Chapter 12
Exercise Solutions

EX12.1
                     A
a.           Af =
                  1 + Aβ
                       A        A
             1 + Aβ =    ⇒ Aβ =    −1
                      Af        Af
                    1 1   1   1
             β=       − =   −   = 0.05 − 0.0001 ⇒ β = 0.0499
                    Af A 20 104
               Af           20             20
b.                   =               =          = 0.998
             (1/ β ) (1/ 0.0499 )        20.040

EX12.2
       A
Af =
    1 + Aβ
     1 1    1   1
 β=     − =   − 6 = 0.01 − 10−6
    Af A 100 10
 β = 0.009999
dAf            1 dA ⎛ Af ⎞ dA
       =             ⋅
                     =         ⋅
 Af   (1 + β A) A ⎜ A ⎟ A
                       ⎝     ⎠
dAf ⎛ 100 ⎞              dAf
    = ⎜ 6 ⎟ ( 20 ) % ⇒         = 0.002%
 Af   ⎝ 10 ⎠              Af

EX12.3
Bandwidth = ω H (1 + β A0 )
                      ⎛A ⎞                ⎛ 105 ⎞
                = ω H ⎜ 0 ⎟ = ( 2π )(10 ) ⎜     ⎟
                      ⎝ At ⎠              ⎝ 100 ⎠
ω = ( 2π ) (104 ) rad / sec ⇒ f = 10 kHz

EX12.4
(a)
 vOA = A1 A2 vi + A2 vn
      = (100 )(10 ) vi + (10 ) vn
 So 1000vi            S
    =          = 100 i
 No    10vn           Ni
(b)
         A1 A2             A2
vOC =             vi +             vn
      1 + β Α1 Α2      1 + β Α1 Α2
                 105                   10
      =                   v +                     vn
          1 + ( 0.001)10      1 + ( 0.001) (105 )
                         5 i



So 103 vi      S
   =      = 104 i
N o 0.1vn      Ni
EX12.5
a.     Vε = VS − V fb = 100 − 99 = 1 m V
                      5
 V0 = AvVε ⇒ Av =        ⇒ Av = 5000 V/V
                   0.001
                  V fb 0.099
V fb = β V0 ⇒ β =     =      ⇒ β = 0.0198 V/V
                  V0     5
               Av                  5000
Avf =                 =                          ⇒ Avf = 50 V/V
        1 + β Av          1 + ( 0.0198 )( 5000 )

b.              Rif = Ri (1 + β Av ) = ( 5 ) ⎡1 + ( 0.0198 )( 5000 ) ⎤ ⇒ Rif = 500 kΩ
                                             ⎣                       ⎦
                           R0              4
               R0 f =           =                       ⇒ R0 f ⇒ 40 Ω
                        1 + β Av 1 + ( 0.0198 )( 5000 )

EX12.6
a.     I ε = I S − I fb = 100 − 99 = 1 μ A
        I0    5
 Ai =      =      ⇒ Ai = 5000 A/A
        I ε 0.001
        I fb        0.099
 β=            =          ⇒ β = 0.0198 A/A
        I0            5
           Ai            5000
Aif =           =                       ⇒ Aif = 50 A/A
        1 + Ai β 1 + ( 5000 )( 0.0198 )
                           Ri              5
b.              Rif =           =                       ⇒ Rif ⇒ 50 Ω
                        1 + β Ai 1 + ( 0.0198 )( 5000 )
               R0 f = (1 + β Ai ) R0 = ⎡1 + ( 0.0198 )( 5000 ) ⎤ ( 4 ) ⇒ R0 f = 400 kΩ
                                       ⎣                       ⎦

EX12.7
               Av                  104
Avf =                      =                   ⇒ Avf = 3.9984
                 Av                  104
        1+                   1+
           1 + ( R2 / R1 )      1 + ( 30 /10 )
              105
Avf =                     = 3.99984
                105
        1+
           1 + ( 30 /10 )
3.99984 − 3.9984
                 × 100% ⇒ 0.0360%
     3.9984

EX12.8
Use a non inverting op-amp.
   R          R
1 + 2 = 15 ⇒ 2 = 14
   R1         R1
Let            R2 = 140 K
               R1 = 10 K
        1
β=          = 0.066667
         R2
      1+
         R1
Input resistance.
 Rif = 5 ( 0.06667 ) ( 5 × 103 ) ≅ 1.67 MΩ
                     50
Rof =                              ≡ 0.15Ω
        ( 0.066667 ) ( 5 × 103 )

EX12.9
                  ⎛              ⎞
     ⎛ h        ⎞⎜       RE      ⎟
io = ⎜ FE       ⎟ ⎜              ⎟ ⋅ ii
     ⎝ 1 + hFE  ⎠ ⎜ R + rk ⎟
                  ⎜ E 1+ h ⎟
                  ⎝           FE ⎠

      ( 80 )( 0.026 )
rk =                   = 4.16 k Ω
            0.5
Then
   rk       4.16
          =         = 0.0514 k Ω
1 + hFE       81
Then we want
io             ⎛ 80 ⎞ ⎛     RE          ⎞
   = 0.95 = ⎜ ⎟ ⎜                       ⎟
ii             ⎝ 81 ⎠ ⎝ RE + 0.0514 ⎠
or
⎛     RE      ⎞
⎜             ⎟ = 0.9619
⎝ RE + 0.0514 ⎠
which yields
RE ( min ) = 1.30 k Ω
and
                     ⎛ 81 ⎞
V + = I E RE + 0.7 = ⎜ ⎟ ( 0.5 )(1.3) + 0.7 ⇒ V + ( min ) = 1.36 V
                     ⎝ 80 ⎠

EX12.10
Use the configuration shown in figure 12.20.
RS = 500 Ω, RL = 200 Ω
          RF
Let 1 +      = 15
          R1
For example, let R1 = 2 K
                      RF = 28 K

EX12.11
a.
     ⎛ R2 ⎞                  ⎛ 20 ⎞
VG = ⎜         ⎟ (10 ) − 5 = ⎜         ⎟ (10 ) − 5
     ⎝ R1 + R2 ⎠             ⎝ 20 + 30 ⎠
VG = −1 V
VS = −1 − VGS
       VS − ( −5 )
                     = K n (VGS − VTN )
                                          2
ID =
           RS
( −1) − VGS + 5 = (1.5)( 0.4 )(VGS − 2 )
                                              2
4 − VGS = 0.6 (V 2GS − 4VGS + 4 )
0.6V 2GS − 1.4VGS − 1.6 = 0

                (1.4 )       + 4 ( 0.6 )(1.6 )
                         2
        1.4 ±
VGS =
                     2 ( 0.6 )
VGS = 3.174 V
g m = 2 K n (VGS − VTN ) = 2 (1.5 )( 3.17 − 2 )
g m = 3.52 mA / V




       ⎛ RD ⎞                     ⎛ 2 ⎞
I0 = − ⎜         ⎟ ( g mVgs ) = − ⎜    ⎟ ( 3.52 ) Vgs
       ⎝ RD + RL ⎠                ⎝ 2+2⎠
I 0 = −1.76Vgs
                                          Vi
Vi = Vgs + g mVgs RS ⇒ Vgs =
                                      1 + g m RS
                Vi
Vgs =                       = ( 0.4153) Vi
        1 + ( 3.52 )( 0.4 )
                                                 I0
I 0 = − (1.76 )( 0.4153)Vi ⇒ Agf =                  = −0.731 mA / V
                                                 Vi

b.      For K n = 1 mA / V 2
From dc analysis:
4 − VGS = (1)( 0.4 )(VGS − 2 )
                                      2



4 − VGS = 0.4 (V 2GS − 4VGS + 4 )
0.4V 2GS − 0.6VGS − 2.4 = 0

                 ( 0.6 ) + 4 ( 0.4 )( 2.4 )
                         2
        0.6 ±
VGS =
                      2 ( 0.4 )
VGS = 3.31V
g m = 2 (1)( 3.31 − 2 ) = 2.623 mA / V
       ⎛ 2 ⎞
I0 = − ⎜       ⎟ ( 2.623) Vgs = −1.311Vgs
       ⎝ 2+2⎠
               Vi
Vgs =                     = Vi ( 0.488 )
      1 + ( 2.623)( 0.4 )
I 0 = − (1.31)( 0.488 )Vi
I0
Agf =      = −0.6398 mA / V
        Vi
              0.731 − 0.6398
% change =                   ⇒ 12.5%
                  0.731

EX12.12
Use the circuit with the configuration shown in Figure 12.27.
The LED replaces RL .
                                 1
Agf = 10 mS = 10 × 10−3 =           ⇒ RE = 100 Ω
                                 RE

EX12.13
dc analysis:
10 − V0          V0
        = ID +                   (1)
  4.7          47 + 20
I D = K n (VGS − VTN )
                         2
                                 (2)
       ⎛ 20 ⎞
VGS = ⎜           ⎟ V0 = 0.2985V0        (3)
       ⎝ 20 + 47 ⎠
2.13 − V0 ( 0.213) = I D + ( 0.0149 ) V0
                                         (1)
I D = 2.13 − V0 ( 0.2279 )

From (2):
2.13 − V0 ( 0.2279 ) = 1 ⎡( 0.2985V0 ) − 1.5⎤
                                                2
                         ⎣                  ⎦
2.13 − V0 ( 0.2279 ) = 0.0891V0 − 0.8955V0 + 2.25
                                    2



0.0891V0 − 0.6676V0 + 0.12 = 0
          2



                  ( 0.6676 ) − 4 ( 0.0891)( 0.12 )
                             2
       0.6676 ±
V0 =
                       2 ( 0.0891)
V0 = 7.31 V
      10 − 7.31 7.31
ID =           −     = 0.572 − 0.109
         4.7     67
I D = 0.463 mA
         0.463
VGS =           + 1.5 = 2.18
           1
a.        g m = 2 K n (VGS − VTN ) = 2 (1)( 2.18 − 1.5 ) ⇒ g m = 1.36 mA/V
V0            V0 − Vgs
   + g mVgs +          = 0 (1)
RD               RF
Vgs − Vi       Vgs − V0
           +              =0       (2)
   RS             RF
    ⎛ 1   1 ⎞ V0 Vi
Vgs ⎜   +    ⎟=  +
    ⎝ RS RF ⎠ RF RS
    ⎛ 1   1 ⎞ V   V
Vgs ⎜ + ⎟ = 0 + i
    ⎝ 20 47 ⎠ 47 20
Vgs ( 0.0713) = V0 ( 0.0213) + Vi ( 0.050 )
Vgs = V0 ( 0.299 ) + Vi ( 0.701)

From (1):
 V0                 V Vgs
     + (1.36 ) Vgs + 0 −       =0
4.7                 47 47
V0 ( 0.213) + (1.36 ) Vgs + V0 ( 0.213) − Vgs ( 0.0213) = 0
V0 ( 0.234 ) + Vgs (1.34 ) = 0
V0 ( 0.234 ) + (1.34 ) ⎡(V0 )( 0.299 ) + (Vi )( 0.701) ⎤ = 0
                       ⎣                               ⎦
                                             V0
V0 ( 0.635 ) + Vi ( 0.939 ) = 0 ⇒ Avf =         = −1.48
                                             Vi
b.      For K n = 1.5 mA / V 2
From dc analysis:
2.13 − V0 ( 0.2279 ) = 1.5 ⎣( 0.2985V0 ) − 1.5⎦
                                                    2
                           ⎡                  ⎤
                          = 1.5 ⎡0.0891V0 − 0.8955V0 + 2.25⎤
                                         2
                                ⎣                          ⎦
                          = 0.1337V0 − 1.343V0 + 3.375
                                     2


0.1337V0 − 1.115V0 + 1.245 = 0
           2



                   (1.115) − 4 ( 0.1337 )(1.245 )
                               2
        1.115 ±
V0 =
                        2 ( 0.1337 )
        1.115 ± 0.7597
V0 =                   ⇒ V0 = 7.01 V
          2 ( 0.1337 )
      10 − 7.01 7.01
ID =           −     = 0.636 − 0.105
         4.7     67
I D = 0.531 mA
         0.531
VGS =           + 1.5 = 2.09
          1.5
g m = 2 K n (VGS − VTN ) = 2 (1.5 )( 2.09 − 1.5 )
    = 1.77 mA/V

From ac analysis:
 V0               V Vgs
    + (1.77 )Vgs + 0 −  =0
4.7               47 47
V0 ( 0.213) + (1.77 ) Vgs + V0 ( 0.0213) − Vgs ( 0.0213) = 0
V0 ( 0.234 ) + Vgs (1.75 ) = 0
V0 ( 0.234 ) + (1.75 ) ⎡V0 ( 0.299 ) + Vi ( 0.701) ⎤ = 0
                       ⎣                           ⎦
                                         V0
V0 ( 0.757 ) + Vi (1.23) = 0 ⇒ Avf =        = −1.62
                                         Vi
                  1.62 − 1.48
% change =                    ⇒ 9.46%
                     1.48

EX12.14
a.     Input resistance.




V0            V0 − Vgs
   + g mVgs +          = 0 (1)
RD               RF
       Vgs − V0
Ii =                   (2)
         RF
So V0 = Vgs − I i RF
   ⎛ 1        1 ⎞         ⎛       1 ⎞
V0 ⎜      +       ⎟ + Vgs ⎜ g m −    ⎟ = 0 (1)
   ⎝ RD RF ⎠              ⎝       RF ⎠
                    ⎛ 1       1 ⎞      ⎛       1 ⎞
⎡Vgs − I i ( 47 ) ⎤ ⎜
⎣                 ⎦ 4.7 + 47 ⎟ + Vgs ⎜1.36 − 47 ⎟ = 0
                    ⎝           ⎠      ⎝         ⎠
⎡Vgs − I i ( 47 ) ⎤ ( 0.234 ) + Vgs (1.34 ) = 0
⎣                 ⎦
                                      Vgs
Vgs (1.57 ) = I i (11.0 ) ⇒ Rif =          = 7.0 kΩ
                                       Ii

Output Resistance.
VX              VX
IX =      + g mVgs +
       RD            RS + RF
      ⎛ RS ⎞            ⎛ 20 ⎞
Vgs = ⎜          ⎟ VX = ⎜         ⎟ VX = 0.2985VX
      ⎝ RS + RF ⎠       ⎝ 20 + 47 ⎠
      V                             VX
I X = X + (1.36)(0.2985)VX +
      4.7                        20 + 47
I X = VX [ 0.213 + 0.406 + 0.0149]
         VX
R0 f =      = 1.58 kΩ
         IX

b.          From part (a)
                                    ⎛         1 ⎞
⎡Vgs − I i ( 47 ) ⎤ ( 0.234 ) + Vgs ⎜ 1.77 − ⎟ = 0
⎣                 ⎦
                                    ⎝        47 ⎠
                                    Vgs
Vgs (1.98 ) = I i (11) ⇒ Rif =           = 5.56 kΩ
                                     Ii
         VX                             VX
IX =         + (1.77 )( 0.2985 ) VX +
         4.7                          20 + 47
                                                    VX
I X = VX [ 0.213 + 0.528 + 0.0149] ⇒ R0 f =            = 1.32 kΩ
                                                    IX

EX12.15
Use the circuit with the configuration shown in Figure 12.41
Let RF = 10 K

EX12.16
      ⎛ 5.5 ⎞
VTH = ⎜          ⎟ (10 ) = 0.9735 V
      ⎝ 5.5 + 51 ⎠
RTH = 5.5 || 51 = 4.965 kΩ
           0.973 − 0.7
I BQ =                   = 0.00217 mA
         4.96 + (121)(1)
I CQ = 0.2605 mA
rπ = 11.98 kΩ, g m = 10.02 mA / V
Req = RS || R1 || R2 || rπ   = (10 ) || 51|| 5.5 || 12
                             = 2.598 kΩ

From Equation (12.99(b)):
               ⎛       Req        ⎞
T = ( g m RC ) ⎜
               ⎜R +R +R ⎟         ⎟
               ⎝ C       F     eq ⎠

                 ⎛      2.598       ⎞
  = (10 )(10 ) ⎜                    ⎟ ⇒ T = 2.75
                 ⎝ 10 + 82 + 2.598 ⎠

EX12.17 Computer Analysis

EX12.18
Vε = −Vt , V0 = AvVε = − AvVt
     ⎛ R1 || Ri ⎞             ⎛ R1 || Ri ⎞
Vr = ⎜               ⎟ V0 = − ⎜               ⎟ ( AvVt )
     ⎝ R1 || Ri + R2 ⎠        ⎝ R1 || Ri + R2 ⎠
        Vr      ⎛ R1 || Ri ⎞
T =−       = Av ⎜               ⎟
        Vt      ⎝ R1 || Ri + R2 ⎠
or
       Av
T=
        R
     1+ 2
       R1 Ri

EX12.19
                           ⎛ f′ ⎞
Phase = −180° = −3 tan −1 ⎜ 5 ⎟
                           ⎝ 10 ⎠
          ⎛ f′ ⎞
or tan −1 ⎜ 5 ⎟ = 60° ⇒ f ′ = 1.732 × 105 Hz
          ⎝ 10 ⎠
                     β (100 )
 T ( f ′) = 1 =                   3
                 ⎡     ⎛ f′ ⎞ ⎤
                              2
                 ⎢ 1+ ⎜ 5 ⎟ ⎥
                 ⎢     ⎝ 10 ⎠ ⎥
                 ⎣              ⎦
                     β (100 )
               =                    3
                                      ⇒ β = 0.08
                 ⎡ 1 + (1.732 )2 ⎤
                 ⎢
                 ⎣                ⎥
                                  ⎦

EX12.20
                1000
Afo =                        = 7.092
        1 + ( 0.140 )(1000 )
( 0.140 )(1000 )
T =1=
                                                   2               2
                  ⎛ f ⎞      ⎛ f ⎞                        ⎛ f ⎞
              1 + ⎜ 3 ⎟. 1 + ⎜       4 ⎟
                                                       1+ ⎜ 6 ⎟
                  ⎝ 10 ⎠     ⎝ 5 × 10 ⎠                   ⎝ 10 ⎠
By trial and error, at f = 7.65 × 104 Hz
                    ( 0.140 )(1000 )
T =
        1 + ( 76.5 ) 1 + (1.53) 1 + ( 0.0765 )
                        2        2             2



         ( 0.140 )(1000 )
    =                        = 1.00
      ( 76.5 )(1.828 )(1.0 )
Then
φ = − ⎡ tan −1 (76.5) + tan −1 (1.53) + tan −1 (0.0765) ⎤
      ⎣                                                 ⎦
  = − [89.25 + 56.83 + 4.37 ] = −150.45
Phase Marge = 180 − 150.45 = 29.5°

EX12.21
The new loop gain function is
                          105                             1
T ′( f ) =                                   ×
           ⎛          f ⎞⎛             f ⎞ ⎛1 + j ⋅ f ⎞ ⎛1 + j ⋅ f ⎞
           ⎜1 + j ⋅      ⎟⎜ 1 + j ⋅         ⎟ ⎜        ⎟⎜               ⎟
                                                                5 × 108 ⎠
           ⎝        f PD ⎠ ⎝        5 × 105 ⎠ ⎝    107 ⎠ ⎝
             ⎧
             ⎪     ⎛ f ⎞         −1 ⎛    f ⎞             ⎛ f ⎞          ⎛ f ⎞⎫     ⎪
Phase = − ⎨ tan −1 ⎜      ⎟ + tan ⎜         5 ⎟
                                                + tan −1 ⎜ 7 ⎟ + tan −1 ⎜       8 ⎟⎬
             ⎪
             ⎩     ⎝ f PD ⎠         ⎝ 5 × 10 ⎠           ⎝ 10 ⎠         ⎝ 5 × 10 ⎠ ⎪
                                                                                   ⎭
For a phase margin 45° ⇒ Phase = −135°, the poles are far apart so this will occur at approximately
 f ′ = 5 × 105 Hz. Then
                                             105
T ′( f ) = 1 =
                                            2
                           ⎛ 5 × 105 ⎞
                        1+ ⎜         ⎟ × 1+1× 1× 1
                           ⎝ f PD ⎠
                                      105
               1=
                                                       2
                                         ⎛ 5 × 105 ⎞
                     (1.414 )         1+ ⎜         ⎟
                                         ⎝ f PD ⎠
                2
   ⎛ 5 × 105 ⎞
1+ ⎜         ⎟ = 5 × 10
                        9

   ⎝ f PD ⎠
          5 × 105
 f PD ≅              ⇒ f PD = 7.07 Hz
          5 × 109

EX12.22
                A0                     2 × 105
Af ( 0 ) =                  =                              ⇒ Af (0) ≅ 20
             1 + β A0           1 + ( 0.05 ) ( 2 × 105 )

 f C = f PD (1 + β A0 ) = 100 ⎡1 + ( 0.05 ) ( 2 × 105 ) ⎤ ⇒ fC ≅ 1 MHz
                              ⎣                         ⎦

EX12.23
Phase Margin = 45° ⇒ Phase = −135°
This will occur at approximately f ′ = 107 Hz
105
T ′( f ) = 1 =
                                     2
                            ⎛ 107 ⎞
                         1+ ⎜      ⎟ × 2× 1
                            ⎝ f PD ⎠
                                2
                     ⎛ 107 ⎞
                1+ ⎜        ⎟ = 5 × 10
                                       9

                     ⎝ f PD ⎠
                            107
                 f PD ≅            ⇒ f PD = 141 Hz
                           5 × 109

TYU12.1
          A
Af =
      1 + Aβ
A f + A f Aβ = A
Af = A (1 − Af β )
         Af                       80
A=                   =
     1 − Af β            1 − ( 80 )( 0.0120 )
A = 2000

TYU12.2
dAf       1      dA ⎛ Af ⎞ dA
    =          ⋅   =⎜    ⎟.
 Af   (1 + β A) A ⎝ A ⎠ A
  dA dAf             ⎛ A     ⎞            ⎛ 5 × 105 ⎞  dA
     =              ⋅⎜
                     ⎜A      ⎟ = ( 0.001) ⎜
                             ⎟                      ⎟⇒    = ±5%
   A   Af            ⎝ f     ⎠            ⎝ 100 ⎠       A

TYU12.3
Af ⋅ f H = A0 ⋅ f1
        A0 ⋅ f1 (10 ) ( 8 )
                    6

Af =           =            ⇒ Af ( 0 ) = 32
          fH     250 × 103

TYU12.4
 Vε = VS − V fb = 100 − 99 = 1 mV
        I 0 5 mA
 Ag =      =     ⇒ Ag = 5 A/V
        Vε 1 mV
        V fb        99 mV
  β=            =         ⇒ β = 19.8 V/A
         I0         5 mA
               Ag                  5
Agf =                    =                    ⇒ Agf = 0.05 A/V = 50 mA/V
        1 + β Ag             1 + (19.8 )( 5 )

TYU12.5
I ε = I S − I fb = 100 − 99 = 1 μ A
          V0   5V
 Az =        =     ⇒ Az = 5 × 106 V/A
          Iε 1 μ A
          I fb        99 μ A
     β=          =           ⇒ β = 1.98 × 10−5 A/V
          V0           5V
                 Az                   5 × 106
Azf =                   =                                   ⇒ Azf = 5 × 104 V/A = 50 V/mA
          1 + β Az          1 + (1.98 × 10−5 )( 5 × 106 )

TYU12.6
                        hFEVT (100 )( 0.026 )
a.               rπ =         =               = 5.2 kΩ
                         I CQ      0.5
          I CQ         0.5
gm =              =         = 19.23 mA / V
          VT          0.026
       ⎛1      ⎞        ⎛ 1           ⎞
       ⎜ + g m ⎟ RE     ⎜     + 19.23 ⎟ ( 2 )
         rπ
Avf = ⎝        ⎠     = ⎝              ⎠
                          5.2
         ⎛1      ⎞        ⎛ 1           ⎞
     1 + ⎜ + g m ⎟ RE 1 + ⎜     + 19.23 ⎟ ( 2 )
         ⎝ rπ    ⎠        ⎝ 5.2         ⎠
          (19.42 )( 2 )
      =                   ⇒ Avf = 0.97490
        1 + (19.42 )( 2 )
Rif   = rπ + (1 + hFE ) RE = 5.2 + (101)( 2 ) ⇒ Rif            = 207.2 kΩ

                     rπ      5.2
R0 f = RE                 =2     ⇒ R0 f = 0.0502 kΩ ⇒ 50.2 Ω
                  1 + hFE    101
b.               hFE = 150 ⇒ rπ = 7.8 kΩ, g m = 19.23mA/V
        ⎛ 1           ⎞
        ⎜     + 19.23 ⎟ ( 2 )
                                    (19.36 )( 2 )
Avf = ⎝               ⎠
          7.8
                                =
          ⎛ 1           ⎞         1 + (19.36 )( 2 )
      1+ ⎜      + 19.23 ⎟ ( 2 )
          ⎝ 7.8         ⎠
Avf = 0.97482 ⇒ 0.0082% change in Avf
Rif = 7.8 + (101)( 2 ) = 209.8 kΩ ⇒ 1.25% change in Rif

                     rπ      7.8
R0 f = RE                 =2     = 2 0.0517
                  1 + hFE    151
R0 f = 50.36 Ω ⇒ 0.319% change in R0 f

TYU12.7
V0 = ( g mVgs ) RS
Vi = Vgs + g m RSVgs
          Vi
Vgs =
      1 + g m RS
g m = 2 K n I DQ = 2      ( 0.2 )( 0.25 ) = 0.447 mA / V
        V0   g m RS
Avf =      =
        Vi 1 + g m RS
          ( 0.447 )( 5 )
Avf =                      ⇒ Avf   = 0.691
        1 + ( 0.447 )( 5 )
Rif = ∞




                 VX
I X = g mVgs =
                 RS
Vgs = −VX
         ⎛       1 ⎞
I X = VX ⎜ g m +    ⎟
         ⎝       RS ⎠
        1           1
R0 f =      RS =        5
       gm         0.447
R0 f = 1.55 kΩ

TYU12.8 Computer Analysis

TYU12.9 Computer Analysis

TYU12.10
                        hFE ⋅ Ag                  ( 200 ) (103 )
a.          Agf =                       =                            ⇒ Agf   = 10−3 A/V=1 mA/V
                    1 + ( hFE Ag ) RE       1 + ( 200 ) (103 )(103 )

                          ( 200 ) (104 )
b.          Agf =                            ⇒ Agf      ≅ 1 mA/V
                    1 + ( 200 ) (104 )(103 )
Percent change is negligible. ( 4.5 × 10−7 % )
      ( 200 ) (104 )           ( 200 ) (103 )
                        −
1 + ( 200 ) (104 )(103 ) 1 + ( 200 ) (103 )(103 )
                               10−3
    ( 200 ) (104 ) ⎡1 + ( 200 ) (104 )(103 )⎤
                   ⎣                        ⎦
=
           (10 )( 2 ×10 )( 2 ×10 )
                 −3            9              8



    (200)(103 )[1 + (200)(104 )(103 )]
−
        (10−3 )(2 × 109 )(2 × 108 )
      200 × 104 − 200 × 103
=                                        = 4.5 × 10−9
    (10−3 )( 2 ×109 )( 2 ×108 )
TYU12.11

T = Ai β =
                      Ai 0 β
                                   =
                                       (10 ) ( 0.01)
                                          5


             ⎛         f ⎞       ⎛ f ⎞
             ⎜ 1 + j ⋅ ⎟ 1 + j ⋅ ⎜ 10 ⎟
             ⎝         f1 ⎠      ⎝ ⎠
                        3
                     10
T ( f1 )   =1=
                      ⎛ f′⎞
                             2

                  1+ ⎜ E ⎟
                      ⎝ 10 ⎠
    ⎛ f′⎞
             2

1 + ⎜ E ⎟ = 106
    ⎝ 10 ⎠
 f E′ = 10 106 − 1 ⇒ f E′ ≈ 104 Hz

                     ⎛ f′⎞            ⎛ 104 ⎞
Phase = φ = − tan −1 ⎜ E ⎟ = − tan −1 ⎜     ⎟
                     ⎝ 10 ⎠           ⎝ 10 ⎠
                                          = − tan −1 (103 )
φ ≈ 90°
Phase Margin = 180 − 90 ⇒ Phase Margin = 90°

TYU12.12
                       Αι 0 β
T = Ai β =
            ⎛         f ⎞⎛       f ⎞
            ⎜ 1+ j ⋅ ⎟ ⎜1 + j ⋅ ⎟
            ⎝         f1 ⎠ ⎝     f2 ⎠
          ⎡        ⎛ f ⎞        ⎛ f ⎞⎤
Phase = − ⎢ tan −1 ⎜ ⎟ + tan −1 ⎜ ⎟ ⎥
          ⎣        ⎝ f1 ⎠       ⎝ f2 ⎠⎦
Phase Margin = 60° ⇒ Phase = −120°
          ⎡        ⎛ f ⎞          ⎛ f ⎞⎤
−120° = − ⎢ tan −1 ⎜ 4 ⎟ + tan −1 ⎜ 5 ⎟ ⎥
          ⎣        ⎝ 10 ⎠         ⎝ 10 ⎠ ⎦
At f ′ = 7.66 × 104 Hz,
Phase = − ⎡ tan −1 ( 7.66 ) + tan −1 ( 0.766 ) ⎤
          ⎣                                    ⎦
           = − [82.56 + 37.45]
           = −120°
T ( f ′) = 1 =
                            (10 ) β
                                  5



                  1+ ( 7.66 ) × 1 + ( 0.766 )
                              2                  2




            1=
                    (10 ) β
                        5

                                      ⇒ β = 9.73× 10−5
                 ( 7.725 )(1.26 )
TYU12.13
Phase Margin = 60° ⇒ Phase = −120°
                           ⎛ f′ ⎞
Phase = −120° = −3 tan −1 ⎜ 5 ⎟
                           ⎝ 10 ⎠
       ⎛ f′ ⎞
tan −1 ⎜ 5 ⎟ = 40° ⇒ f ′ = 0.839 × 105 Hz
       ⎝ 10 ⎠
                    β (100 )
 T ( f ′) = 1 =                   3
                ⎡     ⎛ f′ ⎞ ⎤
                              2
                ⎢ 1+ ⎜ 5 ⎟ ⎥
                ⎢     ⎝ 10 ⎠ ⎥
                ⎣               ⎦
                     β (100 )
              =                     3
                                      ⇒ β = 0.0222
                ⎡ 1 + ( 0.839 )2 ⎤
                ⎢
                ⎣                 ⎥
                                  ⎦

Ch12p

  • 1.
    Chapter 12 Exercise Solutions EX12.1 A a. Af = 1 + Aβ A A 1 + Aβ = ⇒ Aβ = −1 Af Af 1 1 1 1 β= − = − = 0.05 − 0.0001 ⇒ β = 0.0499 Af A 20 104 Af 20 20 b. = = = 0.998 (1/ β ) (1/ 0.0499 ) 20.040 EX12.2 A Af = 1 + Aβ 1 1 1 1 β= − = − 6 = 0.01 − 10−6 Af A 100 10 β = 0.009999 dAf 1 dA ⎛ Af ⎞ dA = ⋅ = ⋅ Af (1 + β A) A ⎜ A ⎟ A ⎝ ⎠ dAf ⎛ 100 ⎞ dAf = ⎜ 6 ⎟ ( 20 ) % ⇒ = 0.002% Af ⎝ 10 ⎠ Af EX12.3 Bandwidth = ω H (1 + β A0 ) ⎛A ⎞ ⎛ 105 ⎞ = ω H ⎜ 0 ⎟ = ( 2π )(10 ) ⎜ ⎟ ⎝ At ⎠ ⎝ 100 ⎠ ω = ( 2π ) (104 ) rad / sec ⇒ f = 10 kHz EX12.4 (a) vOA = A1 A2 vi + A2 vn = (100 )(10 ) vi + (10 ) vn So 1000vi S = = 100 i No 10vn Ni (b) A1 A2 A2 vOC = vi + vn 1 + β Α1 Α2 1 + β Α1 Α2 105 10 = v + vn 1 + ( 0.001)10 1 + ( 0.001) (105 ) 5 i So 103 vi S = = 104 i N o 0.1vn Ni
  • 2.
    EX12.5 a. Vε = VS − V fb = 100 − 99 = 1 m V 5 V0 = AvVε ⇒ Av = ⇒ Av = 5000 V/V 0.001 V fb 0.099 V fb = β V0 ⇒ β = = ⇒ β = 0.0198 V/V V0 5 Av 5000 Avf = = ⇒ Avf = 50 V/V 1 + β Av 1 + ( 0.0198 )( 5000 ) b. Rif = Ri (1 + β Av ) = ( 5 ) ⎡1 + ( 0.0198 )( 5000 ) ⎤ ⇒ Rif = 500 kΩ ⎣ ⎦ R0 4 R0 f = = ⇒ R0 f ⇒ 40 Ω 1 + β Av 1 + ( 0.0198 )( 5000 ) EX12.6 a. I ε = I S − I fb = 100 − 99 = 1 μ A I0 5 Ai = = ⇒ Ai = 5000 A/A I ε 0.001 I fb 0.099 β= = ⇒ β = 0.0198 A/A I0 5 Ai 5000 Aif = = ⇒ Aif = 50 A/A 1 + Ai β 1 + ( 5000 )( 0.0198 ) Ri 5 b. Rif = = ⇒ Rif ⇒ 50 Ω 1 + β Ai 1 + ( 0.0198 )( 5000 ) R0 f = (1 + β Ai ) R0 = ⎡1 + ( 0.0198 )( 5000 ) ⎤ ( 4 ) ⇒ R0 f = 400 kΩ ⎣ ⎦ EX12.7 Av 104 Avf = = ⇒ Avf = 3.9984 Av 104 1+ 1+ 1 + ( R2 / R1 ) 1 + ( 30 /10 ) 105 Avf = = 3.99984 105 1+ 1 + ( 30 /10 ) 3.99984 − 3.9984 × 100% ⇒ 0.0360% 3.9984 EX12.8 Use a non inverting op-amp. R R 1 + 2 = 15 ⇒ 2 = 14 R1 R1 Let R2 = 140 K R1 = 10 K 1 β= = 0.066667 R2 1+ R1
  • 3.
    Input resistance. Rif= 5 ( 0.06667 ) ( 5 × 103 ) ≅ 1.67 MΩ 50 Rof = ≡ 0.15Ω ( 0.066667 ) ( 5 × 103 ) EX12.9 ⎛ ⎞ ⎛ h ⎞⎜ RE ⎟ io = ⎜ FE ⎟ ⎜ ⎟ ⋅ ii ⎝ 1 + hFE ⎠ ⎜ R + rk ⎟ ⎜ E 1+ h ⎟ ⎝ FE ⎠ ( 80 )( 0.026 ) rk = = 4.16 k Ω 0.5 Then rk 4.16 = = 0.0514 k Ω 1 + hFE 81 Then we want io ⎛ 80 ⎞ ⎛ RE ⎞ = 0.95 = ⎜ ⎟ ⎜ ⎟ ii ⎝ 81 ⎠ ⎝ RE + 0.0514 ⎠ or ⎛ RE ⎞ ⎜ ⎟ = 0.9619 ⎝ RE + 0.0514 ⎠ which yields RE ( min ) = 1.30 k Ω and ⎛ 81 ⎞ V + = I E RE + 0.7 = ⎜ ⎟ ( 0.5 )(1.3) + 0.7 ⇒ V + ( min ) = 1.36 V ⎝ 80 ⎠ EX12.10 Use the configuration shown in figure 12.20. RS = 500 Ω, RL = 200 Ω RF Let 1 + = 15 R1 For example, let R1 = 2 K RF = 28 K EX12.11 a. ⎛ R2 ⎞ ⎛ 20 ⎞ VG = ⎜ ⎟ (10 ) − 5 = ⎜ ⎟ (10 ) − 5 ⎝ R1 + R2 ⎠ ⎝ 20 + 30 ⎠ VG = −1 V VS = −1 − VGS VS − ( −5 ) = K n (VGS − VTN ) 2 ID = RS ( −1) − VGS + 5 = (1.5)( 0.4 )(VGS − 2 ) 2
  • 4.
    4 − VGS= 0.6 (V 2GS − 4VGS + 4 ) 0.6V 2GS − 1.4VGS − 1.6 = 0 (1.4 ) + 4 ( 0.6 )(1.6 ) 2 1.4 ± VGS = 2 ( 0.6 ) VGS = 3.174 V g m = 2 K n (VGS − VTN ) = 2 (1.5 )( 3.17 − 2 ) g m = 3.52 mA / V ⎛ RD ⎞ ⎛ 2 ⎞ I0 = − ⎜ ⎟ ( g mVgs ) = − ⎜ ⎟ ( 3.52 ) Vgs ⎝ RD + RL ⎠ ⎝ 2+2⎠ I 0 = −1.76Vgs Vi Vi = Vgs + g mVgs RS ⇒ Vgs = 1 + g m RS Vi Vgs = = ( 0.4153) Vi 1 + ( 3.52 )( 0.4 ) I0 I 0 = − (1.76 )( 0.4153)Vi ⇒ Agf = = −0.731 mA / V Vi b. For K n = 1 mA / V 2 From dc analysis: 4 − VGS = (1)( 0.4 )(VGS − 2 ) 2 4 − VGS = 0.4 (V 2GS − 4VGS + 4 ) 0.4V 2GS − 0.6VGS − 2.4 = 0 ( 0.6 ) + 4 ( 0.4 )( 2.4 ) 2 0.6 ± VGS = 2 ( 0.4 ) VGS = 3.31V g m = 2 (1)( 3.31 − 2 ) = 2.623 mA / V ⎛ 2 ⎞ I0 = − ⎜ ⎟ ( 2.623) Vgs = −1.311Vgs ⎝ 2+2⎠ Vi Vgs = = Vi ( 0.488 ) 1 + ( 2.623)( 0.4 ) I 0 = − (1.31)( 0.488 )Vi
  • 5.
    I0 Agf = = −0.6398 mA / V Vi 0.731 − 0.6398 % change = ⇒ 12.5% 0.731 EX12.12 Use the circuit with the configuration shown in Figure 12.27. The LED replaces RL . 1 Agf = 10 mS = 10 × 10−3 = ⇒ RE = 100 Ω RE EX12.13 dc analysis: 10 − V0 V0 = ID + (1) 4.7 47 + 20 I D = K n (VGS − VTN ) 2 (2) ⎛ 20 ⎞ VGS = ⎜ ⎟ V0 = 0.2985V0 (3) ⎝ 20 + 47 ⎠ 2.13 − V0 ( 0.213) = I D + ( 0.0149 ) V0 (1) I D = 2.13 − V0 ( 0.2279 ) From (2): 2.13 − V0 ( 0.2279 ) = 1 ⎡( 0.2985V0 ) − 1.5⎤ 2 ⎣ ⎦ 2.13 − V0 ( 0.2279 ) = 0.0891V0 − 0.8955V0 + 2.25 2 0.0891V0 − 0.6676V0 + 0.12 = 0 2 ( 0.6676 ) − 4 ( 0.0891)( 0.12 ) 2 0.6676 ± V0 = 2 ( 0.0891) V0 = 7.31 V 10 − 7.31 7.31 ID = − = 0.572 − 0.109 4.7 67 I D = 0.463 mA 0.463 VGS = + 1.5 = 2.18 1 a. g m = 2 K n (VGS − VTN ) = 2 (1)( 2.18 − 1.5 ) ⇒ g m = 1.36 mA/V
  • 6.
    V0 V0 − Vgs + g mVgs + = 0 (1) RD RF Vgs − Vi Vgs − V0 + =0 (2) RS RF ⎛ 1 1 ⎞ V0 Vi Vgs ⎜ + ⎟= + ⎝ RS RF ⎠ RF RS ⎛ 1 1 ⎞ V V Vgs ⎜ + ⎟ = 0 + i ⎝ 20 47 ⎠ 47 20 Vgs ( 0.0713) = V0 ( 0.0213) + Vi ( 0.050 ) Vgs = V0 ( 0.299 ) + Vi ( 0.701) From (1): V0 V Vgs + (1.36 ) Vgs + 0 − =0 4.7 47 47 V0 ( 0.213) + (1.36 ) Vgs + V0 ( 0.213) − Vgs ( 0.0213) = 0 V0 ( 0.234 ) + Vgs (1.34 ) = 0 V0 ( 0.234 ) + (1.34 ) ⎡(V0 )( 0.299 ) + (Vi )( 0.701) ⎤ = 0 ⎣ ⎦ V0 V0 ( 0.635 ) + Vi ( 0.939 ) = 0 ⇒ Avf = = −1.48 Vi b. For K n = 1.5 mA / V 2 From dc analysis: 2.13 − V0 ( 0.2279 ) = 1.5 ⎣( 0.2985V0 ) − 1.5⎦ 2 ⎡ ⎤ = 1.5 ⎡0.0891V0 − 0.8955V0 + 2.25⎤ 2 ⎣ ⎦ = 0.1337V0 − 1.343V0 + 3.375 2 0.1337V0 − 1.115V0 + 1.245 = 0 2 (1.115) − 4 ( 0.1337 )(1.245 ) 2 1.115 ± V0 = 2 ( 0.1337 ) 1.115 ± 0.7597 V0 = ⇒ V0 = 7.01 V 2 ( 0.1337 ) 10 − 7.01 7.01 ID = − = 0.636 − 0.105 4.7 67 I D = 0.531 mA 0.531 VGS = + 1.5 = 2.09 1.5 g m = 2 K n (VGS − VTN ) = 2 (1.5 )( 2.09 − 1.5 ) = 1.77 mA/V From ac analysis: V0 V Vgs + (1.77 )Vgs + 0 − =0 4.7 47 47
  • 7.
    V0 ( 0.213)+ (1.77 ) Vgs + V0 ( 0.0213) − Vgs ( 0.0213) = 0 V0 ( 0.234 ) + Vgs (1.75 ) = 0 V0 ( 0.234 ) + (1.75 ) ⎡V0 ( 0.299 ) + Vi ( 0.701) ⎤ = 0 ⎣ ⎦ V0 V0 ( 0.757 ) + Vi (1.23) = 0 ⇒ Avf = = −1.62 Vi 1.62 − 1.48 % change = ⇒ 9.46% 1.48 EX12.14 a. Input resistance. V0 V0 − Vgs + g mVgs + = 0 (1) RD RF Vgs − V0 Ii = (2) RF So V0 = Vgs − I i RF ⎛ 1 1 ⎞ ⎛ 1 ⎞ V0 ⎜ + ⎟ + Vgs ⎜ g m − ⎟ = 0 (1) ⎝ RD RF ⎠ ⎝ RF ⎠ ⎛ 1 1 ⎞ ⎛ 1 ⎞ ⎡Vgs − I i ( 47 ) ⎤ ⎜ ⎣ ⎦ 4.7 + 47 ⎟ + Vgs ⎜1.36 − 47 ⎟ = 0 ⎝ ⎠ ⎝ ⎠ ⎡Vgs − I i ( 47 ) ⎤ ( 0.234 ) + Vgs (1.34 ) = 0 ⎣ ⎦ Vgs Vgs (1.57 ) = I i (11.0 ) ⇒ Rif = = 7.0 kΩ Ii Output Resistance.
  • 8.
    VX VX IX = + g mVgs + RD RS + RF ⎛ RS ⎞ ⎛ 20 ⎞ Vgs = ⎜ ⎟ VX = ⎜ ⎟ VX = 0.2985VX ⎝ RS + RF ⎠ ⎝ 20 + 47 ⎠ V VX I X = X + (1.36)(0.2985)VX + 4.7 20 + 47 I X = VX [ 0.213 + 0.406 + 0.0149] VX R0 f = = 1.58 kΩ IX b. From part (a) ⎛ 1 ⎞ ⎡Vgs − I i ( 47 ) ⎤ ( 0.234 ) + Vgs ⎜ 1.77 − ⎟ = 0 ⎣ ⎦ ⎝ 47 ⎠ Vgs Vgs (1.98 ) = I i (11) ⇒ Rif = = 5.56 kΩ Ii VX VX IX = + (1.77 )( 0.2985 ) VX + 4.7 20 + 47 VX I X = VX [ 0.213 + 0.528 + 0.0149] ⇒ R0 f = = 1.32 kΩ IX EX12.15 Use the circuit with the configuration shown in Figure 12.41 Let RF = 10 K EX12.16 ⎛ 5.5 ⎞ VTH = ⎜ ⎟ (10 ) = 0.9735 V ⎝ 5.5 + 51 ⎠ RTH = 5.5 || 51 = 4.965 kΩ 0.973 − 0.7 I BQ = = 0.00217 mA 4.96 + (121)(1) I CQ = 0.2605 mA rπ = 11.98 kΩ, g m = 10.02 mA / V Req = RS || R1 || R2 || rπ = (10 ) || 51|| 5.5 || 12 = 2.598 kΩ From Equation (12.99(b)): ⎛ Req ⎞ T = ( g m RC ) ⎜ ⎜R +R +R ⎟ ⎟ ⎝ C F eq ⎠ ⎛ 2.598 ⎞ = (10 )(10 ) ⎜ ⎟ ⇒ T = 2.75 ⎝ 10 + 82 + 2.598 ⎠ EX12.17 Computer Analysis EX12.18
  • 9.
    Vε = −Vt, V0 = AvVε = − AvVt ⎛ R1 || Ri ⎞ ⎛ R1 || Ri ⎞ Vr = ⎜ ⎟ V0 = − ⎜ ⎟ ( AvVt ) ⎝ R1 || Ri + R2 ⎠ ⎝ R1 || Ri + R2 ⎠ Vr ⎛ R1 || Ri ⎞ T =− = Av ⎜ ⎟ Vt ⎝ R1 || Ri + R2 ⎠ or Av T= R 1+ 2 R1 Ri EX12.19 ⎛ f′ ⎞ Phase = −180° = −3 tan −1 ⎜ 5 ⎟ ⎝ 10 ⎠ ⎛ f′ ⎞ or tan −1 ⎜ 5 ⎟ = 60° ⇒ f ′ = 1.732 × 105 Hz ⎝ 10 ⎠ β (100 ) T ( f ′) = 1 = 3 ⎡ ⎛ f′ ⎞ ⎤ 2 ⎢ 1+ ⎜ 5 ⎟ ⎥ ⎢ ⎝ 10 ⎠ ⎥ ⎣ ⎦ β (100 ) = 3 ⇒ β = 0.08 ⎡ 1 + (1.732 )2 ⎤ ⎢ ⎣ ⎥ ⎦ EX12.20 1000 Afo = = 7.092 1 + ( 0.140 )(1000 )
  • 10.
    ( 0.140 )(1000) T =1= 2 2 ⎛ f ⎞ ⎛ f ⎞ ⎛ f ⎞ 1 + ⎜ 3 ⎟. 1 + ⎜ 4 ⎟ 1+ ⎜ 6 ⎟ ⎝ 10 ⎠ ⎝ 5 × 10 ⎠ ⎝ 10 ⎠ By trial and error, at f = 7.65 × 104 Hz ( 0.140 )(1000 ) T = 1 + ( 76.5 ) 1 + (1.53) 1 + ( 0.0765 ) 2 2 2 ( 0.140 )(1000 ) = = 1.00 ( 76.5 )(1.828 )(1.0 ) Then φ = − ⎡ tan −1 (76.5) + tan −1 (1.53) + tan −1 (0.0765) ⎤ ⎣ ⎦ = − [89.25 + 56.83 + 4.37 ] = −150.45 Phase Marge = 180 − 150.45 = 29.5° EX12.21 The new loop gain function is 105 1 T ′( f ) = × ⎛ f ⎞⎛ f ⎞ ⎛1 + j ⋅ f ⎞ ⎛1 + j ⋅ f ⎞ ⎜1 + j ⋅ ⎟⎜ 1 + j ⋅ ⎟ ⎜ ⎟⎜ ⎟ 5 × 108 ⎠ ⎝ f PD ⎠ ⎝ 5 × 105 ⎠ ⎝ 107 ⎠ ⎝ ⎧ ⎪ ⎛ f ⎞ −1 ⎛ f ⎞ ⎛ f ⎞ ⎛ f ⎞⎫ ⎪ Phase = − ⎨ tan −1 ⎜ ⎟ + tan ⎜ 5 ⎟ + tan −1 ⎜ 7 ⎟ + tan −1 ⎜ 8 ⎟⎬ ⎪ ⎩ ⎝ f PD ⎠ ⎝ 5 × 10 ⎠ ⎝ 10 ⎠ ⎝ 5 × 10 ⎠ ⎪ ⎭ For a phase margin 45° ⇒ Phase = −135°, the poles are far apart so this will occur at approximately f ′ = 5 × 105 Hz. Then 105 T ′( f ) = 1 = 2 ⎛ 5 × 105 ⎞ 1+ ⎜ ⎟ × 1+1× 1× 1 ⎝ f PD ⎠ 105 1= 2 ⎛ 5 × 105 ⎞ (1.414 ) 1+ ⎜ ⎟ ⎝ f PD ⎠ 2 ⎛ 5 × 105 ⎞ 1+ ⎜ ⎟ = 5 × 10 9 ⎝ f PD ⎠ 5 × 105 f PD ≅ ⇒ f PD = 7.07 Hz 5 × 109 EX12.22 A0 2 × 105 Af ( 0 ) = = ⇒ Af (0) ≅ 20 1 + β A0 1 + ( 0.05 ) ( 2 × 105 ) f C = f PD (1 + β A0 ) = 100 ⎡1 + ( 0.05 ) ( 2 × 105 ) ⎤ ⇒ fC ≅ 1 MHz ⎣ ⎦ EX12.23 Phase Margin = 45° ⇒ Phase = −135° This will occur at approximately f ′ = 107 Hz
  • 11.
    105 T ′( f) = 1 = 2 ⎛ 107 ⎞ 1+ ⎜ ⎟ × 2× 1 ⎝ f PD ⎠ 2 ⎛ 107 ⎞ 1+ ⎜ ⎟ = 5 × 10 9 ⎝ f PD ⎠ 107 f PD ≅ ⇒ f PD = 141 Hz 5 × 109 TYU12.1 A Af = 1 + Aβ A f + A f Aβ = A Af = A (1 − Af β ) Af 80 A= = 1 − Af β 1 − ( 80 )( 0.0120 ) A = 2000 TYU12.2 dAf 1 dA ⎛ Af ⎞ dA = ⋅ =⎜ ⎟. Af (1 + β A) A ⎝ A ⎠ A dA dAf ⎛ A ⎞ ⎛ 5 × 105 ⎞ dA = ⋅⎜ ⎜A ⎟ = ( 0.001) ⎜ ⎟ ⎟⇒ = ±5% A Af ⎝ f ⎠ ⎝ 100 ⎠ A TYU12.3 Af ⋅ f H = A0 ⋅ f1 A0 ⋅ f1 (10 ) ( 8 ) 6 Af = = ⇒ Af ( 0 ) = 32 fH 250 × 103 TYU12.4 Vε = VS − V fb = 100 − 99 = 1 mV I 0 5 mA Ag = = ⇒ Ag = 5 A/V Vε 1 mV V fb 99 mV β= = ⇒ β = 19.8 V/A I0 5 mA Ag 5 Agf = = ⇒ Agf = 0.05 A/V = 50 mA/V 1 + β Ag 1 + (19.8 )( 5 ) TYU12.5
  • 12.
    I ε =I S − I fb = 100 − 99 = 1 μ A V0 5V Az = = ⇒ Az = 5 × 106 V/A Iε 1 μ A I fb 99 μ A β= = ⇒ β = 1.98 × 10−5 A/V V0 5V Az 5 × 106 Azf = = ⇒ Azf = 5 × 104 V/A = 50 V/mA 1 + β Az 1 + (1.98 × 10−5 )( 5 × 106 ) TYU12.6 hFEVT (100 )( 0.026 ) a. rπ = = = 5.2 kΩ I CQ 0.5 I CQ 0.5 gm = = = 19.23 mA / V VT 0.026 ⎛1 ⎞ ⎛ 1 ⎞ ⎜ + g m ⎟ RE ⎜ + 19.23 ⎟ ( 2 ) rπ Avf = ⎝ ⎠ = ⎝ ⎠ 5.2 ⎛1 ⎞ ⎛ 1 ⎞ 1 + ⎜ + g m ⎟ RE 1 + ⎜ + 19.23 ⎟ ( 2 ) ⎝ rπ ⎠ ⎝ 5.2 ⎠ (19.42 )( 2 ) = ⇒ Avf = 0.97490 1 + (19.42 )( 2 ) Rif = rπ + (1 + hFE ) RE = 5.2 + (101)( 2 ) ⇒ Rif = 207.2 kΩ rπ 5.2 R0 f = RE =2 ⇒ R0 f = 0.0502 kΩ ⇒ 50.2 Ω 1 + hFE 101 b. hFE = 150 ⇒ rπ = 7.8 kΩ, g m = 19.23mA/V ⎛ 1 ⎞ ⎜ + 19.23 ⎟ ( 2 ) (19.36 )( 2 ) Avf = ⎝ ⎠ 7.8 = ⎛ 1 ⎞ 1 + (19.36 )( 2 ) 1+ ⎜ + 19.23 ⎟ ( 2 ) ⎝ 7.8 ⎠ Avf = 0.97482 ⇒ 0.0082% change in Avf Rif = 7.8 + (101)( 2 ) = 209.8 kΩ ⇒ 1.25% change in Rif rπ 7.8 R0 f = RE =2 = 2 0.0517 1 + hFE 151 R0 f = 50.36 Ω ⇒ 0.319% change in R0 f TYU12.7
  • 13.
    V0 = (g mVgs ) RS Vi = Vgs + g m RSVgs Vi Vgs = 1 + g m RS g m = 2 K n I DQ = 2 ( 0.2 )( 0.25 ) = 0.447 mA / V V0 g m RS Avf = = Vi 1 + g m RS ( 0.447 )( 5 ) Avf = ⇒ Avf = 0.691 1 + ( 0.447 )( 5 ) Rif = ∞ VX I X = g mVgs = RS Vgs = −VX ⎛ 1 ⎞ I X = VX ⎜ g m + ⎟ ⎝ RS ⎠ 1 1 R0 f = RS = 5 gm 0.447 R0 f = 1.55 kΩ TYU12.8 Computer Analysis TYU12.9 Computer Analysis TYU12.10 hFE ⋅ Ag ( 200 ) (103 ) a. Agf = = ⇒ Agf = 10−3 A/V=1 mA/V 1 + ( hFE Ag ) RE 1 + ( 200 ) (103 )(103 ) ( 200 ) (104 ) b. Agf = ⇒ Agf ≅ 1 mA/V 1 + ( 200 ) (104 )(103 )
  • 14.
    Percent change isnegligible. ( 4.5 × 10−7 % ) ( 200 ) (104 ) ( 200 ) (103 ) − 1 + ( 200 ) (104 )(103 ) 1 + ( 200 ) (103 )(103 ) 10−3 ( 200 ) (104 ) ⎡1 + ( 200 ) (104 )(103 )⎤ ⎣ ⎦ = (10 )( 2 ×10 )( 2 ×10 ) −3 9 8 (200)(103 )[1 + (200)(104 )(103 )] − (10−3 )(2 × 109 )(2 × 108 ) 200 × 104 − 200 × 103 = = 4.5 × 10−9 (10−3 )( 2 ×109 )( 2 ×108 ) TYU12.11 T = Ai β = Ai 0 β = (10 ) ( 0.01) 5 ⎛ f ⎞ ⎛ f ⎞ ⎜ 1 + j ⋅ ⎟ 1 + j ⋅ ⎜ 10 ⎟ ⎝ f1 ⎠ ⎝ ⎠ 3 10 T ( f1 ) =1= ⎛ f′⎞ 2 1+ ⎜ E ⎟ ⎝ 10 ⎠ ⎛ f′⎞ 2 1 + ⎜ E ⎟ = 106 ⎝ 10 ⎠ f E′ = 10 106 − 1 ⇒ f E′ ≈ 104 Hz ⎛ f′⎞ ⎛ 104 ⎞ Phase = φ = − tan −1 ⎜ E ⎟ = − tan −1 ⎜ ⎟ ⎝ 10 ⎠ ⎝ 10 ⎠ = − tan −1 (103 ) φ ≈ 90° Phase Margin = 180 − 90 ⇒ Phase Margin = 90° TYU12.12 Αι 0 β T = Ai β = ⎛ f ⎞⎛ f ⎞ ⎜ 1+ j ⋅ ⎟ ⎜1 + j ⋅ ⎟ ⎝ f1 ⎠ ⎝ f2 ⎠ ⎡ ⎛ f ⎞ ⎛ f ⎞⎤ Phase = − ⎢ tan −1 ⎜ ⎟ + tan −1 ⎜ ⎟ ⎥ ⎣ ⎝ f1 ⎠ ⎝ f2 ⎠⎦ Phase Margin = 60° ⇒ Phase = −120° ⎡ ⎛ f ⎞ ⎛ f ⎞⎤ −120° = − ⎢ tan −1 ⎜ 4 ⎟ + tan −1 ⎜ 5 ⎟ ⎥ ⎣ ⎝ 10 ⎠ ⎝ 10 ⎠ ⎦ At f ′ = 7.66 × 104 Hz, Phase = − ⎡ tan −1 ( 7.66 ) + tan −1 ( 0.766 ) ⎤ ⎣ ⎦ = − [82.56 + 37.45] = −120°
  • 15.
    T ( f′) = 1 = (10 ) β 5 1+ ( 7.66 ) × 1 + ( 0.766 ) 2 2 1= (10 ) β 5 ⇒ β = 9.73× 10−5 ( 7.725 )(1.26 ) TYU12.13 Phase Margin = 60° ⇒ Phase = −120° ⎛ f′ ⎞ Phase = −120° = −3 tan −1 ⎜ 5 ⎟ ⎝ 10 ⎠ ⎛ f′ ⎞ tan −1 ⎜ 5 ⎟ = 40° ⇒ f ′ = 0.839 × 105 Hz ⎝ 10 ⎠ β (100 ) T ( f ′) = 1 = 3 ⎡ ⎛ f′ ⎞ ⎤ 2 ⎢ 1+ ⎜ 5 ⎟ ⎥ ⎢ ⎝ 10 ⎠ ⎥ ⎣ ⎦ β (100 ) = 3 ⇒ β = 0.0222 ⎡ 1 + ( 0.839 )2 ⎤ ⎢ ⎣ ⎥ ⎦