SlideShare a Scribd company logo
Chapter 17
Problem Solutions

17.1
a.       vI = −1.5 Vi Q1 off , Q2 on
     −0.7 − (−3.5)
iE =               ⇒ iE = 0.56 mA
           5
iC1 = 0 ⇒ v01 = 3.5 V
iC 2 = iE ⇒ v02 = 3.5 − iE RC 2 = 3.5 − ( 0.56 )( 2 )
or
v02 = 2.38 V
b.           vI = 1.0 Vi Q1 on, Q2 off
        (1 − 0.7 ) − ( −3.5)
iE =                           ⇒ iE = 0.76 mA
                5
iC 2   = 0 ⇒ v02 = 3.5 V
c.       logic 0 at v02 (low level) = 2.38 V
Then
v01 = 2.38 = 3.5 − (0.76) RC1
or
RC1 = 1.47 kΩ

17.2
                                  3−0
(a)          iC 2 = I Q = 0.5 =        ⇒ RC 2 = 6 K
                                  RC 2
                                  3 −1
(b)          iC1 = I Q = 0.5 =         ⇒ RC1 = 4 K
                                  RC1
                                     ⎛V ⎞
                             I S exp ⎜ BE1 ⎟
(c)
             iC1
                 =                   ⎝ VT ⎠
             IQ        ⎡     ⎛V ⎞          ⎛ V ⎞⎤
                   I S ⎢ exp ⎜ BE1 ⎟ + exp ⎜ BE 2 ⎟ ⎥
                       ⎣     ⎝  VT ⎠       ⎝ VT ⎠ ⎦
                              1
                 =
                           ⎛ VBE 2 − VBE1 ⎞
                   1 + exp ⎜              ⎟
                           ⎝      VT      ⎠
              vI = VBE1 − VBE 2
So
 iC1          1
     =
 IQ            ⎛ −v ⎞
       1 + exp ⎜ I ⎟
               ⎝ VT ⎠
 0.1          1
     =                = 0.2
 0.5           ⎛ −v ⎞
       1 + exp ⎜ I ⎟
               ⎝ VT ⎠
⎛ −v ⎞ 1
exp ⎜ I ⎟ =          −1 = 4
     ⎝ VT ⎠ 0.2
( −vI ) = ( 0.026 ) ln (4)
vI = −0.0360 V

17.3
(a)         vI = 0.5 V, Q1 on, Q2 off = v02 = 3 V
 v01 = 3 − (1)(0.5) = 2.5 V
(b)         vI = −0.5 V Q1 off, Q2 on ⇒ v01 = 3 V
 v02 = 3 − (1)(0.5) = 2.5 V

17.4
(a)          Q2 on, vE = −1.2 − 0.7 = −1.9V
              −1.9 − ( −5.2 )
iE = iC 2 =               = 1.32 mA
                2.5
v2 = −1V = −iC 2 RC 2 = − (1.32 )( RC 2 )
RC 2 = 0.758 k Ω
(b)          Q1 on, vE = −0.7 − 0.7 = −1.40 V
              −1.4 − ( −5.2 )
iE = iC1 =               = 1.52 mA
               2.5
v1 = −1V = −iC1 RC1 = − (1.52 )( RC1 )
RC1 = 0.658 k Ω
(c)     For vin = −0.7 V , Q1 on, Q2 off
⇒ vO1 = −0.70V
vO 2 = −1 − 0.7 ⇒ vO 2 = −1.7 V
For vin = −1.7 V , Q1 off , Q2 on
⇒ vO 2 = −0.7 V
vO1 = −1 − 0.7 ⇒ vO1 = −1.7 V
(d) (i) For vin = −0.7V , iE = 1.52 mA
         −1.7 − ( −5.2 )
iC 4 =                     = 1.17 mA
               3
         −0.7 − ( −5.2 )
iC 3 =                    = 1.5 mA
              3
P = ( iE + iC 4 + iC 3 )( 5.2 ) = (1.52 + 1.17 + 1.5 )( 5.2 )
or P = 21.8 mW
(ii) For vin = −1.7V , iE = 1.32 mA
         −0.7 − ( −5.2 )
iC 4 =                     = 1.5 mA
               3
         −1.7 − ( −5.2 )
iC 3 =               = 1.17 mA
            3
P = (1.32 + 1.5 + 1.17 )( 5.2 )
or P = 20.7 mW
17.5
                 3.7 − 0.7
a.         I3 =              = 1.5 mA
                0.67 + 1.33
VR = I 3 R4 + Vγ = (1.5 )(1.33) + 0.7
or
VR = 2.70 V
b.         logic 1 level = 3.7 − 0.7 ⇒ 3.0 V
For v X = vY = logic 1.
      3 − 0.7
iE =           = 2.875 mA = iRC1
        0.8
vB 3 = 3.7 − ( 2.875 )( 0.21) = 3.10 V
           ⇒ v01 ( logic 0 ) = 2.4 V
For v X = vY = logic 0, QR on
      2.7 − 0.7
iE =             = 2.5 mA = iRC 2
         0.8
vB 4 = 3.7 − ( 2.5 )( 0.24 ) = 3.1 V
           ⇒ v02 ( logic 0 ) = 2.4 V

17.6
                     1.1 − 0.7 − ( −1.9 )
(a)        I REF =                          = 0.115 mA
                             20
           I Q = I REF   = 0.115 mA
(b)        vo1 (max) = 1.1 − 0.7 = 0.4 V
                         vo1 (max) − ( −1.9 )
           i5 (max) =
                                  R5
                        0.4 + 1.9
           R5 = R6 =              = 11.5 K
                           0.2
(c)        vo1 = −0.4 V ⇒ vB 5 = +0.3 V
                  1.1 − 0.3
           RC1 =             = 6.96 K
                    0.115
(d)        vo 2 = −0.4 V ⇒ vB 6 = +0.3V
                   1.1 − 0.3
           RC 2 =            = 6.96 K
                    0.115

17.7
      logic 1 + logic 0 1 + 0
VR =                   =      = 0.5 V
              2           2
For i2 = 1 mA
       0.5 − ( −2.3)
R5 =                   ⇒ R5 = 2.8 kΩ
         1
For QR on,
       VR − VBE − ( −2.3)
iE =
              RE
or
0.5 − 0.7 + 2.3
RE =                     ⇒ RE = 2.1 kΩ
                1
VB 2   = VR + VBE = 0.5 + 0.7 = 1.2 V
                       1.2 − 1.4 − ( −2.3)
                i1 =
                               R2
or
      1.2 − 1.4 + 2.3
R2 =                  ⇒ R2 = 2.1 kΩ
             1
      1.7 − 1.2
R1 =            ⇒ R1 = 0.5 kΩ
          1
     1 − (−2.3)
i3 =            = 3 ⇒ R3 = 1.1 kΩ
         R3
       0 − (−2.3)
i4 =              = 3 ⇒ R4 = 0.767 kΩ
           R4
For QR on,
v0 R = logic 0 = 0 V ⇒ vB 3 = 0.7 V
iE = iCR = 1 mA
So
        1.7 − 0.7
RC 2 =            ⇒ RC 2 = 1 kΩ
            1
For vI = logic 1 = 1 V,
              1 − 0.7 − ( −2.3)
       iE =                    = 1.238 mA
                     2.1
For vNOR        = logic 0 = 0 V,
    vB 4 = 0.7 V
Then
      1.7 − 0.7
RC1 =           ⇒ RC1 = 0.808 kΩ
         1.238

17.8
Maximum iE for vI = logic 1 = 3.3 V
                             3.3 − 0.7
Then iE = 5 mA =                       ⇒ RE = 0.52 kΩ
                                RE
For v02 = logic 1 = 3.3 V
                3.3 − 0
       iE 3 =           = 5 mA
                  R3
or
R3 = 0.66 kΩ
By symmetry,
R2 = 0.66 kΩ
For Q1 on,
                             4 − ( 2.7 + 0.7 )
iE = iRC1 = 5 mA =
                                    RC1
So
RC1 = 0.12 kΩ
For QR on,
     3 − 0.7
iE =         = 4.423 mA = iRC 2
      0.52
                    4 − ( 2.7 + 0.7 )
and iRC 2 = 4.423 =
                           RC 2
                 ⇒ RC 2 = 0.136 kΩ

17.9
Neglecting base currents:
(a)      I E1 = 0, I E 3 = 0
      5 − 0.7
I E5 =        ⇒ I E 5 = 1.72 mA
        2.5
Y = 0.7 V
                  5 − 0.7
(b)       I E1 =          ⇒ I E1 = 0.239 mA
                    18
          I E3   =0
                5 − 0.7
          I E5 =        ⇒ I E 5 = 1.72 mA
                  2.5
          Y = 0.7 V
                           5 − 0.7
(c)       I E1 = I E 3 =           ⇒ I E1 = I E 3 = 0.239 mA
                             18
I E 5 = 0, Y = 5 V
(d)       Same as (c).

17.10
(a)       VR = −(1)(1) − 0.7 ⇒ VR = −1.7 V
(b)       QR off , then vO1 = Logic 1 = −0.7 V
QR on, then vO1 = −(1)(2) − 0.7 ⇒
vO1 = Logic 0 = −2.7 V
QA / QB − off , then vO 2 = Logic 1 = −0.7 V
QA / QB − on, then vO 2 = −(1)(2) − 0.7 ⇒
vO 2 = Logic 0 = −2.7 V
(c)       A = B = Logic 0 = −2.7 V , QR on,
          VE = −1.7 − 0.7 ⇒ VE = −2.4 V
A = B = Logic 1 = −0.7 V , QA / QB on,
VE = −0.7 − 0.7 ⇒ VE = −1.4 V
(d)       A = B = Logic 1 = −0.7 V , QA / QB on,
−2.7 − (−5.2)
iC 3 =                = 1.67 mA
            1.5
       −0.7 − (−5.2)
iC 2 =                = 3 mA
            1.5
P = (1.67 + 1 + 1 + 1 + 3)(5.2) ⇒ P = 39.9 mW
A = B = Logic 0 = −2.7 V
iC 3 = 3 mA, iC 2 = 1.67 mA
P = 39.9 mW

17.11
a.        AND logic function
b.        logic 0 = 0 V
          5 − (1.6 + 0.7)
Q3 on, i =                = 2.25 mA
                1.2
V2 = (2.25)(0.8) ⇒ logic 1 = 1.8 V
                   5 − 0.7
c.        iE1 =             ⇒ iE1 = 1.65 mA
                     2.6
                   5 − (0.7 + 0.7)
          iE 2   =                 ⇒ iE 2 = 3 mA
                         1.2
                       iC 3 = 0, iC 2 = iE 2 = 3 mA
                       V2 = 0
                   5 − (1.8 + 0.7)
d.        iE1 =                    ⇒ iE1 = 0.962 mA
                          2.6
                   5 − (1.6 + 0.7)
          iE 2   =                 ⇒ iE 2 = 2.25 mA
                          1.2
                        iC 2 = 0, iC 3 = iE 2 = 2.25 mA
                       V2 = 1.8 V

17.12
               3.5 + 3.1
a.        VR =           − 0.7 ⇒ VR = 2.6 V
                   2
b.        For Q1 on, v X = vY = logic 1 = 3.5 V
   3.5 − (0.7 + 0.7)
iE =                 = 0.175 mA
           12
            0.175 0.4
Want iRC1 =       =      ⇒ RC1 = 4.57 kΩ
              2      RC1
                                2.6 − 0.7
c.        For Q2 on, iE =                 = 0.158 mA
                                   12
                 0.158 0.4
Want iRC 2 =          =      ⇒ RC 2 = 5.06 kΩ
                   2    RC 2
d.        For vY = logic 1 = 3.5 V
      3.5 − 0.7
iR1 =            = 0.35 mA, i E = 0.175 mA
          8
P = ( iR1 + iE )(VCC ) = ( 0.35 + 0.175 )( 3.5 )
           ⇒ P = 1.84 mW
17.13
a.       logic 1 = 0.2 V
logic 0 = −0.2 V
                   ( 0 − 0.7 ) − ( −3.1)
b.          iE =                           = 0.8
                            RE
So
RE = 3 kΩ
                           0.8 0.4
c.         Want iR1 =         =    ⇒ R1 = 1 kΩ
                            2   R1
d.         For v X = vY = logic 1 = 0.2 V
       ( 0.2 − 0.7 ) − ( −3.1)
iE =                             = 0.867 mA
                   3
         0.4
iR 2 =       ⇒ iR 2 = 0.4 mA
          1
               iD 2 = 0.467 mA
e.          iE = 0.867 mA
     0.2 − (−3.1)
i3 =              = 1 mA
         3.3
     −0.2 − (−3.1)
i4 =               = 0.879 mA
          3.3
P = (0.867 + 1 + 0.879)(0.9 − (−3.1))
or P = 11.0 mW

17.14
a.
     ( −0.9 − 0.7 ) − ( −3)
i1 =                         ⇒ i1 = 1.4 mA
                1
      ( −0.2 − 0.7 ) − ( −3)
i3 =                         ⇒ i3 = 0.14 mA
               15
      ( −0.2 − 0.7 ) − ( −3)
i4 =                         ⇒ i4 = 0.14 mA
               15
i2 + iD = i1 + i3 = 1.4 + 0.14 = 1.54 mA
      0.4
i2 =       ⇒ i2 = 0.8 mA
      0.5
                 iD = 0.74 mA
                   v0 = −0.4 V
b.          i1 = 1.4 mA
     (0 − 0.7) − (−3)
i3 =                  ⇒ i3 = 0.153 mA
            15
i4 = i3 ⇒ i4 = 0.153 mA
i2 + iD = i4 ⇒ i2 = 0.153 mA
                       iD = 0
v0 = −(0.153)(0.5) ⇒ v0 = −0.0765 V
( 0 − 0.7 − 0.7 ) − ( −3)
c.       i1 =                               ⇒ i1 = 1.6 mA
                           1
     (−0.2 − 0.7) − (−3)
i3 =                     ⇒ i3 = 0.14 mA
             15
i4 = i3 ⇒ i4 = 0.14 mA
i2 + iD = i3 ⇒ i2 = 0.14 mA
                  iD = 0.0
v0 = −(0.14)(0.5) ⇒ v0 = −0.07 V
               (0 − 0.7 − 0.7) − (−3)
d.       i1 =                         ⇒ i1 = 1.6 mA
                         1
     (0 − 0.7) − (−3)
i3 =                  ⇒ i3 = 0.153 mA
            15
i4 = i3 ⇒ i4 = 0.153 mA
i2 + iD = i1 + i4 = 1.6 + 0.153 = 1.753 mA
      0.4
i2 =      ⇒ i2 = 0.8 mA
      0.5
                iD = 0.953 mA
                v0 = −0.40 V

17.15
a.         i.         A = B = C = D = 0 ⇒ Q1 − Q4 cutoff
So
VDD = 2 I E R 1 + VEB + I B R2
and
        I        I
IB = E = E
      1 + β P 51
Then
                        I
2.5 = 2 I E (2) + 0.7 + E ⋅ (15)
                        51
                  ⎛    15 ⎞
2.5 = 0.7 = I E ⋅ ⎜ 4 + ⎟
                  ⎝    51 ⎠
So
I E = 0.419 mA
and
Y = 2.5 − 2(0.4192)(2) ⇒ Y = 0.823 V
ii.          A = C = 0, B = D = 2.5 V
Now
 vB 5 = vB 6 = 2.5 − 0.7 = 1.8 V
and
Y = vB 5 + 0.7 ⇒ Y = 2.5 V
b.       Y = ( A OR B ) AND (C OR D)

17.16
a.        logic 1 = 0 V
logic 0 = −0.4 V
b.         v01 = A OR B
v02 = C OR D
v03 = v01 OR v02
or
v03 = ( A OR B ) AND (C OR D)

17.17
a.        For CLOCK = high, I DC flows through the left side of the circuit.. If D is high, I DC flows through
the left R resistor pulling Q low. If D is low. I DC flows through the right R resistor pulling Q low.
For CLOCK = low, I DC flows through the right side of the circuit maintaining Q and Q in their previous
state.
b.     P = ( I DC + 0.5 I DC + 0.1I DC + 0.1 I DC )( 3)
P = 1.7 I DC ( 3) = (1.7 )( 50 )( 3) ⇒ P = 255 μ W

17.18
(a)
 vI = 0 ⇒ V1 = 0.7 V
    3.3 − 0.7
i1 =          = 0.433 mA
         6
iB = iC = 0
 vo = 3.3 V
(b)
 vI = 3.3 V v1 = 0.7 + 0.8 = 1.5 V
     3.3 − 1.5
i1 =           = 0.3 mA
         6
      0.8
iR =      = 0.04 mA
      20
iB = 0.3 − 0.04 = 0.26 mA
      3.3 − 0.1
iC =            = 0.8 mA
          4
 vo = 0.1 V

17.19
i.        For v X = vY = 0.1 V ⇒ v ′ = 0.8 V
       5 − 0.8
i1 =           ⇒ i1 = 0.525 mA
          8
                 i3 = i4 = 0
ii.        For v X = vY = 5 V,
 v′ = 0.8 + 0.7 + 0.7 ⇒⇒ v′ = 2.2 V
     5 − 2.2
i1 =          ⇒ i1 = 0.35 mA
         8
          0.8
i4 = i1 −     ⇒ i4 = 0.297 mA
           15
     5 − 0.1
i3 =          ⇒ i3 = 2.04 mA
        2.4
17.20
a.          For v X = vY = 5 V , both Q1 and Q2 driven into saturation.
v1 = 0.8 + 0.7 + 0.8 ⇒ v1 = 2.3 V
     5 − 2.3
i1 =          ⇒ i1 = iB1 = 0.675 mA
        4
     5 − (0.8 + 0.7 + 0.1)
i2 =                       ⇒ i2 = 1.7 mA
               2
i4 = iB1 + i2 ⇒ i4 = 2.375 mA
        0.8
i5 =         ⇒ i5 = 0.08 mA
        10
iB 2   = i4 − i5 ⇒ iB 2 = 2.295 mA
        5 − 0.1
i3 =            ⇒ i3 = 1.225 mA
           4
                 v0 = 0.1V
                    5 − (0.1 + 0.7)
b.           ′
            iL    =                 = 1.05 mA
                           4
                                         ′
                  iC (max) = β iB 2 = NiL + i3
  (20)(2.295) = N (1.05) + 1.225
So
N = 42

17.21
DX and DY off, Q1 forward active mode
v1 = 0.8 + 0.7 + 0.7 = 2.2 V
5 = i1 R1 + i2 R2 + v1 and i1 = (1 + β )i2
So 5 − 2.2 = i2 [ (1 + β ) R1 + R2 ]
Assume β = 25
          5 − 2.2
i2 =                  ⇒ i2 = 0.0589 mA
      (26)(1.75) + 2
i1 = (1 + β )i2 = (26)(0.05895) ⇒ i1 = 1.53 mA
i3 = β i2 ⇒ i3 = 1.47 mA
             0.8
iBo = i2 + i3 −  = 0.0589 + 1.47 − 0.16 ⇒
              5
 iBo = 1.37 mA
Qo in saturation
         5 − 0.1
iCo =            ⇒ iCo = 0.817 mA
            6

17.22
(a)       vI = 0 V, Q1 forward actions
     5 − 0.7
iB =         = 0.717 mA
        6
iC = (25)(0.71667) = 17.9 mA
iE = (26)(0.71667) = 18.6 mA
(b)         VI = 0.8 V
     5 − (0.8 + 0.7)
iB =                  = 0.583 mA
              6
Because of the relative doping levels of the Emitter and collector, and because of the difference in B-C and
B-E areas, we have −iC ≈ iB = 0.583 mA and iE = small value.
(c)         vI = 3.6 Q1 inverse active.
     5 − (0.8 + 0.7)
iB =                  = 0.583 mA
              6
iE = − β R iE = −(0.5)(0.583) = −0.292 mA
iC = −iB − iE = −0.583 − 0.292 ⇒ iC = −0.875 mA

17.23
a.          i.         v X = vY = 0.1 V, so Q1 in saturation.
       5 − (0.1 + 0.8)
i1 =                   ⇒ i1 = 0.683 mA
              6
           ⇒ iB 2 = i2 = i4 = iB 3 = i3 = 0

ii.         v X = vY = 5 V, so Q1 in inverse active mode.
                      Assume Q2 and Q3 in saturation.
     5 − (0.8 + 0.8 + 0.7)
i1 =                       ⇒ i1 = iB 2 = 0.45 mA
               6
     5 − (0.8 + 0.1)
i2 =                 ⇒ i2 = 2.05 mA
            2
     0.8
i4 =      ⇒ i4 = 0.533 mA
     1.5

iB 3 = ( iB 2 + i2 ) − i4 = 0.45 + 2.05 − 0.533
or
          iB 3 = 1.97 mA
       5 − 0.1
i3 =           ⇒ i3 = 2.23 mA
         2.2
b.          For Q3 :
 i3   2.23
    =      = 1.13 < β
iB 3 1.97
For Q2 :
 i2   2.05
    =      = 4.56 < β
iB 2 0.45
Since ( I C / I B ) < β , then each transistor is in saturation.

17.24
(a)         v X = vY = Logic 1
v ′ = 0.8 + 2 ( 0.7 ) = 2.2 V
      5 − 2.2
i1 =           = 0.35 mA
         8
          0.8
i4 = i1 −      = 0.35 − 0.0533 = 0.2967 mA
           15
      5 − 0.1
i3 =           = 2.04 mA
        2.4
      5 − ( 0.1 + 0.7 )
 ′
iL =                    = 0.525 mA
              8

Assume β = 25
Then ( 25 )( 0.2967 ) = 2.04 + N ( 0.525 )
So N = 10.2 ⇒ N = 10
(b)      Now
5 = 2.04 + N ( 0.525 )
So N = 5.64 ⇒ N = 5

17.25
a.           For v X = vY = 5 V, Q, in inverse active mode.
         5 − ( 0.8 + 0.8 + 0.7 )
iB1 =                            = 0.45 mA
                     6
iB 2   = iB1 + 2 β R iB1 = 0.45(1 + 2 [ 0.1]) = 0.54 mA
         5 − ( 0.8 + 0.1)
iC 2 =                       = 2.05 mA
                2
                           0.8
iB 3 = ( iB 2 + iC 2 ) −       = 0.54 + 2.05 − 0.533
                           1.5
or
iB 3 = 2.06 mA
Now
       5 − (0.1 + 0.8)
 ′
iL =                   = 0.683 mA
              6
Then
                          ′
iC 3 (max) = β F iB 3 = NiL
or (20)(2.06) = N (0.683)
          ⇒ N = 60

b.                                      ′
             From above, for v0 high, I L = (0.1)(0.45) = 0.045 mA. Now
                       ⎛ 5 − 4.9 ⎞   (21)(0.1)
  ′
I L (max) = (1 + β F ) ⎜         ⎟ =
                       ⎝   R2 ⎠          2
                                   = 1.05 mA
So
               ′
I L (max) = NI L
or 1.05 = N (0.045)
               ⇒ N = 23

17.26
(a)          Vin = 0.1V : QI , Sat : Qs , Qo , Cutoff
    5 − (0.1 + 0.8)
iI =                 = 1.025 mA
            4
P = iI (5 − 0.1) = (1.025)(4.9) ⇒
P = 5.02 mW
(b)          Vin = 5V , QI , Inverse Active; QS , Qo , Saturation
vBI = 0.7 + 0.8 + 0.7 = 2.2V
     5 − 2.2
iI =           = 0.7 mA
        4
iEI = β R ⋅ iI = (0.1)(0.7) = 0.07 mA
Vout = 0.7 + 0.1 = 0.8 V
     5 − 0.8
i2 =          = 4.2 mA
        1
P = (iI + iEI + i2 )(5) = (0.7 + 0.07 + 4.2)(5) ⇒
P = 24.9 mW

17.27
a.           v X = vY = vZ = 0.1 V
         5 − (0.1 + 0.8)
iB1 =                    ⇒ iB1 = 1.05 mA
               3.9
Then
iC1 = iB 2 = iC 2 = iB 3 = iC 3 = 0
b.           v X = vY = vZ = 5 V
         5 − (0.8 + 0.8 + 0.7)
iB1 =                          ⇒ iB1 = 0.692 mA
                  3.9
Then
iC1 = iB 2 = iB1 (1 + 3β R ) = (0.692)(1 + 3[0.5])
         ⇒ iC1 = iB 2 = 1.73 mA
         5 − (0.1 + 0.8)
iC 2 =                     ⇒ iC 2 = 2.05 mA
                  2
                       0.8
iB 3   = iB 2 + iC 2 −     = 1.73 + 2.05 − 1.0
                       0.8
            ⇒ iB 3 = 2.78 mA
       5 − 0.1
iR 3 =           = 2.04 mA
          2.4
      5 − (0.1 + 0.8)
 ′
iL =                   = 1.05 mA
             3.9
                ′
iC 3 = iR 3 + 5iL = 2.04 + (5)(1.05)
          ⇒ iC 3 = 7.29 mA

17.28
a.           v X = vY = vZ = 2.8 V, Q1 biased in the inverse active mode.
2.8 − (0.8 + 0.8 + 0.7)
iB1 =                              ⇒ iB1 = 0.25 mA
                      2
iB 2   = iB1 (1 + 3β R ) = 0.25(1 + 3 [0.3])
           ⇒ iB 2 = 0.475 mA
vC 2 = 0.8 + 0.1 = 0.9 V
            0.9 − (0.7 + 0.1)      0.1
iB 4    =                     =
             (1 + β F )(0.5)    (101)(0.5)
        = 0.00198 mA (Negligible)
          5 − 0.9
iR 2    =         = 4.56 mA
            0.9
        ⇒ iC 2 = 4.56 mA
                       0.8
iB 3 = iB 2 + iC 2 −       = 0.475 + 4.56 − 0.8
                        1
            ⇒ iB 3   = 4.235 mA

b.            v X = vY = vZ = 0.1 V
       5 − (0.1 + 0.8)
iB1 =                  ⇒ iB1 = 2.05 mA
               2
From part (a),
 ′
iL = β R ⋅ iB1 = (0.3)(0.25) = 0.075 mA
Then
         5iL′     5(0.075)
iB 4 =          =          ⇒ iB 4 = 0.00371 mA
       1+ βF         101

17.29
a.            v X = vY = vZ = 0.1 V
       2 − (0.1 + 0.8)
iB1 =                  + iB 3
             RB1
where
       (2 − 0.7) − (0.9) 0.4
iB 3 =                    =
              RB 2            1
            ⇒ iB 3 = 0.4 mA

Then
        1.1
iB1 =       + 0.4 ⇒ iB1 = 1.5 mA
         1
                    iB 2 = 0 = iC 2

                          ′
Q3 in saturation iC 3 = 5iL For v0 high,
 ′                           ′
vB1 = 0.8 + 0.7 = 1.5 V ⇒ Q3 off
      2 − 1.5
 ′
iB1 =          = 0.5 mA
          1
 ′        ′
iL = β R iB1 = (0.2)(0.5) = 0.1 mA

Then
iC 3 = 0.5 mA

b.      v X = vY = vZ = 2 V
From part (a),

 ⇒ iB1 = 0.5 mA
       iB 3 = 0 = iC 3
iB 2 = iB1 (1 + 3β R ) = (0.5)(1 + 3 [0.2])
         iB 2 = 0.8 mA

         ′                       ′
iC 2 = 5iL , and from part (a), iL = 1.5 mA
So
iC 2 = 7.5 mA

17.30
                       5.8 − 0.7
(a)           IB + ID =           = 0.51 mA
                          10
            5 − (0.7 − 0.3)
IC − I D =                    = 4.6 mA
                    1
Now
                            I             I
I D = 0.51 − I B = 0.51 − C = 0.51 − C
                            β             50
Then
                  ⎛        I ⎞       ⎛      1 ⎞
I C − I D = I C − ⎜ 0.51 − C ⎟ = I C ⎜ 1 + ⎟ − 0.51 = 4.6
                  ⎝       50 ⎠       ⎝ 50 ⎠
So I C = 5.01 mA
         IC 5.01
IB =          =  ⇒ I B = 0.1002 mA
         β   50
I D = 0.51 − 0.1002 ⇒ I D = 0.4098 mA
VCE = 0.4 V

(b)           I D = 0, VCE = VCE ( sat ) = 0.1 V
     5.8 − 0.8
IB =           ⇒ I B = 0.5 mA
        10
     5 − 0.1
IC =         ⇒ I C = 4.9 mA
        1

17.31
a.            v X = vY = 0.4 V
vB1 = 0.4 + 0.7 ⇒ vB1 = 1.1 V
         5 − 1.1
 iB1 =           ⇒ iB1 = 1.39 mA
           2.8
vB 2   = 0.4 + 0.4 ⇒ vB 2 = 0.8 V
iB 2 = iC 2 = iB 0 = iC 0 = iB 5 = iC 5
       = iB 3 = iC 3 = 0 ( No load )
5 = iB 4 R2 + VBE + (1 + β )iB 4 R4
                5 − 0.7
iB 4 =                       ⇒ iB 4 = 0.0394 mA
         0.76 + (31)(3.5)
iC 4   = β F iB 4 ⇒ iC 4 = 1.18 mA
vB 4 = 5 − (0.0394)(0.76) ⇒ vB 4 = 4.97 V

b.           v X = vY = 3.6 V
vB1 = 0.7 + 0.7 + 0.3 ⇒ vB1 = 1.7 V
                                 vB 2 = 1.4 V
                                 vB 0 = 0.7 V
                                 vC 2 = 1.1 V

         5 − 1.7
iB1 =             ⇒ iB1 = 1.1786 mA
           2.8
iB 2   = iB1 (1 + 2 β R ) = 1.18(1 + 2 [0.1])
           iB 2 = 1.41 mA
          1.1 − 0.7
iB 4 =                 ⇒ iB 4 = 0.00369 mA
         (31)(3.5)
         5 − 1.1
iR 2   =            = 5.13 mA ⇒ iC 2 ≈ 5.13 mA
           0.76
iB 0   ≈ iB 2 + iC 2
           iB 0 = 6.54 mA

17.32
(a)          vI = 0, v1 = 0.3 V
    1.5 − 0.3
i1 =          = 1.2 mA
        1
iB = iC = 0, vO = 1.5 V

(b)          vI = 1.5 V v1 = 0.7 + 0.3 = 1 V
     1.5 − 1
i1 =         = 0.5 mA
        1
      0.7
iR =      = 0.035 mA
      20
iB = 0.5 − 0.035 = 0.465 mA
    1.5 − 0.4
iC =          = 0.917 mA
       1.2
vO = 0.4 V

17.33
a.           Assuming the output transistor Q2 is a Schottky transistor, then
                       2.5 − (0.4 + 0.3)
             ′
v0 = 0.4 V, iL =                         = 0.5
                              RB1
Then
RB1 = 3.6 kΩ
Then
        2.5 − (0.7 + 0.8) 1.0
iB1 =                    =     = 0.278 mA
               RB1         3.6
                            0.7
iB 2 = 0.5 mA, iE1 = 0.5 +      = 1.50 mA
                            0.7
iE1 = iB1 + iC1 ⇒ iC1 = 1.50 − 0.278 = 1.222 mA

            2.5 − (0.7 + 0.1)
and iC1 =                     = 1.222 mA
                   RC1
⇒ RC1 = 1.39 kΩ
b.          v X = vY = 0.4 V, vB1 = 0.7 V
vC 2 = 2.5 − 0.7 ⇒ vC 2 = 1.8 V
All transistor currents are zero.
c.        vB1 = 1.5 V, vC1 = 0.8 V
Currents calculated in part (a).
d.                          ′
          iB 2 = 0.5 mA, iL = 0.5 mA
                        ′
iC 2 (max) = β iB 2 = NiL or (50)(0.5) = N (0.5)
So
N = 50

17.34
a.         For v X = vY = 3.6 V
                              5 − 2.1
vB1 = 3(0.7) = 2.1 ⇒ iB1 =            = 0.29 mA
                                10
                                          5 − 1.8
vC1 = 0.7 + 0.7 + 0.4 = 1.8 V ⇒ iC1 =             = 0.32 mA
                                            10
                   1.4
iB 2 = iB1 + iC1 −     = 0.29 + 0.32 − 0.0933
                   15
So
iB 2 = 0.517 mA
vC 2 = 0.7 + 0.4 = 1.1 V
       5 − 1.1
iC 2 =          = 0.951 mA
         4.1

                  0.7
iB 5 = iB 2 + iC 2 −   = 0.517 + 0.951 − 0.175
                   4
or iB 5 = 1.293 mA
                    ′
For v0 = 0.4 V, vB1 = 0.4 + 0.7 = 1.1 V
Then
       1.1 − 0.7
 ′
iB1 =            = 0.00086 mA
       (31)(15)
      5 − 1.1
 ′
iL =                          ′
              − 0.00086 or iL ≈ 0.39 mA
        10
So iC 5 (max) = β iΒ 5 = NiL′
(30)(1.293) = N (0.39) ⇒ N = 99
b.      P = (0.29 + 0.32 + 0.951)(5) + (99)(0.39)(0.4)
P = 7.805 + 15.444 or P = 23.2 mW
(Assumming 99 load circuits which is unreasonably large.)

17.35
a.          Assume no load. For v X = logic 0 = 0.4 V
      5 − (0.4 + 0.7)
iE1 =                 = 0.0975 mA
             40
Essentially all of this current goes to ground from VCC .
P = iE1 ⋅ VCC = (0.0975)(5) ⇒ P = 0.4875 mW

                 5 − (3)(0.7)
b.          iR1 =             = 0.0725 mA
                      40
       5 − (0.7 + 0.7 + 0.4)
iR 2 =                       = 0.064 mA
                50
       5 − (0.7 + 0.4)
iR 3 =                 = 0.26 mA
             15
P = (0.0725 + 0.064 + 0.26)(5)
P = 1.98 mW

c.          For v0 = 0, vC 7 = 0.7 + 0.4 = 1.1 V
         5 − 1.1
iR 7 =           ⇒ iR 7 = 78 mA ≈ iSC
         0.050

17.36
(a)         vl = vO = 25 V ; A transient situation
vDS ( M N ) = 2.5 − 0.7 = 1.8 V
vGS ( M N ) = 2.5 − 0.7 = 1.8 V ⇒ M N in saturation
vSD ( M P ) = 5 − (2.5 + 0.7) = 1.8 V
vSG ( M P )5 − 2.5 = 2.5 V ⇒ M P in saturation
iDN = K n (vGSN − VTN ) 2 = (0.1)(1.8 − 0.8) 2 ⇒ iDN = 0.1 mA
iDP = K P (vSGP + VTP ) 2 = (0.1)(2.5 − 0.8) 2 ⇒ iDP = 0.289 mA
iC1 = β iDP = (50)(0.289) ⇒ iC1 = 14.45 mA
iC 2 = β iDN = (50)(0.1) ⇒ iC 2 = 5 mA
Difference between iE1 and iDN + iC 2 is a load current.
(b)     Assume iC1 = 14.45 mA is a constant
      1        i ⋅t        (V )(C )
VC = ∫ iC1dt = C1 ⇒ t = C
      C          C            iC1
      (5)(15 × 10−12 )
t=                     ⇒ t = 5.19 ns
       14.45 × 10−3

                 (5)(15 × 10−12 )
(c)         t=                    ⇒ t = 260 ns
                  0.289 × 10−3
17.37




(a)       Assume R1 = R2 = 10 kΩ; β = 50
              0.7
Then iR1 = iR 2 = = 0.07 mA
               10
NMOS in saturation region; vGSN = 2.5 − 0.7 = 1.8 V
iDN = K n ( vGSN − VTN ) = ( 0.1)(1.8 − 0.8 )
                       2                        2


iDN = 0.10 mA

Then iB 2 = 0.03 ⇒ iC 2 = (50)(0.03) = 1.5 mA
iE1 = 1.53 mA ⇒ iB1 = 0.03 mA ⇒ iC1 = 1.5 mA
So iDP = 0.10 mA
Now, M P biased in non-saturation region
vSGP = 2.5 V
iDP = 0.10 = 0.10 ⎡ 2(2.5 − 0.8)vSD − vSD ⎤
                  ⎣
                                       2
                                          ⎦
0.10 vSD − 0.34 vSD + 0.10 = 0
      2



        0.34 ± (0.34) 2 − 4(0.10)(0.10)
vSD =
                   2(0.10)
Or
vSD = 0.325 V
Then vo = 5 − 0.325 − 0.7
vo = 3.975 V
              1         i ⋅t
(b)       v=
              C ∫ idt = C
    Cv (15 × 10−12 )(5)
t=      =
     i      1.53 × 10−3
t = 49 ns
(c)
    Cv (15 × 10−12 )(5)
t=      =
     i       0.1× 10−3
t = 0.75 μ s

More Related Content

Viewers also liked

Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)Ontico
 
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...Ontico
 
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)Ontico
 
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...Ontico
 

Viewers also liked (14)

Ch15p
Ch15pCh15p
Ch15p
 
Ch06s
Ch06sCh06s
Ch06s
 
Ch14p
Ch14pCh14p
Ch14p
 
Ch12p
Ch12pCh12p
Ch12p
 
Ch09s
Ch09sCh09s
Ch09s
 
Ch04p
Ch04pCh04p
Ch04p
 
Ch16s
Ch16sCh16s
Ch16s
 
Ch10s
Ch10sCh10s
Ch10s
 
Ch02s
Ch02sCh02s
Ch02s
 
Ch10p
Ch10pCh10p
Ch10p
 
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
 
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
 
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
 
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
 

Similar to Ch17s 3rd Naemen

W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solAnkit Chaurasia
 
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayanbrandwin marcelo lavado
 
Electronic devices and circuit theory 11th copy
Electronic devices and circuit theory 11th   copyElectronic devices and circuit theory 11th   copy
Electronic devices and circuit theory 11th copyKitTrnTun5
 
Electronica
ElectronicaElectronica
Electronicazeta2015
 
Electronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfElectronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfGollapalli Sreenivasulu
 
Electronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th edElectronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th edMobin Hossain
 
kvl kcl- nodal analysis
kvl  kcl- nodal analysiskvl  kcl- nodal analysis
kvl kcl- nodal analysisPdr Patnaik
 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Gallian394
 

Similar to Ch17s 3rd Naemen (20)

Ch16p
Ch16pCh16p
Ch16p
 
Ch06p
Ch06pCh06p
Ch06p
 
Ch13s
Ch13sCh13s
Ch13s
 
Ch04s
Ch04sCh04s
Ch04s
 
Ch03s
Ch03sCh03s
Ch03s
 
Ch02p
Ch02pCh02p
Ch02p
 
Ch13p
Ch13pCh13p
Ch13p
 
Chapt03 pp 110626
Chapt03 pp 110626Chapt03 pp 110626
Chapt03 pp 110626
 
Ch09p
Ch09pCh09p
Ch09p
 
Chapter 04 is
Chapter 04 isChapter 04 is
Chapter 04 is
 
Ch03p
Ch03pCh03p
Ch03p
 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-sol
 
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan
 
Electronic devices and circuit theory 11th copy
Electronic devices and circuit theory 11th   copyElectronic devices and circuit theory 11th   copy
Electronic devices and circuit theory 11th copy
 
Electronica
ElectronicaElectronica
Electronica
 
Electronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdfElectronic Devices and Circuit Theory 11th Ed.pdf
Electronic Devices and Circuit Theory 11th Ed.pdf
 
Electronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th edElectronic devices and circuit theory 11th ed
Electronic devices and circuit theory 11th ed
 
kvl kcl- nodal analysis
kvl  kcl- nodal analysiskvl  kcl- nodal analysis
kvl kcl- nodal analysis
 
Ch05s
Ch05sCh05s
Ch05s
 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...
 

More from Bilal Sarwar

More from Bilal Sarwar (8)

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
 
Ramey soft
Ramey softRamey soft
Ramey soft
 
Ch15s
Ch15sCh15s
Ch15s
 
Ch14s
Ch14sCh14s
Ch14s
 
Ch12s
Ch12sCh12s
Ch12s
 
Ch07s
Ch07sCh07s
Ch07s
 
Ch07p
Ch07pCh07p
Ch07p
 

Recently uploaded

Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonDianaGray10
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsDorra BARTAGUIZ
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesThousandEyes
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingThijs Feryn
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersSafe Software
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualityInflectra
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform EngineeringJemma Hussein Allen
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...UiPathCommunity
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor TurskyiFwdays
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Ramesh Iyer
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewPrayukth K V
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...Product School
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Thierry Lestable
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Tobias Schneck
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfCheryl Hung
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...Product School
 
КАТЕРИНА АБЗЯТОВА «Ефективне планування тестування ключові аспекти та практ...
КАТЕРИНА АБЗЯТОВА  «Ефективне планування тестування  ключові аспекти та практ...КАТЕРИНА АБЗЯТОВА  «Ефективне планування тестування  ключові аспекти та практ...
КАТЕРИНА АБЗЯТОВА «Ефективне планування тестування ключові аспекти та практ...QADay
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Product School
 

Recently uploaded (20)

Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
Ransomware Mallox [EN].pdf
Ransomware         Mallox       [EN].pdfRansomware         Mallox       [EN].pdf
Ransomware Mallox [EN].pdf
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
КАТЕРИНА АБЗЯТОВА «Ефективне планування тестування ключові аспекти та практ...
КАТЕРИНА АБЗЯТОВА  «Ефективне планування тестування  ключові аспекти та практ...КАТЕРИНА АБЗЯТОВА  «Ефективне планування тестування  ключові аспекти та практ...
КАТЕРИНА АБЗЯТОВА «Ефективне планування тестування ключові аспекти та практ...
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 

Ch17s 3rd Naemen

  • 1. Chapter 17 Problem Solutions 17.1 a. vI = −1.5 Vi Q1 off , Q2 on −0.7 − (−3.5) iE = ⇒ iE = 0.56 mA 5 iC1 = 0 ⇒ v01 = 3.5 V iC 2 = iE ⇒ v02 = 3.5 − iE RC 2 = 3.5 − ( 0.56 )( 2 ) or v02 = 2.38 V b. vI = 1.0 Vi Q1 on, Q2 off (1 − 0.7 ) − ( −3.5) iE = ⇒ iE = 0.76 mA 5 iC 2 = 0 ⇒ v02 = 3.5 V c. logic 0 at v02 (low level) = 2.38 V Then v01 = 2.38 = 3.5 − (0.76) RC1 or RC1 = 1.47 kΩ 17.2 3−0 (a) iC 2 = I Q = 0.5 = ⇒ RC 2 = 6 K RC 2 3 −1 (b) iC1 = I Q = 0.5 = ⇒ RC1 = 4 K RC1 ⎛V ⎞ I S exp ⎜ BE1 ⎟ (c) iC1 = ⎝ VT ⎠ IQ ⎡ ⎛V ⎞ ⎛ V ⎞⎤ I S ⎢ exp ⎜ BE1 ⎟ + exp ⎜ BE 2 ⎟ ⎥ ⎣ ⎝ VT ⎠ ⎝ VT ⎠ ⎦ 1 = ⎛ VBE 2 − VBE1 ⎞ 1 + exp ⎜ ⎟ ⎝ VT ⎠ vI = VBE1 − VBE 2 So iC1 1 = IQ ⎛ −v ⎞ 1 + exp ⎜ I ⎟ ⎝ VT ⎠ 0.1 1 = = 0.2 0.5 ⎛ −v ⎞ 1 + exp ⎜ I ⎟ ⎝ VT ⎠
  • 2. ⎛ −v ⎞ 1 exp ⎜ I ⎟ = −1 = 4 ⎝ VT ⎠ 0.2 ( −vI ) = ( 0.026 ) ln (4) vI = −0.0360 V 17.3 (a) vI = 0.5 V, Q1 on, Q2 off = v02 = 3 V v01 = 3 − (1)(0.5) = 2.5 V (b) vI = −0.5 V Q1 off, Q2 on ⇒ v01 = 3 V v02 = 3 − (1)(0.5) = 2.5 V 17.4 (a) Q2 on, vE = −1.2 − 0.7 = −1.9V −1.9 − ( −5.2 ) iE = iC 2 = = 1.32 mA 2.5 v2 = −1V = −iC 2 RC 2 = − (1.32 )( RC 2 ) RC 2 = 0.758 k Ω (b) Q1 on, vE = −0.7 − 0.7 = −1.40 V −1.4 − ( −5.2 ) iE = iC1 = = 1.52 mA 2.5 v1 = −1V = −iC1 RC1 = − (1.52 )( RC1 ) RC1 = 0.658 k Ω (c) For vin = −0.7 V , Q1 on, Q2 off ⇒ vO1 = −0.70V vO 2 = −1 − 0.7 ⇒ vO 2 = −1.7 V For vin = −1.7 V , Q1 off , Q2 on ⇒ vO 2 = −0.7 V vO1 = −1 − 0.7 ⇒ vO1 = −1.7 V (d) (i) For vin = −0.7V , iE = 1.52 mA −1.7 − ( −5.2 ) iC 4 = = 1.17 mA 3 −0.7 − ( −5.2 ) iC 3 = = 1.5 mA 3 P = ( iE + iC 4 + iC 3 )( 5.2 ) = (1.52 + 1.17 + 1.5 )( 5.2 ) or P = 21.8 mW (ii) For vin = −1.7V , iE = 1.32 mA −0.7 − ( −5.2 ) iC 4 = = 1.5 mA 3 −1.7 − ( −5.2 ) iC 3 = = 1.17 mA 3 P = (1.32 + 1.5 + 1.17 )( 5.2 ) or P = 20.7 mW
  • 3. 17.5 3.7 − 0.7 a. I3 = = 1.5 mA 0.67 + 1.33 VR = I 3 R4 + Vγ = (1.5 )(1.33) + 0.7 or VR = 2.70 V b. logic 1 level = 3.7 − 0.7 ⇒ 3.0 V For v X = vY = logic 1. 3 − 0.7 iE = = 2.875 mA = iRC1 0.8 vB 3 = 3.7 − ( 2.875 )( 0.21) = 3.10 V ⇒ v01 ( logic 0 ) = 2.4 V For v X = vY = logic 0, QR on 2.7 − 0.7 iE = = 2.5 mA = iRC 2 0.8 vB 4 = 3.7 − ( 2.5 )( 0.24 ) = 3.1 V ⇒ v02 ( logic 0 ) = 2.4 V 17.6 1.1 − 0.7 − ( −1.9 ) (a) I REF = = 0.115 mA 20 I Q = I REF = 0.115 mA (b) vo1 (max) = 1.1 − 0.7 = 0.4 V vo1 (max) − ( −1.9 ) i5 (max) = R5 0.4 + 1.9 R5 = R6 = = 11.5 K 0.2 (c) vo1 = −0.4 V ⇒ vB 5 = +0.3 V 1.1 − 0.3 RC1 = = 6.96 K 0.115 (d) vo 2 = −0.4 V ⇒ vB 6 = +0.3V 1.1 − 0.3 RC 2 = = 6.96 K 0.115 17.7 logic 1 + logic 0 1 + 0 VR = = = 0.5 V 2 2 For i2 = 1 mA 0.5 − ( −2.3) R5 = ⇒ R5 = 2.8 kΩ 1 For QR on, VR − VBE − ( −2.3) iE = RE or
  • 4. 0.5 − 0.7 + 2.3 RE = ⇒ RE = 2.1 kΩ 1 VB 2 = VR + VBE = 0.5 + 0.7 = 1.2 V 1.2 − 1.4 − ( −2.3) i1 = R2 or 1.2 − 1.4 + 2.3 R2 = ⇒ R2 = 2.1 kΩ 1 1.7 − 1.2 R1 = ⇒ R1 = 0.5 kΩ 1 1 − (−2.3) i3 = = 3 ⇒ R3 = 1.1 kΩ R3 0 − (−2.3) i4 = = 3 ⇒ R4 = 0.767 kΩ R4 For QR on, v0 R = logic 0 = 0 V ⇒ vB 3 = 0.7 V iE = iCR = 1 mA So 1.7 − 0.7 RC 2 = ⇒ RC 2 = 1 kΩ 1 For vI = logic 1 = 1 V, 1 − 0.7 − ( −2.3) iE = = 1.238 mA 2.1 For vNOR = logic 0 = 0 V, vB 4 = 0.7 V Then 1.7 − 0.7 RC1 = ⇒ RC1 = 0.808 kΩ 1.238 17.8 Maximum iE for vI = logic 1 = 3.3 V 3.3 − 0.7 Then iE = 5 mA = ⇒ RE = 0.52 kΩ RE For v02 = logic 1 = 3.3 V 3.3 − 0 iE 3 = = 5 mA R3 or R3 = 0.66 kΩ By symmetry, R2 = 0.66 kΩ For Q1 on, 4 − ( 2.7 + 0.7 ) iE = iRC1 = 5 mA = RC1 So RC1 = 0.12 kΩ
  • 5. For QR on, 3 − 0.7 iE = = 4.423 mA = iRC 2 0.52 4 − ( 2.7 + 0.7 ) and iRC 2 = 4.423 = RC 2 ⇒ RC 2 = 0.136 kΩ 17.9 Neglecting base currents: (a) I E1 = 0, I E 3 = 0 5 − 0.7 I E5 = ⇒ I E 5 = 1.72 mA 2.5 Y = 0.7 V 5 − 0.7 (b) I E1 = ⇒ I E1 = 0.239 mA 18 I E3 =0 5 − 0.7 I E5 = ⇒ I E 5 = 1.72 mA 2.5 Y = 0.7 V 5 − 0.7 (c) I E1 = I E 3 = ⇒ I E1 = I E 3 = 0.239 mA 18 I E 5 = 0, Y = 5 V (d) Same as (c). 17.10 (a) VR = −(1)(1) − 0.7 ⇒ VR = −1.7 V (b) QR off , then vO1 = Logic 1 = −0.7 V QR on, then vO1 = −(1)(2) − 0.7 ⇒ vO1 = Logic 0 = −2.7 V QA / QB − off , then vO 2 = Logic 1 = −0.7 V QA / QB − on, then vO 2 = −(1)(2) − 0.7 ⇒ vO 2 = Logic 0 = −2.7 V (c) A = B = Logic 0 = −2.7 V , QR on, VE = −1.7 − 0.7 ⇒ VE = −2.4 V A = B = Logic 1 = −0.7 V , QA / QB on, VE = −0.7 − 0.7 ⇒ VE = −1.4 V (d) A = B = Logic 1 = −0.7 V , QA / QB on,
  • 6. −2.7 − (−5.2) iC 3 = = 1.67 mA 1.5 −0.7 − (−5.2) iC 2 = = 3 mA 1.5 P = (1.67 + 1 + 1 + 1 + 3)(5.2) ⇒ P = 39.9 mW A = B = Logic 0 = −2.7 V iC 3 = 3 mA, iC 2 = 1.67 mA P = 39.9 mW 17.11 a. AND logic function b. logic 0 = 0 V 5 − (1.6 + 0.7) Q3 on, i = = 2.25 mA 1.2 V2 = (2.25)(0.8) ⇒ logic 1 = 1.8 V 5 − 0.7 c. iE1 = ⇒ iE1 = 1.65 mA 2.6 5 − (0.7 + 0.7) iE 2 = ⇒ iE 2 = 3 mA 1.2 iC 3 = 0, iC 2 = iE 2 = 3 mA V2 = 0 5 − (1.8 + 0.7) d. iE1 = ⇒ iE1 = 0.962 mA 2.6 5 − (1.6 + 0.7) iE 2 = ⇒ iE 2 = 2.25 mA 1.2 iC 2 = 0, iC 3 = iE 2 = 2.25 mA V2 = 1.8 V 17.12 3.5 + 3.1 a. VR = − 0.7 ⇒ VR = 2.6 V 2 b. For Q1 on, v X = vY = logic 1 = 3.5 V 3.5 − (0.7 + 0.7) iE = = 0.175 mA 12 0.175 0.4 Want iRC1 = = ⇒ RC1 = 4.57 kΩ 2 RC1 2.6 − 0.7 c. For Q2 on, iE = = 0.158 mA 12 0.158 0.4 Want iRC 2 = = ⇒ RC 2 = 5.06 kΩ 2 RC 2 d. For vY = logic 1 = 3.5 V 3.5 − 0.7 iR1 = = 0.35 mA, i E = 0.175 mA 8 P = ( iR1 + iE )(VCC ) = ( 0.35 + 0.175 )( 3.5 ) ⇒ P = 1.84 mW
  • 7. 17.13 a. logic 1 = 0.2 V logic 0 = −0.2 V ( 0 − 0.7 ) − ( −3.1) b. iE = = 0.8 RE So RE = 3 kΩ 0.8 0.4 c. Want iR1 = = ⇒ R1 = 1 kΩ 2 R1 d. For v X = vY = logic 1 = 0.2 V ( 0.2 − 0.7 ) − ( −3.1) iE = = 0.867 mA 3 0.4 iR 2 = ⇒ iR 2 = 0.4 mA 1 iD 2 = 0.467 mA e. iE = 0.867 mA 0.2 − (−3.1) i3 = = 1 mA 3.3 −0.2 − (−3.1) i4 = = 0.879 mA 3.3 P = (0.867 + 1 + 0.879)(0.9 − (−3.1)) or P = 11.0 mW 17.14 a. ( −0.9 − 0.7 ) − ( −3) i1 = ⇒ i1 = 1.4 mA 1 ( −0.2 − 0.7 ) − ( −3) i3 = ⇒ i3 = 0.14 mA 15 ( −0.2 − 0.7 ) − ( −3) i4 = ⇒ i4 = 0.14 mA 15 i2 + iD = i1 + i3 = 1.4 + 0.14 = 1.54 mA 0.4 i2 = ⇒ i2 = 0.8 mA 0.5 iD = 0.74 mA v0 = −0.4 V b. i1 = 1.4 mA (0 − 0.7) − (−3) i3 = ⇒ i3 = 0.153 mA 15 i4 = i3 ⇒ i4 = 0.153 mA i2 + iD = i4 ⇒ i2 = 0.153 mA iD = 0 v0 = −(0.153)(0.5) ⇒ v0 = −0.0765 V
  • 8. ( 0 − 0.7 − 0.7 ) − ( −3) c. i1 = ⇒ i1 = 1.6 mA 1 (−0.2 − 0.7) − (−3) i3 = ⇒ i3 = 0.14 mA 15 i4 = i3 ⇒ i4 = 0.14 mA i2 + iD = i3 ⇒ i2 = 0.14 mA iD = 0.0 v0 = −(0.14)(0.5) ⇒ v0 = −0.07 V (0 − 0.7 − 0.7) − (−3) d. i1 = ⇒ i1 = 1.6 mA 1 (0 − 0.7) − (−3) i3 = ⇒ i3 = 0.153 mA 15 i4 = i3 ⇒ i4 = 0.153 mA i2 + iD = i1 + i4 = 1.6 + 0.153 = 1.753 mA 0.4 i2 = ⇒ i2 = 0.8 mA 0.5 iD = 0.953 mA v0 = −0.40 V 17.15 a. i. A = B = C = D = 0 ⇒ Q1 − Q4 cutoff So VDD = 2 I E R 1 + VEB + I B R2 and I I IB = E = E 1 + β P 51 Then I 2.5 = 2 I E (2) + 0.7 + E ⋅ (15) 51 ⎛ 15 ⎞ 2.5 = 0.7 = I E ⋅ ⎜ 4 + ⎟ ⎝ 51 ⎠ So I E = 0.419 mA and Y = 2.5 − 2(0.4192)(2) ⇒ Y = 0.823 V ii. A = C = 0, B = D = 2.5 V Now vB 5 = vB 6 = 2.5 − 0.7 = 1.8 V and Y = vB 5 + 0.7 ⇒ Y = 2.5 V b. Y = ( A OR B ) AND (C OR D) 17.16 a. logic 1 = 0 V logic 0 = −0.4 V
  • 9. b. v01 = A OR B v02 = C OR D v03 = v01 OR v02 or v03 = ( A OR B ) AND (C OR D) 17.17 a. For CLOCK = high, I DC flows through the left side of the circuit.. If D is high, I DC flows through the left R resistor pulling Q low. If D is low. I DC flows through the right R resistor pulling Q low. For CLOCK = low, I DC flows through the right side of the circuit maintaining Q and Q in their previous state. b. P = ( I DC + 0.5 I DC + 0.1I DC + 0.1 I DC )( 3) P = 1.7 I DC ( 3) = (1.7 )( 50 )( 3) ⇒ P = 255 μ W 17.18 (a) vI = 0 ⇒ V1 = 0.7 V 3.3 − 0.7 i1 = = 0.433 mA 6 iB = iC = 0 vo = 3.3 V (b) vI = 3.3 V v1 = 0.7 + 0.8 = 1.5 V 3.3 − 1.5 i1 = = 0.3 mA 6 0.8 iR = = 0.04 mA 20 iB = 0.3 − 0.04 = 0.26 mA 3.3 − 0.1 iC = = 0.8 mA 4 vo = 0.1 V 17.19 i. For v X = vY = 0.1 V ⇒ v ′ = 0.8 V 5 − 0.8 i1 = ⇒ i1 = 0.525 mA 8 i3 = i4 = 0 ii. For v X = vY = 5 V, v′ = 0.8 + 0.7 + 0.7 ⇒⇒ v′ = 2.2 V 5 − 2.2 i1 = ⇒ i1 = 0.35 mA 8 0.8 i4 = i1 − ⇒ i4 = 0.297 mA 15 5 − 0.1 i3 = ⇒ i3 = 2.04 mA 2.4
  • 10. 17.20 a. For v X = vY = 5 V , both Q1 and Q2 driven into saturation. v1 = 0.8 + 0.7 + 0.8 ⇒ v1 = 2.3 V 5 − 2.3 i1 = ⇒ i1 = iB1 = 0.675 mA 4 5 − (0.8 + 0.7 + 0.1) i2 = ⇒ i2 = 1.7 mA 2 i4 = iB1 + i2 ⇒ i4 = 2.375 mA 0.8 i5 = ⇒ i5 = 0.08 mA 10 iB 2 = i4 − i5 ⇒ iB 2 = 2.295 mA 5 − 0.1 i3 = ⇒ i3 = 1.225 mA 4 v0 = 0.1V 5 − (0.1 + 0.7) b. ′ iL = = 1.05 mA 4 ′ iC (max) = β iB 2 = NiL + i3 (20)(2.295) = N (1.05) + 1.225 So N = 42 17.21 DX and DY off, Q1 forward active mode v1 = 0.8 + 0.7 + 0.7 = 2.2 V 5 = i1 R1 + i2 R2 + v1 and i1 = (1 + β )i2 So 5 − 2.2 = i2 [ (1 + β ) R1 + R2 ] Assume β = 25 5 − 2.2 i2 = ⇒ i2 = 0.0589 mA (26)(1.75) + 2 i1 = (1 + β )i2 = (26)(0.05895) ⇒ i1 = 1.53 mA i3 = β i2 ⇒ i3 = 1.47 mA 0.8 iBo = i2 + i3 − = 0.0589 + 1.47 − 0.16 ⇒ 5 iBo = 1.37 mA Qo in saturation 5 − 0.1 iCo = ⇒ iCo = 0.817 mA 6 17.22 (a) vI = 0 V, Q1 forward actions 5 − 0.7 iB = = 0.717 mA 6 iC = (25)(0.71667) = 17.9 mA iE = (26)(0.71667) = 18.6 mA
  • 11. (b) VI = 0.8 V 5 − (0.8 + 0.7) iB = = 0.583 mA 6 Because of the relative doping levels of the Emitter and collector, and because of the difference in B-C and B-E areas, we have −iC ≈ iB = 0.583 mA and iE = small value. (c) vI = 3.6 Q1 inverse active. 5 − (0.8 + 0.7) iB = = 0.583 mA 6 iE = − β R iE = −(0.5)(0.583) = −0.292 mA iC = −iB − iE = −0.583 − 0.292 ⇒ iC = −0.875 mA 17.23 a. i. v X = vY = 0.1 V, so Q1 in saturation. 5 − (0.1 + 0.8) i1 = ⇒ i1 = 0.683 mA 6 ⇒ iB 2 = i2 = i4 = iB 3 = i3 = 0 ii. v X = vY = 5 V, so Q1 in inverse active mode. Assume Q2 and Q3 in saturation. 5 − (0.8 + 0.8 + 0.7) i1 = ⇒ i1 = iB 2 = 0.45 mA 6 5 − (0.8 + 0.1) i2 = ⇒ i2 = 2.05 mA 2 0.8 i4 = ⇒ i4 = 0.533 mA 1.5 iB 3 = ( iB 2 + i2 ) − i4 = 0.45 + 2.05 − 0.533 or iB 3 = 1.97 mA 5 − 0.1 i3 = ⇒ i3 = 2.23 mA 2.2 b. For Q3 : i3 2.23 = = 1.13 < β iB 3 1.97 For Q2 : i2 2.05 = = 4.56 < β iB 2 0.45 Since ( I C / I B ) < β , then each transistor is in saturation. 17.24 (a) v X = vY = Logic 1
  • 12. v ′ = 0.8 + 2 ( 0.7 ) = 2.2 V 5 − 2.2 i1 = = 0.35 mA 8 0.8 i4 = i1 − = 0.35 − 0.0533 = 0.2967 mA 15 5 − 0.1 i3 = = 2.04 mA 2.4 5 − ( 0.1 + 0.7 ) ′ iL = = 0.525 mA 8 Assume β = 25 Then ( 25 )( 0.2967 ) = 2.04 + N ( 0.525 ) So N = 10.2 ⇒ N = 10 (b) Now 5 = 2.04 + N ( 0.525 ) So N = 5.64 ⇒ N = 5 17.25 a. For v X = vY = 5 V, Q, in inverse active mode. 5 − ( 0.8 + 0.8 + 0.7 ) iB1 = = 0.45 mA 6 iB 2 = iB1 + 2 β R iB1 = 0.45(1 + 2 [ 0.1]) = 0.54 mA 5 − ( 0.8 + 0.1) iC 2 = = 2.05 mA 2 0.8 iB 3 = ( iB 2 + iC 2 ) − = 0.54 + 2.05 − 0.533 1.5 or iB 3 = 2.06 mA Now 5 − (0.1 + 0.8) ′ iL = = 0.683 mA 6 Then ′ iC 3 (max) = β F iB 3 = NiL or (20)(2.06) = N (0.683) ⇒ N = 60 b. ′ From above, for v0 high, I L = (0.1)(0.45) = 0.045 mA. Now ⎛ 5 − 4.9 ⎞ (21)(0.1) ′ I L (max) = (1 + β F ) ⎜ ⎟ = ⎝ R2 ⎠ 2 = 1.05 mA So ′ I L (max) = NI L or 1.05 = N (0.045) ⇒ N = 23 17.26
  • 13. (a) Vin = 0.1V : QI , Sat : Qs , Qo , Cutoff 5 − (0.1 + 0.8) iI = = 1.025 mA 4 P = iI (5 − 0.1) = (1.025)(4.9) ⇒ P = 5.02 mW (b) Vin = 5V , QI , Inverse Active; QS , Qo , Saturation vBI = 0.7 + 0.8 + 0.7 = 2.2V 5 − 2.2 iI = = 0.7 mA 4 iEI = β R ⋅ iI = (0.1)(0.7) = 0.07 mA Vout = 0.7 + 0.1 = 0.8 V 5 − 0.8 i2 = = 4.2 mA 1 P = (iI + iEI + i2 )(5) = (0.7 + 0.07 + 4.2)(5) ⇒ P = 24.9 mW 17.27 a. v X = vY = vZ = 0.1 V 5 − (0.1 + 0.8) iB1 = ⇒ iB1 = 1.05 mA 3.9 Then iC1 = iB 2 = iC 2 = iB 3 = iC 3 = 0 b. v X = vY = vZ = 5 V 5 − (0.8 + 0.8 + 0.7) iB1 = ⇒ iB1 = 0.692 mA 3.9 Then iC1 = iB 2 = iB1 (1 + 3β R ) = (0.692)(1 + 3[0.5]) ⇒ iC1 = iB 2 = 1.73 mA 5 − (0.1 + 0.8) iC 2 = ⇒ iC 2 = 2.05 mA 2 0.8 iB 3 = iB 2 + iC 2 − = 1.73 + 2.05 − 1.0 0.8 ⇒ iB 3 = 2.78 mA 5 − 0.1 iR 3 = = 2.04 mA 2.4 5 − (0.1 + 0.8) ′ iL = = 1.05 mA 3.9 ′ iC 3 = iR 3 + 5iL = 2.04 + (5)(1.05) ⇒ iC 3 = 7.29 mA 17.28 a. v X = vY = vZ = 2.8 V, Q1 biased in the inverse active mode.
  • 14. 2.8 − (0.8 + 0.8 + 0.7) iB1 = ⇒ iB1 = 0.25 mA 2 iB 2 = iB1 (1 + 3β R ) = 0.25(1 + 3 [0.3]) ⇒ iB 2 = 0.475 mA vC 2 = 0.8 + 0.1 = 0.9 V 0.9 − (0.7 + 0.1) 0.1 iB 4 = = (1 + β F )(0.5) (101)(0.5) = 0.00198 mA (Negligible) 5 − 0.9 iR 2 = = 4.56 mA 0.9 ⇒ iC 2 = 4.56 mA 0.8 iB 3 = iB 2 + iC 2 − = 0.475 + 4.56 − 0.8 1 ⇒ iB 3 = 4.235 mA b. v X = vY = vZ = 0.1 V 5 − (0.1 + 0.8) iB1 = ⇒ iB1 = 2.05 mA 2 From part (a), ′ iL = β R ⋅ iB1 = (0.3)(0.25) = 0.075 mA Then 5iL′ 5(0.075) iB 4 = = ⇒ iB 4 = 0.00371 mA 1+ βF 101 17.29 a. v X = vY = vZ = 0.1 V 2 − (0.1 + 0.8) iB1 = + iB 3 RB1 where (2 − 0.7) − (0.9) 0.4 iB 3 = = RB 2 1 ⇒ iB 3 = 0.4 mA Then 1.1 iB1 = + 0.4 ⇒ iB1 = 1.5 mA 1 iB 2 = 0 = iC 2 ′ Q3 in saturation iC 3 = 5iL For v0 high, ′ ′ vB1 = 0.8 + 0.7 = 1.5 V ⇒ Q3 off 2 − 1.5 ′ iB1 = = 0.5 mA 1 ′ ′ iL = β R iB1 = (0.2)(0.5) = 0.1 mA Then
  • 15. iC 3 = 0.5 mA b. v X = vY = vZ = 2 V From part (a), ⇒ iB1 = 0.5 mA iB 3 = 0 = iC 3 iB 2 = iB1 (1 + 3β R ) = (0.5)(1 + 3 [0.2]) iB 2 = 0.8 mA ′ ′ iC 2 = 5iL , and from part (a), iL = 1.5 mA So iC 2 = 7.5 mA 17.30 5.8 − 0.7 (a) IB + ID = = 0.51 mA 10 5 − (0.7 − 0.3) IC − I D = = 4.6 mA 1 Now I I I D = 0.51 − I B = 0.51 − C = 0.51 − C β 50 Then ⎛ I ⎞ ⎛ 1 ⎞ I C − I D = I C − ⎜ 0.51 − C ⎟ = I C ⎜ 1 + ⎟ − 0.51 = 4.6 ⎝ 50 ⎠ ⎝ 50 ⎠ So I C = 5.01 mA IC 5.01 IB = = ⇒ I B = 0.1002 mA β 50 I D = 0.51 − 0.1002 ⇒ I D = 0.4098 mA VCE = 0.4 V (b) I D = 0, VCE = VCE ( sat ) = 0.1 V 5.8 − 0.8 IB = ⇒ I B = 0.5 mA 10 5 − 0.1 IC = ⇒ I C = 4.9 mA 1 17.31 a. v X = vY = 0.4 V vB1 = 0.4 + 0.7 ⇒ vB1 = 1.1 V 5 − 1.1 iB1 = ⇒ iB1 = 1.39 mA 2.8 vB 2 = 0.4 + 0.4 ⇒ vB 2 = 0.8 V iB 2 = iC 2 = iB 0 = iC 0 = iB 5 = iC 5 = iB 3 = iC 3 = 0 ( No load )
  • 16. 5 = iB 4 R2 + VBE + (1 + β )iB 4 R4 5 − 0.7 iB 4 = ⇒ iB 4 = 0.0394 mA 0.76 + (31)(3.5) iC 4 = β F iB 4 ⇒ iC 4 = 1.18 mA vB 4 = 5 − (0.0394)(0.76) ⇒ vB 4 = 4.97 V b. v X = vY = 3.6 V vB1 = 0.7 + 0.7 + 0.3 ⇒ vB1 = 1.7 V vB 2 = 1.4 V vB 0 = 0.7 V vC 2 = 1.1 V 5 − 1.7 iB1 = ⇒ iB1 = 1.1786 mA 2.8 iB 2 = iB1 (1 + 2 β R ) = 1.18(1 + 2 [0.1]) iB 2 = 1.41 mA 1.1 − 0.7 iB 4 = ⇒ iB 4 = 0.00369 mA (31)(3.5) 5 − 1.1 iR 2 = = 5.13 mA ⇒ iC 2 ≈ 5.13 mA 0.76 iB 0 ≈ iB 2 + iC 2 iB 0 = 6.54 mA 17.32 (a) vI = 0, v1 = 0.3 V 1.5 − 0.3 i1 = = 1.2 mA 1 iB = iC = 0, vO = 1.5 V (b) vI = 1.5 V v1 = 0.7 + 0.3 = 1 V 1.5 − 1 i1 = = 0.5 mA 1 0.7 iR = = 0.035 mA 20 iB = 0.5 − 0.035 = 0.465 mA 1.5 − 0.4 iC = = 0.917 mA 1.2 vO = 0.4 V 17.33 a. Assuming the output transistor Q2 is a Schottky transistor, then 2.5 − (0.4 + 0.3) ′ v0 = 0.4 V, iL = = 0.5 RB1 Then
  • 17. RB1 = 3.6 kΩ Then 2.5 − (0.7 + 0.8) 1.0 iB1 = = = 0.278 mA RB1 3.6 0.7 iB 2 = 0.5 mA, iE1 = 0.5 + = 1.50 mA 0.7 iE1 = iB1 + iC1 ⇒ iC1 = 1.50 − 0.278 = 1.222 mA 2.5 − (0.7 + 0.1) and iC1 = = 1.222 mA RC1 ⇒ RC1 = 1.39 kΩ b. v X = vY = 0.4 V, vB1 = 0.7 V vC 2 = 2.5 − 0.7 ⇒ vC 2 = 1.8 V All transistor currents are zero. c. vB1 = 1.5 V, vC1 = 0.8 V Currents calculated in part (a). d. ′ iB 2 = 0.5 mA, iL = 0.5 mA ′ iC 2 (max) = β iB 2 = NiL or (50)(0.5) = N (0.5) So N = 50 17.34 a. For v X = vY = 3.6 V 5 − 2.1 vB1 = 3(0.7) = 2.1 ⇒ iB1 = = 0.29 mA 10 5 − 1.8 vC1 = 0.7 + 0.7 + 0.4 = 1.8 V ⇒ iC1 = = 0.32 mA 10 1.4 iB 2 = iB1 + iC1 − = 0.29 + 0.32 − 0.0933 15 So iB 2 = 0.517 mA vC 2 = 0.7 + 0.4 = 1.1 V 5 − 1.1 iC 2 = = 0.951 mA 4.1 0.7 iB 5 = iB 2 + iC 2 − = 0.517 + 0.951 − 0.175 4 or iB 5 = 1.293 mA ′ For v0 = 0.4 V, vB1 = 0.4 + 0.7 = 1.1 V Then 1.1 − 0.7 ′ iB1 = = 0.00086 mA (31)(15) 5 − 1.1 ′ iL = ′ − 0.00086 or iL ≈ 0.39 mA 10 So iC 5 (max) = β iΒ 5 = NiL′ (30)(1.293) = N (0.39) ⇒ N = 99
  • 18. b. P = (0.29 + 0.32 + 0.951)(5) + (99)(0.39)(0.4) P = 7.805 + 15.444 or P = 23.2 mW (Assumming 99 load circuits which is unreasonably large.) 17.35 a. Assume no load. For v X = logic 0 = 0.4 V 5 − (0.4 + 0.7) iE1 = = 0.0975 mA 40 Essentially all of this current goes to ground from VCC . P = iE1 ⋅ VCC = (0.0975)(5) ⇒ P = 0.4875 mW 5 − (3)(0.7) b. iR1 = = 0.0725 mA 40 5 − (0.7 + 0.7 + 0.4) iR 2 = = 0.064 mA 50 5 − (0.7 + 0.4) iR 3 = = 0.26 mA 15 P = (0.0725 + 0.064 + 0.26)(5) P = 1.98 mW c. For v0 = 0, vC 7 = 0.7 + 0.4 = 1.1 V 5 − 1.1 iR 7 = ⇒ iR 7 = 78 mA ≈ iSC 0.050 17.36 (a) vl = vO = 25 V ; A transient situation vDS ( M N ) = 2.5 − 0.7 = 1.8 V vGS ( M N ) = 2.5 − 0.7 = 1.8 V ⇒ M N in saturation vSD ( M P ) = 5 − (2.5 + 0.7) = 1.8 V vSG ( M P )5 − 2.5 = 2.5 V ⇒ M P in saturation iDN = K n (vGSN − VTN ) 2 = (0.1)(1.8 − 0.8) 2 ⇒ iDN = 0.1 mA iDP = K P (vSGP + VTP ) 2 = (0.1)(2.5 − 0.8) 2 ⇒ iDP = 0.289 mA iC1 = β iDP = (50)(0.289) ⇒ iC1 = 14.45 mA iC 2 = β iDN = (50)(0.1) ⇒ iC 2 = 5 mA Difference between iE1 and iDN + iC 2 is a load current. (b) Assume iC1 = 14.45 mA is a constant 1 i ⋅t (V )(C ) VC = ∫ iC1dt = C1 ⇒ t = C C C iC1 (5)(15 × 10−12 ) t= ⇒ t = 5.19 ns 14.45 × 10−3 (5)(15 × 10−12 ) (c) t= ⇒ t = 260 ns 0.289 × 10−3
  • 19. 17.37 (a) Assume R1 = R2 = 10 kΩ; β = 50 0.7 Then iR1 = iR 2 = = 0.07 mA 10 NMOS in saturation region; vGSN = 2.5 − 0.7 = 1.8 V iDN = K n ( vGSN − VTN ) = ( 0.1)(1.8 − 0.8 ) 2 2 iDN = 0.10 mA Then iB 2 = 0.03 ⇒ iC 2 = (50)(0.03) = 1.5 mA iE1 = 1.53 mA ⇒ iB1 = 0.03 mA ⇒ iC1 = 1.5 mA So iDP = 0.10 mA Now, M P biased in non-saturation region vSGP = 2.5 V iDP = 0.10 = 0.10 ⎡ 2(2.5 − 0.8)vSD − vSD ⎤ ⎣ 2 ⎦ 0.10 vSD − 0.34 vSD + 0.10 = 0 2 0.34 ± (0.34) 2 − 4(0.10)(0.10) vSD = 2(0.10)
  • 20. Or vSD = 0.325 V Then vo = 5 − 0.325 − 0.7 vo = 3.975 V 1 i ⋅t (b) v= C ∫ idt = C Cv (15 × 10−12 )(5) t= = i 1.53 × 10−3 t = 49 ns (c) Cv (15 × 10−12 )(5) t= = i 0.1× 10−3 t = 0.75 μ s