SlideShare a Scribd company logo
1 of 33
Download to read offline
Chapter 5
Problem Solutions

5.1
                iC 510
(a)      β=        =   ⇒ β = 85
                iB   6
                 β      85
         α=           =    ⇒ α = 0.9884
              1 + β 86
         iE = (1 + β ) iB = ( 86 )( 6 ) ⇒ iE = 516 μ A
               2.65
(b)      β=           ⇒ β = 53
              0.050
              53
         α = ⇒ α = 0.9815
              54
         iE = (1 + β ) iB = ( 54 )( 0.050 ) ⇒ iE = 2.70 mA

5.2
                                   β       110
(a)      For β = 110: α =              =       = 0.99099
                                1+ β       111
                 180
For β = 180: α =     = 0.99448
                 181
0.99099 ≤ α ≤ 0.99448
(b)      I C = β I B = 110 ( 50 μ A ) ⇒ I C = 5.50 mA
or I C = 180 ( 50 μ A ) ⇒ I C = 9.00 mA
so 5.50 ≤ I C ≤ 9.0 mA

5.3
                1.12
(a)      iB =         ⇒ 9.33 μ A
                120
                        ⎛ 121 ⎞
         iE   = (1.12 ) ⎜     ⎟ = 1.13 mA
                        ⎝ 120 ⎠
                120
         α    =      = 0.9917
                121
                50
(b)      iB   =     = 2.5 mA
                20
                ⎛ 21 ⎞
         iE   = ⎜ ⎟ ( 50 ) = 52.5 mA
                ⎝ 20 ⎠
                20
         α    =     = 0.9524
                21

5.4
(a)
                               α
α                         β=
                               1−α
0.9                    9
0.95                   19
0.98                   49
0.99                   99
0.995                  199
0.999                  999

(b)
β
β                         α=
                              1+ β
20                        0.9524
50                        0.9804
100                       0.9901
150                       0.9934
220                       0.9955
400                       0.9975

5.5
                  1.2
(a)         IB =      ⇒ 14.8 μ A
                   81
                         ⎛ 80 ⎞
            I C = (1.2 ) ⎜ ⎟ = 1.185 mA
                         ⎝ 81 ⎠
                  80
             α=       = 0.9877
                  81
            VC = 5 − (1.185 )( 2 ) = 2.63 V
                  0.80
(b)         IB =        ⇒ 9.88 μ A
                    81
                           ⎛ 80 ⎞
            I C = ( 0.80 ) ⎜ ⎟ = 0.790 mA
                           ⎝ 81 ⎠
                  80
             α=       = 0.9877
                  81
            VC = 5 − ( 0.790 )( 2 ) = 3.42 V
(c)         Yes, VC > VB so B-C junction is reverse biased in both areas.

5.6
                        5
For VC = 0, I C =         = 2.5 mA
                        2
       IC        2.5
IE =        =         ⇒ I E = 2.546 mA
       α        0.982

5.7
                   0.75
(a)         IB =          ⇒ 12.3 μ A
                     61
                            ⎛ 60 ⎞
            IC   = ( 0.75 ) ⎜ ⎟ = 0.738 mA
                            ⎝ 61 ⎠
                   60
             α   =      = 0.9836
                   61
            VC   = I C RC − 10 = ( 0.738 )( 5 ) − 10
            VC   = −6.31 V
                  1.5
(b)         IB =      ⇒ 24.6 μ A
                   61
                         ⎛ 60 ⎞
            I C = (1.5 ) ⎜ ⎟ = 1.475 mA
                         ⎝ 61 ⎠
                  ⎛ 60 ⎞
             α = ⎜ ⎟ = 0.9836
                  ⎝ 61 ⎠
            VC = (1.475 )( 5 ) − 10 ⇒ VC = −2.625 V
(c)         Yes, VC < 0 in both cases so that B-C junction is reverse biased.
5.8
        VC − ( −10 )            10 − 1.2
IC =                        =            = 1.76 mA
                RC                 5
        IC          1.76
IE =            =         ⇒ I E = 1.774 mA
        α           0.992

5.9
 I C = I S eVRE / VT
                ⎛ 0.685 ⎞
    = 10−13 exp ⎜        ⎟ ⇒ I C = 27.67 mA
                ⎝ 0.026 ⎠
      ⎛1+ β ⎞        ⎛ 91 ⎞
 IE = ⎜      ⎟ I C = ⎜ ⎟ ( 27.67 )
      ⎝ β ⎠          ⎝ 90 ⎠
I D = 27.98 mA
      I    27.67
IB = C =         ⇒ I B = 0.307 mA
      β     90

5.10
Device 1: iE = I Eo1evEB / VT ⇒ 0.5 × 10−3 = I Eo1e0.650 / 0.026
So that
I EO1 = 6.94 × 10−15 A
Device 2: 12.2 × 10−3 = I Eo 2 e0.650 / 0.026
Or
I Eo 2 = 1.69 × 10−13 A
                            I Eo 2 1.69 × 10−13
Ratio of areas =                  =             ⇒ Ratio = 24.4
                            I Eo1 6.94 × 10−15

5.11
                        VA 250
(a)             ro =       =   ⇒ ro = 250 k Ω
                        IC   1
                        VA 250
(b)             ro =       =     ⇒ ro = 2.50 M Ω
                        IC   0.1

5.12
                BVC B 0             60
BVC E 0 =                   =
                    3   β       3
                                    100
BVC E 0 = 12.9 V

5.13
                BVC B 0
BVC E 0 =
                    3   β
        220                     220
56 =            ⇒3β =               = 3.93
        3   β                   56
β = 60.6

5.14
BVC B 0
BVC E 0 =
              3   β
BVC B 0 = ( BVC E 0 ) 3 β = ( 50 ) 3 50
BVC B 0 = 184 V

5.15
                      −0.7 − ( −10 )
(a)         IE =                 = 1.86 mA
                         5
                          ⎛ 75 ⎞
            I C = (1.86 ) ⎜ ⎟ = 1.836 mA
                          ⎝ 76 ⎠
            VC = −0.7 + 4 = 3.3 V
                 10 − 3.3
            RC =           ⇒ RC = 3.65 K
                  1.836
                 0.5
(b)         IB =      = 0.00658 mA
                 76
            VB = I B RB = ( 0.00658 )( 25 ) ⇒ VB = 0.164 V
                          ⎛ 75 ⎞
            I C = ( 0.5 ) ⎜ ⎟ = 0.493 mA
                          ⎝ 76 ⎠
                  −1 − ( −5 )
            RC =                ⇒ RC = 8.11 K
                      0.493
                    I
(c)           O = E (10 ) + 0.7 + I E ( 4 ) − 8
                   76
            7.3 = I E ( 4 + 0.132 ) ⇒ I E = 1.767 mA
                            ⎛ 75 ⎞
             I C = (1.767 ) ⎜ ⎟ = 1.744 mA
                            ⎝ 76 ⎠
            VCE = 8 − (1.744 )( 4 ) − ⎡(1.767 )( 4 ) − 8⎤
                                      ⎣                 ⎦
                  = 16 − 6.972 − 7.068 ⇒ VCE = 1.96 V
                              ⎛I ⎞
(d)           5 = I E (10 ) + ⎜ E ⎟ ( 20 ) + 0.7 + I E ( 2 )    = I E (10 + 0.263 + 2 ) + 0.7
                              ⎝ 76 ⎠
            I E = 0.3506 mA ⇒ I B = 4.61 μ A                 VC = 5 − ( 0.3506 )(10 )
                                                            VC = 1.49 V

5.16
For Fig. 5.15 (a) RE = 5 + 5% = 5.25 K
        −0.7 − ( −10 )
 IE =               = 1.77 mA
           5.25
I C = 1.75 mA
      10 − 3.3
RC =           = 3.83 K
        1.75
RE = 5 − 5% = 4.75 K
        −0.7 − ( −10 )
 IE =               = 1.96 mA
           4.75
I C = 1.93 mA
      10 − 3.3
RC =           = 3.47 K
        1.93
So 1.75 ≤ I C ≤ 1.93 mA 3.47 ≤ RC ≤ 3.83 K
For Fig. 5.15(c) RE = 4 + 5% = 4.2 K
8 − 0.7
 IB =                      = 0.0222 mA         I C = 1.66 mA
        10 + ( 76 )( 4.2 )
 I E = 1.69 mA
VCE = 16 − (1.66 )( 4 ) − (1.69 )( 4.2 )
     = 16 − 6.64 − 7.098 ⇒ VCE = 2.26 V
 RE = 4 − 5% = 3.8 K
          8 − 0.7
 IB =                    = 0.0244 I C = 1.83 mA
      10 + ( 76 )( 3.8 )
 I E = 1.86 mA
VCE = 16 − (1.83)( 4 ) − (1.86 )( 3.8 )
     = 16 − 7.32 − 7.068
VCE = 1.61 V
So 1.66 ≤ I C ≤ 1.83 mA 1.61 ≤ VCE ≤ 2.26 V

5.17
        VBB − VEB 2.5 − 0.7
 RB =            =          ⇒ RB = 120 k Ω
           IB      0.015
I CQ = ( 70 )(15μ A ) ⇒ 1.05 mA
        VCC − VECQ         5 − 2.5
 RC =                 =            ⇒      RC = 2.38 k Ω
             I CQ           1.05

5.18
(a)
                            −VB − ( −1)
 VB = − I B RB ⇒ I B =          =
                             RB   500
 I B = 2.0 μ A
 VE = −1 − 0.7 = −1.7 V
        VE − ( −3)       −1.7 + 3
 IE =                =            = 0.2708 mA
             RE            4.8
 IE              0.2708
    = (1 + β ) =        = 135.4 ⇒ β = 134.4
 IB              0.002
         β
  α=         ⇒ α = 0.9926
       1+ β
 I C = β I B ⇒ I C = 0.269 mA
VCE = 3 − VE = 3 − ( −1.7 ) ⇒ VCE = 4.7 V
(b)
     5−4
IE =        ⇒ I E = 0.5 mA
       2
4 = 0.7 + I B RB + ( I B + I C ) RC − 5
I B + IC = I E
I B + IC = I E
4 = 0.7 + I B (100 ) + ( 0.5 )( 8 ) − 5
                    IE               0.5
I B = 0.043 ⇒          = (1 + β ) =       = 11.63
                    IB              0.043
                       β
β = 10.63, α =               ⇒ α = 0.9140
                     1+ β

5.19
VB − 0.7 − ( −5 )
                         VB + 4.3
IE =                         =
              3              3
     ⎛ 50 ⎞      ⎛ VB + 4.3 ⎞ ⎛ 50 ⎞
IC = ⎜ ⎟ I E = ⎜              ⎜ ⎟
     ⎝ 51 ⎠      ⎝     3 ⎟ ⎝ 51 ⎠
                            ⎠
                      ⎛ V + 4.3 ⎞ ⎛ 50 ⎞
VC = 5 − I C RC = 5 − ⎜ B          ⎜ ⎟ (10 )
                      ⎝    3 ⎟ ⎝ 51 ⎠
                                 ⎠
Now VB = VC , so VB [1 + 3.27 ] = 5 − 14.1 = −9.05
VB = −2.12 V
         −2.12 + 4.3
IE =                 ⇒ I E = 0.727 mA
             3

5.20
     10 − VE 10 − 2
IE =         =         ⇒ I E = 0.80 mA
       10        10
VB = VE − 0.7 = 2 − 0.7 = 1.3 V
         VB 1.3
IB =       =    ⇒ I B = 0.026 mA
         RB 50
I C = I E − I B = 0.80 − 0.026 ⇒ I C = 0.774 mA
        I C 0.774
β=         =      ⇒ β = 29.77
        I B 0.026
          β        29.77
α=             =         ⇒ α = 0.9675
        1+ β       30.77
VEC = VE − VC = VE − ( I C RC − 10 )
        = 2 − ⎡( 0.774 )(10 ) − 10 ⎤
              ⎣                    ⎦
VEC = 4.26 V
Load line developed assuming the VB voltage can change and the RB resistor is removed.


1 mA

                        Q-point
0.774


   IC



                     4.26                         20   VEC


5.21
       5 − 0.7
 IB =           ⇒ 17.2 μ A
         250
 I C = (120 )( 0.0172 ) = 2.064 mA
 VC = ( 2.064 )(1.5 ) − 5 = −1.90 V
VEC = 5 − ( −1.90 ) ⇒ VEC = 6.90 V
IC (mA)


      6.67




                                             Q-point
      2.06




                                           6.9          10 V
                                                               EC (V)


5.22
      ⎛ 50 ⎞
I C = ⎜ ⎟ (1) = 0.98 mA
      ⎝ 51 ⎠
VC = I C RC − 9 = ( 0.98 )( 4.7 ) − 9 or VC = −4.39 V
      1
IB =      = 0.0196 mA
     51
VE = I B RB + VEB ( on ) = ( 0.0196 )( 50 ) + 0.7 or VE = 1.68 V

5.23
      ⎛ 50 ⎞                           0.5
I C = ⎜ ⎟ ( 0.5 ) = 0.49 mA, I B =          = 0.0098 mA
      ⎝ 51 ⎠                           51
VE = I B RB + VEB ( on ) = ( 0.0098 )( 50 ) + 0.7 or VE = 1.19 V
VC = I C RC − 9 = ( 0.49 )( 4.7 ) − 9 = −6.70 V
Then VEC = VE − VC = 1.19 − ( −6.7 ) == 7.89 V
PQ = I CVEC + I BVEB = ( 0.49 )( 7.89 ) + ( 0.0098 )( 0.7 ) or PQ = 3.87 mW
Power Dissipated = PS = I Q ( 9 − VE ) = ( 0.5 )( 9 − 1.19 )
Or PS = 3.91 mW

5.24
                 I
I E1 = I E 2 =     ⇒ I E1 = I E 2 = 0.5 mA
                 2
I C1 = I C 2   ≈ 0.5 mA
VC1 = VC 2     = 5 − ( 0.5 )( 4 ) ⇒ VC1 = VC 2 = 3 V

5.25
                              2 − 0.7 1.3
(a)            RE = 0 I B =          =
                                RB     RB
                            ⎛ 1.3 ⎞ 5 − 2
               I C = ( 80 ) ⎜ ⎟ =         = 0.8 ⇒ RC = 3.75 K
                            ⎝ RB ⎠   RC
               RB = 130 K
                                  0.8                       ⎛ 81 ⎞
(b)            RE = 1 K     IB =       = 0.010 mA I E = 0.8 ⎜ ⎟ = 0.81 mA
                                   80                       ⎝ 80 ⎠
               2 = ( 0.010 )( RB ) + 0.7 + ( 0.81)(1) ⇒ RB = 49 K
               5 = ( 0.8 ) RC + 2 + ( 0.81)(1) ⇒ RC = 2.74 K
                                          2 − 0.7
(c)          For part (a)          IB =           = 0.01 mA
                                           130
I C = (120 )( 0.01) ⇒ I C = 1.20 mA
VCE = 5 − (1.2 )( 3.75 ) ⇒ VCE = 0.5 V
For part (b)             2 = I B ( 49 ) + 0.7 + (121) I B (1)
 I B = 0.00765 mA, I E = 0.925 mA, I C = 0.918 mA
VCE = 5 − ( 0.918 )( 2.74 ) − ( 0.925 )(1) ⇒ VCE = 1.56 V
Including RE result in smaller changes in Q-point values.

5.26
                      VCC − VBE ( on )
a.           I BQ =
                                 RB
                      I CQ  2
             I BQ =          == 0.0333 mA
                     β     60
                    24 − 0.7
              RB =            ⇒ RB = 699 kΩ
                     0.0333
                    VCC − VCEQ         24 − 12
             I CQ =            ⇒ RC =          ⇒ RC = 6 kΩ
                        RC                2
                       VCC − VBE ( on )        24 − 0.7
b.            I BQ =                      =
                                 RB              699
                   = 0.0333 mA ( Unchanged )
              I CQ = β I BQ = (100 )( 0.0333) ⇒ I CQ = 3.33 mA
             VCEQ = VCC − I CQ RC = 24 − ( 3.33)( 6 ) ⇒ VCEQ = 4.02 V
(c)          VCE = VCC − I C RC = 24 − I C ( 6 )
IC (mA)


        4
                       Q-pt (␤ ϭ 100)
      3.33


                                              Q-pt (␤ ϭ 60)
        2




                  4.02                    12                    24   VCE


5.27
a.           VB = 0 ⇒ Cutoff ⇒ I E = 0, VC = 6 V
                            1 − 0.7
b.           VB = 1 V, I E =         ⇒ I E = 0.3 mA
                               1
             I C ≈ I E ⇒ VC = 6 − ( 0.3)(10 ) ⇒ VC = 3 V
c.           VB = 2 V. Assume active-mode
     2 − 0.7
IE =         = I E = 1.3 mA ≈ I C
        1
VC = 6 − (1.3)(10 ) = −7 V!
Transistor in saturation
     2 − 0.7
IE =         ⇒ I E = 1.3 mA
        1
VE = 1.3 V, VCE ( sat ) = 0.2 V
VC = VE + VCE ( sat ) = 1.3 + 0.2 ⇒ VC = 1.5 V

5.28
a.        VBB = 0.
                      ⎛ RL         ⎞       ⎛ 10 ⎞
          Cutoff V0 = ⎜            ⎟ VCC = ⎜        ⎟ ( 5)
                      ⎝ RC + RL    ⎠       ⎝ 10 + 5 ⎠
          V0 = 3.33 V
b.        VBB = 1 V
                1 − 0.7
          IB =          ⇒ 6 μA
                  50
          I C = β I B = ( 75 )( 6 ) ⇒ I C = 0.45 mA
          5 − V0         V
                 = IC + 0
             5           10
                        ⎛1 1 ⎞
          1 − 0.45 = V0 ⎜ + ⎟ ⇒ V0 = 1.83 V
                        ⎝ 5 10 ⎠
c.        Transistor in saturation V0 = VCE ( sat ) = 0.2 V

5.29
(a) β = 100
                           ⎛ 100 ⎞
(i) I Q = 0.1 mA I C = ⎜         ⎟ ( 0.1) = 0.0990 mA
                           ⎝ 101 ⎠
    VO = 5 − ( 0.099 )( 5 ) ⇒ VO = 4.505 V
                            ⎛ 100 ⎞
(ii) I Q = 0.5 mA I C = ⎜         ⎟ ( 0.5 ) = 0.495 mA
                            ⎝ 101 ⎠
     VO = 5 − ( 0.495 )( 5 ) ⇒ VO = 2.525 V
(iii) I Q = 2 mA Transistor is in saturation
      VO = −VBE ( sat ) + VCE ( sat ) = −0.7 + 0.2 ⇒ VO = −0.5 V
(b) β = 150
                         ⎛ 150 ⎞
(i) I Q = 0.1 mA I C = ⎜       ⎟ ( 0.1) = 0.09934 mA
                         ⎝ 151 ⎠
    VO = 5 − ( 0.09934 )( 5 ) ⇒ VO = 4.503 V
                  4.503 − 4.505
     % change =                    × 100% = −0.044%
                      4.503
                           ⎛ 150 ⎞
(ii) I Q = 0.5 mA I C = ⎜        ⎟ ( 0.5 ) = 0.4967 mA
                           ⎝ 151 ⎠
     VO = 5 − ( 0.4967 )( 5 ) ⇒ VO = 2.517 V
                  2.517 − 2.525
     % change =                 × 100% = −0.32%
                      2.525
(iii) I Q = 2 mA Transistor in saturation
      Vo = −8.5 V     No change

5.30
5 − 0.5
VCB = 0.5 V ⇒ VO = 0.5 V , I C =                  = 0.90 mA
                                             5
      ⎛ 101 ⎞
 IQ = ⎜     ⎟ ( 0.90 ) ⇒ I Q = 0.909 mA
      ⎝ 100 ⎠

5.31
For I Q = 0, then PQ = 0
                            ⎛ 50 ⎞
For I Q = 0.5 mA, I C = ⎜ ⎟ ( 0.5 ) = 0.49 mA
                            ⎝ 51 ⎠
      0.5
IB =      = 0.0098 mA, VB = 0.490 V , VE = 1.19 V
      51
VC = ( 0.49 )( 4.7 ) − 9 = −6.70 V ⇒ VEC = 7.89 V
P ≅ I CVEC = ( 0.49 )( 7.89 ) ⇒ P = 3.87 mW
For I Q = 1.0 mA, Using the same calculations as above, we find P = 5.95 mW
For I Q = 1.5 mA, P = 6.26 mW
For I Q = 2 mA, P = 4.80 mW
For I Q = 2.5 mA, P = 1.57 mW
For I Q = 3 mA, Transistor is in saturation.
0.7 + I B ( 50 ) = 0.2 + I C ( 4.7 ) − 9
I E = IQ = I B + IC ⇒ I B = 3 − IC
Then, 0.7 + ( 3 − I C ) ( 50 ) = 0.2 + I C ( 4.7 ) − 9
Which yields I C = 2.916 mA and I B = 0.084 mA
P = I BVEB + I CVEC = ( 0.084 )( 0.7 ) + ( 2.916 )( 0.2 ) or P = 0.642 mW

5.32
       VEE − VEB ( on )          9 − 0.7
IE =                         =           ⇒ I E = 2.075 mA
                RE                  4
I C = α I E = ( 0.9920 ) ( 2.075 ) ⇒ I C = 2.06 mA
VBC + I C RC = VCC
VBC = 9 − ( 2.06 ) ( 2.2 ) ⇒ VBC = 4.47 V

5.33
         VCC − VCEQ          12 − 6
I CQ =                   =          = 2.73 mA
                RC            2.2
         I CQ        2.73
I BQ =          =         ⇒ I BQ = 0.091 mA
          β           30
         0.7 − ( −12 )
IR2 =                   = 0.127 mA
              100
 I R1 = I R 2 + I BQ = 0.127 + 0.091 = 0.218 mA
  V1 = I R1 R1 + 0.7 = ( 0.218 )(15 ) + 0.7 ⇒ V1 = 3.97 V

5.34
For VCE = 4.5
        5 − 4.5
I CQ =            = 0.5 mA
            1
        0.5
I BQ =        = 0.02 mA
        25
       0.7 − ( −5 )
I R2 =               = 0.057 mA
             100
I R1 = I R 2 + I BQ = 0.057 + 0.02 = 0.077 mA
V1 = I R1 R1 + VBE ( on ) = ( 0.077 )(15 ) + 0.7 = 1.86 V
For VCE = 1.0
         5 −1
I CQ =         = 4 mA
           1
          4
I BQ   =     = 0.16 mA
         25
I R2   = 0.057 mA
I R1 = I R 2 + I BQ = 0.057 + 0.16 = 0.217 mA
V1 = ( 0.217 )(15 ) + 0.7 ⇒ 3.96 V
So 1.86 ≤ V1 ≤ 3.96 V
IC


 5

 4
                                     Range of
                                    Q-pt values




0.5
 0             1                                  4.5   5

5.35
                  5 − 2.5
(a)          RC =         =5K
                    0.5
                  0.5
             IB =      = 0.00417 mA
                  120
                   5 − 0.7
             RB =           = 1032 K
                  0.00417
IC (mA)


       1.0



                                 Q-point
       0.5




                              2.5                       5 V (V)
                                                           CE
(b)          Choose RC = 5.1 K
                    RB = 1 MΩ
For RB = 1 MΩ + 10% = 1.1 M, RC = 5.1 k + 10% = 5.61 K
          5 − 0.7
   I BQ =         = 3.91 μ A ⇒ I CQ = 0.469 mA
            1.1
  VCEQ = 2.37 V
  RB = 1 MΩ + 10% = 1.1M, RC = 5.1 K − 10% = 4.59 K
 I BQ = 3.91 μ A ⇒ I CQ = 0.469 mA
VCEQ = 2.85 V
  RB = 1 MΩ − 10% = 0.90 MΩ          RC = 5.1 k + 10% = 5.61 K
        5 − 0.7
 I BQ =         = 4.78 μ A ⇒ I C = 0.573 mA
         0.90
VCEQ = 1.78 V
  RB = 1 MΩ − 10% = 0.90 MΩ       RC = 5.1 k − 10% = 4.59 K
 I BQ = 4.78 μ A ⇒ I C = 0.573 mA
VCEQ = 2.37 V
IC (mA)


   1.09

  0.891


  0.573
  0.469




                        1.78 2.37 2.85                5 V (V)
                                                         CE


5.36
VE 2 = 5 − VBE 2        VE1 = 5 − VBE1
VO = VE 2 − VE1 = ( 5 − VBE 2 ) − ( 5 − VBE1 )
VO = VBE1 − VBE 2
                     ⎛I ⎞
We have VBE1 = VE ln ⎜ E1 ⎟
                     ⎝ I EO ⎠
                           ⎛I ⎞
             VBE 2 = VT ln ⎜ E 2 ⎟
                           ⎝ I EO ⎠
        ⎡ ⎛I ⎞          ⎛I        ⎞⎤
VO = VT ⎢ln ⎜ E1 ⎟ − ln ⎜ E 2     ⎟⎥
        ⎣ ⎝ I EO ⎠      ⎝ I EO    ⎠⎦
           ⎛I ⎞           ⎛ 10 ⎞
VO = VT ln ⎜ E1 ⎟ = VT ln ⎜ I ⎟
           ⎝ IE2 ⎠        ⎝ I ⎠
          kT
VO =         ln (10 )
           e

5.37
(a)          RE = 0
    VI − 0.7                                                 (120 )( 4 )
IB =            IC = β I B          VO = 5 − I C ( 4 ) = 5 −             (VI − 0.7 )
      200                                                      200
When VO = 0.2, 0.2 = 5 − 2.4 VI + 1.68 ⇒ VI = 2.7
VO(V)


       5




  0.2
             0.7                     2.7          5   VI (V)


(b)         RE = 1 K
                    VI − 0.7     V − 0.7
            IB =                = I      I C = β IB
                 200 + (121)(1)     321
                       (120 )( 4 )
            VO = 5 −        (VI − 0.7 )
                     321
            When VO = 0.2 = 5 − 1.495VI + 1.047
            VI = 3.91 V

VO(V)


       5




      0.2
             0.7                           3.91   5   VI (V)


5.38
For 4.3 ≤ VI ≤ 5 Q is cutoff I C = 0
VO = 0
If Q reaches saturation, VO = 4.8
      4.8
IC =      = 1.2 mA
       4
     1.2            5 − 0.7 − VI
IB =      = 0.015 =              ⇒ VI = 1.6
      80                180
So VI ≤ 1.6, VO = 4.8
VO(V)



   4.8




                        1.6                       4.3    5   VI (V)


5.39
(a)       For VI ≥ 4.3, Q is off and VO = 0
                                       ⎛ 101 ⎞
When transistor enters saturation, 5 = ⎜     ⎟ I C (1) + 0.2 + I C ( 4 ) ⇒ I C = 0.958 mA
                                       ⎝ 100 ⎠
VO = 3.832 V
I B = 0.00958 mA
    ⎛ 101 ⎞
5=⎜       ⎟ ( 0.958 )(1) + 0.7 + ( 0.00958 )(180 ) + VI
    ⎝ 100 ⎠
VI = 5 − 0.7 − 0.9676 − 1.7244 ⇒ VI = 1.61 V
For VI = 0, transistor in saturation
5 = I E (1) + 0.2 + I C ( 4 ) ⇒ 5 = I C (1) + I B (1) + 0.2 + I C ( 4 )
5 = I E (1) + 0.7 + I B (180 ) 5 = I C (1) + I B (1) + 0.7 + I B (180 )
I E = IC + I B
4.8 = 5 I C + I B (1)
4.3 = 1I C + 181I B
I B = 4.8 − 5 I C
4.3 = I C + (181)( 4.8 − 5 I C )
904 I C = 864.5
I C = 0.956 mA
VO = 3.825 V
VO(V)


 3.832
 3.825




                     1.61                        4.3   5   VI (V)


5.40
 RTH = R1 R2 = 33 10 = 7.67 kΩ
       ⎛ R2 ⎞            ⎛ 10 ⎞
 VTH = ⎜         ⎟ VCC = ⎜         ⎟ (18 ) = 4.186 V
       ⎝ R1 + R2 ⎠       ⎝ 10 + 33 ⎠
         V − VBE ( on )       4.186 − 0.7
 I BQ = TH                =
       RTH + (1 + β ) RE 7.67 + ( 51)(1)
 I BQ = 0.0594 mA
 I CQ = β I BQ ⇒ I CQ = 2.97 mA
 I EQ = 3.03 mA
VCEQ = VCC − I CQ RC − I EQ RE
        = 18 − ( 2.97 )( 2.2 ) − ( 3.03)(1) ⇒ VCEQ = 8.44 V

5.41
I CQ = 1.2 mA, VCEQ = 9 V , RTH = 50 k Ω
           1.2
Also I B =     = 0.015 mA
            80
VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE
      ⎛ R2 ⎞               1                 1
VTH = ⎜         ⎟ (VCC ) = ⋅ RTH ⋅ VCC = ( 50 )(18 )
      ⎝ R1 + R2 ⎠          R1               R1
       1
Then     ( 50 )(18) = ( 0.015)( 50 ) + 0.7 + ( 81)( 0.015)(1) or R1 = 338 k Ω.
      R1
          338R2
Then              = 50 ⇒ R2 = 58.7 k Ω
         338 + R2
       ⎛ 81 ⎞
I EQ = ⎜ ⎟ (1.2 ) = 1.215 mA
       ⎝ 80 ⎠
18 = I CQ RC + VCEQ + I EQ RE
18 = (1.2 ) RC + 9 + (1.215 )(1) ⇒ RC = 6.49 k Ω

5.42
RTH = R1 R2 = 20 15 = 8.57 k Ω
      ⎛ R2 ⎞                ⎛ 15 ⎞
VTH = ⎜          ⎟ (VCC ) = ⎜         ⎟ (10 ) = 4.29 V
      ⎝ R1 + R2 ⎠           ⎝ 15 + 20 ⎠
                              I EQ
VCC = I EQ RE + VEB ( on ) +       ⋅ RTH + VTH
                             1+ β
                           ⎛ 8.57 ⎞
10 = I EQ (1) + 0.7 + I EQ ⎜       ⎟ + 4.29
                           ⎝ 101 ⎠
              10 − 0.7 − 4.29 5.01
Then I EQ =                      =          ⇒ I EQ = 4.62 mA
                     8.57          1.085
                 1+
                     101
       I EQ                  ⎛ 4.62 ⎞
VB =        ⋅ RTH + VTH = ⎜          ⎟ ( 8.57 ) + 4.29 or VB = 4.68 V
     1+ β                    ⎝ 101 ⎠

5.43
(a)
 RTH = 42 58 = 24.36 K
        ⎛ 42 ⎞
 VTH = ⎜      ⎟ ( 24 ) = 10.08 V
        ⎝ 100 ⎠
            10.08 − 0.7          9.38
 I BQ =                       =       ⇒ 7.30 μ A
        24.36 + (126 )(10 ) 1284.36
 I CQ = 0.913 mA         I EQ = 0.9202
VCEQ = 14.8 V

IC (mA)




  2.38




                                   Q-point
 0.913




                                14.8                 24 V
                                                            CE (V)


(b)
 R1 + 5% = 60.9, R2 + 5% = 44.1    RTH = 25.58 K                 VTH = 10.08
          10.08 − 0.7       9.38
 I BQ =                  =        ⇒ 7.30 μ A
        25.58 + 126 (10 ) 1285.58
I CQ = 0.912 mA         I EQ = 0.919
VCEQ = 14.81
R1 + 5% = 60.9, R2 − 5% = 39.90      RTH = 24.11 K        VTH = 9.50
           9.50 − 0.7        8.8
I BQ =                    =        = 6.85 μ A
       24.11 + (126 )(10 ) 1284.11
I CQ = 0.857 mA         I EQ = 0.8635 mA
VCEQ = 15.37 V
R1 − 5% = 55.1 K        R2 + 5% = 44.1 K        RTH = 24.50 K    VTH = 10.67 V
        10.67 − 0.7      9.97
I BQ =              =          = 7.76 μ A
       24.50 + 1260 1284.5
I CQ = 0.970 mA       I EQ = 0.978 mA
VCEQ = 14.22 V
R1 − 5% = 55.1 K        R2 − 5% = 39.90        RTH = 23.14 K    VTH = 10.08
        10.08 − 0.7       9.38
I BQ =              =           = 7.31 μ A
       23.14 + 1260 1283.14
I CQ = 0.914 mA       I EQ = 0.9211 mA
VCEQ = 14.79 V
So we have 0.857 ≤ I CQ ≤ 0.970 mA
14.22 ≤ VCEQ ≤ 15.37 V

5.44
a.
RTH = R1 R2 = 25 8 = 6.06 kΩ
       ⎛ R2 ⎞            ⎛ 8 ⎞
VTH = ⎜          ⎟ VCC = ⎜        ⎟ ( 24 )
       ⎝ R1 + R2 ⎠       ⎝ 8 + 25 ⎠
     = 5.82 V
        V − VBE (on)          5.82 − 0.7
I BQ = TH                =
       RTH + (1 + β ) RE 6.06 + ( 76 )(1)
I BQ = 0.0624 mA, I CQ = 4.68 mA
I EQ = 4.74
VCEQ = VCC − I CQ RC − I EQ RE
     = 24 − ( 4.68 )( 3) − ( 4.74 )(1)
VCEQ = 5.22 V
b.
             5.82 − 0.7
 I BQ =                   ⇒ I BQ = 0.0326 mA
          6.06 + (151)(1)
 I CQ = 4.89 mA
 I EQ = 4.92
VCEQ = 24 − ( 4.89 )( 3) − ( 4.92 )(1)
VCEQ = 4.41 V

5.45
(a)
I CQ ≅ I EQ = 0.4 mA
       3                              3
RC =      ⇒ RC = 7.5 k Ω; RE =           ⇒ RE = 7.5 k Ω
      0.4                            0.4
                9
R1 + R2 ≅                = 112.5 k Ω
          ( 0.2 )( 0.4 )
      ⎛ R2 ⎞
VTH = ⎜         ⎟ (VCC ) = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE
      ⎝ R1 + R2 ⎠
        RR        (112.5 − R2 ) R2           0.4
RTH = 1 2 =                         , I BQ =       = 0.004 mA
       R1 + R2         112.5                 100
   ⎛ 9 ⎞                 ⎡ (112.5 − R2 ) R2 ⎤
R2 ⎜       ⎟ = ( 0.004 ) ⎢                  ⎥ + 0.7 + (101)( 0.004 )( 7.5 )
   ⎝ 112.5 ⎠             ⎣     112.5        ⎦
We obtain R2 ( 0.08 ) = 0.004 R2 − 3.56 × 10−5 R2 + 3.73
                                                2


From this quadratic, we find R2 = 48 k Ω ⇒ R1 = 64.5 k Ω
(b)     Standard resistor values:
Set RE = RC = 7.5 k Ω and R1 = 62 k Ω, R2 = 47 k Ω
 Now RTH = R1 R2 = 62 47 = 26.7 k Ω
      ⎛ R2 ⎞                ⎛ 47 ⎞
VTH = ⎜          ⎟ (VCC ) = ⎜           ⎟ ( 9 ) = 3.88 V
      ⎝ R1 + R2 ⎠           ⎝ 47 + 62 ⎠
VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE
                  3.88 − 0.7
So I BQ =                          = 0.00406 mA
               26.7 + (101)( 7.5 )
Then I CQ = 0.406 mA
VRC = VRE = ( 0.406 )( 7.5 ) = 3.05 V

5.46
(a)
 RTH = R1 R2 = 12 2 = 1.714 K
       ⎛ R2 ⎞                   ⎛ 2⎞
 VTH = ⎜          ⎟ (10 ) − 5 = ⎜ ⎟ (10 ) − 5 ⇒ VTH = −3.571 V
       ⎝ R1 + R2 ⎠              ⎝ 14 ⎠
(b)
   VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE − 5
−3.57 = I BQ (1.714 ) + 0.7 + (101) I BQ ( 0.5 ) − 5
                 5 − 0.7 − 3.571     0.729
      I BQ =                       =       ⇒ 13.96 μ A
               1.714 + (101)( 0.5 ) 52.21
      I CQ = 1.396 mA, I EQ = 1.410 mA
 VCEQ = 10 − (1.396 )( 5 ) − (1.41)( 0.5 ) ⇒ VCEQ = 2.32 V
(d)
RE = 0.5 + 5% = 0.525 K              RC = 5 + 5% = 5.25 K
                 0.729
I BQ =                          ⇒ 13.32 μ A
         1.714 + (101)( 0.525 )
I CQ = 1.332 mA          I EQ = 1.345 mA
VCEQ = 10 − (1.332 )( 5.25 ) − (1.345 )( 0.525 )
      = 10 − 6.993 − 0.7061 ⇒ VCEQ = 2.30 V
RE = 0.5 + 5% = 0.525 K              RC = 5 − 5% = 4.75 K
I CQ = 1.332 mA          I EQ = 1.345 mA
VCEQ = 10 − (1.332 )( 4.75 ) − (1.345 )( 0.525 )
      = 10 − 6.327 − 0.7061 ⇒ VCEQ = 2.97 V
RE = 0.5 − 5% = 0.475 K              RC = 5 + 5% = 5.25 K
                 0.729
I BQ =                          ⇒ 14.67 μ A
         1.714 + (101)( 0.475 )
I CQ = 1.467 mA          I EQ = 1.482 mA
VCEQ = 10 − (1.467 )( 5.25 ) − (1.482 )( 0.475 )
      = 10 − 7.70175 − 0.70395 ⇒ VCEQ = 1.59 V
RE = 0.5 − 5% = 0.475 K              RC = 5 − 5% = 4.75 K
I CQ = 1.467 mA          I EQ = 1.482 mA
VCEQ = 10 − (1.467 )( 4.75 ) − (1.482 )( 0.475 )
      = 10 − 6.96825 − 0.70395 ⇒ VCEQ = 2.33 V

5.47
RTH = R1 R2 = 9 1 = 0.91 kΩ
       ⎛ R2 ⎞                 ⎛ 1 ⎞
VTH = ⎜           ⎟ ( −12 ) = ⎜      ⎟ ( −12 ) = −1.2 V
       ⎝ R1 + R2 ⎠            ⎝ 1+ 9 ⎠
I EQ RE + VEB ( on ) + I BQ RTH + VTH = 0
         −VTH − VEB (on)      1.2 − 0.7
I BQ =                    =
         RTH + (1 + β ) RE 0.90 + ( 76 )( 0.1)
I BQ = 0.0588,        I CQ = 4.41 mA
I EQ = 4.47 mA
Center of load line ⇒ VECQ = 6 V
I EQ RE + VECQ + I CQ RC − 12 = 0
( 4.47 ) ( 0.1) + 6 + ( 4.41) RC   = 12 ⇒ RC = 1.26 kΩ

5.48
(a)
 RTH = 36 68 = 23.5 K
       ⎛ 36 ⎞
VTH = ⎜          ⎟ (10 ) = 3.46 V
       ⎝ 36 + 68 ⎠
          3.46 − 0.7
I BQ =                    = 0.00178 mA
       23.5 + ( 51)( 30 )
I CQ = 0.0888 mA           I EQ = 0.0906 mA
VCE = 10 − ( 0.0888 )( 42 ) − ( 0.0906 )( 30 )
     = 10 − 3.73 − 2.72 ⇒ VCE = 3.55 V
(b)
    R1 = 22.7, R2 = 12 K, RC = 14 K, RE = 10 K
 RTH = 7.85 k        VTH = 3.46
            3.46 − 0.7
 I BQ =                    = 0.00533 mA
         7.85 + ( 51)(10 )
I CQ = 0.266 mA             I EQ = 0.272 mA
VCE = 10 − ( 0.266 )(14 ) − ( 0.272 )(10 )
VCE = 3.56 V

5.49
(a)
                                        ⎛ R2 ⎞                  ⎛ 68 ⎞
RTH = 36 68 = 23.5 K VTH = ⎜                      ⎟ (10 ) − 5 = ⎜         ⎟ (10 ) − 5 = 1.54 V
                                        ⎝ R1 + R2 ⎠             ⎝ 36 + 68 ⎠
5 = ( 51) I BQ ( 30 ) + 0.7 + I B ( 23.5 ) + 1.54
           2.76
I BQ =           = 1.78 μA ⇒ I CQ = 0.0888 mA
          1553.5
                             I EQ = 0.0906 mA
VECQ = 10 − ( 0.0906 )( 30 ) − ( 0.0888 )( 42 )
       = 10 − 2.718 − 3.7296 ⇒ VECQ = 3.55 V
(b)
 RTH = 12 22.7 = 7.85 K
 VTH = 1.54    RE = 10 K              RC = 14 K
5 = ( 51) I BQ (10 ) + 0.7 + I B ( 7.85 ) + 1.54
           2.76
I BQ =           = 5.33 μ A I CQ = 0.266 mA
          517.85
                            I EQ = 0.272 mA
VECQ = 10 − ( 0.272 )(10 ) − ( 0.266 )(14 )
       = 10 − 2.72 − 3.724 ⇒ VECQ = 3.56 V

5.50
(a)
 RTH = ( 0.1)(1 + β ) RE = ( 0.1)(101)( 0.5 ) = 5.05 k Ω
        1
 VTH = ⋅ RTH ⋅ VCC = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE
       R1
          I CQ       0.8
 I BQ =          =       = 0.008 mA
           β         100
     1
Then    ( 5.05)(10 ) = ( 0.008)( 5.05) + 0.7 + (101)( 0.008)( 0.5)
     R1
                           44.1R2
or R1 = 44.1 k Ω,                   = 5.05 ⇒ R2 = 5.70 k Ω
                          44.1 + R2
             ⎛ 101 ⎞
Now I EQ = ⎜       ⎟ ( 0.8 ) = 0.808 mA
             ⎝ 100 ⎠
VCC = I CQ RC + VCEQ + I EQ RE
10 = ( 0.8 ) RC + 5 + ( 0.808 )( 0.5 )
RC = 5.75 k Ω
(b)         For 75 ≤ β ≤ 150
⎛ R2 ⎞                ⎛ 5.7 ⎞
VTH = ⎜          ⎟ (VCC ) = ⎜              ⎟ (10 ) = 1.145 V
      ⎝ R1 + R2 ⎠           ⎝ 5.7 + 44.1 ⎠
VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE
                          1.145 − 0.7
For β = 75, I BQ =                          = 0.0103 mA
                       5.05 + ( 76 )( 0.5 )
Then I CQ = ( 75 )( 0.0103) = 0.775 mA
                           1.145 − 0.7
For β = 150, I BQ =                         = 0.00552 mA
                        5.05 + (151)( 0.5 )
Then I CQ = 0.829 mA
               ΔI CQ       0.829 − 0.775
% Change =             =                 × 100% ⇒ % Change = 6.75%
                I CQ           0.80
(c)        For RE = 1 k Ω
RTH = ( 0.1)(101)(1) = 10.1 k Ω
         1               1
VTH =       ⋅ RTH ⋅ VCC = (10.1)(10 ) = ( 0.008 )(10.1) + 0.7 + (101)( 0.008 )(1)
         R1              R1
which yields R1 = 63.6 k Ω
        63.6 R2
And              = 10.1 ⇒ R2 = 12.0 k Ω
       63.6 + R2
           ⎛ R2 ⎞                ⎛ 12 ⎞
Now VTH = ⎜          ⎟ (VCC ) = ⎜            ⎟ (10 ) = 1.587 V
           ⎝ R1 + R2 ⎠           ⎝ 12 + 63.6 ⎠
                    1.587 − 0.7
For β = 75, I BQ =                   = 0.0103 mA
                   10.1 + ( 76 )(1)
So I CQ = 0.773 mA
                        1.587 − 0.7
For β = 150, I BQ =                    = 0.00551 mA
                       10.1 + (151)(1)
Then I CQ = 0.826 mA
               ΔI CQ       0.826 − 0.773
% Change =             =                 × 100% ⇒ % Change = 6.63%
                I CQ            0.8

5.51
VCC ≅ I CQ ( RC + RE ) + VCEQ
10 = ( 0.8 )( RC + RE ) + 5 ⇒ RC + RE = 6.25 k Ω
Let RE = 0.875 k Ω
Then, for bias stable RTH = ( 0.1)(121)( 0.875 ) = 10.6 k Ω
         0.8
I BQ =       = 0.00667 mA
         120
1
   (10.6 )(10 ) = ( 0.00667 )(10.6 ) + 0.7 + (121)( 0.00667 )( 0.875 )
R1
                             71.8R2
So R1 = 71.8 k Ω and                  = 10.6 ⇒ R2 = 12.4 k Ω
                            71.8 + R2
                10
Then I R ≅              = 0.119 mA
            71.8 + 12.4
This is close to the design specification.

5.52
I CQ ≈ I EQ ⇒ VCEQ         = VCC − I CQ ( RC + RE )
                       6 = 12 − I CQ ( 2 + 0.2 )
I CQ = 2.73 mA,          I BQ = 0.0218 mA
VCEQ = 6 V
VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE − 6
      ⎛ R2 ⎞
VTH = ⎜         ⎟ (12 ) − 6,       RTH = R 1 R2
      ⎝ R1 + R2 ⎠
Bias stable ⇒ RTH = ( 0.1)(1 + β ) RE = ( 0.1)(126 )( 0.2 ) = 2.52 kΩ
       ⎛ 1⎞
VTH = ⎜ ⎟ ( RTH )(12 ) − 6
       ⎝ R1 ⎠
 1
   ( 2.52 )(12 ) − 6 = ( 0.0218)( 2.52 ) + 0.7 + (126 )( 0.0218)( 0.2 ) − 6
R1
1
   ( 30.24 ) = 0.7549 + 0.5494
R1
                        23.2R 2
R1 = 23.2 kΩ,                     = 2.52
                       23.2 + R 2
R2 = 2.83 kΩ

5.53
                                  ⎛ 81 ⎞
a.         I CQ = 1 mA. I EQ = ⎜ ⎟ (1) = 1.01 mA
                                  ⎝ 80 ⎠
           VCEQ = 12 − (1)( 2 ) − (1.01)( 0.2 ) ⇒ VCEQ = 9.80 V
                     1
            I BQ =      = 0.0125 mA
                    80
RTH    = + ( 0.1) (1 + β ) RE = ( 0.1)( 81)( 0.2 ) = 1.62 kΩ
      ⎛ R2 ⎞                   1                    1
VTH = ⎜          ⎟ (12 ) − 6 =    ( RTH )(12 ) − 6 = (19.44 ) − 6
      ⎝ R1 + R2 ⎠              R1                   R1
VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE − 6
1
   (19.44 ) − 6 = ( 0.0125 )(1.62 ) + 0.7 + ( 81)( 0.0125)( 0.2 ) − 6
R1
1
   (19.44 ) = 0.923
R1
                       21.1R2
R1 = 21.1 kΩ,                   = 1.62
                      21.1 + R2
R2 = 1.75 kΩ
b.
 R1 = 22.2 kΩ or R1 = 20.0 kΩ
R2 = 1.84 kΩ or R2 = 1.66 kΩ
R2 ( max ) , R1 ( min )
RTH = (1.84 )        ( 20.0 ) = 1.685 kΩ
       ⎛ 1.84        ⎞
VTH = ⎜              ⎟ (12 ) − 6 = −4.99 V
       ⎝ 1.84 + 20.0 ⎠
       −4.99 − 0.7 − ( −6 ) 0.31
I BQ =                       =        = 0.0173 mA
       1.685 + ( 81)( 0.2 ) 17.89
I CQ = 1.39 mA, I EQ = 1.40 mA
For max, RC ⇒ VCE = 12 − (1.39 )( 2 ) − (1.40 )( 0.2 )
                   VCE = 8.94 V
R2 ( min ) , R1 ( max )
RTH = (1.66 )    ( 22.2 ) = 1.545 kΩ
       ⎛ 1.66 ⎞
VTH = ⎜              ⎟ (12 ) − 6 = −5.165 V
       ⎝ 1.66 + 22.2 ⎠
         −5.165 − 0.7 + 6        0.135
I BQ =                        =        = 0.00761 mA ⇒ I CQ = 0.609 mA, I E = 0.616
       1.545 + ( 81)( 0.20 ) 17.745
VCEQ = 12 − ( 0.609 )( 2 ) − ( 0.616 )( 0.2 )
VCEQ = V 10.7 V
So 0.609 ≤ I C ≤ 1.39 mA
8.94 ≤ VCEQ ≤ 10.7 V

5.54
VCEQ ≅ VCC − I CQ ( RC + RE )
    5 = 12 − 3 ( RC + RE ) ⇒ RC + RE = 2.33 k Ω
Let RE = 0.333 k Ω and RC = 2 k Ω
Nominal value of β = 100
RTH = ( 0.1)(1 + β ) RE = ( 0.1)(101)( 0.333) = 3.36 k Ω
        3
 I BQ =    = 0.03 mA
       100
        1                  1
VTH   = ⋅ RTH ⋅ (12 ) − 6 = ( 3.36 )(12 ) − 6
       R1                  R1
Then VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE − 6
1
   ( 3.36 )(12 ) − 6 = ( 0.03)( 3.36 ) + 0.7 + (101)( 0.03)( 0.333) − 6
R1
which yields R1 = 22.3 k Ω and R2 = 3.96 k Ω
           ⎛ R2 ⎞                  ⎛ 3.96 ⎞
Now VTH = ⎜          ⎟ (12 ) − 6 = ⎜              ⎟ (12 ) − 6 or VTH = −4.19 V
           ⎝ R1 + R2 ⎠             ⎝ 3.96 + 22.3 ⎠
For β = 75, VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE − 6
           VTH + 6 − 0.7      −4.19 + 6 − 0.7
I BQ =                     =                      = 0.0387 mA ⇒ I C = 2.90 mA
          RTH + (1 + β ) RE 3.36 + ( 76 )( 0.333)
                             −4.19 + 6 − 0.7
For β = 150, I BQ =                            = 0.0207 mA
                          3.36 + (151)( 0.333)
Then I C = 3.10 mA
Specifications are met.

5.55
RTH = R1 R2 = 3 12 = 2.4 k Ω
       ⎛ R2 ⎞            ⎛ 12 ⎞
 VTH = ⎜         ⎟ VCC = ⎜        ⎟ ( 20 ) = 16 V
       ⎝ R1 + R2 ⎠       ⎝ 12 + 3 ⎠
(a)      For β = 75
20 = (1 + β ) I BQ RE + VEB ( on ) + I BQ RTH + VTH
20 − 0.7 − 16 = I BQ ⎡( 76 )( 2 ) + 2.4 ⎤
                     ⎣                  ⎦
So I BQ = 0.0214 mA, I CQ = 1.60 mA, I EQ = 1.62 E
VECQ = 20 − (1.6 )(1) − (1.62 )( 2 ) or VECQ = 15.16 V
(b) For β = 100, we find I BQ = 0.0161 mA, I CQ = 1.61 mA, VECQ = 15.13 V , I EQ = 1.63 mA

5.56
I CQ = 4.8 mA → I EQ = 4.84 mA
VCEQ = VCC − I CQ RC − I EQ RE
6 = 18 − ( 4.8 )( 2 ) − ( 4.84 ) RE ⇒ RE = 0.496 kΩ
RTH = ( 0.1)(1 + β ) RE = ( 0.1)(121)( 0.496 ) = 6.0 kΩ
VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE
I BQ = 0.040 mA
         1              1
VTH =       ⋅ RTH ⋅VCC = ( 6.0 )(18 )
         R1             R1
1
   ( 6.0 )(18) = ( 0.04 )( 6.0 ) + 0.70 + (121)( 0.04 )( 0.496 )
R1
1
   (108 ) = 3.34
R1
                    32.3 R2
R1 = 32.3 kΩ,                = 6.0
                   32.3 + R2
R2 = 7.37 kΩ

5.57
For nominal β = 70
         2
I BQ =     = 0.0286 mA → I EQ = 2.03 mA
        70
VCEQ   = VCC − I CQ RC − I EQ RE
10 = 20 − ( 2 )( 4 ) − ( 2.03) RE ⇒ RE = 0.985 K
RTH = ( 0.1)(1 + β ) RE = ( 0.1)( 71)( 0.985 ) = 6.99 K
VTH = I BQ RTH + VBE ( on ) + I EQ RE
1
   ⋅ RTH ⋅ VCC = I BQ RTH + VBE ( on ) + I EQ RE
R1
1
   ( 6.99 )( 20 ) = ( 0.0286 )( 6.99 ) + 0.70 + ( 2.03)( 0.985 )
R1
1
   (139.8 ) = 2.90
R1
                   48.2 R2
R1 = 48.2 K,                = 6.99
                  48.2 + R2
R2 = 8.18 K
Check: For β = 50
      ⎛ 8.18 ⎞
VTH = ⎜             ⎟ ( 20 ) = 2.90
      ⎝ 8.18 + 48.2 ⎠
       V − VBE ( on )            2.90 − 0.7
I BQ = TH                 =                   = 0.0384 mA
      RTH + (1 + β ) RE 6.99 + ( 51)( 0.985 )
I CQ = 1.92 mA
For β = 90
             2.90 − 0.7
I BQ =                         = 0.0228 mA
         6.99 + ( 91)( 0.985 )
I CQ = 2.05 mA
Design criterion is satisfied.
5.58
I CQ = 1 mA → I EQ = 1.017 mA
VCEQ = VCC − I CQ RC − I EQ RE
5 = 15 − (1)( 5 ) − (1.017 ) RE ⇒ RE = 4.92 kΩ
Bias stable: RTH = ( 0.1)(1 + β ) RE = ( 0.1)( 61)( 4.92 ) = 30.0 kΩ
       1
I BQ =    = 0.0167 mA
       60
        1
VTH = ⋅ RTH ⋅ VCC = I BQ RTH + VBE ( on ) + I EQ RE
       R1
1
   ( 30.0 )(15 ) = ( 0.0167 )( 30.0 ) + 0.70 + (1.017 )( 4.92 )
R1
1
   ( 448.5) = 6.197
R1
                     72.5 R2
R1 = 72.5 kΩ,                 = 30.0
                    72.5 + R2
R2 = 51.2 kΩ
Check: For β = 45
      ⎛ 51.2 ⎞
VTH = ⎜             ⎟ (15 ) = 6.21V
      ⎝ 51.2 + 72.5 ⎠
        V − VBE ( on )          6.21 − 0.7
I BQ = TH                =                   = 0.0215 mA
       RTH + (1 + β ) RE 30 + ( 46 )( 4.92 )
                        ΔI C
I CQ = 0.967 mA,             = 3.27%
                         IC
Check: For β = 75
           6.21 − 0.7
I BQ =                       = 0.0136 mA
       30.0 + ( 76 )( 4.92 )
                    ΔI C
I CQ = 1.023 mA,          = 2.31%
                     IC
Design criterion is satisfied.

5.59
(a)
VCC ≅ I CQ ( RC + RE ) + VCEQ
3 = ( 0.1)( 5 RE + RE ) + 1.4 ⇒ RE = 2.67 k Ω
                          100
RC = 13.3 k Ω, I BQ =           = 0.833 μ A
                          120
RTH   = ( 0.1)(1 + β ) RE = ( 0.1)(121)( 2.67 ) = 32.3 k Ω
        1               1
VTH =      ⋅ RTH ⋅ VCC = ( 32.3)( 3)
        R1              R1
      = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE
      = ( 0.000833)( 32.3) + 0.7 + (121)( 0.000833)( 2.67 )
which gives R1 = 97.3 k Ω, and R2 = 48.4 k Ω
(b)
3         3
IR ≅          =            ⇒ 20.6 μ A
       R1 + R2 97.3 + 48.4
I CQ = 100 μ A
P = ( I CQ + I R )VCC = (100 + 20.6 )( 3)
or P = 362 μW

5.60
       5 − VE 5
IE =         = = 1.67 mA
         RE   3
RTH = R1 || R2 = ( 0.1)(1 + β ) RE = ( 0.1)(101)( 3) = 30.3 kΩ
       ⎛ R2 ⎞                   1
VTH = ⎜           ⎟ ( 4 ) − 2 = ⋅ RTH ⋅ ( 4 ) − 2
       ⎝  R1 + R2 ⎠             R1
         I EQ
I BQ =        = 0.0165 mA
       1+ β
5 = I EQ RE + VEB ( on ) + I B RTH + VTH
                                              1
5 = (1.67 )( 3) + 0.7 + ( 0.0165 )( 30.3) + ( 30.3)( 4 ) − 2
                                              R1
         1
0.80 =      ( 30.3)( 4 ) ⇒ R1 = 152 kΩ
         R1
 152 R2
         = 30.3 ⇒ R2 = 37.8 kΩ
152 + R2

5.61
a.        RTH = R1 R2 = 10 20 ⇒ RTH = 6.67 kΩ
                ⎛ R2 ⎞                  ⎛ 20 ⎞
          VTH = ⎜         ⎟ (10 ) − 5 = ⎜         ⎟ (10 ) − 5 ⇒ VTH = 1.67 V
                ⎝ R1 + R2 ⎠             ⎝ 20 + 10 ⎠
b.
 10 = (1 + β ) I BQ RE + VEB ( on ) + I BQ RTH + VTH
       10 − 0.7 − 1.67 7.63
I BQ =                   =         ⇒ I BQ = 0.0593 mA
       6.67 + ( 61)( 2 ) 128.7
I CQ = 3.56 mA, I EQ =3.62 mA
 VE = 10 − I EQ RE = 10 − ( 3.62 )( 2 )
 VE = 2.76 V
 VC = I CQ RC − 10 = ( 3.56 )( 2.2 ) − 10
 VC = −2.17 V

5.62
V + − V − ≅ I CQ ( RC + RE ) + VECQ
20 = ( 0.5 )( RC + RE ) + 8 ⇒ ( RC + RE ) = 24 k Ω
Let RE = 10 k Ω then RC = 14 k Ω
Let β = 60 from previous problem.
RTH = ( 0.1)(1 + β ) RE = ( 0.1)( 61)(10 )
Or RTH = 61 k Ω
0.5
I BQ =       = 0.00833 mA
         60
        ⎛ R2 ⎞                 1
VTH    =⎜         ⎟ (10 ) − 5 = ⋅ RTH ⋅10 − 5
        ⎝ R1 + R2 ⎠            R1
Now 10 = (1 + β ) I BQ RE + VEB ( on ) + I BQ RTH + VTH
                                                                  1
           10 = ( 61)( 0.00833)(10 ) + 0.7 + ( 0.00833) ( 61) +      ( 61) (10 ) − 5
                                                                  R1
Then R1 = 70.0 k Ω and R2 = 474 k Ω
       10        10
IR ≅         =          ⇒ 18.4 μ A
     R1 + R2 70 + 474
So the 40 μ A current limit is met.

5.63
a.             RTH = R1 R2 = 35 20 ⇒ RTH = 12.7 kΩ
                     ⎛ R2 ⎞                ⎛ 20 ⎞
               VTH = ⎜         ⎟ (7) − 5 = ⎜         ⎟ ( 7 ) − 5 ⇒ VTH = −2.45 V
                     ⎝ R1 + R2 ⎠           ⎝ 20 + 35 ⎠
b.
           VTH − VBE ( on ) − ( −10 )
I BQ =
               RTH + (1 + β ) RE
           −2.45 − 0.7 + 10
       =                        ⇒ I BQ = 0.136 mA
           12.7 + ( 76 )( 0.5 )
I CQ = 10.2 mA, I EQ = 10.4 mA
VCEQ = 20 − I CQ RC − I EQ RE
       = 20 − (10.2 )( 0.8 ) − (10.4 )( 0.5 )
VCEQ = 6.64 V
c.
  R2 = 20 + 5% = 21 kΩ
   R1 = 35 − 5% = 33.25 kΩ
  RE = 0.5 − 5% = 0.475 kΩ
RTH = R1 R2 = 21 33.25 = 12.9 kΩ
      ⎛ R2 ⎞
VTH = ⎜         ⎟ (7) − 5
      ⎝ R1 + R2 ⎠
      ⎛     21     ⎞
    =⎜             ⎟ ( 7 ) − 5 = −2.29 V
      ⎝ 21 + 33.25 ⎠
            −2.29 − 0.7 − ( −10 )
I BQ =                               = 0.143 mA
            12.9 + ( 76 )( 0.475 )
I CQ = 10.7 mA, I EQ = 10.9 mA
For RC = 0.8 + 5% = 0.84 kΩ
VCEQ = 20 − (10.7 )( 0.84 ) − (10.9 )( 0.475 ) ⇒ VCEQ = 5.83 V
For RC = 0.8 − 5% = 0.76 kΩ
VCEQ = 20 − (10.7 )( 0.76 ) − (10.9 )( 0.475 ) ⇒ VCEQ = 6.69 V
R2 = 20 − 5% = 19 kΩ
R1 = 35 + 5% = 36.75 kΩ
RE = 0.5 + 5% = 0.525 kΩ
RTH = R1 R2 = 19 36.75 = 12.5 kΩ
       ⎛     19      ⎞
VTH = ⎜              ⎟ ( 7 ) − 5 = −2.61 V
       ⎝ 19 + 36.75 ⎠
       −2.61 − 0.7 − ( −10 )
I BQ =                          = 0.128 mA
       12.5 + ( 76 )( 0.525 )
I CQ = 9.58 mA, I EQ = 9.70 mA
For RC = 0.84 kΩ
VCEQ = 20 − ( 9.58 )( 0.84 ) − ( 9.70 )( 0.525 ) ⇒ VCEQ = 6.86 V
For RC = 0.76 kΩ
VCEQ = 20 − ( 9.58 )( 0.76 ) − ( 9.70 )( 0.525 ) ⇒ VCEQ = 7.63 V
So 9.58 ≤ I CQ ≤ 10.7 mA and 5.83 ≤ VCEQ ≤ 7.63 V

5.64
a.
RTH = 500 kΩ 500 kΩ 70 kΩ = 250 kΩ 70 kΩ ⇒ RTH = 54.7 kΩ
5 − VTH 3 − VTH VTH − ( −5 )
       +        =
  500     500          70
 5     3     5       ⎛ 1     1  1 ⎞
     +    −    = VTH ⎜    +    + ⎟ − 0.0554 = VTH ( 0.0183)
500 500 70           ⎝ 500 500 70 ⎠
VTH = −3.03 V
b.
         VTH − VBE ( on ) − ( −5 )
I BQ =
            RTH + (1 + β ) RE
         −3.03 − 0.7 + 5
     =
         54.7 + (101)( 5 )
I BQ = 0.00227 mA
I CQ = 0.227 mA, I EQ = 0.229
VCEQ = 20 − ( 0.227 )( 50 ) − ( 0.229 )( 5 )
VCEQ = 7.51 V

5.65
RTH = 30 || 60 || 20 ⇒ RTH = 10 kΩ
5 − VTH 5 − VTH VTH
       +        =
   30       60     20
⎛ 5    5 ⎞     ⎛ 1    1 1 ⎞
⎜ + ⎟ = VTH ⎜ + + ⎟
⎝ 30 60 ⎠      ⎝ 30 60 20 ⎠
VTH = 2.5 V
For β = 100
VTH − VBE ( on ) − ( −5 )
I BQ =
             RTH + (1 + β ) RE
            2.5 − 0.7 + 5
      =
          10 + (101)( 0.2 )
I BQ = 0.225 mA
I CQ = 22.5 mA, I EQ = 22.7 mA
VCEQ = 15 − ( 22.5 )( 0.5 ) − ( 22.7 ) ( 0.2 )
VCEQ = −0.79! In saturation ⇒ VCEQ = 0.2 V
VTH = I BQ RTH + VBE + I EQ RE − 5
2.5 + 5 − 0.7 = I BQ (10 ) + I EQ ( 0.2 )
6.8 = I BQ (10 ) + I EQ ( 0.2 )
14.8 = I CQ ( 0.5 ) + I EQ ( 0.2 )
Transistor in saturation,
I EQ = I BQ + I CQ
6.8 = I BQ (10 ) + I BQ ( 0.2 ) + I CQ ( 0.2 )
6.8 = I BQ (10.2 ) + I CQ ( 0.2 )
51× 14.8 = I BQ ( 0.2 ) + I CQ ( 0.7 )
754.8 = I BQ (10.2 ) + I CQ ( 35.7 )
748 = I CQ ( 35.5 )
I CQ = 21.1 mA
VCEQ = 0.2 V

5.66
I CQ = 50 μ A, I BQ = 0.625 μ A, I EQ = 50.6 μ A
(a)
          1
RE =           = 19.8 K
       0.0506
5 = ( 0.050 ) RC + 5 + ( 0.0506 )(19.8 ) − 5
RC = 80 K
RTH = R1 R2 Design bias stable circuit.
RTH = ( 0.1)( 51)(19.8 ) = 101 K
       ⎛ R2 ⎞                  1
VTH = ⎜          ⎟ (10 ) − 5 = ⋅ RTH ⋅ (10 ) − 5
       ⎝ R1 + R2 ⎠            R1
    1
So      (101)(10 ) − 5 = I BQ (101) + 0.7 + ( 0.0506 )(19.8 ) − 5
    R1
1
   (1010 ) = 0.0631 + 0.7 + 1
R1
                      573 R2
R1 = 573 K                    = 101
                     573 + R2
 R2 = 123 K
(b)
RTH = 101 K, VTH = −3.23 V
 VTH = I BQ RTH + 0.7 + (121)(19.8 ) I BQ − 5
1.07 = I BQ (101 + 2395.8 ) ⇒ I BQ = 0.429 μ A
 I CQ = 0.0514 mA, I EQ = 0.0519 mA
VCEQ = 10 − ( 0.0514 )( 80 ) − ( 0.0519 )(19.8 )
       = 10 − 4.11 − 1.03 ⇒ VCEQ = 4.86 V

5.67
(a)
                            2
I EQ = 0.80 mA, RE =           = 2.5 K
                           0.8
12 = I CQ RC + VCEQ   + I EQ RE
12 = ( 0.8 ) RC + 7 + 2 ⇒ RC = 3.75 K
VTH = I BQ RTH + VBE + I EQ RE
For a bias stable circuit
RTH = ( 0.1)(12.1)( 2.5 ) = 30.25 K
1               1
   ⋅ RTH ⋅ VCC = ( 30.25 )(12 ) = ( 0.00667 )( 30.25 ) + 0.7 + 2
R1              R1
1
   ( 363) = 2.90 ⇒ R1 = 125 K
R1
 125 R2
         = 30.25 ⇒ R2 = 39.9 K
125 + R2
(b) Let RE = 2.4 K, RC = 3.9 K
 R1 = 120 K       R2 = 39 K
Then
 RTH = R1 R2 = 120 39 = 29.4 K
       ⎛ 39 ⎞
VTH = ⎜           ⎟ (12 ) = 2.94 V
       ⎝ 120 + 39 ⎠
           2.94 − 0.7          2.24
I BQ =                      =       ⇒ 7.00 μ A
       29.4 + (121)( 2.4 ) 319.8
I CQ = 0.841 mΑ I EQ = 0.848 mA
VCEQ = 12 − ( 0.841)( 3.9 ) − ( 0.848 )( 2.4 ) = 12 − 3.28 − 2.04
VCEQ = 6.68 V

5.68
(a)        I CQ = 100 μ A, I BQ = 1.18 μ A, I EQ = 101 μ A
                    2
           RE =         ⇒ RE = 19.8 K
                 0.101
             9 = ( 0.101)(19.8 ) + 6 + ( 0.1) RC − 9
           RC = 100 K
Design a bias stable circuit.
BTH = ( 0.1)( 86 )(19.8 ) = 170 K
      ⎛ R2 ⎞                 1
VTH = ⎜         ⎟ (18 ) − 9 = (170 )(18 ) − 9
      ⎝ R1 + R2 ⎠            R1
                                                      1
9 = ( 0.101)(19.8 ) + 0.7 + ( 0.00118 )(170 ) +          (170 )(18 ) − 9
                                                      R1
                       203R2
R1 = 203 K                     = 170
                      203 + R2
 R2 = 1046 K
(b)      β = 125
       9 = (126 ) I BQ (19.8 ) + 0.7 + I BQ (170 ) + (15.07 − 9 )
            2.23
 I BQ =           = 0.837 μ A           I CQ = 0.1046 mA
           2664.8
I EQ   = 0.1054 mA
VECQ = 18 − ( 0.1046 )(100 ) − ( 0.1054 )(19.8 )
VECQ = 5.45 V

5.69
(a)
       ⎛ 51 ⎞                         3
I EQ ≈ ⎜ ⎟ ( 20 ) = 20.4 mA ⇒ RE =        = 0.147 K
       ⎝ 50 ⎠                       20.4
                                6
VRC = 18 − 9 − 3 = 6 V     RC =    = 0.3 K
                                20
For a bias stable circuit.
 RTH = ( 0.1)( 51)( 0.147 ) = 0.750 K
V + = I EQ RE + VEB + I BQ RTH + VTH
                                   1
18 = 3 + 0.7 + ( 0.4 )( 0.75 ) +      ( 0.75 )(18)
                                   R1
        1
14 =       (13.5) ⇒ R1 = 0.964 K
        R1
( 0.964 ) R2
                = 0.75 ⇒ R2 = 3.38 K
0.964 + R2
(b) Let RE = 0.15 K, RC = 0.3 K
   R1 = 1.0 K, R2 = 3.3 K
                                ⎛ 3.38 ⎞
 RTH = 1/13.3 = 0.767 K, VTH = ⎜           ⎟ (18 ) = 13.8 V
                                ⎝ 1 + 3.38 ⎠
          18 − 13.8 − 0.7      3.5
 I BQ =                      =       = 0.416 mA
        0.767 + ( 51)( 0.15 ) 8.417
 I CQ = 20.8 mA, I EQ = 21.2 mA
VECQ = 18 − ( 20.8 )( 0.3) − ( 21.2 )( 0.15 )
        = 18 − 6.24 − 3.18
VECQ = 8.58 V

5.70
RTH = R1 R2 = 100 40 = 28.6 kΩ
       ⎛ R2 ⎞              ⎛ 40 ⎞
VTH = ⎜          ⎟ (10 ) = ⎜          ⎟ (10 ) = 2.86 V
       ⎝ R1 + R2 ⎠         ⎝ 40 + 100 ⎠
        VTH − VBE ( on )        2.86 − 0.7
I B1 =                     =
       RTH + (1 + β ) RE1 28.6 + (121) (1)
I B1 = 0.0144 mA
I C1 = 1.73 mA,           I E1 = 1.75 mA
10 − VB 2
          = I C1 + I B 2
    3
      VB 2 − VBE ( on ) − ( −10 )
IE2 =
                   5
10 − VB 2          VB 2 − 0.7 + 10
          = I C1 +
    3                  (121) ( 5 )
10          9.3        ⎛1     1        ⎞
   − 1.73 −     = VB 2 ⎜ +
                       ⎜ 3 (121) ( 5 ) ⎟
                                       ⎟
 3          605        ⎝               ⎠
1.588 = VB 2 ( 0.335 ) ⇒ VB 2 = 4.74 V
          4.74 − 0.7 − ( −10 )
IE2 =                            ⇒ I E 2 = 2.808 mA
                5
I B2   = 0.0232 mA
I C 2 = 2.785 mA
VCEQ1 = 4.74 − (1.75 ) (1) ⇒ VCEQ1 = 2.99 V
VCEQ 2 = 10 − ( 4.74 − 0.7 ) ⇒ VCEQ 2 = 5.96 V

5.71
VE1 = −0.7
          −0.7 − ( −5 )
 I R1 =               = 0.215 mA
             20
VE 2   = −0.7 − 0.7 = −1.4
          −1.4 − ( −5 )
IE2 =                     ⇒ I E 2 = 3.6 mA
               1
                               I B 2 = 0.0444 mA
                               I C 2 = 3.56 mA
I E1 = I R1 + I B 2 = 0.215 + 0.0444
I E1 = 0.259 mA
I B1 = 0.00320 mA
I C1 = 0.256 mA

5.72
Current through V − source = I E1 + I E 2 and I E1 = I E 2 = (1 + β ) I B1 = ( 51)( 8.26 ) μ A
So total current = 2 ( 51)( 8.26 ) μ A=843 μ A
P − = I ⋅ V − = ( 0.843)( 5 ) ⇒ P − = 4.22 mW
(From V − source)
From Example 5.19, I Q = 0.413 mA
           ⎛ 50 ⎞
So I C 0 = ⎜ ⎟ ( 0.413) = 0.405 mA
           ⎝ 51 ⎠
P + = I ⋅ V + = ( 0.405 )( 5 ) ⇒ P + = 2.03 mW
(From V + source)

5.73
RTH = R1 R2 = 50 100 = 33.3 kΩ
      ⎛ R2 ⎞
VTH = ⎜          ⎟ (10 ) − 5
      ⎝ R1 + R2 ⎠
      ⎛ 100 ⎞
    =⎜            ⎟ (10 ) − 5 = 1.67 V
      ⎝ 100 + 50 ⎠
  5 = I E1 RE1 + VEB ( on ) + I B1 RTH + VTH
       ⎛ 101 ⎞
I E1 = ⎜     ⎟ ( 0.8 ) = 0.808 mA
       ⎝ 100 ⎠
I B1 = 0.008 mA
   5 = ( 0.808 ) RE1 + 0.7 + ( 0.008 )( 33.3) + 1.67
RE1 = 2.93 kΩ
VE1 = 5 − ( 0.808 ) ( 2.93) = 2.63 V
VC1 = VE1 − VECQ1 = 2.63 − 3.5 = −0.87 V
VE 2 = −0.87 − 0.70 = −1.57 V
        −1.57 − ( −5 )
IE2 =                    = 0.808 ⇒ RE 2 = 4.25 kΩ
            RE 2
VCEQ 2 = 4 ⇒ VC 2 = −1.57 + 4 = 2.43 V
          5 − 2.43
   RC 2 =             ⇒ RC 2 = 3.21 kΩ
             0.8
I RC1 = I C1 − I B 2 = 0.8 − 0.008 = 0.792 mA
        −0.87 − ( −5 )
RC1 =                    ⇒ RC1 = 5.21 kΩ
            0.792

More Related Content

Viewers also liked (16)

Ch06p
Ch06pCh06p
Ch06p
 
Ch12s
Ch12sCh12s
Ch12s
 
Ch16p
Ch16pCh16p
Ch16p
 
Ch03p
Ch03pCh03p
Ch03p
 
Ch07s
Ch07sCh07s
Ch07s
 
Ch14s
Ch14sCh14s
Ch14s
 
Ch01s
Ch01sCh01s
Ch01s
 
Ch07p
Ch07pCh07p
Ch07p
 
Ch04s
Ch04sCh04s
Ch04s
 
Ch15s
Ch15sCh15s
Ch15s
 
Ch02p
Ch02pCh02p
Ch02p
 
Ch01p
Ch01pCh01p
Ch01p
 
Ch13p
Ch13pCh13p
Ch13p
 
Ch03s
Ch03sCh03s
Ch03s
 
Ch09p
Ch09pCh09p
Ch09p
 
Ch11s
Ch11sCh11s
Ch11s
 

Similar to Chapter 5 Problem Solutions for Bipolar Junction Transistors

Similar to Chapter 5 Problem Solutions for Bipolar Junction Transistors (20)

Ch05p
Ch05pCh05p
Ch05p
 
Ch10s
Ch10sCh10s
Ch10s
 
Ch12p
Ch12pCh12p
Ch12p
 
Ch08p
Ch08pCh08p
Ch08p
 
Ch06s
Ch06sCh06s
Ch06s
 
Ch09s
Ch09sCh09s
Ch09s
 
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
 
งานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เคงานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เค
 
Ch10p
Ch10pCh10p
Ch10p
 
Ch14p
Ch14pCh14p
Ch14p
 
Basic m4-2-chapter2
Basic m4-2-chapter2Basic m4-2-chapter2
Basic m4-2-chapter2
 
Livro Hibbeler - 7ª ed Resistencia Materiais (soluções).pdf
Livro Hibbeler - 7ª ed Resistencia Materiais (soluções).pdfLivro Hibbeler - 7ª ed Resistencia Materiais (soluções).pdf
Livro Hibbeler - 7ª ed Resistencia Materiais (soluções).pdf
 
Ch11p
Ch11pCh11p
Ch11p
 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
 
Topic 3 decimals
Topic 3   decimalsTopic 3   decimals
Topic 3 decimals
 
William hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solution
 
Analysis of indeterminate beam by slopeand deflection method
Analysis of indeterminate beam by slopeand deflection methodAnalysis of indeterminate beam by slopeand deflection method
Analysis of indeterminate beam by slopeand deflection method
 
Muro contension raul1
Muro contension raul1Muro contension raul1
Muro contension raul1
 
Ch16s
Ch16sCh16s
Ch16s
 
Ch08s
Ch08sCh08s
Ch08s
 

More from Bilal Sarwar

More from Bilal Sarwar (6)

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
 
Ramey soft
Ramey softRamey soft
Ramey soft
 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
 
Ch15p
Ch15pCh15p
Ch15p
 
Ch04p
Ch04pCh04p
Ch04p
 

Recently uploaded

Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...M56BOOKSTORE PRODUCT/SERVICE
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 

Recently uploaded (20)

Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 

Chapter 5 Problem Solutions for Bipolar Junction Transistors

  • 1. Chapter 5 Problem Solutions 5.1 iC 510 (a) β= = ⇒ β = 85 iB 6 β 85 α= = ⇒ α = 0.9884 1 + β 86 iE = (1 + β ) iB = ( 86 )( 6 ) ⇒ iE = 516 μ A 2.65 (b) β= ⇒ β = 53 0.050 53 α = ⇒ α = 0.9815 54 iE = (1 + β ) iB = ( 54 )( 0.050 ) ⇒ iE = 2.70 mA 5.2 β 110 (a) For β = 110: α = = = 0.99099 1+ β 111 180 For β = 180: α = = 0.99448 181 0.99099 ≤ α ≤ 0.99448 (b) I C = β I B = 110 ( 50 μ A ) ⇒ I C = 5.50 mA or I C = 180 ( 50 μ A ) ⇒ I C = 9.00 mA so 5.50 ≤ I C ≤ 9.0 mA 5.3 1.12 (a) iB = ⇒ 9.33 μ A 120 ⎛ 121 ⎞ iE = (1.12 ) ⎜ ⎟ = 1.13 mA ⎝ 120 ⎠ 120 α = = 0.9917 121 50 (b) iB = = 2.5 mA 20 ⎛ 21 ⎞ iE = ⎜ ⎟ ( 50 ) = 52.5 mA ⎝ 20 ⎠ 20 α = = 0.9524 21 5.4 (a) α α β= 1−α 0.9 9 0.95 19 0.98 49 0.99 99 0.995 199 0.999 999 (b)
  • 2. β β α= 1+ β 20 0.9524 50 0.9804 100 0.9901 150 0.9934 220 0.9955 400 0.9975 5.5 1.2 (a) IB = ⇒ 14.8 μ A 81 ⎛ 80 ⎞ I C = (1.2 ) ⎜ ⎟ = 1.185 mA ⎝ 81 ⎠ 80 α= = 0.9877 81 VC = 5 − (1.185 )( 2 ) = 2.63 V 0.80 (b) IB = ⇒ 9.88 μ A 81 ⎛ 80 ⎞ I C = ( 0.80 ) ⎜ ⎟ = 0.790 mA ⎝ 81 ⎠ 80 α= = 0.9877 81 VC = 5 − ( 0.790 )( 2 ) = 3.42 V (c) Yes, VC > VB so B-C junction is reverse biased in both areas. 5.6 5 For VC = 0, I C = = 2.5 mA 2 IC 2.5 IE = = ⇒ I E = 2.546 mA α 0.982 5.7 0.75 (a) IB = ⇒ 12.3 μ A 61 ⎛ 60 ⎞ IC = ( 0.75 ) ⎜ ⎟ = 0.738 mA ⎝ 61 ⎠ 60 α = = 0.9836 61 VC = I C RC − 10 = ( 0.738 )( 5 ) − 10 VC = −6.31 V 1.5 (b) IB = ⇒ 24.6 μ A 61 ⎛ 60 ⎞ I C = (1.5 ) ⎜ ⎟ = 1.475 mA ⎝ 61 ⎠ ⎛ 60 ⎞ α = ⎜ ⎟ = 0.9836 ⎝ 61 ⎠ VC = (1.475 )( 5 ) − 10 ⇒ VC = −2.625 V (c) Yes, VC < 0 in both cases so that B-C junction is reverse biased.
  • 3. 5.8 VC − ( −10 ) 10 − 1.2 IC = = = 1.76 mA RC 5 IC 1.76 IE = = ⇒ I E = 1.774 mA α 0.992 5.9 I C = I S eVRE / VT ⎛ 0.685 ⎞ = 10−13 exp ⎜ ⎟ ⇒ I C = 27.67 mA ⎝ 0.026 ⎠ ⎛1+ β ⎞ ⎛ 91 ⎞ IE = ⎜ ⎟ I C = ⎜ ⎟ ( 27.67 ) ⎝ β ⎠ ⎝ 90 ⎠ I D = 27.98 mA I 27.67 IB = C = ⇒ I B = 0.307 mA β 90 5.10 Device 1: iE = I Eo1evEB / VT ⇒ 0.5 × 10−3 = I Eo1e0.650 / 0.026 So that I EO1 = 6.94 × 10−15 A Device 2: 12.2 × 10−3 = I Eo 2 e0.650 / 0.026 Or I Eo 2 = 1.69 × 10−13 A I Eo 2 1.69 × 10−13 Ratio of areas = = ⇒ Ratio = 24.4 I Eo1 6.94 × 10−15 5.11 VA 250 (a) ro = = ⇒ ro = 250 k Ω IC 1 VA 250 (b) ro = = ⇒ ro = 2.50 M Ω IC 0.1 5.12 BVC B 0 60 BVC E 0 = = 3 β 3 100 BVC E 0 = 12.9 V 5.13 BVC B 0 BVC E 0 = 3 β 220 220 56 = ⇒3β = = 3.93 3 β 56 β = 60.6 5.14
  • 4. BVC B 0 BVC E 0 = 3 β BVC B 0 = ( BVC E 0 ) 3 β = ( 50 ) 3 50 BVC B 0 = 184 V 5.15 −0.7 − ( −10 ) (a) IE = = 1.86 mA 5 ⎛ 75 ⎞ I C = (1.86 ) ⎜ ⎟ = 1.836 mA ⎝ 76 ⎠ VC = −0.7 + 4 = 3.3 V 10 − 3.3 RC = ⇒ RC = 3.65 K 1.836 0.5 (b) IB = = 0.00658 mA 76 VB = I B RB = ( 0.00658 )( 25 ) ⇒ VB = 0.164 V ⎛ 75 ⎞ I C = ( 0.5 ) ⎜ ⎟ = 0.493 mA ⎝ 76 ⎠ −1 − ( −5 ) RC = ⇒ RC = 8.11 K 0.493 I (c) O = E (10 ) + 0.7 + I E ( 4 ) − 8 76 7.3 = I E ( 4 + 0.132 ) ⇒ I E = 1.767 mA ⎛ 75 ⎞ I C = (1.767 ) ⎜ ⎟ = 1.744 mA ⎝ 76 ⎠ VCE = 8 − (1.744 )( 4 ) − ⎡(1.767 )( 4 ) − 8⎤ ⎣ ⎦ = 16 − 6.972 − 7.068 ⇒ VCE = 1.96 V ⎛I ⎞ (d) 5 = I E (10 ) + ⎜ E ⎟ ( 20 ) + 0.7 + I E ( 2 ) = I E (10 + 0.263 + 2 ) + 0.7 ⎝ 76 ⎠ I E = 0.3506 mA ⇒ I B = 4.61 μ A VC = 5 − ( 0.3506 )(10 ) VC = 1.49 V 5.16 For Fig. 5.15 (a) RE = 5 + 5% = 5.25 K −0.7 − ( −10 ) IE = = 1.77 mA 5.25 I C = 1.75 mA 10 − 3.3 RC = = 3.83 K 1.75 RE = 5 − 5% = 4.75 K −0.7 − ( −10 ) IE = = 1.96 mA 4.75 I C = 1.93 mA 10 − 3.3 RC = = 3.47 K 1.93 So 1.75 ≤ I C ≤ 1.93 mA 3.47 ≤ RC ≤ 3.83 K For Fig. 5.15(c) RE = 4 + 5% = 4.2 K
  • 5. 8 − 0.7 IB = = 0.0222 mA I C = 1.66 mA 10 + ( 76 )( 4.2 ) I E = 1.69 mA VCE = 16 − (1.66 )( 4 ) − (1.69 )( 4.2 ) = 16 − 6.64 − 7.098 ⇒ VCE = 2.26 V RE = 4 − 5% = 3.8 K 8 − 0.7 IB = = 0.0244 I C = 1.83 mA 10 + ( 76 )( 3.8 ) I E = 1.86 mA VCE = 16 − (1.83)( 4 ) − (1.86 )( 3.8 ) = 16 − 7.32 − 7.068 VCE = 1.61 V So 1.66 ≤ I C ≤ 1.83 mA 1.61 ≤ VCE ≤ 2.26 V 5.17 VBB − VEB 2.5 − 0.7 RB = = ⇒ RB = 120 k Ω IB 0.015 I CQ = ( 70 )(15μ A ) ⇒ 1.05 mA VCC − VECQ 5 − 2.5 RC = = ⇒ RC = 2.38 k Ω I CQ 1.05 5.18 (a) −VB − ( −1) VB = − I B RB ⇒ I B = = RB 500 I B = 2.0 μ A VE = −1 − 0.7 = −1.7 V VE − ( −3) −1.7 + 3 IE = = = 0.2708 mA RE 4.8 IE 0.2708 = (1 + β ) = = 135.4 ⇒ β = 134.4 IB 0.002 β α= ⇒ α = 0.9926 1+ β I C = β I B ⇒ I C = 0.269 mA VCE = 3 − VE = 3 − ( −1.7 ) ⇒ VCE = 4.7 V (b) 5−4 IE = ⇒ I E = 0.5 mA 2 4 = 0.7 + I B RB + ( I B + I C ) RC − 5 I B + IC = I E I B + IC = I E 4 = 0.7 + I B (100 ) + ( 0.5 )( 8 ) − 5 IE 0.5 I B = 0.043 ⇒ = (1 + β ) = = 11.63 IB 0.043 β β = 10.63, α = ⇒ α = 0.9140 1+ β 5.19
  • 6. VB − 0.7 − ( −5 ) VB + 4.3 IE = = 3 3 ⎛ 50 ⎞ ⎛ VB + 4.3 ⎞ ⎛ 50 ⎞ IC = ⎜ ⎟ I E = ⎜ ⎜ ⎟ ⎝ 51 ⎠ ⎝ 3 ⎟ ⎝ 51 ⎠ ⎠ ⎛ V + 4.3 ⎞ ⎛ 50 ⎞ VC = 5 − I C RC = 5 − ⎜ B ⎜ ⎟ (10 ) ⎝ 3 ⎟ ⎝ 51 ⎠ ⎠ Now VB = VC , so VB [1 + 3.27 ] = 5 − 14.1 = −9.05 VB = −2.12 V −2.12 + 4.3 IE = ⇒ I E = 0.727 mA 3 5.20 10 − VE 10 − 2 IE = = ⇒ I E = 0.80 mA 10 10 VB = VE − 0.7 = 2 − 0.7 = 1.3 V VB 1.3 IB = = ⇒ I B = 0.026 mA RB 50 I C = I E − I B = 0.80 − 0.026 ⇒ I C = 0.774 mA I C 0.774 β= = ⇒ β = 29.77 I B 0.026 β 29.77 α= = ⇒ α = 0.9675 1+ β 30.77 VEC = VE − VC = VE − ( I C RC − 10 ) = 2 − ⎡( 0.774 )(10 ) − 10 ⎤ ⎣ ⎦ VEC = 4.26 V Load line developed assuming the VB voltage can change and the RB resistor is removed. 1 mA Q-point 0.774 IC 4.26 20 VEC 5.21 5 − 0.7 IB = ⇒ 17.2 μ A 250 I C = (120 )( 0.0172 ) = 2.064 mA VC = ( 2.064 )(1.5 ) − 5 = −1.90 V VEC = 5 − ( −1.90 ) ⇒ VEC = 6.90 V
  • 7. IC (mA) 6.67 Q-point 2.06 6.9 10 V EC (V) 5.22 ⎛ 50 ⎞ I C = ⎜ ⎟ (1) = 0.98 mA ⎝ 51 ⎠ VC = I C RC − 9 = ( 0.98 )( 4.7 ) − 9 or VC = −4.39 V 1 IB = = 0.0196 mA 51 VE = I B RB + VEB ( on ) = ( 0.0196 )( 50 ) + 0.7 or VE = 1.68 V 5.23 ⎛ 50 ⎞ 0.5 I C = ⎜ ⎟ ( 0.5 ) = 0.49 mA, I B = = 0.0098 mA ⎝ 51 ⎠ 51 VE = I B RB + VEB ( on ) = ( 0.0098 )( 50 ) + 0.7 or VE = 1.19 V VC = I C RC − 9 = ( 0.49 )( 4.7 ) − 9 = −6.70 V Then VEC = VE − VC = 1.19 − ( −6.7 ) == 7.89 V PQ = I CVEC + I BVEB = ( 0.49 )( 7.89 ) + ( 0.0098 )( 0.7 ) or PQ = 3.87 mW Power Dissipated = PS = I Q ( 9 − VE ) = ( 0.5 )( 9 − 1.19 ) Or PS = 3.91 mW 5.24 I I E1 = I E 2 = ⇒ I E1 = I E 2 = 0.5 mA 2 I C1 = I C 2 ≈ 0.5 mA VC1 = VC 2 = 5 − ( 0.5 )( 4 ) ⇒ VC1 = VC 2 = 3 V 5.25 2 − 0.7 1.3 (a) RE = 0 I B = = RB RB ⎛ 1.3 ⎞ 5 − 2 I C = ( 80 ) ⎜ ⎟ = = 0.8 ⇒ RC = 3.75 K ⎝ RB ⎠ RC RB = 130 K 0.8 ⎛ 81 ⎞ (b) RE = 1 K IB = = 0.010 mA I E = 0.8 ⎜ ⎟ = 0.81 mA 80 ⎝ 80 ⎠ 2 = ( 0.010 )( RB ) + 0.7 + ( 0.81)(1) ⇒ RB = 49 K 5 = ( 0.8 ) RC + 2 + ( 0.81)(1) ⇒ RC = 2.74 K 2 − 0.7 (c) For part (a) IB = = 0.01 mA 130
  • 8. I C = (120 )( 0.01) ⇒ I C = 1.20 mA VCE = 5 − (1.2 )( 3.75 ) ⇒ VCE = 0.5 V For part (b) 2 = I B ( 49 ) + 0.7 + (121) I B (1) I B = 0.00765 mA, I E = 0.925 mA, I C = 0.918 mA VCE = 5 − ( 0.918 )( 2.74 ) − ( 0.925 )(1) ⇒ VCE = 1.56 V Including RE result in smaller changes in Q-point values. 5.26 VCC − VBE ( on ) a. I BQ = RB I CQ 2 I BQ = == 0.0333 mA β 60 24 − 0.7 RB = ⇒ RB = 699 kΩ 0.0333 VCC − VCEQ 24 − 12 I CQ = ⇒ RC = ⇒ RC = 6 kΩ RC 2 VCC − VBE ( on ) 24 − 0.7 b. I BQ = = RB 699 = 0.0333 mA ( Unchanged ) I CQ = β I BQ = (100 )( 0.0333) ⇒ I CQ = 3.33 mA VCEQ = VCC − I CQ RC = 24 − ( 3.33)( 6 ) ⇒ VCEQ = 4.02 V (c) VCE = VCC − I C RC = 24 − I C ( 6 ) IC (mA) 4 Q-pt (␤ ϭ 100) 3.33 Q-pt (␤ ϭ 60) 2 4.02 12 24 VCE 5.27 a. VB = 0 ⇒ Cutoff ⇒ I E = 0, VC = 6 V 1 − 0.7 b. VB = 1 V, I E = ⇒ I E = 0.3 mA 1 I C ≈ I E ⇒ VC = 6 − ( 0.3)(10 ) ⇒ VC = 3 V c. VB = 2 V. Assume active-mode 2 − 0.7 IE = = I E = 1.3 mA ≈ I C 1 VC = 6 − (1.3)(10 ) = −7 V!
  • 9. Transistor in saturation 2 − 0.7 IE = ⇒ I E = 1.3 mA 1 VE = 1.3 V, VCE ( sat ) = 0.2 V VC = VE + VCE ( sat ) = 1.3 + 0.2 ⇒ VC = 1.5 V 5.28 a. VBB = 0. ⎛ RL ⎞ ⎛ 10 ⎞ Cutoff V0 = ⎜ ⎟ VCC = ⎜ ⎟ ( 5) ⎝ RC + RL ⎠ ⎝ 10 + 5 ⎠ V0 = 3.33 V b. VBB = 1 V 1 − 0.7 IB = ⇒ 6 μA 50 I C = β I B = ( 75 )( 6 ) ⇒ I C = 0.45 mA 5 − V0 V = IC + 0 5 10 ⎛1 1 ⎞ 1 − 0.45 = V0 ⎜ + ⎟ ⇒ V0 = 1.83 V ⎝ 5 10 ⎠ c. Transistor in saturation V0 = VCE ( sat ) = 0.2 V 5.29 (a) β = 100 ⎛ 100 ⎞ (i) I Q = 0.1 mA I C = ⎜ ⎟ ( 0.1) = 0.0990 mA ⎝ 101 ⎠ VO = 5 − ( 0.099 )( 5 ) ⇒ VO = 4.505 V ⎛ 100 ⎞ (ii) I Q = 0.5 mA I C = ⎜ ⎟ ( 0.5 ) = 0.495 mA ⎝ 101 ⎠ VO = 5 − ( 0.495 )( 5 ) ⇒ VO = 2.525 V (iii) I Q = 2 mA Transistor is in saturation VO = −VBE ( sat ) + VCE ( sat ) = −0.7 + 0.2 ⇒ VO = −0.5 V (b) β = 150 ⎛ 150 ⎞ (i) I Q = 0.1 mA I C = ⎜ ⎟ ( 0.1) = 0.09934 mA ⎝ 151 ⎠ VO = 5 − ( 0.09934 )( 5 ) ⇒ VO = 4.503 V 4.503 − 4.505 % change = × 100% = −0.044% 4.503 ⎛ 150 ⎞ (ii) I Q = 0.5 mA I C = ⎜ ⎟ ( 0.5 ) = 0.4967 mA ⎝ 151 ⎠ VO = 5 − ( 0.4967 )( 5 ) ⇒ VO = 2.517 V 2.517 − 2.525 % change = × 100% = −0.32% 2.525 (iii) I Q = 2 mA Transistor in saturation Vo = −8.5 V No change 5.30
  • 10. 5 − 0.5 VCB = 0.5 V ⇒ VO = 0.5 V , I C = = 0.90 mA 5 ⎛ 101 ⎞ IQ = ⎜ ⎟ ( 0.90 ) ⇒ I Q = 0.909 mA ⎝ 100 ⎠ 5.31 For I Q = 0, then PQ = 0 ⎛ 50 ⎞ For I Q = 0.5 mA, I C = ⎜ ⎟ ( 0.5 ) = 0.49 mA ⎝ 51 ⎠ 0.5 IB = = 0.0098 mA, VB = 0.490 V , VE = 1.19 V 51 VC = ( 0.49 )( 4.7 ) − 9 = −6.70 V ⇒ VEC = 7.89 V P ≅ I CVEC = ( 0.49 )( 7.89 ) ⇒ P = 3.87 mW For I Q = 1.0 mA, Using the same calculations as above, we find P = 5.95 mW For I Q = 1.5 mA, P = 6.26 mW For I Q = 2 mA, P = 4.80 mW For I Q = 2.5 mA, P = 1.57 mW For I Q = 3 mA, Transistor is in saturation. 0.7 + I B ( 50 ) = 0.2 + I C ( 4.7 ) − 9 I E = IQ = I B + IC ⇒ I B = 3 − IC Then, 0.7 + ( 3 − I C ) ( 50 ) = 0.2 + I C ( 4.7 ) − 9 Which yields I C = 2.916 mA and I B = 0.084 mA P = I BVEB + I CVEC = ( 0.084 )( 0.7 ) + ( 2.916 )( 0.2 ) or P = 0.642 mW 5.32 VEE − VEB ( on ) 9 − 0.7 IE = = ⇒ I E = 2.075 mA RE 4 I C = α I E = ( 0.9920 ) ( 2.075 ) ⇒ I C = 2.06 mA VBC + I C RC = VCC VBC = 9 − ( 2.06 ) ( 2.2 ) ⇒ VBC = 4.47 V 5.33 VCC − VCEQ 12 − 6 I CQ = = = 2.73 mA RC 2.2 I CQ 2.73 I BQ = = ⇒ I BQ = 0.091 mA β 30 0.7 − ( −12 ) IR2 = = 0.127 mA 100 I R1 = I R 2 + I BQ = 0.127 + 0.091 = 0.218 mA V1 = I R1 R1 + 0.7 = ( 0.218 )(15 ) + 0.7 ⇒ V1 = 3.97 V 5.34
  • 11. For VCE = 4.5 5 − 4.5 I CQ = = 0.5 mA 1 0.5 I BQ = = 0.02 mA 25 0.7 − ( −5 ) I R2 = = 0.057 mA 100 I R1 = I R 2 + I BQ = 0.057 + 0.02 = 0.077 mA V1 = I R1 R1 + VBE ( on ) = ( 0.077 )(15 ) + 0.7 = 1.86 V For VCE = 1.0 5 −1 I CQ = = 4 mA 1 4 I BQ = = 0.16 mA 25 I R2 = 0.057 mA I R1 = I R 2 + I BQ = 0.057 + 0.16 = 0.217 mA V1 = ( 0.217 )(15 ) + 0.7 ⇒ 3.96 V So 1.86 ≤ V1 ≤ 3.96 V IC 5 4 Range of Q-pt values 0.5 0 1 4.5 5 5.35 5 − 2.5 (a) RC = =5K 0.5 0.5 IB = = 0.00417 mA 120 5 − 0.7 RB = = 1032 K 0.00417 IC (mA) 1.0 Q-point 0.5 2.5 5 V (V) CE (b) Choose RC = 5.1 K RB = 1 MΩ
  • 12. For RB = 1 MΩ + 10% = 1.1 M, RC = 5.1 k + 10% = 5.61 K 5 − 0.7 I BQ = = 3.91 μ A ⇒ I CQ = 0.469 mA 1.1 VCEQ = 2.37 V RB = 1 MΩ + 10% = 1.1M, RC = 5.1 K − 10% = 4.59 K I BQ = 3.91 μ A ⇒ I CQ = 0.469 mA VCEQ = 2.85 V RB = 1 MΩ − 10% = 0.90 MΩ RC = 5.1 k + 10% = 5.61 K 5 − 0.7 I BQ = = 4.78 μ A ⇒ I C = 0.573 mA 0.90 VCEQ = 1.78 V RB = 1 MΩ − 10% = 0.90 MΩ RC = 5.1 k − 10% = 4.59 K I BQ = 4.78 μ A ⇒ I C = 0.573 mA VCEQ = 2.37 V IC (mA) 1.09 0.891 0.573 0.469 1.78 2.37 2.85 5 V (V) CE 5.36 VE 2 = 5 − VBE 2 VE1 = 5 − VBE1 VO = VE 2 − VE1 = ( 5 − VBE 2 ) − ( 5 − VBE1 ) VO = VBE1 − VBE 2 ⎛I ⎞ We have VBE1 = VE ln ⎜ E1 ⎟ ⎝ I EO ⎠ ⎛I ⎞ VBE 2 = VT ln ⎜ E 2 ⎟ ⎝ I EO ⎠ ⎡ ⎛I ⎞ ⎛I ⎞⎤ VO = VT ⎢ln ⎜ E1 ⎟ − ln ⎜ E 2 ⎟⎥ ⎣ ⎝ I EO ⎠ ⎝ I EO ⎠⎦ ⎛I ⎞ ⎛ 10 ⎞ VO = VT ln ⎜ E1 ⎟ = VT ln ⎜ I ⎟ ⎝ IE2 ⎠ ⎝ I ⎠ kT VO = ln (10 ) e 5.37 (a) RE = 0 VI − 0.7 (120 )( 4 ) IB = IC = β I B VO = 5 − I C ( 4 ) = 5 − (VI − 0.7 ) 200 200 When VO = 0.2, 0.2 = 5 − 2.4 VI + 1.68 ⇒ VI = 2.7
  • 13. VO(V) 5 0.2 0.7 2.7 5 VI (V) (b) RE = 1 K VI − 0.7 V − 0.7 IB = = I I C = β IB 200 + (121)(1) 321 (120 )( 4 ) VO = 5 − (VI − 0.7 ) 321 When VO = 0.2 = 5 − 1.495VI + 1.047 VI = 3.91 V VO(V) 5 0.2 0.7 3.91 5 VI (V) 5.38 For 4.3 ≤ VI ≤ 5 Q is cutoff I C = 0 VO = 0 If Q reaches saturation, VO = 4.8 4.8 IC = = 1.2 mA 4 1.2 5 − 0.7 − VI IB = = 0.015 = ⇒ VI = 1.6 80 180 So VI ≤ 1.6, VO = 4.8
  • 14. VO(V) 4.8 1.6 4.3 5 VI (V) 5.39 (a) For VI ≥ 4.3, Q is off and VO = 0 ⎛ 101 ⎞ When transistor enters saturation, 5 = ⎜ ⎟ I C (1) + 0.2 + I C ( 4 ) ⇒ I C = 0.958 mA ⎝ 100 ⎠ VO = 3.832 V I B = 0.00958 mA ⎛ 101 ⎞ 5=⎜ ⎟ ( 0.958 )(1) + 0.7 + ( 0.00958 )(180 ) + VI ⎝ 100 ⎠ VI = 5 − 0.7 − 0.9676 − 1.7244 ⇒ VI = 1.61 V For VI = 0, transistor in saturation 5 = I E (1) + 0.2 + I C ( 4 ) ⇒ 5 = I C (1) + I B (1) + 0.2 + I C ( 4 ) 5 = I E (1) + 0.7 + I B (180 ) 5 = I C (1) + I B (1) + 0.7 + I B (180 ) I E = IC + I B 4.8 = 5 I C + I B (1) 4.3 = 1I C + 181I B I B = 4.8 − 5 I C 4.3 = I C + (181)( 4.8 − 5 I C ) 904 I C = 864.5 I C = 0.956 mA VO = 3.825 V
  • 15. VO(V) 3.832 3.825 1.61 4.3 5 VI (V) 5.40 RTH = R1 R2 = 33 10 = 7.67 kΩ ⎛ R2 ⎞ ⎛ 10 ⎞ VTH = ⎜ ⎟ VCC = ⎜ ⎟ (18 ) = 4.186 V ⎝ R1 + R2 ⎠ ⎝ 10 + 33 ⎠ V − VBE ( on ) 4.186 − 0.7 I BQ = TH = RTH + (1 + β ) RE 7.67 + ( 51)(1) I BQ = 0.0594 mA I CQ = β I BQ ⇒ I CQ = 2.97 mA I EQ = 3.03 mA VCEQ = VCC − I CQ RC − I EQ RE = 18 − ( 2.97 )( 2.2 ) − ( 3.03)(1) ⇒ VCEQ = 8.44 V 5.41 I CQ = 1.2 mA, VCEQ = 9 V , RTH = 50 k Ω 1.2 Also I B = = 0.015 mA 80 VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE ⎛ R2 ⎞ 1 1 VTH = ⎜ ⎟ (VCC ) = ⋅ RTH ⋅ VCC = ( 50 )(18 ) ⎝ R1 + R2 ⎠ R1 R1 1 Then ( 50 )(18) = ( 0.015)( 50 ) + 0.7 + ( 81)( 0.015)(1) or R1 = 338 k Ω. R1 338R2 Then = 50 ⇒ R2 = 58.7 k Ω 338 + R2 ⎛ 81 ⎞ I EQ = ⎜ ⎟ (1.2 ) = 1.215 mA ⎝ 80 ⎠ 18 = I CQ RC + VCEQ + I EQ RE 18 = (1.2 ) RC + 9 + (1.215 )(1) ⇒ RC = 6.49 k Ω 5.42
  • 16. RTH = R1 R2 = 20 15 = 8.57 k Ω ⎛ R2 ⎞ ⎛ 15 ⎞ VTH = ⎜ ⎟ (VCC ) = ⎜ ⎟ (10 ) = 4.29 V ⎝ R1 + R2 ⎠ ⎝ 15 + 20 ⎠ I EQ VCC = I EQ RE + VEB ( on ) + ⋅ RTH + VTH 1+ β ⎛ 8.57 ⎞ 10 = I EQ (1) + 0.7 + I EQ ⎜ ⎟ + 4.29 ⎝ 101 ⎠ 10 − 0.7 − 4.29 5.01 Then I EQ = = ⇒ I EQ = 4.62 mA 8.57 1.085 1+ 101 I EQ ⎛ 4.62 ⎞ VB = ⋅ RTH + VTH = ⎜ ⎟ ( 8.57 ) + 4.29 or VB = 4.68 V 1+ β ⎝ 101 ⎠ 5.43 (a) RTH = 42 58 = 24.36 K ⎛ 42 ⎞ VTH = ⎜ ⎟ ( 24 ) = 10.08 V ⎝ 100 ⎠ 10.08 − 0.7 9.38 I BQ = = ⇒ 7.30 μ A 24.36 + (126 )(10 ) 1284.36 I CQ = 0.913 mA I EQ = 0.9202 VCEQ = 14.8 V IC (mA) 2.38 Q-point 0.913 14.8 24 V CE (V) (b) R1 + 5% = 60.9, R2 + 5% = 44.1 RTH = 25.58 K VTH = 10.08 10.08 − 0.7 9.38 I BQ = = ⇒ 7.30 μ A 25.58 + 126 (10 ) 1285.58 I CQ = 0.912 mA I EQ = 0.919 VCEQ = 14.81
  • 17. R1 + 5% = 60.9, R2 − 5% = 39.90 RTH = 24.11 K VTH = 9.50 9.50 − 0.7 8.8 I BQ = = = 6.85 μ A 24.11 + (126 )(10 ) 1284.11 I CQ = 0.857 mA I EQ = 0.8635 mA VCEQ = 15.37 V R1 − 5% = 55.1 K R2 + 5% = 44.1 K RTH = 24.50 K VTH = 10.67 V 10.67 − 0.7 9.97 I BQ = = = 7.76 μ A 24.50 + 1260 1284.5 I CQ = 0.970 mA I EQ = 0.978 mA VCEQ = 14.22 V R1 − 5% = 55.1 K R2 − 5% = 39.90 RTH = 23.14 K VTH = 10.08 10.08 − 0.7 9.38 I BQ = = = 7.31 μ A 23.14 + 1260 1283.14 I CQ = 0.914 mA I EQ = 0.9211 mA VCEQ = 14.79 V So we have 0.857 ≤ I CQ ≤ 0.970 mA 14.22 ≤ VCEQ ≤ 15.37 V 5.44 a. RTH = R1 R2 = 25 8 = 6.06 kΩ ⎛ R2 ⎞ ⎛ 8 ⎞ VTH = ⎜ ⎟ VCC = ⎜ ⎟ ( 24 ) ⎝ R1 + R2 ⎠ ⎝ 8 + 25 ⎠ = 5.82 V V − VBE (on) 5.82 − 0.7 I BQ = TH = RTH + (1 + β ) RE 6.06 + ( 76 )(1) I BQ = 0.0624 mA, I CQ = 4.68 mA I EQ = 4.74 VCEQ = VCC − I CQ RC − I EQ RE = 24 − ( 4.68 )( 3) − ( 4.74 )(1) VCEQ = 5.22 V b. 5.82 − 0.7 I BQ = ⇒ I BQ = 0.0326 mA 6.06 + (151)(1) I CQ = 4.89 mA I EQ = 4.92 VCEQ = 24 − ( 4.89 )( 3) − ( 4.92 )(1) VCEQ = 4.41 V 5.45 (a)
  • 18. I CQ ≅ I EQ = 0.4 mA 3 3 RC = ⇒ RC = 7.5 k Ω; RE = ⇒ RE = 7.5 k Ω 0.4 0.4 9 R1 + R2 ≅ = 112.5 k Ω ( 0.2 )( 0.4 ) ⎛ R2 ⎞ VTH = ⎜ ⎟ (VCC ) = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE ⎝ R1 + R2 ⎠ RR (112.5 − R2 ) R2 0.4 RTH = 1 2 = , I BQ = = 0.004 mA R1 + R2 112.5 100 ⎛ 9 ⎞ ⎡ (112.5 − R2 ) R2 ⎤ R2 ⎜ ⎟ = ( 0.004 ) ⎢ ⎥ + 0.7 + (101)( 0.004 )( 7.5 ) ⎝ 112.5 ⎠ ⎣ 112.5 ⎦ We obtain R2 ( 0.08 ) = 0.004 R2 − 3.56 × 10−5 R2 + 3.73 2 From this quadratic, we find R2 = 48 k Ω ⇒ R1 = 64.5 k Ω (b) Standard resistor values: Set RE = RC = 7.5 k Ω and R1 = 62 k Ω, R2 = 47 k Ω Now RTH = R1 R2 = 62 47 = 26.7 k Ω ⎛ R2 ⎞ ⎛ 47 ⎞ VTH = ⎜ ⎟ (VCC ) = ⎜ ⎟ ( 9 ) = 3.88 V ⎝ R1 + R2 ⎠ ⎝ 47 + 62 ⎠ VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE 3.88 − 0.7 So I BQ = = 0.00406 mA 26.7 + (101)( 7.5 ) Then I CQ = 0.406 mA VRC = VRE = ( 0.406 )( 7.5 ) = 3.05 V 5.46 (a) RTH = R1 R2 = 12 2 = 1.714 K ⎛ R2 ⎞ ⎛ 2⎞ VTH = ⎜ ⎟ (10 ) − 5 = ⎜ ⎟ (10 ) − 5 ⇒ VTH = −3.571 V ⎝ R1 + R2 ⎠ ⎝ 14 ⎠ (b) VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE − 5 −3.57 = I BQ (1.714 ) + 0.7 + (101) I BQ ( 0.5 ) − 5 5 − 0.7 − 3.571 0.729 I BQ = = ⇒ 13.96 μ A 1.714 + (101)( 0.5 ) 52.21 I CQ = 1.396 mA, I EQ = 1.410 mA VCEQ = 10 − (1.396 )( 5 ) − (1.41)( 0.5 ) ⇒ VCEQ = 2.32 V (d)
  • 19. RE = 0.5 + 5% = 0.525 K RC = 5 + 5% = 5.25 K 0.729 I BQ = ⇒ 13.32 μ A 1.714 + (101)( 0.525 ) I CQ = 1.332 mA I EQ = 1.345 mA VCEQ = 10 − (1.332 )( 5.25 ) − (1.345 )( 0.525 ) = 10 − 6.993 − 0.7061 ⇒ VCEQ = 2.30 V RE = 0.5 + 5% = 0.525 K RC = 5 − 5% = 4.75 K I CQ = 1.332 mA I EQ = 1.345 mA VCEQ = 10 − (1.332 )( 4.75 ) − (1.345 )( 0.525 ) = 10 − 6.327 − 0.7061 ⇒ VCEQ = 2.97 V RE = 0.5 − 5% = 0.475 K RC = 5 + 5% = 5.25 K 0.729 I BQ = ⇒ 14.67 μ A 1.714 + (101)( 0.475 ) I CQ = 1.467 mA I EQ = 1.482 mA VCEQ = 10 − (1.467 )( 5.25 ) − (1.482 )( 0.475 ) = 10 − 7.70175 − 0.70395 ⇒ VCEQ = 1.59 V RE = 0.5 − 5% = 0.475 K RC = 5 − 5% = 4.75 K I CQ = 1.467 mA I EQ = 1.482 mA VCEQ = 10 − (1.467 )( 4.75 ) − (1.482 )( 0.475 ) = 10 − 6.96825 − 0.70395 ⇒ VCEQ = 2.33 V 5.47 RTH = R1 R2 = 9 1 = 0.91 kΩ ⎛ R2 ⎞ ⎛ 1 ⎞ VTH = ⎜ ⎟ ( −12 ) = ⎜ ⎟ ( −12 ) = −1.2 V ⎝ R1 + R2 ⎠ ⎝ 1+ 9 ⎠ I EQ RE + VEB ( on ) + I BQ RTH + VTH = 0 −VTH − VEB (on) 1.2 − 0.7 I BQ = = RTH + (1 + β ) RE 0.90 + ( 76 )( 0.1) I BQ = 0.0588, I CQ = 4.41 mA I EQ = 4.47 mA Center of load line ⇒ VECQ = 6 V I EQ RE + VECQ + I CQ RC − 12 = 0 ( 4.47 ) ( 0.1) + 6 + ( 4.41) RC = 12 ⇒ RC = 1.26 kΩ 5.48 (a) RTH = 36 68 = 23.5 K ⎛ 36 ⎞ VTH = ⎜ ⎟ (10 ) = 3.46 V ⎝ 36 + 68 ⎠ 3.46 − 0.7 I BQ = = 0.00178 mA 23.5 + ( 51)( 30 ) I CQ = 0.0888 mA I EQ = 0.0906 mA VCE = 10 − ( 0.0888 )( 42 ) − ( 0.0906 )( 30 ) = 10 − 3.73 − 2.72 ⇒ VCE = 3.55 V
  • 20. (b) R1 = 22.7, R2 = 12 K, RC = 14 K, RE = 10 K RTH = 7.85 k VTH = 3.46 3.46 − 0.7 I BQ = = 0.00533 mA 7.85 + ( 51)(10 ) I CQ = 0.266 mA I EQ = 0.272 mA VCE = 10 − ( 0.266 )(14 ) − ( 0.272 )(10 ) VCE = 3.56 V 5.49 (a) ⎛ R2 ⎞ ⎛ 68 ⎞ RTH = 36 68 = 23.5 K VTH = ⎜ ⎟ (10 ) − 5 = ⎜ ⎟ (10 ) − 5 = 1.54 V ⎝ R1 + R2 ⎠ ⎝ 36 + 68 ⎠ 5 = ( 51) I BQ ( 30 ) + 0.7 + I B ( 23.5 ) + 1.54 2.76 I BQ = = 1.78 μA ⇒ I CQ = 0.0888 mA 1553.5 I EQ = 0.0906 mA VECQ = 10 − ( 0.0906 )( 30 ) − ( 0.0888 )( 42 ) = 10 − 2.718 − 3.7296 ⇒ VECQ = 3.55 V (b) RTH = 12 22.7 = 7.85 K VTH = 1.54 RE = 10 K RC = 14 K 5 = ( 51) I BQ (10 ) + 0.7 + I B ( 7.85 ) + 1.54 2.76 I BQ = = 5.33 μ A I CQ = 0.266 mA 517.85 I EQ = 0.272 mA VECQ = 10 − ( 0.272 )(10 ) − ( 0.266 )(14 ) = 10 − 2.72 − 3.724 ⇒ VECQ = 3.56 V 5.50 (a) RTH = ( 0.1)(1 + β ) RE = ( 0.1)(101)( 0.5 ) = 5.05 k Ω 1 VTH = ⋅ RTH ⋅ VCC = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE R1 I CQ 0.8 I BQ = = = 0.008 mA β 100 1 Then ( 5.05)(10 ) = ( 0.008)( 5.05) + 0.7 + (101)( 0.008)( 0.5) R1 44.1R2 or R1 = 44.1 k Ω, = 5.05 ⇒ R2 = 5.70 k Ω 44.1 + R2 ⎛ 101 ⎞ Now I EQ = ⎜ ⎟ ( 0.8 ) = 0.808 mA ⎝ 100 ⎠ VCC = I CQ RC + VCEQ + I EQ RE 10 = ( 0.8 ) RC + 5 + ( 0.808 )( 0.5 ) RC = 5.75 k Ω (b) For 75 ≤ β ≤ 150
  • 21. ⎛ R2 ⎞ ⎛ 5.7 ⎞ VTH = ⎜ ⎟ (VCC ) = ⎜ ⎟ (10 ) = 1.145 V ⎝ R1 + R2 ⎠ ⎝ 5.7 + 44.1 ⎠ VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE 1.145 − 0.7 For β = 75, I BQ = = 0.0103 mA 5.05 + ( 76 )( 0.5 ) Then I CQ = ( 75 )( 0.0103) = 0.775 mA 1.145 − 0.7 For β = 150, I BQ = = 0.00552 mA 5.05 + (151)( 0.5 ) Then I CQ = 0.829 mA ΔI CQ 0.829 − 0.775 % Change = = × 100% ⇒ % Change = 6.75% I CQ 0.80 (c) For RE = 1 k Ω RTH = ( 0.1)(101)(1) = 10.1 k Ω 1 1 VTH = ⋅ RTH ⋅ VCC = (10.1)(10 ) = ( 0.008 )(10.1) + 0.7 + (101)( 0.008 )(1) R1 R1 which yields R1 = 63.6 k Ω 63.6 R2 And = 10.1 ⇒ R2 = 12.0 k Ω 63.6 + R2 ⎛ R2 ⎞ ⎛ 12 ⎞ Now VTH = ⎜ ⎟ (VCC ) = ⎜ ⎟ (10 ) = 1.587 V ⎝ R1 + R2 ⎠ ⎝ 12 + 63.6 ⎠ 1.587 − 0.7 For β = 75, I BQ = = 0.0103 mA 10.1 + ( 76 )(1) So I CQ = 0.773 mA 1.587 − 0.7 For β = 150, I BQ = = 0.00551 mA 10.1 + (151)(1) Then I CQ = 0.826 mA ΔI CQ 0.826 − 0.773 % Change = = × 100% ⇒ % Change = 6.63% I CQ 0.8 5.51 VCC ≅ I CQ ( RC + RE ) + VCEQ 10 = ( 0.8 )( RC + RE ) + 5 ⇒ RC + RE = 6.25 k Ω Let RE = 0.875 k Ω Then, for bias stable RTH = ( 0.1)(121)( 0.875 ) = 10.6 k Ω 0.8 I BQ = = 0.00667 mA 120 1 (10.6 )(10 ) = ( 0.00667 )(10.6 ) + 0.7 + (121)( 0.00667 )( 0.875 ) R1 71.8R2 So R1 = 71.8 k Ω and = 10.6 ⇒ R2 = 12.4 k Ω 71.8 + R2 10 Then I R ≅ = 0.119 mA 71.8 + 12.4 This is close to the design specification. 5.52
  • 22. I CQ ≈ I EQ ⇒ VCEQ = VCC − I CQ ( RC + RE ) 6 = 12 − I CQ ( 2 + 0.2 ) I CQ = 2.73 mA, I BQ = 0.0218 mA VCEQ = 6 V VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE − 6 ⎛ R2 ⎞ VTH = ⎜ ⎟ (12 ) − 6, RTH = R 1 R2 ⎝ R1 + R2 ⎠ Bias stable ⇒ RTH = ( 0.1)(1 + β ) RE = ( 0.1)(126 )( 0.2 ) = 2.52 kΩ ⎛ 1⎞ VTH = ⎜ ⎟ ( RTH )(12 ) − 6 ⎝ R1 ⎠ 1 ( 2.52 )(12 ) − 6 = ( 0.0218)( 2.52 ) + 0.7 + (126 )( 0.0218)( 0.2 ) − 6 R1 1 ( 30.24 ) = 0.7549 + 0.5494 R1 23.2R 2 R1 = 23.2 kΩ, = 2.52 23.2 + R 2 R2 = 2.83 kΩ 5.53 ⎛ 81 ⎞ a. I CQ = 1 mA. I EQ = ⎜ ⎟ (1) = 1.01 mA ⎝ 80 ⎠ VCEQ = 12 − (1)( 2 ) − (1.01)( 0.2 ) ⇒ VCEQ = 9.80 V 1 I BQ = = 0.0125 mA 80 RTH = + ( 0.1) (1 + β ) RE = ( 0.1)( 81)( 0.2 ) = 1.62 kΩ ⎛ R2 ⎞ 1 1 VTH = ⎜ ⎟ (12 ) − 6 = ( RTH )(12 ) − 6 = (19.44 ) − 6 ⎝ R1 + R2 ⎠ R1 R1 VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE − 6 1 (19.44 ) − 6 = ( 0.0125 )(1.62 ) + 0.7 + ( 81)( 0.0125)( 0.2 ) − 6 R1 1 (19.44 ) = 0.923 R1 21.1R2 R1 = 21.1 kΩ, = 1.62 21.1 + R2 R2 = 1.75 kΩ b. R1 = 22.2 kΩ or R1 = 20.0 kΩ R2 = 1.84 kΩ or R2 = 1.66 kΩ R2 ( max ) , R1 ( min ) RTH = (1.84 ) ( 20.0 ) = 1.685 kΩ ⎛ 1.84 ⎞ VTH = ⎜ ⎟ (12 ) − 6 = −4.99 V ⎝ 1.84 + 20.0 ⎠ −4.99 − 0.7 − ( −6 ) 0.31 I BQ = = = 0.0173 mA 1.685 + ( 81)( 0.2 ) 17.89 I CQ = 1.39 mA, I EQ = 1.40 mA
  • 23. For max, RC ⇒ VCE = 12 − (1.39 )( 2 ) − (1.40 )( 0.2 ) VCE = 8.94 V R2 ( min ) , R1 ( max ) RTH = (1.66 ) ( 22.2 ) = 1.545 kΩ ⎛ 1.66 ⎞ VTH = ⎜ ⎟ (12 ) − 6 = −5.165 V ⎝ 1.66 + 22.2 ⎠ −5.165 − 0.7 + 6 0.135 I BQ = = = 0.00761 mA ⇒ I CQ = 0.609 mA, I E = 0.616 1.545 + ( 81)( 0.20 ) 17.745 VCEQ = 12 − ( 0.609 )( 2 ) − ( 0.616 )( 0.2 ) VCEQ = V 10.7 V So 0.609 ≤ I C ≤ 1.39 mA 8.94 ≤ VCEQ ≤ 10.7 V 5.54 VCEQ ≅ VCC − I CQ ( RC + RE ) 5 = 12 − 3 ( RC + RE ) ⇒ RC + RE = 2.33 k Ω Let RE = 0.333 k Ω and RC = 2 k Ω Nominal value of β = 100 RTH = ( 0.1)(1 + β ) RE = ( 0.1)(101)( 0.333) = 3.36 k Ω 3 I BQ = = 0.03 mA 100 1 1 VTH = ⋅ RTH ⋅ (12 ) − 6 = ( 3.36 )(12 ) − 6 R1 R1 Then VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE − 6 1 ( 3.36 )(12 ) − 6 = ( 0.03)( 3.36 ) + 0.7 + (101)( 0.03)( 0.333) − 6 R1 which yields R1 = 22.3 k Ω and R2 = 3.96 k Ω ⎛ R2 ⎞ ⎛ 3.96 ⎞ Now VTH = ⎜ ⎟ (12 ) − 6 = ⎜ ⎟ (12 ) − 6 or VTH = −4.19 V ⎝ R1 + R2 ⎠ ⎝ 3.96 + 22.3 ⎠ For β = 75, VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE − 6 VTH + 6 − 0.7 −4.19 + 6 − 0.7 I BQ = = = 0.0387 mA ⇒ I C = 2.90 mA RTH + (1 + β ) RE 3.36 + ( 76 )( 0.333) −4.19 + 6 − 0.7 For β = 150, I BQ = = 0.0207 mA 3.36 + (151)( 0.333) Then I C = 3.10 mA Specifications are met. 5.55 RTH = R1 R2 = 3 12 = 2.4 k Ω ⎛ R2 ⎞ ⎛ 12 ⎞ VTH = ⎜ ⎟ VCC = ⎜ ⎟ ( 20 ) = 16 V ⎝ R1 + R2 ⎠ ⎝ 12 + 3 ⎠ (a) For β = 75 20 = (1 + β ) I BQ RE + VEB ( on ) + I BQ RTH + VTH 20 − 0.7 − 16 = I BQ ⎡( 76 )( 2 ) + 2.4 ⎤ ⎣ ⎦ So I BQ = 0.0214 mA, I CQ = 1.60 mA, I EQ = 1.62 E VECQ = 20 − (1.6 )(1) − (1.62 )( 2 ) or VECQ = 15.16 V
  • 24. (b) For β = 100, we find I BQ = 0.0161 mA, I CQ = 1.61 mA, VECQ = 15.13 V , I EQ = 1.63 mA 5.56 I CQ = 4.8 mA → I EQ = 4.84 mA VCEQ = VCC − I CQ RC − I EQ RE 6 = 18 − ( 4.8 )( 2 ) − ( 4.84 ) RE ⇒ RE = 0.496 kΩ RTH = ( 0.1)(1 + β ) RE = ( 0.1)(121)( 0.496 ) = 6.0 kΩ VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE I BQ = 0.040 mA 1 1 VTH = ⋅ RTH ⋅VCC = ( 6.0 )(18 ) R1 R1 1 ( 6.0 )(18) = ( 0.04 )( 6.0 ) + 0.70 + (121)( 0.04 )( 0.496 ) R1 1 (108 ) = 3.34 R1 32.3 R2 R1 = 32.3 kΩ, = 6.0 32.3 + R2 R2 = 7.37 kΩ 5.57 For nominal β = 70 2 I BQ = = 0.0286 mA → I EQ = 2.03 mA 70 VCEQ = VCC − I CQ RC − I EQ RE 10 = 20 − ( 2 )( 4 ) − ( 2.03) RE ⇒ RE = 0.985 K RTH = ( 0.1)(1 + β ) RE = ( 0.1)( 71)( 0.985 ) = 6.99 K VTH = I BQ RTH + VBE ( on ) + I EQ RE 1 ⋅ RTH ⋅ VCC = I BQ RTH + VBE ( on ) + I EQ RE R1 1 ( 6.99 )( 20 ) = ( 0.0286 )( 6.99 ) + 0.70 + ( 2.03)( 0.985 ) R1 1 (139.8 ) = 2.90 R1 48.2 R2 R1 = 48.2 K, = 6.99 48.2 + R2 R2 = 8.18 K Check: For β = 50 ⎛ 8.18 ⎞ VTH = ⎜ ⎟ ( 20 ) = 2.90 ⎝ 8.18 + 48.2 ⎠ V − VBE ( on ) 2.90 − 0.7 I BQ = TH = = 0.0384 mA RTH + (1 + β ) RE 6.99 + ( 51)( 0.985 ) I CQ = 1.92 mA For β = 90 2.90 − 0.7 I BQ = = 0.0228 mA 6.99 + ( 91)( 0.985 ) I CQ = 2.05 mA Design criterion is satisfied.
  • 25. 5.58 I CQ = 1 mA → I EQ = 1.017 mA VCEQ = VCC − I CQ RC − I EQ RE 5 = 15 − (1)( 5 ) − (1.017 ) RE ⇒ RE = 4.92 kΩ Bias stable: RTH = ( 0.1)(1 + β ) RE = ( 0.1)( 61)( 4.92 ) = 30.0 kΩ 1 I BQ = = 0.0167 mA 60 1 VTH = ⋅ RTH ⋅ VCC = I BQ RTH + VBE ( on ) + I EQ RE R1 1 ( 30.0 )(15 ) = ( 0.0167 )( 30.0 ) + 0.70 + (1.017 )( 4.92 ) R1 1 ( 448.5) = 6.197 R1 72.5 R2 R1 = 72.5 kΩ, = 30.0 72.5 + R2 R2 = 51.2 kΩ Check: For β = 45 ⎛ 51.2 ⎞ VTH = ⎜ ⎟ (15 ) = 6.21V ⎝ 51.2 + 72.5 ⎠ V − VBE ( on ) 6.21 − 0.7 I BQ = TH = = 0.0215 mA RTH + (1 + β ) RE 30 + ( 46 )( 4.92 ) ΔI C I CQ = 0.967 mA, = 3.27% IC Check: For β = 75 6.21 − 0.7 I BQ = = 0.0136 mA 30.0 + ( 76 )( 4.92 ) ΔI C I CQ = 1.023 mA, = 2.31% IC Design criterion is satisfied. 5.59 (a) VCC ≅ I CQ ( RC + RE ) + VCEQ 3 = ( 0.1)( 5 RE + RE ) + 1.4 ⇒ RE = 2.67 k Ω 100 RC = 13.3 k Ω, I BQ = = 0.833 μ A 120 RTH = ( 0.1)(1 + β ) RE = ( 0.1)(121)( 2.67 ) = 32.3 k Ω 1 1 VTH = ⋅ RTH ⋅ VCC = ( 32.3)( 3) R1 R1 = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE = ( 0.000833)( 32.3) + 0.7 + (121)( 0.000833)( 2.67 ) which gives R1 = 97.3 k Ω, and R2 = 48.4 k Ω (b)
  • 26. 3 3 IR ≅ = ⇒ 20.6 μ A R1 + R2 97.3 + 48.4 I CQ = 100 μ A P = ( I CQ + I R )VCC = (100 + 20.6 )( 3) or P = 362 μW 5.60 5 − VE 5 IE = = = 1.67 mA RE 3 RTH = R1 || R2 = ( 0.1)(1 + β ) RE = ( 0.1)(101)( 3) = 30.3 kΩ ⎛ R2 ⎞ 1 VTH = ⎜ ⎟ ( 4 ) − 2 = ⋅ RTH ⋅ ( 4 ) − 2 ⎝ R1 + R2 ⎠ R1 I EQ I BQ = = 0.0165 mA 1+ β 5 = I EQ RE + VEB ( on ) + I B RTH + VTH 1 5 = (1.67 )( 3) + 0.7 + ( 0.0165 )( 30.3) + ( 30.3)( 4 ) − 2 R1 1 0.80 = ( 30.3)( 4 ) ⇒ R1 = 152 kΩ R1 152 R2 = 30.3 ⇒ R2 = 37.8 kΩ 152 + R2 5.61 a. RTH = R1 R2 = 10 20 ⇒ RTH = 6.67 kΩ ⎛ R2 ⎞ ⎛ 20 ⎞ VTH = ⎜ ⎟ (10 ) − 5 = ⎜ ⎟ (10 ) − 5 ⇒ VTH = 1.67 V ⎝ R1 + R2 ⎠ ⎝ 20 + 10 ⎠ b. 10 = (1 + β ) I BQ RE + VEB ( on ) + I BQ RTH + VTH 10 − 0.7 − 1.67 7.63 I BQ = = ⇒ I BQ = 0.0593 mA 6.67 + ( 61)( 2 ) 128.7 I CQ = 3.56 mA, I EQ =3.62 mA VE = 10 − I EQ RE = 10 − ( 3.62 )( 2 ) VE = 2.76 V VC = I CQ RC − 10 = ( 3.56 )( 2.2 ) − 10 VC = −2.17 V 5.62 V + − V − ≅ I CQ ( RC + RE ) + VECQ 20 = ( 0.5 )( RC + RE ) + 8 ⇒ ( RC + RE ) = 24 k Ω Let RE = 10 k Ω then RC = 14 k Ω Let β = 60 from previous problem. RTH = ( 0.1)(1 + β ) RE = ( 0.1)( 61)(10 ) Or RTH = 61 k Ω
  • 27. 0.5 I BQ = = 0.00833 mA 60 ⎛ R2 ⎞ 1 VTH =⎜ ⎟ (10 ) − 5 = ⋅ RTH ⋅10 − 5 ⎝ R1 + R2 ⎠ R1 Now 10 = (1 + β ) I BQ RE + VEB ( on ) + I BQ RTH + VTH 1 10 = ( 61)( 0.00833)(10 ) + 0.7 + ( 0.00833) ( 61) + ( 61) (10 ) − 5 R1 Then R1 = 70.0 k Ω and R2 = 474 k Ω 10 10 IR ≅ = ⇒ 18.4 μ A R1 + R2 70 + 474 So the 40 μ A current limit is met. 5.63 a. RTH = R1 R2 = 35 20 ⇒ RTH = 12.7 kΩ ⎛ R2 ⎞ ⎛ 20 ⎞ VTH = ⎜ ⎟ (7) − 5 = ⎜ ⎟ ( 7 ) − 5 ⇒ VTH = −2.45 V ⎝ R1 + R2 ⎠ ⎝ 20 + 35 ⎠ b. VTH − VBE ( on ) − ( −10 ) I BQ = RTH + (1 + β ) RE −2.45 − 0.7 + 10 = ⇒ I BQ = 0.136 mA 12.7 + ( 76 )( 0.5 ) I CQ = 10.2 mA, I EQ = 10.4 mA VCEQ = 20 − I CQ RC − I EQ RE = 20 − (10.2 )( 0.8 ) − (10.4 )( 0.5 ) VCEQ = 6.64 V c. R2 = 20 + 5% = 21 kΩ R1 = 35 − 5% = 33.25 kΩ RE = 0.5 − 5% = 0.475 kΩ RTH = R1 R2 = 21 33.25 = 12.9 kΩ ⎛ R2 ⎞ VTH = ⎜ ⎟ (7) − 5 ⎝ R1 + R2 ⎠ ⎛ 21 ⎞ =⎜ ⎟ ( 7 ) − 5 = −2.29 V ⎝ 21 + 33.25 ⎠ −2.29 − 0.7 − ( −10 ) I BQ = = 0.143 mA 12.9 + ( 76 )( 0.475 ) I CQ = 10.7 mA, I EQ = 10.9 mA For RC = 0.8 + 5% = 0.84 kΩ VCEQ = 20 − (10.7 )( 0.84 ) − (10.9 )( 0.475 ) ⇒ VCEQ = 5.83 V For RC = 0.8 − 5% = 0.76 kΩ
  • 28. VCEQ = 20 − (10.7 )( 0.76 ) − (10.9 )( 0.475 ) ⇒ VCEQ = 6.69 V R2 = 20 − 5% = 19 kΩ R1 = 35 + 5% = 36.75 kΩ RE = 0.5 + 5% = 0.525 kΩ RTH = R1 R2 = 19 36.75 = 12.5 kΩ ⎛ 19 ⎞ VTH = ⎜ ⎟ ( 7 ) − 5 = −2.61 V ⎝ 19 + 36.75 ⎠ −2.61 − 0.7 − ( −10 ) I BQ = = 0.128 mA 12.5 + ( 76 )( 0.525 ) I CQ = 9.58 mA, I EQ = 9.70 mA For RC = 0.84 kΩ VCEQ = 20 − ( 9.58 )( 0.84 ) − ( 9.70 )( 0.525 ) ⇒ VCEQ = 6.86 V For RC = 0.76 kΩ VCEQ = 20 − ( 9.58 )( 0.76 ) − ( 9.70 )( 0.525 ) ⇒ VCEQ = 7.63 V So 9.58 ≤ I CQ ≤ 10.7 mA and 5.83 ≤ VCEQ ≤ 7.63 V 5.64 a. RTH = 500 kΩ 500 kΩ 70 kΩ = 250 kΩ 70 kΩ ⇒ RTH = 54.7 kΩ 5 − VTH 3 − VTH VTH − ( −5 ) + = 500 500 70 5 3 5 ⎛ 1 1 1 ⎞ + − = VTH ⎜ + + ⎟ − 0.0554 = VTH ( 0.0183) 500 500 70 ⎝ 500 500 70 ⎠ VTH = −3.03 V b. VTH − VBE ( on ) − ( −5 ) I BQ = RTH + (1 + β ) RE −3.03 − 0.7 + 5 = 54.7 + (101)( 5 ) I BQ = 0.00227 mA I CQ = 0.227 mA, I EQ = 0.229 VCEQ = 20 − ( 0.227 )( 50 ) − ( 0.229 )( 5 ) VCEQ = 7.51 V 5.65 RTH = 30 || 60 || 20 ⇒ RTH = 10 kΩ 5 − VTH 5 − VTH VTH + = 30 60 20 ⎛ 5 5 ⎞ ⎛ 1 1 1 ⎞ ⎜ + ⎟ = VTH ⎜ + + ⎟ ⎝ 30 60 ⎠ ⎝ 30 60 20 ⎠ VTH = 2.5 V For β = 100
  • 29. VTH − VBE ( on ) − ( −5 ) I BQ = RTH + (1 + β ) RE 2.5 − 0.7 + 5 = 10 + (101)( 0.2 ) I BQ = 0.225 mA I CQ = 22.5 mA, I EQ = 22.7 mA VCEQ = 15 − ( 22.5 )( 0.5 ) − ( 22.7 ) ( 0.2 ) VCEQ = −0.79! In saturation ⇒ VCEQ = 0.2 V VTH = I BQ RTH + VBE + I EQ RE − 5 2.5 + 5 − 0.7 = I BQ (10 ) + I EQ ( 0.2 ) 6.8 = I BQ (10 ) + I EQ ( 0.2 ) 14.8 = I CQ ( 0.5 ) + I EQ ( 0.2 ) Transistor in saturation, I EQ = I BQ + I CQ 6.8 = I BQ (10 ) + I BQ ( 0.2 ) + I CQ ( 0.2 ) 6.8 = I BQ (10.2 ) + I CQ ( 0.2 ) 51× 14.8 = I BQ ( 0.2 ) + I CQ ( 0.7 ) 754.8 = I BQ (10.2 ) + I CQ ( 35.7 ) 748 = I CQ ( 35.5 ) I CQ = 21.1 mA VCEQ = 0.2 V 5.66 I CQ = 50 μ A, I BQ = 0.625 μ A, I EQ = 50.6 μ A (a) 1 RE = = 19.8 K 0.0506 5 = ( 0.050 ) RC + 5 + ( 0.0506 )(19.8 ) − 5 RC = 80 K RTH = R1 R2 Design bias stable circuit. RTH = ( 0.1)( 51)(19.8 ) = 101 K ⎛ R2 ⎞ 1 VTH = ⎜ ⎟ (10 ) − 5 = ⋅ RTH ⋅ (10 ) − 5 ⎝ R1 + R2 ⎠ R1 1 So (101)(10 ) − 5 = I BQ (101) + 0.7 + ( 0.0506 )(19.8 ) − 5 R1 1 (1010 ) = 0.0631 + 0.7 + 1 R1 573 R2 R1 = 573 K = 101 573 + R2 R2 = 123 K (b)
  • 30. RTH = 101 K, VTH = −3.23 V VTH = I BQ RTH + 0.7 + (121)(19.8 ) I BQ − 5 1.07 = I BQ (101 + 2395.8 ) ⇒ I BQ = 0.429 μ A I CQ = 0.0514 mA, I EQ = 0.0519 mA VCEQ = 10 − ( 0.0514 )( 80 ) − ( 0.0519 )(19.8 ) = 10 − 4.11 − 1.03 ⇒ VCEQ = 4.86 V 5.67 (a) 2 I EQ = 0.80 mA, RE = = 2.5 K 0.8 12 = I CQ RC + VCEQ + I EQ RE 12 = ( 0.8 ) RC + 7 + 2 ⇒ RC = 3.75 K VTH = I BQ RTH + VBE + I EQ RE For a bias stable circuit RTH = ( 0.1)(12.1)( 2.5 ) = 30.25 K 1 1 ⋅ RTH ⋅ VCC = ( 30.25 )(12 ) = ( 0.00667 )( 30.25 ) + 0.7 + 2 R1 R1 1 ( 363) = 2.90 ⇒ R1 = 125 K R1 125 R2 = 30.25 ⇒ R2 = 39.9 K 125 + R2 (b) Let RE = 2.4 K, RC = 3.9 K R1 = 120 K R2 = 39 K Then RTH = R1 R2 = 120 39 = 29.4 K ⎛ 39 ⎞ VTH = ⎜ ⎟ (12 ) = 2.94 V ⎝ 120 + 39 ⎠ 2.94 − 0.7 2.24 I BQ = = ⇒ 7.00 μ A 29.4 + (121)( 2.4 ) 319.8 I CQ = 0.841 mΑ I EQ = 0.848 mA VCEQ = 12 − ( 0.841)( 3.9 ) − ( 0.848 )( 2.4 ) = 12 − 3.28 − 2.04 VCEQ = 6.68 V 5.68 (a) I CQ = 100 μ A, I BQ = 1.18 μ A, I EQ = 101 μ A 2 RE = ⇒ RE = 19.8 K 0.101 9 = ( 0.101)(19.8 ) + 6 + ( 0.1) RC − 9 RC = 100 K
  • 31. Design a bias stable circuit. BTH = ( 0.1)( 86 )(19.8 ) = 170 K ⎛ R2 ⎞ 1 VTH = ⎜ ⎟ (18 ) − 9 = (170 )(18 ) − 9 ⎝ R1 + R2 ⎠ R1 1 9 = ( 0.101)(19.8 ) + 0.7 + ( 0.00118 )(170 ) + (170 )(18 ) − 9 R1 203R2 R1 = 203 K = 170 203 + R2 R2 = 1046 K (b) β = 125 9 = (126 ) I BQ (19.8 ) + 0.7 + I BQ (170 ) + (15.07 − 9 ) 2.23 I BQ = = 0.837 μ A I CQ = 0.1046 mA 2664.8 I EQ = 0.1054 mA VECQ = 18 − ( 0.1046 )(100 ) − ( 0.1054 )(19.8 ) VECQ = 5.45 V 5.69 (a) ⎛ 51 ⎞ 3 I EQ ≈ ⎜ ⎟ ( 20 ) = 20.4 mA ⇒ RE = = 0.147 K ⎝ 50 ⎠ 20.4 6 VRC = 18 − 9 − 3 = 6 V RC = = 0.3 K 20 For a bias stable circuit. RTH = ( 0.1)( 51)( 0.147 ) = 0.750 K V + = I EQ RE + VEB + I BQ RTH + VTH 1 18 = 3 + 0.7 + ( 0.4 )( 0.75 ) + ( 0.75 )(18) R1 1 14 = (13.5) ⇒ R1 = 0.964 K R1 ( 0.964 ) R2 = 0.75 ⇒ R2 = 3.38 K 0.964 + R2 (b) Let RE = 0.15 K, RC = 0.3 K R1 = 1.0 K, R2 = 3.3 K ⎛ 3.38 ⎞ RTH = 1/13.3 = 0.767 K, VTH = ⎜ ⎟ (18 ) = 13.8 V ⎝ 1 + 3.38 ⎠ 18 − 13.8 − 0.7 3.5 I BQ = = = 0.416 mA 0.767 + ( 51)( 0.15 ) 8.417 I CQ = 20.8 mA, I EQ = 21.2 mA VECQ = 18 − ( 20.8 )( 0.3) − ( 21.2 )( 0.15 ) = 18 − 6.24 − 3.18 VECQ = 8.58 V 5.70
  • 32. RTH = R1 R2 = 100 40 = 28.6 kΩ ⎛ R2 ⎞ ⎛ 40 ⎞ VTH = ⎜ ⎟ (10 ) = ⎜ ⎟ (10 ) = 2.86 V ⎝ R1 + R2 ⎠ ⎝ 40 + 100 ⎠ VTH − VBE ( on ) 2.86 − 0.7 I B1 = = RTH + (1 + β ) RE1 28.6 + (121) (1) I B1 = 0.0144 mA I C1 = 1.73 mA, I E1 = 1.75 mA 10 − VB 2 = I C1 + I B 2 3 VB 2 − VBE ( on ) − ( −10 ) IE2 = 5 10 − VB 2 VB 2 − 0.7 + 10 = I C1 + 3 (121) ( 5 ) 10 9.3 ⎛1 1 ⎞ − 1.73 − = VB 2 ⎜ + ⎜ 3 (121) ( 5 ) ⎟ ⎟ 3 605 ⎝ ⎠ 1.588 = VB 2 ( 0.335 ) ⇒ VB 2 = 4.74 V 4.74 − 0.7 − ( −10 ) IE2 = ⇒ I E 2 = 2.808 mA 5 I B2 = 0.0232 mA I C 2 = 2.785 mA VCEQ1 = 4.74 − (1.75 ) (1) ⇒ VCEQ1 = 2.99 V VCEQ 2 = 10 − ( 4.74 − 0.7 ) ⇒ VCEQ 2 = 5.96 V 5.71 VE1 = −0.7 −0.7 − ( −5 ) I R1 = = 0.215 mA 20 VE 2 = −0.7 − 0.7 = −1.4 −1.4 − ( −5 ) IE2 = ⇒ I E 2 = 3.6 mA 1 I B 2 = 0.0444 mA I C 2 = 3.56 mA I E1 = I R1 + I B 2 = 0.215 + 0.0444 I E1 = 0.259 mA I B1 = 0.00320 mA I C1 = 0.256 mA 5.72 Current through V − source = I E1 + I E 2 and I E1 = I E 2 = (1 + β ) I B1 = ( 51)( 8.26 ) μ A So total current = 2 ( 51)( 8.26 ) μ A=843 μ A P − = I ⋅ V − = ( 0.843)( 5 ) ⇒ P − = 4.22 mW (From V − source) From Example 5.19, I Q = 0.413 mA ⎛ 50 ⎞ So I C 0 = ⎜ ⎟ ( 0.413) = 0.405 mA ⎝ 51 ⎠
  • 33. P + = I ⋅ V + = ( 0.405 )( 5 ) ⇒ P + = 2.03 mW (From V + source) 5.73 RTH = R1 R2 = 50 100 = 33.3 kΩ ⎛ R2 ⎞ VTH = ⎜ ⎟ (10 ) − 5 ⎝ R1 + R2 ⎠ ⎛ 100 ⎞ =⎜ ⎟ (10 ) − 5 = 1.67 V ⎝ 100 + 50 ⎠ 5 = I E1 RE1 + VEB ( on ) + I B1 RTH + VTH ⎛ 101 ⎞ I E1 = ⎜ ⎟ ( 0.8 ) = 0.808 mA ⎝ 100 ⎠ I B1 = 0.008 mA 5 = ( 0.808 ) RE1 + 0.7 + ( 0.008 )( 33.3) + 1.67 RE1 = 2.93 kΩ VE1 = 5 − ( 0.808 ) ( 2.93) = 2.63 V VC1 = VE1 − VECQ1 = 2.63 − 3.5 = −0.87 V VE 2 = −0.87 − 0.70 = −1.57 V −1.57 − ( −5 ) IE2 = = 0.808 ⇒ RE 2 = 4.25 kΩ RE 2 VCEQ 2 = 4 ⇒ VC 2 = −1.57 + 4 = 2.43 V 5 − 2.43 RC 2 = ⇒ RC 2 = 3.21 kΩ 0.8 I RC1 = I C1 − I B 2 = 0.8 − 0.008 = 0.792 mA −0.87 − ( −5 ) RC1 = ⇒ RC1 = 5.21 kΩ 0.792