Chapter 2
Exercise Problems

EX2.1
              30 − 12 − 0.6
iD ( peak ) =               = 87 mA
                   0.2
 vR ( max ) = 30 + 12 = 42 V
            ⎛ 12.6 ⎞
ω t1 = sin −1 ⎜    ⎟ ⇒ 24.8°
            ⎝ 30 ⎠
By symmetry
ω t2 = 180 − 24.8 = 155.2°
            155.2 − 24.8
% time =                 × 100% = 36.2%
                360

EX2.2
(a) vO = 12sin θ1 − 1.4 = 0
          1.4
or sin θ1 =   = 0.1166
           12
which yields
θ1 = 6.7°
By symmetry, θ 2 = 180 − 6.7 = 173.3°
                173.3 − 6.7
Then % time =               × 100% = 46.3%
                    360
                 1.4
(b)      sinθ1 =     = 0.35
                  4
which yields
θ1 = 20.5°
By symmetry, θ 2 = 180 − 20.5 = 159.5°
                    159.5 − 20.5
Then % time =                    × 100% = 38.6%
                        360

EX2.3
     VM             24
C=       =                        ⇒ or C = 500 μ F
   2 fRVr 2 ( 60 ) (103 ) ( 0.4 )

EX2.4
        VM       VM                     75
Vr =        ⇒R=       or R =
       f RC     f CVr        ( 60 ) ( 50 × 10−6 ) ( 4 )
Then R = 6.25 k Ω

EX2.5
10 ≤ VPS ≤ 14 V , VZ = 5.6 V , 20 ≤ RL ≤ 100 Ω
               5.6
I L ( max ) =      = 0.28 A,
               20
               5.6
 I L ( min ) =      = 0.056 A
               100
                  ⎡VPS ( max ) − VZ ⎤ ⋅ I L ( max )    ⎡VPS ( min ) − VZ ⎤ ⋅ I L ( min )
 I Z (max) = ⎣                      ⎦               −  ⎣                 ⎦
               VPS ( min ) − 0.9VZ − 0.1VPS ( max ) VPS ( min ) − 0.9VZ − 0.1VPS ( max )
                   (14 − 5.6 )( 280 ) − (10 − 5.6 )( 56 )
or I L ( max ) =
                     10 − ( 0.9 )( 5.6 ) − ( 0.1)(14 )
or I L ( max ) = 591.5 mA
Power(min) = I Z ( max ) ⋅ VZ = ( 0.5915)( 5.6 )
So Power(min) = 3.31 W
             VPS ( max ) − VZ         14 − 5.6
Now Ri =                          =               or Ri ≅ 13 Ω
         I Z ( max ) + I L ( min ) 0.5915 + 0.056

EX2.6
                                    13.6 − 9
For vPS = 13.6 V , I Z =                        = 0.2383 A
                                    15.3 + 4
                        vL ,max   = 9 + ( 4 )( 0.2383) = 9.9532 V
                                11 − 9
For vPS = 11 V , I Z =                     = 0.1036 A
                               15.3 + 4
                   vL ,min   = 9 + ( 4 )( 0.1036 ) = 9.4144 V
              ΔvL          9.9532 − 9.4144
Source Reg =      × 100% =                 × 100%
             ΔvPS             13.6 − 11
or Source Reg = 20.7%
                         13.6 − 9
For I L = 0, I Z =                   = 0.2383 A
                         15.3 + 4
         vL , noload   = 9 + ( 4 )( 0.2383) = 9.9532 V
                                    13.6 − ⎡9 + I Z ( 4 ) ⎤
                                           ⎣              ⎦
For I L = 100 mA, I Z =                                       − 0.10
                                            15.3
which yields
             I Z = 0.1591 A
 vL , full load = 9 + ( 4 )( 0.1591A ) = 9.6363 V
                   vL , noload − vL , full load
Load Reg =                                      × 100%
                           vL , full load
           9.9532 − 9.6363
               =           × 100%
                9.6363
or Load Reg = 3.29%

EX2.7
                   R1
                                                     VO




␯I   ϩ
     Ϫ                       D1                    D2


                           ϩ                        Ϫ
                           V1                       V2
                           Ϫ                        ϩ




For vI < 5 V , D2 on ⇒ VO = −5 V
Then, V2 = 4.3 V.
D1 turns on when v1 = 2.5 V,
Then, V1 = 1.8 V.
ΔvO 1    R2     1
For vI > 2.5 V ,      = ⇒        =
                   ΔvI 3  R1 + R2 3
So that R1 = 2R2

EX2.8
For Vγ = 0, vO ( max ) = −2 V
Now, ΔvO = 8 V , so that vO ( min ) = −10 V

EX2.9
                  10 − 4.4
vO = 4.4 V , I =           = 0.5895 mA
                     9.5
Set I = ID1, then vI = 4.4 − 0.6 − ( 0.5895 )( 0.5 ) = 3.505 V
Summary: For 0 ≤ vI ≤ 3.5 V , vO = 4.4 V
For vI > 3.5 V , D2 turns on and when vI ≥ 9.4 V , vO = 10 V
␯O(V)


   10




   4.4




    0
                   3.505                    9.4 ␯I (V)


EX2.10
 VO = −0.6 V , I D1 = 0
            −0.6 − ( −10 )
ID2 = I =                    ⇒ I D 2 = I = 4.27 mA
                 2.2

EX2.11
At the VA node:
15 − VA          V
        = ID2 + A            (1)
   5             15
At the VB node:
15 − (VB + 0.7 )          V
                 + I D 2 = B (2)
       5                  10
We see that
VB = VA − 0.7, so Equation (2) becomes
15 − VA          V − 0.7
        + ID2 = A          (2’)
   5               10
Solving for ID2 from Equation (1) and substituting into Equation (2’), we find
 ⎛ 15 − VA ⎞ VA VA − 0.7
2⎜         ⎟−     =
 ⎝ 5 ⎠ 15             10
Then VA = 10.71 V and VB = 10.01 V
                                                 15 − 10.71
Solving for the diode currents, we obtain I D1 =            ⇒ I D1 = 0.858 mA
                                                      5
15 − 10.71 10.71
Also I D 2 =              −      ⇒ I D 2 = 0.144 mA
                     5      15

EX2.12
Assuming all diodes are conducting, we have VB = −0.7 V and VA = 0
Summing currents, we have
5 − VA
          = I D1 + I D 2      (1)
    5
                V − ( −5 )
I D 2 + I D3 = B              (2)
                     5
        V − ( −10 ) 10 − 0.7
I D1 = B                =         (3)
             10            10
From ( 3) , we find
  I D1 = 0.93 mA
From (1) , we obtain
  I D 2 = 0.07 mA
From ( 2 ) , we have
  I D 3 = 0.79 mA

EX2.13
(a)    I ph = η eΦ
                              ⎡ 6.4 × 10 −2 ⎤
so I = ( 0.8 ) (1.6 × 10−19 ) ⎢                      ⎥ ( 0.5 )
                              ⎢ ( 2 ) (1.6 × 10−19 ) ⎥
                              ⎣                      ⎦
or I ph = 12.8 mA
(b)        We have vO = (12.8)(1) = 12.8 V .
The diode must be reverse biased so that VPS > 12.8 V

EX2.14
The equivalent circuit is
            ϩ5 V
                     ϩ
                     Vr ϭ 1.7 V
                     Ϫ


                 rf ϭ 15 ⍀

            I



                 R



0.2 V
         5 − 1.7 − 0.2
So I =                 = 15 mA
            rf + R
           15 − 1.7 − 0.2 3.1
Or rf + R =               =     = 0.207 kΩ
                 15         15
Then R = 207 − 15 ⇒ R = 192 Ω
2.15
             40 − 12
(a)     IZ =          = 0.233 A
                120
         P = ( 0.233)(12 ) = 2.8 W
(b)        I R = 0.233 A, I L = ( 0.9 )( 0.233) = 0.21 A
            12
So 0.21 =      ⇒ RL = 57.1 Ω
            RL
(c)        P = ( 0.1)( 0.233)(12 ) ⇒ P = 0.28 W

Test Your Understanding Exercises

TYU2.1
vI = 120sin ( 2π 60t ) , Vγ = 0.7 V , and R = 2.5 kΩ
Full-wave rectifier: Turns ratio 1:2 so that
 vS = v I
VM = 120 − 0.7 = 119.3 V
 Vr = 119.3 − 100 = 19.3 V
            VM               119.3
So C =          =                             or C = 20.6 μ F
         2 f RVr 2 ( 60 ) ( 2.5 x103 ) (19.3)

TYU2.2
vI = 50sin ( 2π 60t ) , Vγ = 0.7 V , and R = 10 kΩ. Full-wave rectifier
         VM         ( 50 − 1.4 )
C=           =
      2 f RVr 2 ( 60 ) (10 × 103 ) ( 2 )
or C = 20.3 μ F

TYU2.3
Using Equation (2.10)
                              2Vr          2 ( 4)
(a)                 ω Δt =        =                 = 0.327
                              VM            75
                          ⎛ 0.327 ⎞
           Percent time = ⎜       ⎟ × 100% = 5.2%
                          ⎝ 2π ⎠
                              2Vr          2 (19.3)
(b)                 ω Δt =        =                   = 0.569
                              VM            119.3
                          ⎛ 0.569 ⎞
           Percent time = ⎜       ⎟ × 100% = 18.1%
                          ⎝ π ⎠
                              2Vr          2 ( 2)
(c)                 ω Δt =        =                 = 0.287
                              VM           48.6
                          ⎛ 0.287 ⎞
           Percent time = ⎜       ⎟ × 100% = 9.14%
                          ⎝ π ⎠

TYU2.4
     V − VZ
I Z = PS    − IL
         Ri
                                               11 − 9
For VPS (min) and IL (max), then I Z ( min ) =        − 0.1 = 0 (Minimum Zener current is zero.)
                                                20
                                               13.6 − 9
For VPS (max) and IL (min), then I Z ( max ) =          − 0 ⇒ I Z ( max ) = 230 mA
                                                  20
The characteristic of the minimum Zener current being one-tenth of the maximum value is violated.
The proper circuit operation is questionable.

TYU2.5
VPS ( min ) − VZ
I Z ( min ) =                         − I L ( max )
                          Ri
                10 − 9
so 30 =                − I L ( max ) which yields I L ( max ) = 35.4 mA
                0.0153

TYU2.6
                        ␯O(V)


                         4.35


                           2.7



      Ϫ4.7
                                           2.7            6     ␯I (V)




                                 Ϫ4.7


TYU2.7
As vS goes negative, D turns on and vO = +5 V . As vS goes positive, D turns off. Output is a square
wave oscillating between +5 and +35 volts.

TYU2.8
␯O(V)


      4.4




            0    0.6                                  5       ␯I (V)
(a)
␯O(V)


      4.4




      2.4




            0                          3              5       ␯I (V)
(b)
TYU2.9
(a)    VO = 0.6 V for all V1.
  VO (V)



     3.6




     0.6


           0                    3   VI (V)
(b)
PSpice Exercises

Ch02p

  • 1.
    Chapter 2 Exercise Problems EX2.1 30 − 12 − 0.6 iD ( peak ) = = 87 mA 0.2 vR ( max ) = 30 + 12 = 42 V ⎛ 12.6 ⎞ ω t1 = sin −1 ⎜ ⎟ ⇒ 24.8° ⎝ 30 ⎠ By symmetry ω t2 = 180 − 24.8 = 155.2° 155.2 − 24.8 % time = × 100% = 36.2% 360 EX2.2 (a) vO = 12sin θ1 − 1.4 = 0 1.4 or sin θ1 = = 0.1166 12 which yields θ1 = 6.7° By symmetry, θ 2 = 180 − 6.7 = 173.3° 173.3 − 6.7 Then % time = × 100% = 46.3% 360 1.4 (b) sinθ1 = = 0.35 4 which yields θ1 = 20.5° By symmetry, θ 2 = 180 − 20.5 = 159.5° 159.5 − 20.5 Then % time = × 100% = 38.6% 360 EX2.3 VM 24 C= = ⇒ or C = 500 μ F 2 fRVr 2 ( 60 ) (103 ) ( 0.4 ) EX2.4 VM VM 75 Vr = ⇒R= or R = f RC f CVr ( 60 ) ( 50 × 10−6 ) ( 4 ) Then R = 6.25 k Ω EX2.5 10 ≤ VPS ≤ 14 V , VZ = 5.6 V , 20 ≤ RL ≤ 100 Ω 5.6 I L ( max ) = = 0.28 A, 20 5.6 I L ( min ) = = 0.056 A 100 ⎡VPS ( max ) − VZ ⎤ ⋅ I L ( max ) ⎡VPS ( min ) − VZ ⎤ ⋅ I L ( min ) I Z (max) = ⎣ ⎦ − ⎣ ⎦ VPS ( min ) − 0.9VZ − 0.1VPS ( max ) VPS ( min ) − 0.9VZ − 0.1VPS ( max ) (14 − 5.6 )( 280 ) − (10 − 5.6 )( 56 ) or I L ( max ) = 10 − ( 0.9 )( 5.6 ) − ( 0.1)(14 )
  • 2.
    or I L( max ) = 591.5 mA Power(min) = I Z ( max ) ⋅ VZ = ( 0.5915)( 5.6 ) So Power(min) = 3.31 W VPS ( max ) − VZ 14 − 5.6 Now Ri = = or Ri ≅ 13 Ω I Z ( max ) + I L ( min ) 0.5915 + 0.056 EX2.6 13.6 − 9 For vPS = 13.6 V , I Z = = 0.2383 A 15.3 + 4 vL ,max = 9 + ( 4 )( 0.2383) = 9.9532 V 11 − 9 For vPS = 11 V , I Z = = 0.1036 A 15.3 + 4 vL ,min = 9 + ( 4 )( 0.1036 ) = 9.4144 V ΔvL 9.9532 − 9.4144 Source Reg = × 100% = × 100% ΔvPS 13.6 − 11 or Source Reg = 20.7% 13.6 − 9 For I L = 0, I Z = = 0.2383 A 15.3 + 4 vL , noload = 9 + ( 4 )( 0.2383) = 9.9532 V 13.6 − ⎡9 + I Z ( 4 ) ⎤ ⎣ ⎦ For I L = 100 mA, I Z = − 0.10 15.3 which yields I Z = 0.1591 A vL , full load = 9 + ( 4 )( 0.1591A ) = 9.6363 V vL , noload − vL , full load Load Reg = × 100% vL , full load 9.9532 − 9.6363 = × 100% 9.6363 or Load Reg = 3.29% EX2.7 R1 VO ␯I ϩ Ϫ D1 D2 ϩ Ϫ V1 V2 Ϫ ϩ For vI < 5 V , D2 on ⇒ VO = −5 V Then, V2 = 4.3 V. D1 turns on when v1 = 2.5 V, Then, V1 = 1.8 V.
  • 3.
    ΔvO 1 R2 1 For vI > 2.5 V , = ⇒ = ΔvI 3 R1 + R2 3 So that R1 = 2R2 EX2.8 For Vγ = 0, vO ( max ) = −2 V Now, ΔvO = 8 V , so that vO ( min ) = −10 V EX2.9 10 − 4.4 vO = 4.4 V , I = = 0.5895 mA 9.5 Set I = ID1, then vI = 4.4 − 0.6 − ( 0.5895 )( 0.5 ) = 3.505 V Summary: For 0 ≤ vI ≤ 3.5 V , vO = 4.4 V For vI > 3.5 V , D2 turns on and when vI ≥ 9.4 V , vO = 10 V ␯O(V) 10 4.4 0 3.505 9.4 ␯I (V) EX2.10 VO = −0.6 V , I D1 = 0 −0.6 − ( −10 ) ID2 = I = ⇒ I D 2 = I = 4.27 mA 2.2 EX2.11 At the VA node: 15 − VA V = ID2 + A (1) 5 15 At the VB node: 15 − (VB + 0.7 ) V + I D 2 = B (2) 5 10 We see that VB = VA − 0.7, so Equation (2) becomes 15 − VA V − 0.7 + ID2 = A (2’) 5 10 Solving for ID2 from Equation (1) and substituting into Equation (2’), we find ⎛ 15 − VA ⎞ VA VA − 0.7 2⎜ ⎟− = ⎝ 5 ⎠ 15 10 Then VA = 10.71 V and VB = 10.01 V 15 − 10.71 Solving for the diode currents, we obtain I D1 = ⇒ I D1 = 0.858 mA 5
  • 4.
    15 − 10.7110.71 Also I D 2 = − ⇒ I D 2 = 0.144 mA 5 15 EX2.12 Assuming all diodes are conducting, we have VB = −0.7 V and VA = 0 Summing currents, we have 5 − VA = I D1 + I D 2 (1) 5 V − ( −5 ) I D 2 + I D3 = B (2) 5 V − ( −10 ) 10 − 0.7 I D1 = B = (3) 10 10 From ( 3) , we find I D1 = 0.93 mA From (1) , we obtain I D 2 = 0.07 mA From ( 2 ) , we have I D 3 = 0.79 mA EX2.13 (a) I ph = η eΦ ⎡ 6.4 × 10 −2 ⎤ so I = ( 0.8 ) (1.6 × 10−19 ) ⎢ ⎥ ( 0.5 ) ⎢ ( 2 ) (1.6 × 10−19 ) ⎥ ⎣ ⎦ or I ph = 12.8 mA (b) We have vO = (12.8)(1) = 12.8 V . The diode must be reverse biased so that VPS > 12.8 V EX2.14 The equivalent circuit is ϩ5 V ϩ Vr ϭ 1.7 V Ϫ rf ϭ 15 ⍀ I R 0.2 V 5 − 1.7 − 0.2 So I = = 15 mA rf + R 15 − 1.7 − 0.2 3.1 Or rf + R = = = 0.207 kΩ 15 15 Then R = 207 − 15 ⇒ R = 192 Ω 2.15 40 − 12 (a) IZ = = 0.233 A 120 P = ( 0.233)(12 ) = 2.8 W
  • 5.
    (b) I R = 0.233 A, I L = ( 0.9 )( 0.233) = 0.21 A 12 So 0.21 = ⇒ RL = 57.1 Ω RL (c) P = ( 0.1)( 0.233)(12 ) ⇒ P = 0.28 W Test Your Understanding Exercises TYU2.1 vI = 120sin ( 2π 60t ) , Vγ = 0.7 V , and R = 2.5 kΩ Full-wave rectifier: Turns ratio 1:2 so that vS = v I VM = 120 − 0.7 = 119.3 V Vr = 119.3 − 100 = 19.3 V VM 119.3 So C = = or C = 20.6 μ F 2 f RVr 2 ( 60 ) ( 2.5 x103 ) (19.3) TYU2.2 vI = 50sin ( 2π 60t ) , Vγ = 0.7 V , and R = 10 kΩ. Full-wave rectifier VM ( 50 − 1.4 ) C= = 2 f RVr 2 ( 60 ) (10 × 103 ) ( 2 ) or C = 20.3 μ F TYU2.3 Using Equation (2.10) 2Vr 2 ( 4) (a) ω Δt = = = 0.327 VM 75 ⎛ 0.327 ⎞ Percent time = ⎜ ⎟ × 100% = 5.2% ⎝ 2π ⎠ 2Vr 2 (19.3) (b) ω Δt = = = 0.569 VM 119.3 ⎛ 0.569 ⎞ Percent time = ⎜ ⎟ × 100% = 18.1% ⎝ π ⎠ 2Vr 2 ( 2) (c) ω Δt = = = 0.287 VM 48.6 ⎛ 0.287 ⎞ Percent time = ⎜ ⎟ × 100% = 9.14% ⎝ π ⎠ TYU2.4 V − VZ I Z = PS − IL Ri 11 − 9 For VPS (min) and IL (max), then I Z ( min ) = − 0.1 = 0 (Minimum Zener current is zero.) 20 13.6 − 9 For VPS (max) and IL (min), then I Z ( max ) = − 0 ⇒ I Z ( max ) = 230 mA 20 The characteristic of the minimum Zener current being one-tenth of the maximum value is violated. The proper circuit operation is questionable. TYU2.5
  • 6.
    VPS ( min) − VZ I Z ( min ) = − I L ( max ) Ri 10 − 9 so 30 = − I L ( max ) which yields I L ( max ) = 35.4 mA 0.0153 TYU2.6 ␯O(V) 4.35 2.7 Ϫ4.7 2.7 6 ␯I (V) Ϫ4.7 TYU2.7 As vS goes negative, D turns on and vO = +5 V . As vS goes positive, D turns off. Output is a square wave oscillating between +5 and +35 volts. TYU2.8 ␯O(V) 4.4 0 0.6 5 ␯I (V) (a) ␯O(V) 4.4 2.4 0 3 5 ␯I (V) (b)
  • 7.
    TYU2.9 (a) VO = 0.6 V for all V1. VO (V) 3.6 0.6 0 3 VI (V) (b) PSpice Exercises