ vB + ( vI 2 − vI 1 ) ⎥ (2) R1 + R2 ⎝ R1 + R2 RV R2 ⎠ RV ⎣ R1 ⎦ Subtract (2) from (1) 1 ⎛ R ⎞⎛ 1 1 1 ⎞ v 1 R2 ( vI 1 − vI 2 ) = ⎜ 2 ⎟ ⎜ + + ⎟ ( vI 2 − vI 1 ) − 0 + ⋅ ( vI 2 − vI 1 ) R1 + R2 ⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠ R2 RV R1 v0 ⎧⎛ R ⎞ ⎛ 1 ⎪ 1 1 ⎞ 1 ⎫ 1 R2 ⎪ = ( vI 2 − vI 1 ) ⎨⎜ 2 ⎟ ⎜ + + ⎟+ + ⋅ ⎬ R2 ⎪⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠ R1 + R2 RV R1 ⎪ ⎩ ⎭ ⎛ R ⎞ ⎧ R2 R R1 R ⎫ v0 = ( vI 2 − vI 1 ) ⎜ 2 ⎟ ⎨ + 2 +1+ + 2⎬ ⎝ R1 ⎠ ⎩ R1 + R2 RV R1 + R2 RV ⎭ 2 R2 ⎛ R2 ⎞ v0 = ⎜1 + ⎟ ( vI 2 − vI 1 ) R1 ⎝ RV ⎠ 9.64
  • 23.
    vI 1 −vI 2 ( 0.50 − 0.030sin ω t ) − ( 0.50 + 0.030sin ω t ) i1 = = R1 20 −0.060sin ω t = 20 i1 = −3sin ω t ( μ A ) vO1 = i1 R2 + vI 1 = ( −0.0030sin ω t )(115 ) + 0.50 − 0.030sin ω t vO1 = 0.50 − 0.375sin ω t vO 2 = vI 2 − i1 R2 = 0.50 + 0.030sin ω t − ( −0.003sin ω t )(115 ) vO 2 = 0.50 + 0.375sin ω t R4 200 vO = ( vO 2 − vO1 ) = ⎡ 0.50 + 0.375sin ω t − ( 0.50 − 0.375sin ω t ) ⎤ R3 50 ⎣ ⎦ vO = 3sin ω t ( V ) vO 2 0.50 + 0.375sin ω t i3 = = R3 + R4 50 + 200 i3 = 2 + 1.5sin ω t ( μ A ) vO1 − vO ( 0.5 − 0.375sin ω t ) − ( 3sin ω t ) i2 = = R3 + R4 250 i2 = 2 − 13.5sin ω t ( μ A ) 9.65 ⎛ 40 ⎞ (a) vOB = ⎜1 + ⎟ vI = 2.1667 sin ω t ⎝ 12 ⎠ 30 (b) vOC = − vI = −1.25sin ω t 12 (c) vO = vOB − vOC = 2.1667 sin ω t − ( −1.25sin ω t ) vO = 3.417 sin ω t vO 3.417 (d) = = 6.83 vI 0.5 9.66 vI iO = R 9.67 vO R ⎛ 2R ⎞ Ad = = 4 ⎜1 + 2 ⎟ vI 2 − vI 1 R3 ⎝ R1 ⎠ 200 ⎛ 2 (115 ) ⎞ vO = ⎜1 + ⎟ ( 0.06sin ω t ) 50 ⎝ R1 ⎠ 230 For vO = 0.5 = 1.0833 ⇒ R1 = 212.3 K R1 230 vO = 8 V = 32.33 ⇒ R1 = 7.11 K ⇒ R1 f = 7.11 K, R1 (potentiometer) = 205.2 K R1 9.68
  • 24.
    ⎛ 2 R2⎞ R4 vO = ⎜1 + ⎟ ( vI 2 − vI 1 ) ⎝ R3 R1 ⎠ Set R2 = 15 K, Set R1 = 2 K + 100 k ( Rot ) R4 Want ≈8 Set R3 = 10 K R3 R 4 = 75 K Now 75 ⎛ 2 (15 ) ⎞ Gain (min) = ⎜1 + ⎟ = 9.71 10 ⎝ 102 ⎠ 75 ⎛ 2 (15 ) ⎞ Gain ( max ) = ⎜1 + ⎟ = 120 10 ⎝ 2 ⎠ 9.69 For a common-mode gain, vcm = vI 1 = vI 2 Then ⎛ R ⎞ R v01 = ⎜ 1 + 2 ⎟ vcm − 2 vcm = vcm ⎝ R1 ⎠ R1 ⎛ R ⎞ R v02 = ⎜ 1 + 2 ⎟ vcm − 2 vcm = vcm ⎝ R1 ⎠ R1 From Problem 9.62 we can write R4 R4 − R3 R3 ′ Acm = ⎛ R4 ⎞ ⎜1 + ⎟ ⎝ R3 ⎠ ′ R3 = R4 = 20 kΩ, R3 = 20 kΩ ± 5% 20 1− R3 1 ⎛ 20 ⎞ ′ Acm = = ⎜1 − ⎟ (1 + 1) 2 ⎝ ′ R3 ⎠ ′ For R3 = 20 kΩ − 5% = 19 kΩ 1 ⎛ 20 ⎞ Acm = ⎜ 1 − ⎟ = −0.0263 2 ⎝ 19 ⎠ ′ For R3 = 20 kΩ + 5% = 21 kΩ 1 ⎛ 20 ⎞ Acm = ⎜ 1 − ⎟ = 0.0238 2⎝ 21 ⎠ So Acm max = 0.0263 9.70 a. 1 ⋅ vI ( t ′ ) dt ′ R1C2 ∫ v0 = 0.5 ∫ 0.5sin ω t dt = − ω cos ω t 1 ( 0.5 ) 0.5 v0 = 0.5 = ⋅ = R1C2 ω 2π R1C2 f 1 1 f = = ⇒ f = 31.8 Hz 2π R1C2 2π ( 50 × 103 )( 0.1× 10−6 ) Output signal lags input signal by 90°
  • 25.
    b. 0.5 i. f = ⇒ f = 15.9 Hz 2π ( 50 × 103 )( 0.1× 10−6 ) 0.5 ii. f = ⇒ f = 159 Hz ( 0.1)( 2π ) ( 50 ×103 )( 0.1×10−6 ) 9.71 1 − vI ⋅ t vO = − RC ∫ vI ( t ) dt = RC vI = −0.2 Now − ( −0.2 )( 2 ) 8= RC (a) RC = 0.05 s ( 0.2 ) t (b) 14 = ⇒ t = 3.5 s 0.05 9.72 a. 1 1 − R2 R2 ⋅ v0 jω C2 jω C2 = =− vI R1 ⎛ 1 ⎞ R1 ⎜ R2 + ⎟ ⎝ jω C2 ⎠ v0 R 1 =− 2⋅ vI R1 1 + jω R2 C2 v0 R b. =− 2 vI R1 1 c. f = 2π R2 C2 9.73 a. v0 − R2 R ( jω C1 ) = =− 2 vI R + 1 1 + jω R1C1 jω C1 1 v0 R jω R1C1 =− 2⋅ vI R1 1 + jω R1C1 v0 R b. =− 2 vI R1 1 c. f = 2π R1C1 9.74 Assuming the Zener diode is in breakdown,
  • 26.
    R2 1 vO = − ⋅ Vz = − ( 6.8 ) ⇒ vO = −6.8 V R1 1 0 − vO 0 − ( −6.8 ) i2 = = ⇒ i2 = 6.8 mA R2 1 10 − Vz 10 − 6.8 iz = − i2 = − 6.8 ⇒ iz = −6.2 mA!!! Rs 5.6 Circuit is not in breakdown. Now 10 − 0 10 = i2 = ⇒ i2 = 1.52 mA Rs + R1 5.6 + 1 vO = −i2 R2 = − (1.52 )(1) ⇒ vO = −1.52 V iz = 0 9.75 ⎛ v ⎞ ⎡ v ⎤ ⎛ vI ⎞ vO = −VT ln ⎜ I ⎟ = − ( 0.026 ) ln ⎢ −14 I 4 ⎥ ⇒ vO = −0.026 ln ⎜ −10 ⎟ ⎝ I s R1 ⎠ ⎢ (10 )(10 ) ⎥ ⎣ ⎦ ⎝ 10 ⎠ For vI = 20 mV , vO = 0.497 V For vI = 2 V , vO = 0.617 V 9.76
  • 27.
    ⎛ 333 ⎞ v0= ⎜ ⎟ ( v01 − v02 ) = 16.65 ( v01 − v02 ) ⎝ 20 ⎠ ⎛i ⎞ v01 = −vBE1 = −VT ln ⎜ C1 ⎟ ⎝ IS ⎠ ⎛i ⎞ v02 = −vBE 2 = −VT ln ⎜ C 2 ⎟ ⎝ IS ⎠ ⎛i ⎞ ⎛i ⎞ v01 − v02 = −VT ln ⎜ C1 ⎟ = VT ln ⎜ C 2 ⎟ ⎝ iC 2 ⎠ ⎝ iC1 ⎠ v v iC 2 = 2 , iC1 = 1 R2 R1 ⎛v R ⎞ So v01 − v02 = VT ln ⎜ 2 ⋅ 1 ⎟ ⎝ R2 v1 ⎠ Then ⎛v R ⎞ v0 = (16.65 )( 0.026 ) ln ⎜ 2 ⋅ 1 ⎟ ⎝ v1 R2 ⎠ ⎛v R ⎞ v0 = 0.4329 ln ⎜ 2 ⋅ 1 ⎟ ⎝ v1 R2 ⎠ ln ( x ) = log e ( x ) = ⎡ log10 ( x ) ⎤ ⋅ ⎡log e (10 ) ⎤ ⎣ ⎦ ⎣ ⎦ = 2.3026 log10 ( x ) ⎛v R ⎞ Then v0 ≅ (1.0 ) log10 ⎜ 2 ⋅ 1 ⎟ ⎝ v1 R2 ⎠ 9.77 ( ) vO = − I s R evI / VT = − (10−14 )(104 ) evI / VT vO = (10 −10 )e vI / 0.026 For vI = 0.30 V , vo = 1.03 × 10−5 V For vI = 0.60 V , vo = 1.05 V