Chapter 16
Problem Solutions

16.1
(a)
            2e ∈s N a
ΔVTN =                  ⎡ 2φ fp + VSB − 2φ fp ⎤
              Cax       ⎣                     ⎦
        ∈ax (3.9)(8.85 × 10 −14 )
Cax =       =                     = 7.67 × 10−8
        tax     450 × 10−8
  2e ∈s N a = ⎡ 2 (1.6 × 10 −19 ) (11.7 ) ( 8.85 × 10−14 )( 8 × 1015 ) ⎤
                                                                           1/ 2

              ⎣                                                        ⎦          = 5.15 × 10 −8
Then
        5.15 × 10−8 ⎡                                        ⎤
ΔVTN =               ⋅ 2(0.343) + VSB − 2(0.343) ⎦
        7.67 × 10−8 ⎣
For VSB = 1 V :
ΔVTN = 0.671 ⎡ 1.686 − 0.686 ⎤ ⇒ ΔVTN = 0.316 V
              ⎣              ⎦
For VSB = 1 V :
              ⎡                 ⎤
 ΔVTN = 0.671 ⎣ 2.686 − 0.686 ⎦ ⇒ ΔVTN = 0.544 V
(b)      For VGS = 2.5 V, VDS = 5 V, transistor biased in the saturation region.
     ID   = K n (VGS − VTN ) 2
For VSB   = 0,
     ID   = 0.2(2.5 − 0.8) 2 = 0.578 mA
For VSB   = 1,
       I D = 0.2 ( 2.5 − [ 0.8 + 0.316]) = 0.383 mA
                                         2



For VSB = 2,
       I D = 0.2 ( 2.5 − [ 0.8 + 0.544]) = 0.267 mA
                                         2




16.2
(a)
       VDD − vO
ID =            = K n ⎡ 2(VGS − VTN )vO − vO ⎤
                      ⎣
                                           2
                                             ⎦
         RD
5 − (0.1)
           = K n ⎡ 2 ( 5 − 0.8 )( 0.1) − ( 0.1) ⎤
                                               2

 40 × 10 3       ⎣                               ⎦
                                           −5
                                    8 × 10 ⎛ W ⎞
or K n = 1.476 × 10−4 A / V 2 =               ⎜ ⎟
                                        2 ⎝L⎠
          ⎛W ⎞
So that ⎜ ⎟ = 3.69
          ⎝L⎠
b.         From Equation (16.10).
K n RD [VIt − VTN ] + [VIt − VTN ] − VDD = 0
                    2



(0.1476)(40) [VIt − 0.8] + [VIt − 0.8] − 5 = 0
                            2



                 −1 ± (1) 2 + 4(0.1476)(40)(5)
or [VIt − 0.8] =
                        2(0.1476)(40)
or [VIt − 0.8] = 0.839
So that VIt = 1.64 V
P = I D (max) ⋅ VDD
               5 − (0.1)
and I D (max) =          = 0.1225 mA
                  40
or P = 0.6125 mW

16.3
a.        From Equation (16.10), the transistor point is found from
K n RD (VIt − VTN ) 2 + (VIt − VTN ) − VDD = 0
K n = 50 μ A / V 2 , RD = 20 k Ω, VTN = 0.8 V
(0.05)(20)(VIt − VTN ) 2 + (VIt − VTN ) − 5 = 0
           −1 ± 1 + 4(0.05)(20)(5)
VIt − VTN =                         = 1.79 V So VIt = 2.59 V
                 2(0.05)(20)
                                                V0t = 1.79 V
Output voltage for vI = 5 V is determined from Equation (16.12):
v0 = 5 − (0.05)(20) ⎡ 2(5 − 0.8)v0 − v0 ⎤
                    ⎣
                                      2
                                        ⎦
 2
v0 − 9.4v0 + 5 = 0
          9.4 ± (9.4) 2 − 4(1)(5)
So v0 =                           = 0.566 V
                  2(1)
b.        For RD = 200 kΩ,
             −1 ± 1 + 4(0.05)(200)(5)
(VIt − VTN ) =                        = 0.659 V So VIt = 1.46 V
                  2(0.05)(200)
V0t = 0.659 V
v0 = 5 − (0.05)(200) ⎡ 2 ( 5 − 0.8 ) v0 − v0 ⎤
                     ⎣
                                           2
                                             ⎦
      2
or 10v0 − 85v0 + 5 = 0

               (85 ) − 4 (10 )( 5 )
                   2
       85 ±
v0 =                                = 0.0592 V
                 2 (10 )




16.4
(a)           P = IV
0.25 = I (33) ⇒ I = 75.76 μA
      3.3 − 0.15
 R=                ⇒ R = 41.6 K
       0.07576
     ⎛ k ′ ⎞⎛ W ⎞
 I = ⎜ n ⎟ ⎜ ⎟ (VGS − VTN )
                              2

     ⎝ 2 ⎠⎝ L ⎠
           ⎛ 80 ⎞ ⎛ W ⎞               ⎛W ⎞
 75.76 = ⎜ ⎟ ⎜ ⎟ ( 3.3 − 0.8 ) ⇒ ⎜ ⎟ = 0.303
                                  2

           ⎝ 2 ⎠⎝ L ⎠                 ⎝L⎠
(b)
VDS (sat) = VGS − VTN
                           V − VDS (sat)
 I D = K n (VGS − VTN ) = DD
                        2

                                  R
⎛ 0.08 ⎞                                    3.3 − (VGS − 0.8 )
        ⎟ ( 0.303) (VGS − 1.6VGS + 0.64 ) =
                      2
⎜
⎝ 2 ⎠                                              41.6
0.504 (VGS − 1.6VGS + 0.64 ) = 4.1 − VGS
         2


       2
0.504VGS + 0.1936VGS − 3.777 = 0
        −0.1936 ± 0.03748 + 4(0.504)(3.777)
VGS =
                     2(0.504)
VGS   = 2.55 V
For 0.8 ≤ VGS ≤ 2.55 V
Transistor biased in saturation region

16.5
(a)
 P = I ⋅ VDD
 0.25 = I (3.3) ⇒ I = 75.76 μA
For Sat Load
              ⎛ 80 ⎞ ⎛ W ⎞                  ⎛W ⎞
 I = 75.76 = ⎜ ⎟ ⎜ ⎟ ( 3.3 − 0.15 − 0.8 ) ⇒ ⎜ ⎟ = 0.343
                                         2

              ⎝  2 ⎠ ⎝ L ⎠L                 ⎝ L ⎠L
⎛ 80 ⎞                                         ⎛ 80 ⎞ ⎛ W ⎞
⎜ ⎟ ( 0.343)( 3.3 − 0.15 − 0.8 ) = I = 75.76 = ⎜ ⎟ ⎜ ⎟ ⎡ 2 ( 2.5 − 0.8 )( 0.15 ) − ( 0.15 ) ⎤
                                2                                                          2

⎝  2⎠                                          ⎝  2 ⎠ ⎝ L ⎠D ⎣                               ⎦
⎛W ⎞
⎜ ⎟ = 3.89
⎝ L ⎠D
Eq 16.21
                      ⎛    3.89 ⎞
      3.3 − 0.8 + 0.8 ⎜1 +
                      ⎜          ⎟
                      ⎝    0.343 ⎟ 5.994
                                 ⎠=
VIt =
                     3.89           4.3677
               1+
                     0.343
 0.8 ≤ VGS ≤ 1.372 V

16.6
(a)      From Equation (16.23)
 KD ⎡                                                        K
      2 3 − 0.5 )( 0.25 ) − ( 0.25 ) ⎤ = ( 3 − 0.25 − 0.5 ) ⇒ D = 4.26
     ⎣ (
                                    2                      2

 KL                                   ⎦                      KL
KD ⎡                                                          K
                 2 2.5 − 0.5 )( 0.25 ) − ( 0.25 ) ⎤ = ( 3 − 0.25 − 0.5 ) ⇒ D = 5.4
               ⎣ (
                                                 2                      2
(b)
            KL                                     ⎦                      KL
           iD = K L (VGSL − VTNL ) = K L (VDD − vO − VTNL ) 2
                                     2


(c)            ⎛ 0.080 ⎞
                        ⎟ (1)(3 − 0.25 − 0.5) ⇒ iD = 0.203 mA
                                             2
             =⎜
               ⎝ 2 ⎠
           P = iD ⋅ VDD = (0.203)(3) ⇒ P = 0.608 mW
for both parts (a) and (b).

16.7
P = 0.4 mW = iD ⋅ VDD = iD (3) ⇒ iD = 0.1333 mA
iD = K L (VDD − vO − VTNL ) 2
          ⎛ 0.080 ⎞ ⎛ W ⎞                              ⎛W ⎞
                  ⎟ ⎜ ⎟ ( 3 − 0.1 − 0.5 ) = ( 0.2304 ) ⎜ ⎟
                                         2
0.1333 = ⎜
          ⎝   2 ⎠ ⎝ L ⎠L                               ⎝ L ⎠L
   ⎛W ⎞
So ⎜ ⎟ = 0.579
   ⎝ L ⎠L
KD ⎡
     2 2.5 − 0.5 )( 0.1) − ( 0.1) ⎤ = ( 3 − 0.1 − 0.5 )
   ⎣ (
                                 2                      2

KL                                 ⎦
      KD                ⎛W ⎞
⇒        = 14.8 so that ⎜ ⎟ = 8.55
      KL                ⎝ L ⎠D

VIt =
                     (
        3 − 0.5 + 0.5 1 + 14.8   )
              1 + 14.8
or
VIt = 1.02 V , VOt = 0.52 V

16.8
We have
 KD
     ⎣ 2 ( vI − VTND ) vO − vO ⎦ = (VDD − vO − VTNL )
                                                      2
     ⎡                       2
                               ⎤
 KL
(W / L )D ⎡
            2 V − V − VTN )( 0.08VDD ) − ( 0.08VDD ) ⎤ = (VDD − 0.08VDD − VTN )
          ⎣ ( DD TN
                                                         2                             2

(W / L )L                                                  ⎦

(W / L )D ⎡
          ⎣ 2 (VDD − 2 ( 0.2 )VDD ) ( 0.08VDD ) − 0.0064VDD ⎤ = ⎡( 0.92 − 0.2 )VDD ⎤ = 0.5184VDD
                                                         2                           2        2

(W / L )L                                                    ⎦ ⎣                   ⎦

(W / L )D                         (W / L )D
          [0.096] = 0.5184 ⇒                 = 5.4
(W / L )L                         (W / L )L

16.9
VOH = VB − VTN = Logic 1
So
(a)      VB = 4 V ⇒ VOH         = 3V
(b)      VB = 5 V ⇒ VOH         = 4V
(c)      VB = 6 V ⇒ VOH         = 5V
(d)      VB = 7 V ⇒ VOH         = 5 V ,since VDS = 0
For vI = VOH
K D ⎡ 2 ( vI − VT ) vO − vO ⎤ = K L [VB − vO − VT ]
                          2                                2
    ⎣                       ⎦
Then
            (1) ⎡ 2 ( 3 − 1)VOL − VOL ⎤ = ( 0.4 ) [ 4 − VOL − 1]
                                                                 2
(a)             ⎣
                                    2
                                      ⎦                                ⇒ VOL = 0.657 V

            (1) ⎣ 2 ( 4 − 1)VOL − V         ⎦ = ( 0.4 ) [5 − VOL − 1] ⇒ VOL = 0.791 V
                                                                   2
(b)             ⎡                       2
                                       OL
                                            ⎤

            (1) ⎡ 2 ( 5 − 1)VOL − VOL ⎤ = ( 0.4 ) [6 − VOL − 1]
                                                                 2
(c)             ⎣
                                    2
                                      ⎦                                ⇒ VOL = 0.935 V
(d)       Load in non-sat region
iDD = iOL
(1) ⎡ 2 ( 5 − 1) VOL − VOL ⎤ = ( 0.4 ) ⎡ 2 ( 7 − VOL − 1)( 5 − VOL ) − ( 5 − VOL ) ⎤
                         2                                                        2
    ⎣                      ⎦           ⎣                                            ⎦
8VOL − VOL = ( 0.4 ) ⎡ 2 ( 6 − VOL )( 5 − VOL ) − ( 25 − 10VOL + VOL ) ⎤
         2
                     ⎣
                                                                   2
                                                                       ⎦
               = ( 0.4 ) ⎡ 2 ( 30 − 11VOL + VOL ) − 25 + 10VOL − VOL ⎤
                         ⎣
                                              2                    2
                                                                     ⎦
               = ( 0.4 ) ⎡60 − 22VOL + 2VOL − 25 + 10VOL − VOL ⎤
                         ⎣
                                          2                  2
                                                               ⎦
         2                      2
8VOL − VOL = 14 − 4.8VOL + 0.4VOL
     2
1.4VOL − 12.8VOL + 14 = 0
         12.8 ± 163.84 − 4 (1.4 )(14 )
VOL =
                        2 (1.4 )
VOL = 1.27V
For load
VDS ( sat ) = 7 − 1.27 − 1 = 4.73V
VDS = 5 − 1.27 = 3.73 non-sat

16.10
a.          For load VOt = VDD + VTNL = 5 − 2 = 3 V
     KD
        ⋅ (VIt − VTND ) = −VTNL
     KL
 500
      (VIt − 0.8 ) = − ( −2 )
 100
⇒ VIt = 1.69 V ⎫
                ⎬ Load
  VOt = 3 V ⎭

Driver: VOt = VIt − VTND = 1.69 − 0.8 = 0.89 V
           VIt = 1.69 V ⎫
                        ⎬ Driver
           V0t = 0.89 V ⎭
b.          From Equation (16.29(b)):
500                                         2
     ⋅ ⎣ 2(5 − 0.8)v0 − v0 ⎦ = ⎡ − ( −2 ) ⎤
       ⎡                 2
                           ⎤ ⎣            ⎦
100
   2
5v0 − 42v0 + 4 = 0

               ( 42 ) − 4 ( 5)( 4 )
                    2
        42 ±
v0 =                                ⇒ v0 = 0.0963 V
                  2 (5)
                                                       2
            iD = K L ( −VTNL ) = 100 ⎣ − ( −2 ) ⎦ ⇒ iD = 400 μ A
                                   2
c.                                   ⎡          ⎤
16.11
⎛ 500 ⎞ ⎡
      ⎟ ⎣ 2 ( 3 − 0.5 )( 0.1) − ( 0.1) ⎤ = ( −VTNL )
                                      2              2
⎜                                       ⎦
⎝ 50 ⎠
So
( −VTNL )
            2
                = 4.9 ⇒ VTNL = −2.21 V

16.12
(a)
 P = iD ⋅ VDD
150 = iD ⋅ ( 3) ⇒ iD = 50 μ A
iD = K L (−VTNL ) 2
     ⎛ 80 ⎞ ⎛ W ⎞        2 ⎛W ⎞
50 = ⎜ ⎟ ⎜ ⎟ ⎡ − ( −1) ⎤ ⇒ ⎜ ⎟ = 1.25
     ⎝  2 ⎠ ⎝ L ⎠L ⎣   ⎦
                           ⎝ L ⎠L
KD ⎡
     2 ( 3 − 0.5 )( 0.1) − ( 0.1) ⎤ = ⎡ − ( −1) ⎤
                                 2                2

KL ⎣                               ⎦ ⎣          ⎦

 K D (W / L ) D            ⎛W ⎞
     =           = 2.04 ⇒ ⎜ ⎟ = 2.55
 K L (W / L ) L            ⎝ L ⎠D
For the Load:
VOt = VDD + VTNL = 3 − 1 ⇒ VOt = 2 V
  2.04 (VIt − 0.5 ) = ⎡ − ( −1) ⎤ ⇒ VIt = 1.20 V
                      ⎣         ⎦
For the Driver:
VOt = VIt − VTND = 1.20 − 0.5 ⇒ VOt = 0.70 V
                                      VIt = 1.20 V
(b)             NM L = VIL − VOLU
                NM H = VOHU − VIH
                       ⎡ − ( −1) ⎤
                       ⎣         ⎦
VIL = 0.5 +                            = 0.902 V
                   ( 2.04 )(1 + 2.04 )
           2 ⎡ − ( −1) ⎤
VIH = 0.5 + ⎣          ⎦ = 1.31 V
             3 ( 2.04 )
Then VOHU = ( 3 − 1) + ( 2.04 )( 0.902 − 0.5 ) = 2.82 V
         (1.31 − 0.5)
VOLU =            = 0.405 V
           2
NM L = 0.902 − 0.405 ⇒ NM L = 0.497 V
NM H = 2.82 − 1.31 ⇒ NM H = 1.51 V

16.13
a.      From Equation (16.29(b)):
⎛W ⎞ ⎡                                       ⎛W ⎞
⎜ ⎟ ⎣ 2 ( 2.5 − 0.5 )( 0.05 ) − ( 0.05 ) ⎤ = ⎜ ⎟ [− ( −1)]
                                        2                 2

⎝  L ⎠D                                   ⎦ ⎝ L ⎠L
        ⎛W ⎞
        ⎜ ⎟ =1
        ⎝ L ⎠L
⎛W ⎞
Then          ⎜ ⎟ = 5.06
              ⎝ L ⎠D
              ⎛ 80 ⎞              2
b.       iD = ⎜ ⎟ (1) ⎡ − ( −1) ⎤
                      ⎣         ⎦
              ⎝ 2⎠
or iD = 40 μ A
P = iD ⋅ VDD = ( 40 )( 2.5 ) ⇒ P = 100 μ W

16.14
a.         i.            vI = 0.5 V ⇒ iD = 0 ⇒ P = 0
           ii.           vI = 5 V, From Equation (16.12),
v0 = 5 − ( 0.1)( 20 ) ⎡ 2 ( 5 − 1.5 ) v0 − v0 ⎤
                      ⎣
                                            2
                                              ⎦
  2
2v0 − 15v0 + 5 = 0

                 (15 ) − 4 ( 2 )( 5 )
                     2
       15 ±
v0 =                                  ⇒ v0 = 0.35 V
                   2 ( 2)
     5 − 0.35
iD =          = 0.2325 mA
         20
P = iD ⋅ VDD = ( 0.2325 )( 5 ) ⇒ P = 1.16 mW
b.         i.        vI = 0.25 V ⇒ iD = 0 ⇒ P = 0
ii.         vI = 4.3 V, From Equation (16.23),
100 ⎣ 2 ( 4.3 − 0.7 ) v0 − v0 ⎦ = 10 [5 − v0 − 0.7 ]
                                                      2
    ⎡                       2
                              ⎤
10 ⎡7.2v0 − v0 ⎤ = 18.49 − 8.6v0 + v0
   ⎣
             2
               ⎦
                                    2


Then
   2
11v0 − 80.6v0 + 18.49 = 0

                   (80.6 ) − 4 (11)(18.49 )
                          2
       80.6 ±
v0 =                                        ⇒ v0 = 0.237 V
                       2 (11)
Then
iD = 10 [5 − 0.237 − 0.7 ] = 165 μ A
                              2


P = iD ⋅ VDD = (165 )( 5 ) ⇒ P = 825 μ W
c.         i.            vI = 0.03 V ⇒ iD = 0 ⇒ P = 0
           ii.           vI = 5 V
                                                             2
                         iD = K L ( −VTNL ) = (10 ) ⎡ − ( −2 ) ⎤ = 40 μ A
                                           2
                                                    ⎣          ⎦
                         P = iD ⋅ VDD = ( 40 )( 5 ) ⇒ P = 200 μ W

16.15
vo1 = 3.8V
Load & Driver in Sat, region, ML1, MD1
iDL = iDD
⎛W ⎞                  ⎛W ⎞
⎜ ⎟ ( vGSL − VTNL ) = ⎜ ⎟ ( vGSD − VTND )
                   2                      2

⎝ L ⎠L                ⎝ L ⎠D
(1) ( 5 − vo1 − 0.8 ) = (10 )( vI − 0.8 )
                          2                         2



0.16 = 10 ( vI − 0.8 )
                                   2


vI = 0.9265V
Now MD2: Non Sat and ML2: Sat
iDL = iDD
⎛W ⎞                  ⎛W ⎞
⎜ ⎟ ( vGSL − VTNL ) = ⎜ ⎟ ⎡ 2 ( vo1 − VTND ) vo 2 − vo 2 ⎤
                   2                                 2
                             ⎣                           ⎦
⎝ L ⎠L                ⎝ L ⎠D
(1)( 5 − vo 2 − 0.8 )          = (10 ) ⎡ 2 ( 3.8 − 0.8 ) vo 2 − vo 2 ⎤
                           2                                     2
                                       ⎣                             ⎦
( 4.2 − vo 2 )
                 2
                     = 10 ⎡ 6vo 2 − vo 2 ⎤
                          ⎣
                                     2
                                         ⎦
                   2                 2
17.64 − 8.4vo 2 + vo 2 = 60vo 2 − 10vo 2
   2
11vo 2 − 68.4vo 2 + 17.64 = 0
          68.4 ± 4678.56 − 4 (11)(17.64 )
vo 2 =
                                   2 (11)
vo 2 = 0.270 V

16.16
a.          From Equation (16.41),
              2 ⎡ − ( −2 ) ⎤
VIH    = 0.8 + ⎣           ⎦ ⇒ V = 1.95 V = v
                                             01
                   3( 4)
                                IH



M D 2 in non-saturation and M L 2 in saturation.
K D ⎡ 2 ( v01 − VTND ) v02 − v02 ⎤ = K L ( −VTNL )
                              2                                2
    ⎣                            ⎦
                                                           2
4 ⎣ 2 (1.95 − 0.8 ) v02 − v02 ⎦ = (1) ⎡ − ( −2 ) ⎤
  ⎡                        2
                              ⎤       ⎣          ⎦
  2
4v02 − 9.2v02 + 4 = 0

                     ( 9.2 ) − 4 ( 4 )( 4 )
                               2
         9.2 ±
v02 =                                       ⇒ v02 = 0.582 V
                         2 ( 4)
Both M D1 and M L1 in saturation region. From Equation (16.28(b)).
     4 ⋅ ( vI − 0.8 ) = − ( −2 )
or vI = 1.8 V
                                        ( +2 )
b.            VIL = 0.8 +                         = 1.25 V = v01
                                       4 (1 + 4 )
M D 2 in saturation, M L 2 in non-saturation
K D [ vO1 − VTND ] = K L ⎡ 2 ( −VTNL )( 5 − vO 2 ) − ( 5 − vO 2 ) ⎤
                  2                                              2
                         ⎣                                         ⎦
4 (1.25 − 0.8 ) = 2 ( 2 )( 5 − v02 ) − ( 5 − v02 )
                        2                                      2



( 5 − v02 )       − 4 ( 5 − v02 ) + 0.81 = 0
              2



                            ( 4)       − 4 (1)( 0.81)
                                   2
                  4±
5 − v02 =                                                = 0.214 V
                                   2 (1)
so
v02 = 4.786 V
To find vI :
4 ( v01 − 0.8 ) = (1) ( − ( −2 ) )
                    2                            2



v01 − 0.8 = 1
v01 − 1.8 = V
c.        VIH = 1.95 V, VIL = 1.25 V

16.17
a.       i.    Neglecting the body effect,
v0 = VDD − VTN
Assume VDD = 5 V, then v0 = 4.2 V
ii.      Taking the body effect into account: From Problem 16.1.
VTN = VTN 0 + 0.671 ⎡ 0.686 + VSB − 0.686 ⎤
                     ⎣                    ⎦
and VSB = v0
Then
                                        (
v0 = 5 − ⎡ 0.8 + 0.671 0.686 + v0 − 0.686 ⎤
         ⎣                                  ⎦                        )
v0 = 4.756 − 0.671 0.686 + v0
0.671 0.686 + v0 = 4.756 − v0
0.450 ( 0.686 + v0 ) = 22.62 − 9.51v0 + v0
                                         2

 2
v0 − 9.96v0 + 22.3 = 0

                        ( 9.96 )           − 4 ( 22.3)
                                       2
       9.96 ±
v0 =                                  ⇒ v0 = 3.40 V
                      2
b.            PSpice results similar to Figure 16.13(a).

16.18
Results similar to Figure 16.13(b).

16.19
a.        M X on, M Y cutoff.
From Equation (16.29(b)):
 KD ⎡
      2 5 − 0.8 )( 0.2 ) − ( 0.2 ) ⎤ = ⎡ − ( −2 ) ⎤
                                                    2

    ⎣ (
                                  2

 KL                                 ⎦ ⎣           ⎦

      KD
or       = 2.44
      KL
b.            For v X = vY = .5 V
2
2 ( 2.44 ) ⎣ 2 ( 5 − 0.8 ) v0 − v0 ⎤ = ⎡ − ( −2 ) ⎤
           ⎡                     2
                                   ⎦ ⎣            ⎦
     2
4.88v0 − 41.0v0 + 4 = 0

                          ( 41) − 4 ( 4.88 )( 4 )
                                2
                  41 ±
           v0 =
                             2 ( 4.88 )
or
v0 = 0.0987 V
c.
     ⎛ 80 ⎞               2
iD = ⎜ ⎟ (1) ⎡ − ( −2 ) ⎤ = 160 μ A
     ⎝  2⎠ ⎣            ⎦
P = (160 )( 5 ) ⇒ P = 800 μ W
for both parts (a) and (b).

16.20
(a)        Maximum value of vO in low state- when only one input is high, then,
KD ⎡
     2 ( 3 − 0.5 )( 0.1) − ( 0.1) ⎤ = ⎡ − ( −1) ⎤
                                 2                2

KL ⎣                               ⎦ ⎣          ⎦
KD
   = 2.04
KL
(b)
 P = iD ⋅ VDD
0.1 = iD (3) ⇒ iD = 33.3 μ A
     ⎛ k′ ⎞⎛ W ⎞
iD = ⎜ n ⎟ ⎜ ⎟ ( −VTNL )
                         2

     ⎝ 2 ⎠ ⎝ L ⎠L
        ⎛ 80 ⎞⎛ W ⎞          2 ⎛W ⎞
33.3 = ⎜ ⎟⎜ ⎟ ⎡ − ( −1) ⎤ ⇒ ⎜ ⎟ = 0.8325
                     ⎣     ⎦
        ⎝ 2 ⎠⎝ L ⎠ L           ⎝ L ⎠L
     ⎛W ⎞
Then ⎜ ⎟ = 1.70
     ⎝ L ⎠D
                                                          2
(c)        3 ( 2.04 ) ⎡ 2 ( 3 − 0.5 ) vO − vO ⎤ = ⎡ − ( −1) ⎤ ⇒ vO = 0.0329 V
                      ⎣
                                            2
                                              ⎦ ⎣           ⎦

16.21
(a)       One driver in non-sat,
I D = K L ( −VTNL ) = K D ⎡ 2 (VGS − VTND ) VDSD − VDSD ⎤
                   2                                2
                          ⎣                             ⎦
              K
⎡ − ( −1) ⎤ = D ⎡ 2 ( 3.3 − 0.5 )( 0.1) − ( 0.1) ⎤
            2                                   2
⎣         ⎦   KL ⎣                                ⎦
KD
   = 1.82
KL
(b)
P = ± VDD
0.1 = ± ( 3.3) ⇒ I = 30.3 μ A
           ⎛ 80 ⎞ ⎛ W ⎞        2 ⎛W ⎞
30.3 = I = ⎜ ⎟ ⎜ ⎟ ⎡ − ( −1) ⎤ ⇒ ⎜ ⎟ = 0.7575
                        ⎣    ⎦
           ⎝ 2 ⎠ ⎝ L ⎠L          ⎝ L ⎠L
⎛W ⎞
⎜ ⎟ = 1.38
⎝ L ⎠D
(c)
                                   0.1
(i)         Two inputs High, vo ≈      = 0.05 V
                                    2
                                    0.1
(ii)        Three inputs High, vo ≈     = 0.0333 V
                                     3
                                   0.1
(iii)       Four inputs High, vo ≈     = 0.025 V
                                    4

16.22
a.
P = iD ⋅ VDD
250 = iD ( 5 ) ⇒ iD = 50 μΑ
     ⎛ k' ⎞⎛W ⎞
iD = ⎜ n ⎟ ⎜ ⎟ [ −VTNL1 ]
                         2

     ⎝ 2 ⎠ ⎝ L ⎠ ML1
     ⎛ 60 ⎞ ⎛ W ⎞           2
50 = ⎜ ⎟ ⎜ ⎟ ⎡ − ( −2 ) ⎤
                     ⎣    ⎦
     ⎝ 2 ⎠ ⎝ L ⎠ ML1
        ⎛W ⎞
So that ⎜ ⎟ = 0.417
        ⎝ L ⎠ ML1
KD
   ⎡ 2 ( vI − VTND ) vO − vO ⎤ = [ −VTNL ]
                           2              2

KL ⎣                         ⎦
KD ⎡
     2 5 − 0.8 )( 0.15 ) − ( 0.15 ) ⎤ = ⎡ − ( −2 ) ⎤
                                                     2

   ⎣ (
                                   2

KL                                   ⎦ ⎣           ⎦
       KD          ⎛W ⎞
or        = 3.23 ⇒ ⎜ ⎟       = 1.35
       KL          ⎝ L ⎠ MD1
b.          For v X = vY = 0 ⇒ v01 = 5 and v03 = 4.2
Then
K D 2 ⎡ 2 ( vO1 − VTND ) vO 2 − vO 2 ⎤ + K D 3 ⎡ 2 ( vO 3 − VTND ) vO 2 − vO 2 ⎤ = K L 2 [ −VTNL 2 ]
                                 2                                         2                        2
      ⎣                              ⎦         ⎣                               ⎦
K D 2 ∝ 8, K D 3 ∝ 8, K L 2 ∝ 1
                                                                                     2
8 ⎡ 2 ( 5 − 0.8 ) v02 − v02 ⎤ + 8 ⎡ 2 ( 4.2 − 0.8 ) v02 − v02 ⎤ = (1) ⎡ − ( −2 ) ⎤
  ⎣
                         2
                            ⎦     ⎣
                                                           2
                                                              ⎦       ⎣          ⎦
            2                2
67.2v02 − 8v02 + 54.4v02 − 8v02 = 4
Then
   2
16v0 − 121.6v0 + 4 = 0

                    (121.6 ) − 4 (16 )( 4 )
                              2
         121.6 ±
v02 =
                      2 (16 )
So v02 = 0.0330 V

16.23
a.         We can write
K x ⎡ 2 ( v X − VTN ) vDSX − vDSX ⎤ = K y ⎡ 2 ( vY − vDSX − VTN ) vDSY − vDSY ⎤ = K L [VDD − vO − VTN ]
                              2                                           2                           2
    ⎣                             ⎦       ⎣                                   ⎦
where v0 = vDSX + vDSY
We have
v X = vY = 9.2 V , VDD = 10 V , VTN = 0.8 V
                                            2        2
As a good first approximation, neglect the vDSX and vDSY terms. Let v0 ≈ 2vDSX . Then from the first and
third terms in the above equation.
9 ⎡ 2 ( 9.2 − 0.8 ) vDSX ⎤ ≅ (1)(10 − 2vDSX − 0.8 )
                                                            2
  ⎣                      ⎦
(151.2 ) vDSX   ≅ 84.64 − 36.8vDSX
So that vDSX = 0.450 V
From the first and second terms of the above equation.
9 ⎡ 2 ( 9.2 − 0.8 ) vDSX ⎤ ≅ 9 ⎡ 2 ( 9.2 − vDSX − 0.8 ) vDSY ⎤
  ⎣                      ⎦     ⎣                             ⎦
or
(16.8)( 0.45) = 2 ( 9.2 − 0.45 − 0.8) vDSY
which yields vDSY = 0.475 V
Then v0 = vDSX + vDSY = 0.450 + 0.475
or v0 = 0.925 V
We have vGSX = 9.2 V
and vGSY = 9.2 − vDSX = 9.2 − 0.45
or vGSY = 8.75 V
b.       Since v0 is close to ground potential, the body effect will have minimal effect on the results. From
a PSpice analysis:
For part (a):
vDSX = 0.462 V, vDSY = 0.491 V, v0 = 0.9536 V, vGSX = 9.2 V, and vGSY = 8.738 V
For part (b):
vDSX = 0.441 V, vDSY = 0.475 V, v0 = 0.9154 V, vGSX = 9.2 V, and vGSY = 8.759 V

16.24
a.           We can write
K x ⎡ 2 ( v X − VTNX ) vDSX − vDSX ⎤ = K y ⎡ 2 ( vY − vDSX − VTNY ) vDSY − vDSY ⎤ = K L [ −VTNL ]
                               2                                            2                    2
    ⎣                              ⎦       ⎣                                    ⎦
                                          2
From the first and third terms, (neglect vDSX ),
                                                2
4 ⎡ 2 ( 5 − 0.8 ) vDSX ⎤ = (1) ⎡ − ( −1.5 ) ⎤
  ⎣                    ⎦       ⎣            ⎦
or vDSX = 0.067 V
                                           2
From the second and third terms, (neglect vDSY ),
                                                        2
4 ⎡ 2 ( 5 − 0.067 − 0.8 ) vDSY ⎤ = (1) ⎡ − ( −1.5 ) ⎤
  ⎣                            ⎦       ⎣            ⎦
or vDSY = 0.068 V
Now
vGSX = 5, vGSY = 5 − 0.067 ⇒ vGSY = 4.933 V
and v0 = vDSX + vDSY ⇒ v0 = 0.135 V
Since v0 is close to ground potential, the body-effect has little effect on the results.

16.25
0.2
(a)       We have VDS of each driver ≈             = 0.05 V
                                                4
K L [ −VTNL ] = K D ⎡ 2 (VGSD − VTN ) VDSD
             2
                    ⎣                        − VDSD ⎤
                                                 2
                                                    ⎦
              K
⎡ − ( −1) ⎤ = D ⎡ 2 ( 3.3 − 0.4 )( 0.05 ) − ( 0.05 ) ⎤
            2                                       2
⎣         ⎦   KL ⎣                                    ⎦
KD
   = 3.478
KL
(b)
 P = I VDD
0.15 = I ( 3.3) ⇒ I = 45.45 μ A
        ⎛ 80 ⎞ ⎛ W ⎞        2 ⎛W ⎞
45.45 = ⎜ ⎟ ⎜ ⎟ ⎡ − ( −1) ⎤ ⇒ ⎜ ⎟ = 1.14
                     ⎣    ⎦
        ⎝ 2 ⎠ ⎝ L ⎠L          ⎝ L ⎠L
⎛W ⎞
⎜ ⎟ = 3.95
⎝ L ⎠D

16.26
Complement of (B AND C) OR A ⇒ ( B ⋅ C ) + A

16.27
Considering a truth table, we find
 A        B         Y
 0        0         0
 0        1         1
 1        0         1
 1        1         0
which shows that the circuit performs the exclusive-OR function.

16.28
( A + B )(C + D)

16.29
(a)       Carry-out = A • ( B + C ) + B • C
(b)      For vO1 = Low = 0.2 V
KD ⎡
     2 ( 5 − 0.8 )( 0.2 ) − ( 0.2 ) ⎤ = ⎡ − ( −1.5 ) ⎤ ⇒
                                   2                   2

KL ⎣                                 ⎦ ⎣             ⎦

     ⎛W ⎞            ⎛W ⎞
For ⎜ ⎟ = 1, then ⎜ ⎟ = 1.37
     ⎝ L ⎠L          ⎝ L ⎠D
              ⎛W ⎞
So, for M 6 : ⎜ ⎟ = 1.37
              ⎝ L ⎠6
To achieve the required composite conduction parameter,
                ⎛W ⎞
For M 1 − M 5 : ⎜ ⎟ = 2.74
                ⎝ L ⎠1− 5

16.30




AE: VDS ≈ 0.075
                  ⎛W ⎞
(1) ⎡ − ( −1) ⎤ ≅ ⎜ ⎟ ⎡ 2 ( 3.3 − 0.4 )( 0.075 ) − ( 0.075 ) ⎤
                2                                           2
    ⎣         ⎦     L ⎠D ⎣                                    ⎦
                  ⎝
⎛W ⎞        ⎛W ⎞            ⎛W ⎞       ⎛W ⎞       ⎛W ⎞
⎜ ⎟ = ⎜ ⎟ = 2.33 ⇒ ⎜ ⎟ = ⎜ ⎟ = ⎜ ⎟ = 4.66
⎝ L ⎠ A ⎝ L ⎠E              ⎝ L ⎠ B ⎝ L ⎠C ⎝ L ⎠ D

16.31
Not given
16.32
a.        From Equation (16.43),
           5 − 0.8 + 0.8
vI = VIt =               = VIt = 2.5 V
               1+1
p − channel, V0 Pt = 2.5 − ( −0.8 ) ⇒ V0 Pt = 3.3 V
n − channel, V0 Nt = 2.5 − 0.8 ⇒ V0 Nt = 1.7 V

c            For vI = 2 V, NMOS in saturation and PMOS in nonsaturation. From Equation (16.49),
( 2 − 0.8)= ⎡ 2 ( 5 − 2 − 0.8 )( 5 − v0 ) − ( 5 − v0 ) ⎤
             2                                        2
             ⎣                                          ⎦
1.44 = 4.4(5 − v0 ) − (5 − v0 ) 2
So ( 5 − v0 ) − 4.4 ( 5 − v0 ) + 1.44 = 0
                 2



                         ( 4.4 )       − 4 (1)(1.44 )
                                   2
                 4.4 ±
( 5 − v0 ) =
                       2
or
5 − v0 = 0.356 ⇒ v0 = 4.64 V
By symmetry, for vI = 3 V, v0 = 0.356 V

16.33
                   ⎛ 80 ⎞
(a)          K n = ⎜ ⎟ ( 2 ) = 80 μ A / V 2
                   ⎝ 2⎠
                   ⎛ 40 ⎞
             K p = ⎜ ⎟ ( 4 ) = 80 μ A / V 2
                   ⎝ 2 ⎠
                                            Kn
                     VDD + VTP +               ⋅ VTN
                                            Kp              3.3 − 0.4 + (1)(0.4)
(i)          VIt =                                      =
                                           Kn                       1+1
                             1+
                                           Kp
             VIt = 1.65 V
PMOS:
VOt = VIt − VTP = 1.65 − ( −0.4 ) ⇒ VOt = 2.05 V
NMOS:
VOt = VIt − VTN = 1.65 − ( 0.4 ) ⇒ VOt = 1.25 V
(iii) For vO = 0.4 V : NMOS: Non-sat: PMOS:Sat
K n ⎡ 2 (VGSN − VTN )VDS − VDS ⎤ = K p [VSGP + VTP ]
                            2                                      2
    ⎣                          ⎦
2 ( vI − 0.4 )( 0.4 ) − ( 0.4 ) = ( 3.3 − vI − 0.4 ) ⇒ vI = 1.89 V
                                       2                       2


For vO = 2.9 V , By symmetry
vI = 1.65 − (1.89 − 1.65 ) ⇒ vI = 1.41 V
                   ⎛ 80 ⎞
(b)          K n = ⎜ ⎟ ( 2 ) = 80 μ A/V 2
                   ⎝ 2⎠
                   ⎛ 40 ⎞
             K p = ⎜ ⎟ ( 2 ) = 40 μ A/V 2
                   ⎝ 2 ⎠
80
                     3.3 − 0.4 +        ⋅ ( 0.4 )
(i)          VIt =                   40           ⇒ VIt = 1.44 V
                                    80
                                 1+
                                    40
PMOS:
VOt = 1.44 − ( −0.4 ) ⇒ VOt = 1.84 V
NMOS:
VOt = 1.44 − 0.4 ⇒ VOt = 1.04 V
(iii)        For vO = 0.4 V

                             ⎦ ( )[
      ⎡                      ⎤ = 40 3.3 − vI − 0.4]2 ⇒ vI = 1.62 V
(80 ) ⎣ 2 ( vI − 0.4 )( 0.4 ) − ( 0.4 )
                                            2



For vO = 2.9 V : NMOS: Sat, PMOS: Non-sat
(80 ) [vI − 0.4]         = ( 40 ) ⎡ 2 ( 3.3 − vI − 0.4 )( 0.4 ) − ( 0.4 ) ⎤ ⇒ vI = 1.18 V
                     2                                                   2
                                  ⎣                                        ⎦

16.34
(a)          From Eq. (16.43), switching voltage
(i)

         VDD + VTP +
                             Kn
                                ⋅ VTN                       2 ( 4)
                             Kp             3.3 + ( −0.4 ) +       ( 0.4 ) 3.2266
vI t =                                  =                    12           =        ⇒ vIt = 1.776 V
                   Kn                                   2 ( 4)              1.8165
                1+                                   1+
                   Kp                                    12
(ii)         v0 = 3.1 V , PMOS, non-sat; NMOS, sat
   ′
⎛ kp ⎞⎛ W ⎞                                       ′
                                              ⎛ kn ⎞ ⎛ W ⎞
⎜ ⎟ ⎜ ⎟ ⎣ 2 (VSG + VTP ) VSD − VSD ⎦ = ⎜ ⎟ ⎜ ⎟ (VGS − VTN )
                                                                       2
             ⎡                         2
                                         ⎤
⎝ 2 ⎠⎝ L ⎠p                                   ⎝  2 ⎠ ⎝ L ⎠n
⎛ 40 ⎞                                                          ⎛ 80 ⎞
⎜ ⎟ (12 ) ⎡ 2 ( 3.3 − vI − 0.4 )( 3.3 − 3.1) − ( 3.3 − 3.1) ⎤ = ⎜ ⎟ ( 4 ) [ vI − 0.4]
                                                           2                         2

⎝ 2 ⎠      ⎣                                                 ⎦ ⎝ 2⎠
12 [1.16 − 0.4vI − 0.04] = 8 ⎣ vI2 − 0.8vI + 0.16 ⎤
                             ⎡                    ⎦
8vI2 − 1.6vI − 12.16 = 0
         1.6 ± 2.56 + 4 ( 8 ) (12.16 )
vI =                                            ⇒ vI = 1.337 V
                         2 (8)
(iii)        v0 = 0.2 V PMOS: sat, NMOS, non-sat.
⎛ 40 ⎞                       ⎛ 80 ⎞
⎜ ⎟ (12 ) [3.3 − vI − 0.4] = ⎜ ⎟ ( 4 ) ⎡ 2 ( vI − 0.4 )( 0.2 ) − ( 0.2 ) ⎤
                          2                                             2

⎝ 2 ⎠                        ⎝ 2⎠      ⎣                                  ⎦
12 ⎡8.41 − 5.8vI + vI2 ⎤ = 8 [ 0.4vI − 0.2]
   ⎣                   ⎦
12vI2 − 72.8vI + 102.52 = 0
         72.8 ± 5299.84 − 4 (12 )(102.52 )
vI =
                             2 (12 )
vI = 2.222 V
(b)
2 ( 6)
                   3.3 + ( −0.4 ) +           ( 0.4 ) 3.5928
(i)        vIt =                         4           =
                                    2 (6)              2.732
                                 1+
                                      4
           vIt = 1.315 V
(ii)       From (a), (ii)
 4 [1.16 − 0.4vI − 0.04] = 12 ⎡vI2 − 0.8vI + 0.16 ⎤
                              ⎣                   ⎦
12vI2 − 8vI − 2.56 = 0
       8 ± 64 + 4 (12 )( 2.56 )
vI =                                   ⇒ vI = 0.903 V
                 2 (12 )
(iii)     From (a), (iii)
 4⎣⎡8.41 − 5.8vI + vI2 ⎤ = 12 [ 0.4vI − 0.2]
                       ⎦
4vI2 − 28vI + 36.04 = 0
       28 ± 784 − 4 ( 4 )( 36.04 )
vI =                                      ⇒ vI = 1.70 V
                    2 ( 4)

16.35
a.         For vO1 = 0.6 < VTN ⇒ vO 2 = 5 V
N1 in nonsaturation and P in saturation. From Equation (16.45),
                         1

⎡ 2 ( vI − 0.8 )( 0.6 ) − ( 0.6 )2 ⎤ = [5 − vI − 0.8]2
⎣                                  ⎦
1.2vI − 1.32 = 17.64 − 8.4vI + vI2
or
vI2 − 9.6vI + 18.96 = 0

               ( 9.6 )       − 4 (1)(18.96 )
                         2
       9.6 ±
vI =
                             2
or
vI = 2.78 V
b.        V0 Nt ≤ v02 ≤ V0 Pt
From symmetry, VIt = 2.5 V
V0 Pt = 2.5 + 0.8 = 3.3 V
and V0 Nt = 2.5 − 0.8 = 1.7 V
So 1.7 ≤ v02 ≤ 3.3 V

16.36
a.        V0 Nt ≤ v01 ≤ V0 Pt
By symmetry, VIt = 2.5 V
V0 Pt = 2.5 + 0.8 = 3.3 V
and V0 Nt = 2.5 − 0.8 = 1.7 V
So 1.7 ≤ v01 ≤ 3.3 V
b.         For vO 2 = 0.6 < VTN ⇒ vO 3 = 5 V
N 2 in nonsaturation and P2 in saturation. From Equation (16.57),
⎡ 2 ( vI 2 − 0.8 )( 0.6 ) − ( 0.6 )2 ⎤ = [5 − vI 2 − 0.8]2
⎣                                    ⎦
1.2vI 2 − 1.32 = 17.64 − 8.4vI 2 + vI22
or
vI22 − 9.6vI 2 + 18.96 = 0
So vI 2 = v01 = 2.78 V
For v01 = 2.78, both N1 and P in saturation. Then
                             1

vI = 2.5 V

16.37
a.
   iPeak = K n ( vI − VTN )
     iPeak = 0.1 ⋅ ( 2.5 − 0.8 ) = 0.538 ( mA )
                                                   1/ 2



               iPeak = 0.1 ⋅ (1.65 − 0.8 ) = 0.269 ( mA )
                                                                    1/ 2
b.




16.38
                   ⎛ 50 ⎞
(a)          K n = ⎜ ⎟ ( 2 ) = 50 μ A / V 2
                   ⎝ 2⎠
                   ⎛ 25 ⎞
             K p = ⎜ ⎟ ( 4 ) = 50 μ A / V 2
                   ⎝ 2 ⎠
             I D , peak = K n ( v1 − VTN ) = 50 ( 2.5 − 0.8 )
                                        2                       2


or I D , peak = 144.5 μ A
(b)          K n = 50 μ A / V 2 , K p = 25 μ A/V 2
From Equation (16.55),
                50
      5 − 0.8 +    (0.8)
vIt =           25       = 2.21 V
                50
            1+
                25
Then
I D , peak = K n (VIt − VTN ) 2 = 50 ( 2.21 − 0.8 )
                                                      2


or I D , peak = 99.4 μ A

16.39
(a)      Switching Voltage, Eq. (16.43)
                     2 ( 4)
      3.3 − 0.4 +           ( 0.4 )
 vIt =                  8            = 1.65 V = vIt
                    2 ( 4)
               1+
                      8
           ⎛ 80 ⎞
iD, peak = ⎜ ⎟ ( 4 )(1.65 − 0.4 ) ⇒ iD , peak = 250 μA
                                    2

           ⎝ 2⎠
(b)
                      2 ( 4)
      3.3 − 0.4 +            ( 0.4 )
 vIt =                  4            = 1.436 V = vIt
                    2 ( 4)
               1+
                       4
            ⎛ 80 ⎞
iD , peak = ⎜ ⎟ ( 4 )(1.436 − 0.4 ) ⇒ iD , peak = 172 μA
                                      2

            ⎝ 2⎠
(c)
                      2 ( 4)
      3.3 − 0.4 +            ( 0.4 )
vIt =                  12            ⇒ vIt = 1.776 V
                    2 ( 4)
               1+
                     12
            ⎛ 80 ⎞
iD , peak = ⎜ ⎟ ( 4 )(1.776 − 0.4 ) ⇒ iD , peak = 303 μA
                                     2

            ⎝ 2⎠

16.40
           2
a. P = fCLVDD
For VDD = 5 V, P = (10 × 106 )(0.2 ×10−12 )(5) 2
or P = 50 μ W
For VDD = 15 V, P = (10 × 106 )(0.2 × 10−12 )(15) 2
or P = 450 μ W
b.      For VDD = 5 V, P = (10 × 106 )(0.2 ×10−12 )(5) 2
or P = 50 μ W

16.41
(a)
P = fCLVDD = (150 × 106 )( 0.4 ×10−12 ) ( 5 ) = 1.5 × 10 −3 W / inverter
        2                                    2



Total power: PT = ( 2 × 106 )(1.5 × 10−3 ) ⇒ PT = 3000 W !!!!

(b)      For f = 300 MHz
1.5 ×10 = ( 300 ×106 )( 0.4 × 10−12 ) VDD ⇒ VDD = 3.54 V
        −3                             2




16.42
                   3
(a)          P=      7
                       = 3 × 10−7 W
                  10
                                       P
(b)          P = fCLVDD ⇒ CL =
                     2
                                        2
                                      fVDD
3 × 10−7
(i)            CL =                          ⇒ CL = 0.0024 pF
                       ( 5 ×10 ) ( 5)
                                6        2



                             3 × 10−7
(ii)           CL =                              ⇒ CL = 0.00551pF
                       ( 5 ×10 ) ( 3.3)
                                6            2



                            3 × 10−7
(iii)          CL =                              ⇒ CL = 0.0267 pF
                       ( 5 ×10 ) (1.5)
                                6            2




16.43
                     10
(a)            P=          = 2 × 10−6 W
                   5 × 106
                       P
(b)            CL =     2
                     fVDD
                            2 × 10−6
(i)            CL =                          ⇒ CL = 0.01 pF
                       (8 ×10 ) ( 5)
                                6        2



                             2 × 10−6
(ii)           CL =                              ⇒ CL = 0.023 pF
                       (8 ×10 ) ( 3.3)
                                6            2



                            2 × 10−6
(iii)          CL =                              ⇒ CL = 0.111 pF
                       (8 ×10 ) (1.5)
                                6            2


16.44
(a)            For vI ≅ VDD , NMOS in nonsaturation
iD = K n ⎡ 2 ( vI − VTN ) vDS − vDS ⎤ and vDS ≅ 0
         ⎣
                                 2
                                    ⎦
         1  di
So         = D ≅ K n ⎡ 2 (VDD − VTN ) ⎤
                     ⎣                ⎦
        rds dvDS
Or
                      1
rds =
            ′
         ⎛ kn ⎞ ⎛ W ⎞
         ⎜ 2 ⎟ ⎜ L ⎟ ⋅ 2 (VDD − VTN )
         ⎝ ⎠ ⎝ ⎠n
or

                        1
rds =
       ′⎛         ⎞
          W
     kn ⎜         ⎟ ⋅ (VDD − VTN )
        ⎝L        ⎠n
For vI ≅ 0,       PMOS in nonsaturation
iD = K p ⎡ 2 (VDD − vI + VTP ) vSD − vSD ⎤
         ⎣
                                      2
                                         ⎦
and vSD ≅ 0 for vI ≅ 0.
So
  1   di     ⎛ k′ ⎞⎛ W ⎞
    = D ≅ ⎜ ⎟ ⎜ ⎟ ⋅ 2 (VDD + VTP )
                p

 rsd dvSD ⎝ 2 ⎠ ⎝ L ⎠ p
or
                        1
rsd =
          1    ⎛W     ⎞
               ⎜
               ⎜ Lp   ⎟ ⋅ (VDD + VTP )
                      ⎟
          k′
           p   ⎝      ⎠
⎛W ⎞     ⎛W ⎞
(b) For ⎜ ⎟ = 2, ⎜ ⎟ = 4
        ⎝ L ⎠n   ⎝ L ⎠p
                   1
rds =                          ⇒ rds = 2.38 k Ω
        ( 50 )( 2 )( 5 − 0.8 )
                  1
rsd =                            ⇒ rsd = 2.38 k Ω
        ( 25 )( 4 )( 5 − 0.8 )
    ⎛W ⎞
For ⎜ ⎟ = 2,.
    ⎝ L ⎠p
                   1
rsd =                          ⇒ rsd = 4.76 k Ω
        ( 25 )( 2 )( 5 − 0.8 )
Now, for NMOS:
                        vds   0.5
vds = id rds or id =        =     ⇒ id = 0.21 mA
                        rds 2.38
For PMOS:
For rsd = 2.38 k Ω,
        vsd   0.5
id =        =     ⇒ id = 0.21 mA
        rsd 2.38
For rsd = 4.76 k Ω ,
        vsd   0.5
id =        =     ⇒ id = 0.105 mA
        rsd 4.76

16.45
From Equation (16.63)
            3
VIL = 1.5 + ⋅ (10 − 1.5 − 1.5 ) ⇒ VIL = 4.125 V
            8
and Equation (16.62)
         1
V0 HU = ⋅ ⎡ 2 ( 4.125 ) + 10 − 1.5 + 1.5⎤
         2 ⎣                            ⎦
or V0 HU = 9.125 V
From Equation (16.69)
             5
VIH = 1.5 + ⋅ (10 − 1.5 − 1.5 ) ⇒ VIH = 5.875 V
             8
and Equation (16.68)
         1
V0 LU = ⋅ ⎡ 2 ( 5.875 ) − 10 − 1.5 + 1.5⎤
         2 ⎣                            ⎦
or V0 LU = 0.875 V
Now
NM L = VIL − V0 LU = 4.125 − 0.875 ⇒ NM L = 3.25 V
NM H = V0 HU − VTH = 9.125 − 5.875 ⇒ NM H = 3.25 V

16.46
From Equation (16.71)
                                   ⎡    100     ⎤
               (10 − 1.5 − 1.5 ) ⎢
                                 ⎢
                                                ⎥
                                         50 − 1 ⎥ = 1.5 + 7 ⎡ 2 ( 0.632 ) − 1⎤
VIL = 1.5 +                          2                      ⎣                ⎦
                  ⎛ 100 ⎞
                       − 1⎟        ⎢ 100 + 3 ⎥
                  ⎜                ⎢   50       ⎥
                  ⎝ 50    ⎠        ⎣            ⎦
or
VIL = 3.348 V
From Equation (16.70)
         1 ⎧⎛ 100 ⎞                    ⎛ 100 ⎞             ⎫
V0 HU = ⋅ ⎨⎜1 +     ⎟ ( 3.348 ) + 10 − ⎜     ⎟ (1.5 ) + 1.5⎬
         2 ⎩⎝    50 ⎠                  ⎝ 50 ⎠              ⎭
or V0 HU = 9.272 V
From Equation (16.77)
                                 ⎡  ⎛ 100 ⎞     ⎤
                                 ⎢ 2⎜     ⎟     ⎥
               (10 − 1.5 − 1.5 ) ⎢ ⎝ 50 ⎠
VIH    = 1.5 +                               − 1⎥ = 1.5 + 7 [1.51 − 1]
                 ⎛ 100 ⎞ ⎢ ⎛ 100 ⎞              ⎥
                 ⎜      − 1⎟ ⎢ 3 ⎜       ⎟ +1 ⎥
                 ⎝ 50      ⎠ ⎢ ⎝ 50 ⎠
                                 ⎣              ⎥
                                                ⎦
or
VIH = 5.07 V
From Equation (16.76)

        ( 5.07 ) ⎛1 + ⎞ − 10 − ⎛ ⎞ (1.5 ) + 1.5
                     100           100
                 ⎜       ⎟       ⎜     ⎟
V0 LU =          ⎝    50 ⎠       ⎝ 50 ⎠
                           ⎛ 100 ⎞
                          2⎜     ⎟
                           ⎝ 50 ⎠
or V0 LU = 0.9275 V
Now NM L = VIL − V0 LU = 3.348 − 0.9275
or NM L = 2.42 V
NM H = V0 HU − VIH = 9.272 − 5.07
or NM H = 4.20 V

16.47
(a)
 Kn = KP
           3
VIL = VTN +  (VDD + VTP − VTN )
           8
           3
   = 0.4 + ( 3.3 − 0.4 − 0.4 ) ⇒ VIL = 1.3375 V
           8
       1
VOHu = {2 (1.3375 ) + 3.3 − 0.4 + 0.4}
       2
VOHu = 2.9875 V
               5
VIH = 0.4 +      ( 3.3 − 0.4 − 0.4 ) ⇒ VIH = 1.9625 V
               8
         1
VOLu =
         2
           {2 (1.9625) − 3.3 − 0.4 + 0.4}
VOLu   = 0.3125 V
NM H = VOHu − VIH = 2.9875 − 1.9625 ⇒ NM H = 1.025 V
NM L = VIL − VOLu = 1.3375 − 0.3125 ⇒ NM L = 1.025 V

(b)
⎡    2 ( 4)    ⎤
                                ⎢
            ( 3.3 − 0.4 − 0.4 ) ⎢              ⎥
                                      12                    2.5
VIL = 0.4 +                       2         − 1⎥ = 0.4 +           ⎡( −0.147 ) ⎤
              ⎛ ( 2 )( 4 ) ⎞    ⎢ 2 ( 4)
                                          +3 ⎥
                                               ⎥         ( −0.333) ⎣           ⎦
              ⎜           − 1⎟ ⎢
              ⎝ 12           ⎠ ⎣    12         ⎦
VIL = 1.505 V
         1 ⎧⎛ ( 2 )( 4 ) ⎞
           ⎪                                ⎛ 2 ( 4) ⎞               ⎫
                                                                     ⎪ 1
VOHu =     ⎨⎜1 +         ⎟ (1.505 ) + 3.3 − ⎜        ⎟ ( 0.4 ) + 0.4 ⎬ = {2.5083 + 3.3 − 0.2667 + 0.4}
         2 ⎪⎝
           ⎩     12 ⎠                       ⎝ 12 ⎠                   ⎪ 2
                                                                     ⎭
VOHu = 2.9708 V
                                ⎡     ⎛ 2 ( 4) ⎞         ⎤
                                ⎢ 2⎜            ⎟        ⎥
            ( 3.3 − 0.4 − 0.4 ) ⎢ ⎝ 12 ⎠                               2.5
VIH = 0.4 +                                           − 1⎥ = 0.4 +            [ −0.2302] ⇒ VIH = 2.1282 V
               ⎛ 2 ( 4) ⎞       ⎢                        ⎥          ( −0.333)
                       − 1⎟ ⎢ 3
                                     ( 2 )( 4 ) + 1 ⎥
               ⎜
               ⎝ 12       ⎠ ⎢   ⎣       12               ⎥
                                                         ⎦
                  ⎛ 2 ( 4) ⎞            ⎛ 2 ( 4) ⎞
       ( 2.1282 ) ⎜1 +       ⎟ − 3.3 − ⎜          ⎟ ( 0.4 ) + 0.4
                  ⎝     12 ⎠            ⎝ 12 ⎠                       3.547 − 3.3 − 0.2667 + 0.4
VOLu =                                                            =                             ⇒ VOLu = 0.2853 V
                              ⎛ 2 ( 4) ⎞                                        1.333
                            2⎜         ⎟
                              ⎝ 12 ⎠
NM H = VOHu − VIH = 2.9708 − 2.1282 ⇒ NM H = 0.8426 V
NM L = VIL − VOLu = 1.505 − 0.2853 ⇒ NM L = 1.22 V

16.48
a.       v A = vB = 5 V
 N1 and N 2 on, so vDS1 ≈ vDS 2 ≈ 0 V
P and P2 off
  1

So we have a P3 − N 3 CMOS inverter. By symmetry, vC = 2.5 V (Transition Point).
b.      For v A = vB = vC ≡ vI
Want K n ,eff = K p ,eff
 ′
kn ⎛ W ⎞     k ′ ⎛ 3W ⎞
   ⋅⎜ ⎟ = P ⋅⎜        ⎟
2 ⎝ 3L ⎠ n 2 ⎝ L ⎠ P
      ′      ′
With kn = 2k P , then
2 1 ⎛W ⎞    1 ⎛W ⎞
  ⋅ ⋅⎜ ⎟ = ⋅3⋅⎜ ⎟
2 3 ⎝ L ⎠n 2 ⎝ L ⎠ P
   ⎛W ⎞   9 ⎛W ⎞
Or ⎜ ⎟ = ⋅ ⎜ ⎟
   ⎝ L ⎠n 2 ⎝ L ⎠ P
c.       We have
     ⎛ k ′ ⎞ ⎛ W ⎞ ⎛ 2k ′ ⎞ ⎛ 9 ⎞ ⎛ W ⎞
Kn = ⎜ n ⎟ ⎜ ⎟ = ⎜
                        p
                          ⎟⎜ ⎟⎜ ⎟
     ⎝ 2 ⎠ ⎝ L ⎠n ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ L ⎠ p
     ⎛ k′ ⎞⎛ W ⎞
Kp = ⎜ ⎟⎜ ⎟
         p

     ⎝ 2 ⎠⎝ L ⎠p
Then from Equation (16.55)
Kn
        5 + ( −0.8 ) +        ⋅ ( 0.8 )
                           Kp
VIt =
                         Kn
                 1+
                         Kp
Now
Kn        ⎛9⎞
   = ( 2) ⎜ ⎟ = 9
Kp        ⎝ 2⎠
Then
        5 + ( −0.8 ) + 3 ( 0.8 )
VIt =                              ⇒ VIt = 1.65 V
                1+ 3

16.49
By definition, NMOS is on if gate voltage is 5 V and is off if gate voltage is 0 V.
State           N1             N2               N3               N4               N5   v0
1                    off                  on        off         on              on     0
2                    off                  off       on          on              off    0
3                    on                   on        off         off             on     5
4                    on                   on        off         on              on     0

Logic function ( v X OR vY ) ⊗ ( v X AND vZ )
Exclusive OR of ( vX OR vY ) with ( vX AND vZ )

16.50
                   ⎛W ⎞
NMOS in Parallel ⇒ ⎜ ⎟ = 2
                   ⎝ L ⎠n
                   ⎛W ⎞
4-PMOS in series ⇒ ⎜ ⎟ = 4 ( 4 ) = 16
                   ⎝ L ⎠p
(b)         CL doubles ⇒ current must double to maintain switching speed.
   ⎛W ⎞
⇒⎜ ⎟ =4
   ⎝ L ⎠n
⎛W ⎞
⎜ ⎟ = 32
⎝ L ⎠p

16.51
                 ⎛W ⎞
4-NMOS in series ⎜ ⎟ = 4 ( 2 ) = 8
                 ⎝ L ⎠n
                   ⎛W ⎞
4-PMOS in parallel ⎜ ⎟ = 4
                   ⎝ L ⎠p
            ⎛W    ⎞
(b)         ⎜     ⎟ = 16
            ⎝L    ⎠n
            ⎛W    ⎞
            ⎜     ⎟ =8
            ⎝L    ⎠p

16.52
⎛W ⎞
(a)   NMOS in parallel ⇒ ⎜ ⎟ = 2
                          ⎝ L ⎠n
                   ⎛W ⎞
3-PMOS in series ⇒ ⎜ ⎟ = 3 ( 4 ) = 12
                   ⎝ L ⎠P
             ⎛W    ⎞
(b)          ⎜     ⎟ =4
             ⎝L    ⎠n
             ⎛W    ⎞
             ⎜     ⎟ = 24
             ⎝L    ⎠p

16.53
                          ⎛W ⎞
(a)   3-NMOS in series ⎜ ⎟ = 3 ( 2 ) = 6
                          ⎝ L ⎠n
                   ⎛W ⎞
3-PMOS in parallel ⎜ ⎟ = 4
                   ⎝ L ⎠p
             ⎛W    ⎞
(b)          ⎜     ⎟ = 12
             ⎝L    ⎠n
             ⎛W    ⎞
             ⎜     ⎟ =8
             ⎝L    ⎠p

16.54
(a)          Y = A( B + C )( D + E )
(b)




                                                    ⎛W ⎞
(c)       For NMOS in pull down mode, 3 in series ⇒ ⎜ ⎟ = 3 ( 2 ) = 6
                                                    ⎝ L ⎠n
For PMOS
⎛W ⎞
⎜ ⎟ =4
⎝ L ⎠P, A
⎛W ⎞
⎜ ⎟                    = 2 ( 4) = 8
⎝ L ⎠ P , B ,C , D , E
16.55
(a)          Y = A( BD + CE )
(b)




(c)      NMOS: 3 transistors in series for pull down mode.
                     ⎛W ⎞
For twice the speed: ⎜ ⎟ = 2 ( 3)( 2 ) = 12
                     ⎝ L ⎠n
        ⎛W ⎞
PMOS: ⎜ ⎟ = 2 ( 4 ) = 8
        ⎝ L ⎠P, A
⎛W ⎞
⎜ ⎟                    = 2 ( 2 )( 4 ) = 16
⎝ L ⎠ P , B ,C , D , E

16.56
(a)          Y = A + BC + DE
(b)




                ⎛W ⎞                 ⎛W ⎞
(c)    NMOS: ⎜ ⎟ = 2                 ⎜ ⎟                    =4
                ⎝ L ⎠n, A            ⎝ L ⎠ n , B ,C , D , E
PMOS: 3 transistors in series for the pull-up mode
⎛W ⎞
⎜ ⎟ = 3 ( 4 ) = 12
⎝ L ⎠p

16.57
(a)      Y = A + ( B + D)(C + E )
(b)




               ⎛W ⎞                 ⎛W ⎞
(c)      NMOS: ⎜ ⎟ = 2 ( 2 ) = 4    ⎜ ⎟                    = ( 2 )( 4 ) = 8
               ⎝ L ⎠n, A            ⎝ L ⎠ n , B ,C , D , E
PMOS:
⎛W ⎞
⎜ ⎟ = ( 2 ) 3 ( 4 ) = 24
⎝ L ⎠p

16.58
(a) A classic design is shown:
A, B, C signals supplied through inverters.
                        ⎛W ⎞           ⎛W ⎞
(b)      For Inverters, ⎜ ⎟ = 1 and ⎜ ⎟ = 2
                        ⎝ L ⎠n         ⎝ L ⎠p
                                ⎛W ⎞                                       ⎛W ⎞
For PMOS in Logic function, let ⎜ ⎟ = 1 , then for NMOS in Logic function, ⎜ ⎟ = 2.25
                                ⎝ L ⎠p                                     ⎝ L ⎠n

16.59
(a)     A classic design is shown:
⎛W ⎞     ⎛W ⎞
(b)     ⎜ ⎟ = 1, ⎜ ⎟               =2
        ⎝ L ⎠ ND ⎝ L ⎠ NA, NB , NC
        ⎛W ⎞              ⎛W ⎞
        ⎜ ⎟          = 8, ⎜ ⎟           =4
        ⎝ L ⎠ PA, PB      ⎝ L ⎠ PC , PD

16.60
( A OR B )   AND C

16.61
                    ⎛W ⎞
5-NMOS in series ⇒ ⎜ ⎟ = 5 ( 2 ) = 10
                    ⎝ L ⎠n
                     ⎛W ⎞
5-PMOS in parallel ⇒ ⎜ ⎟ = 4
                     ⎝ L ⎠p

16.62
By definition:
NMOS off if gate voltage = 0
NMOS on if gate voltage = 5 V
PMOS off if gate voltage = 5 V
PMOS on if gate voltage = 0

State        N1        P1           NA       NB    NC    v01   N2   P2    v02
1            off       on           off      off   off   5     on   off   0
2            on        off          on       off   off   5     on   off   0
3          off        on           off   off   off   5   on          off   0
4          on         off          off   off   on    5   on          off   0
5          off        on           off   off   off   5   on          off   0
6          on         off          off   on    on    0   off         on    5

Logic function is
v02 = ( v A OR vB ) AND vC

16.63
State                        v01               v02             v03
1                            5                 5               0
2                            0                 0               5
3                            5                 5               0
4                            5                 0               5
5                            5                 5               0
6                            0                 5               0
Logic function:
v03 = ( vX OR vZ ) AND vY

16.64
16.65
16.66
16.67




           dVC
2 I = −C
            dt
So
        1
ΔVC = −   ( 2I ) ⋅ t
        C
For ΔVC = −0.5 V
2 ( 2 x 10−12 ) ⋅ t
−0.5 = −                         ⇒ t = 3.125 ms
              25 x 10−15

16.68
(a)
(i)        vO = 0
(ii)       vO = 4.2 V
(iii)      vO = 2.5 V
(b)
(i)        vO = 0
(ii)       vO = 3.2 V
(iii)      vO = 2.5 V

16.69
(a)
(i)        vo = 0
(ii)       vo = 2.9 V
(iii)      vo = 2.4 V
(b)
(i)        vo = 0
(ii)       vo = 2.0 V
(iii)      vo = 2.0 V

16.70
Neglect the body effect.
a.       v01 (logic 1) = 4.2 V , v02 (logic 1) = 5 V
b.       vI = 5 V ⇒ vGS 1 = 4.2 V
M 1 in nonsaturation and M 2 in saturation. From Equation (16.23)
⎛W   ⎞                                    ⎛W ⎞
     ⎟ ⎡ 2 ( vGS 1 − VTND ) vO1 − vO1 ⎤ = ⎜ ⎟ (VDD − vO1 − VTNL )
                                   2                              2
⎜       ⎣                             ⎦
⎝L   ⎠D                                   ⎝ L ⎠L
⎛W   ⎞ ⎡
     ⎟ ⎣ 2 ( 4.2 − 0.8 )( 0.1) − ( 0.1) ⎤ = (1) [5 − 0.1 − 0.8]
                                       2                       2
⎜                                        ⎦
⎝L   ⎠D
Or
⎛W   ⎞                    ⎛W ⎞
⎜    ⎟ ( 0.67 ) = 16.81 ⇒ ⎜ ⎟ = 25.1
⎝L   ⎠D                   ⎝ L ⎠D
Now
v01 = 4.2 V ⇒ vGS 3 = 4.2 V
M 3 in nonsaturation and M 4 in saturation. From Equation (16.29(b)).
⎛W   ⎞                                      ⎛W ⎞
     ⎟ ⎡ 2 ( vGS 3 − VTND ) vO 2 − vO 2 ⎤ = ⎜ ⎟ [ −VTNL ]
                                    2                    2
⎜       ⎣                               ⎦
⎝L   ⎠D                                     ⎝ L ⎠L
⎛W   ⎞
     ⎟ ⎡ 2 ( 4.2 − 0.8 )( 0.1) − ( 0.1) ⎤ = ( 2 ) ⎡ − ( −1.5 ) ⎤
                                       2                         2
⎜       ⎣                                ⎦        ⎣            ⎦
⎝L   ⎠D
⎛W ⎞
⎜ ⎟ (0.67) = 2.25
⎝ L ⎠D
⎛W ⎞
Or ⎜ ⎟ = 3.36
   ⎝ L ⎠D

16.71
 A          B           Y
 0          0             1
 0          1             0
 1          0             0
 1          1           0.1        ⇒ indeterminate
Without the top transistor, the circuit performs the exclusive-NOR function.

16.72
 A        A       B         B        Y        Z
 0       1        0         1        0        1
 0       1        1         0        1        0
 1       0        0         1        1        0
 1       0        1         0        1        0
Y = A + AB = A + B
Z = Y or Z = AB

16.73




16.74
For φ = 1, φ = 0, then Y = B. And for φ = 0, φ = 1, then Y = A .
A multiplexer.

16.75
Y = AC + BC

16.76
Y = AB + AB = A ⊗ B

16.77
A         B            Y
0         0            0
1         0            1
0         1            1
1         1            0

Exclusive-OR function.

16.78
This circuit is referred to as a two-phase ratioed circuit. The same width-to-length ratios between the driver
and load transistors must be maintained as discussed previously with the enhancement load inverter.
When φ1 is high, v01 becomes the complement of vI . When φ2 goes high, then v0 becomes the
complement of v01 or is the same as vI . The circuit is a shift register.

16.79
Let Q = 0 and Q = 1 ; as S increases, Q decreases. When Q reaches the transition point of the M 5 − M 6
inverter, the flip-flop with change state. From Equation (16.28(b)),
        KL
VIt =       ⋅ ( −VTNL ) + VTND
        KD
where K L = K 6 and K D = K 5 .
Then
         30
VIt =        ⋅ ⎡ − ( −2 ) ⎤ + 1 ⇒ VIt = Q = 2.095 V
        100 ⎣             ⎦
This is the region where both M 1 and M 3 are biased in the saturation region. Then
      K3                        30
S=       ⋅ ( −VTNL ) + VTND =      ⋅ ⎡ − ( −2 ) ⎤ + 1
      K1                        200 ⎣           ⎦

or S = 1.77 V
This analysis neglects the effect of M 2 starting to turn on at the same time.

16.80
Let vY = R, v X = S , v02 = Q, and v01 = Q. Assume VThN = 0.5 V and VThP = −0.5 V. For S = 0, we have
the following:
If we want the switching to occur for R = 2.5 V, then because of the nonsymmetry between the two
circuits, we cannot have Q and Q both equal to 2.5 V.
Set R = Q = 2.5 V and assume Q goes low.
For the M 1 − M 5 inverter, M 1 in nonsaturation and M 5 in saturation. Then
K n ⎡ 2 ( 2.5 − 0.5 ) Q − Q ⎤ = K p [ 2.5 − 0.5]
                           2                    2
    ⎢
    ⎣                        ⎥
                             ⎦
Or
          2     ⎛ Kp ⎞
4Q − Q = 4 ⎜           ⎟
                ⎝ Kn ⎠
For the other circuit, M 2 − M 4 in saturation and M 6 in nonsaturation. Then
                 2
                                          ⎣        (            )
K n ( 2.5 − 0.5 ) + K n (Q − 0.5) 2 = K p ⎡ 2 5 − Q − 0.5 ( 2.5 ) − ( 2.52 ) ⎤
                                                                             ⎦
Combining these equations and neglecting the Q 3 term, we find
                          Kp
Q = 1.4 V and                  = 0.9
                          kn

16.81
      3.3 + ( −0.4 ) + 0.5
vIt =                      = 1.7 V
              1+1
vI = 1.5 V NMOS Sat; PMOS Non Sat
          = ⎡ 2 ( 3.3 − vI − 0.4 )( 3.3 − vo1 ) − ( 3.3 − vo1 ) ⎤ ⇒ vo1 = 2.88 V
( vI − 0.5)
              2                                                2
            ⎣                                                    ⎦
vI = 1.6 V vo1 = 2.693 V
vI = 1.7 V vo1 = variable (switching region)
vI = 1.8 V          NMOS Non Sat; PMOS Sat
( 3.3 − VI − 0.4 )        = ⎡ 2 ( vI − 0.5 ) vo1 − vo1 ⎤ ⇒ vo1 = 0.607 V
                      2                             2
                            ⎣                          ⎦
Now
vI = 1.5 V, vo1 = 2.88 V ⇒ vo ≈ 0V
vI = 1.6 V, vo1 = 2.693 V
NMOS Non Sat; PMOS Sat
( 3.3 − vo1 − 0.4 ) = ⎡ 2 ( vo1 − 0.5 ) vo − vo2 ⎤
                   2
                      ⎣                          ⎦
vo = 0.00979 V
vI = 1.7 V, v o1 = Switching Mode ⇒ v0 = Switching Mode.
vI = 1.8 V, vo1 = 0.607 V NMOS Sat; PMOS Non Sat
( v01 − 0.5)       = ⎡ 2 ( 3.3 − v01 − 0.4 )( 3.3 − v0 ) − ( 3.3 − v0 ) ⎤ ⇒ v0 = 3.298 V
               2                                                       2
                     ⎣                                                   ⎦

16.82
For R = φ = VDD and S = 0 ⇒ Q = 0, Q = 1
For S = φ = VDD and R = 0 ⇒ Q = 1, Q = 1
The signal φ is a clock signal.
For φ = 0, The output signals will remain in their previous state.

16.83
a.         Positive edge triggered flip-flop when CLK = 1, output of first inverter is D and then Q = D = D .
b.         For example, put a CMOS transmission gate between the output and the gate of M 1 driven by a
CLK pulse.

16.84
For J = 1, K = 0, and CLK = 1; this makes Q = 1 and Q = 0 .
For J = 0, K = 1, and CLK = 1 , and if Q = 1, then the circuit is driven so that Q = 0 and Q = 1.
If initially, Q = 0, then the circuit is driven so that there is no change and Q = 0 and Q = 1.
 J = 1, K = 1, and CLK = 1, and if Q = 1, then the circuit is driven so that Q = 0.
If initially, Q = 0 , then the circuit is driven so that Q = 1.
So if J = K = 1, the output changes state.

16.85
For J = v X = 1, K = vY = 0, and CLK = vZ = 1, then v0 = 0.
For J = v X = 0, K = vY = 1, and CLK = vZ = 1, then v0 = 1.
Now consider J = K = CLK = 1. With v X = vZ = 1, the output is always v0 = 0, So the output does not
change state when J = K = CLK = 1. This is not actually a J − K flip-flop.

16.86
 64 K ⇒ 65,536 transistors arranged in a 256 × 256 array.
(a)     Each column and row decoder required 8 inputs.
(b)
(i)     Address = 01011110 so input = a7 a6 a5 a4 a3 a2 a1a0
(ii)    Address = 11101111 so input = a7 a6 a5 a4 a3 a2 a1a0

(c)
(i)        Address = 00100111 so input = a7 a6 a5 a4 a3 a2 a1a0
(ii)       Address = 01111011 so input = a7 a6 a5 a4 a3 a2 a1a0

16.87
(a)        1-Megabit memory ⇒
        = 1, 048,576 ⇒ 1024 × 1024
Nuclear & input row and column decodes lines necessary = 10
(b)      250K × 4 bits ⇒ 262,144 × 4 bits ⇒ 512 × 512
For 512 lines ⇒ 9 row and column decoder lines necessary.

16.88
Put 128 words in a 8 × 16 array, which means 8 row (or column) address lines and 16 column (or row)
address lines.

16.89
Assume the address line is initially uncharged, then
      dV           1           I
I = C C or VC = ∫ Idt = ⋅ t
       dt          C          C
          VC ⋅ C ( 2.7 ) ( 5.8 × 10 )
                                   −12

Then t =           =                   ⇒
             I          250 × 10−6
t = 6.26 × 10 −8 s ⇒ 62.6 ns

16.90
5 − 0.1 ⎛ 35 ⎞⎛ W     ⎞⎡
                                 ⎟ ⎣ 2 ( 5 − 0.7 )( 0.1) − ( 0.1) ⎤
                                                                 2
(a)               = ⎜ ⎟⎜
              1     ⎝ 2 ⎠⎝ L     ⎠                                 ⎦
    ⎛W   ⎞
or ⎜     ⎟ = 0.329
    ⎝L   ⎠
(b)        16 K ⇒ 16,384 cells
     2
iD ≅   = 2 μA
     1
Power per cell = (2 μ A)(2 V ) = 4 μW
Total Power = PT = (4 μW )(16,384) ⇒ PT = 65.5 mW
Standby current = (2 μ A)(16,384) ⇒ IT = 32.8 mA

16.91
16 K ⇒ 16,384 cells
                                  200
PT = 200 mW ⇒ Power per cell =         ⇒ 12.2 μW
                                16,384
      P    12.2             V     2.5
iD =     =      = 4.88 μ A ≅ DD =     ⇒ R = 0.512 M Ω
     VDD    2.5              R     R
If we want vO = 0.1 V for a logic 0, then
     ⎛ k′ ⎞⎛ W ⎞
iD = ⎜ n ⎟ ⎜ ⎟ ⎡ 2 (VDD − VTN ) vO − vO ⎤
                                      2

     ⎝ 2 ⎠⎝ L ⎠ ⎣                       ⎦

       ⎛ 35 ⎞ ⎛ W ⎞
4.88 = ⎜ ⎟ ⎜ ⎟ ⎡ 2 ( 2.5 − 0.7 )( 0.1) − ( 0.1) ⎤
                                               2

       ⎝ 2 ⎠⎝ L ⎠   ⎣                            ⎦
   ⎛W ⎞
So ⎜ ⎟ = 0.797
   ⎝L⎠

16.92
Q = 0, Q = 1
So D = Logic 1 = 5 V
A very short time after the row has been addressed, D remains charged at VDD = 5 V . Then M p 3, M A, and
 M N 1 begin to conduct and D decreases. In steady-state, all three transistors are biased in the nonsaturation
region. Then
 K p 3 ⎡ 2 (VSG 3 + VTP 3 ) VSD 3 − VSD 3 ⎤ = K nA ⎡ 2 (VGSA − VTNA ) VDSA − VDSA ⎤ = K n1 ⎡ 2 (VGS 1 − VTN 1 ) VDS 1 − VDS 1 ⎤
       ⎣
                                      2
                                          ⎦        ⎣
                                                                              2
                                                                                  ⎦        ⎣
                                                                                                                         2
                                                                                                                              ⎦
Or
K p 3 ⎡ 2 (VDD + VTP 3 )(VDD − D ) − (VDD − D ) ⎤ = K nA ⎡ 2 (VDD − Q − VTNA )( D − Q ) − ( D − Q ) ⎤
                                               2                                                   2
      ⎣                                          ⎦       ⎣                                           ⎦
                                                  = K n1 ⎡ 2 (VDD − VTN 1 ) Q − Q 2 ⎤ (1)
                                                         ⎣                          ⎦
Equating the first and third terms:
⎛ 20 ⎞ ⎡                                      ⎤ ⎛ 40 ⎞
⎜ ⎟ (1) ⎣ 2 ( 5 − 0.8 )( 5 − D ) − ( 5 − D ) ⎦ = ⎜ ⎟ ( 2 ) ⎣ 2 ( 5 − 0.8 ) Q − Q ⎦ (2)
                                            2
                                                           ⎡                    2
                                                                                  ⎤
⎝ 2 ⎠                                            ⎝ 2 ⎠
As a first approximation, neglect the ( 5 − D ) and Q 2 terms. We find
                                                      2


Q = 1.25 − 0.25 D              (3)
Then, equating the first and second terms of Equation (1):
⎛ 20 ⎞ ⎡                                         ⎛ 40 ⎞
⎜ ⎟ (1) ⎣ 2 ( 5 − 0.8 )( 5 − D ) − ( 5 − D ) ⎤ = ⎜ ⎟ (1) ⎡ 2 ( 5 − Q − 0.8 )( D − Q ) − ( D − Q ) ⎤
                                            2                                                    2

⎝ 2 ⎠                                         ⎦ ⎝ 2 ⎠ ⎣                                            ⎦
Substituting Equation (3), we find as a first approximation: D = 2.14 V
Substituting this value of D into equation (2), we find
8.4 ( 5 − 2.14 ) − ( 5 − 2.14 ) = 4 ⎡8.4Q − Q 2 ⎤
                               2
                                    ⎣           ⎦
We find Q = 0.50 V
Using this value of Q, we can find a second approximation for D by equating the second and third terms of
equation (1). We have
20 ⎡ 2 ( 4.2 − Q )( D − Q ) − ( D − Q ) ⎤ = 40 ⎡ 2 ( 4.2Q ) − Q 2 ⎤
                                       2
   ⎣                                     ⎦     ⎣                  ⎦
Using Q = 0.50 V , we find D = 1.79 V

16.93
Initially M N 1 and M A turn on.
 M N 1, Nonsat; M A , sat.
K nA [VDD − Q − VTN ] = K n1 ⎡ 2 (VDD − VTN 1 ) Q − Q 2 ⎤
                      2
                             ⎣                          ⎦
⎛ 40 ⎞                  ⎛ 40 ⎞
⎜ ⎟ (1) [5 − Q − 0.8] = ⎜ ⎟ ( 2 ) ⎣ 2 ( 5 − 0.8 ) Q − Q ⎦
                     2
                                  ⎡                    2
                                                         ⎤
⎝ 2 ⎠                   ⎝ 2 ⎠
which yields
Q = 0.771 V
Initially M P 2 and M B turn on
Both biased in nonsaturation reagion

                      (         ) (           )
 K P 2 ⎡ 2 (VDD + VTP 3 ) VDD − Q − VDD − Q ⎤ = K nB ⎡ 2 (VDD − VTNB ) Q − Q ⎤
                                             2                               2

       ⎢
       ⎣                                       ⎥
                                               ⎦     ⎢
                                                     ⎣                         ⎥
                                                                               ⎦
⎛ 20 ⎞                                     ⎤ ⎛ 40 ⎞ ⎡
             ⎡
                          (    ) (       )                                 ⎤
                                         2                               2
⎜ ⎟ ( 4 ) ⎢ 2 ( 5 − 0.8 ) 5 − Q − 5 − Q ⎥ = ⎜ ⎟ (1) ⎢ 2 ( 5 − 0.8 ) Q − Q ⎥
             ⎣                             ⎦ ⎝ 2 ⎠ ⎣                       ⎦
⎝ 2 ⎠
which yields Q = 3.78 V
Note: (W / L) ratios do not satisfy Equation (16.86)

16.94
For Logic 1, v1:
( 5 )( 0.05 ) + ( 4 )(1) = (1 + 0.05 ) v1 ⇒ v1 = 4.0476 V
v2 :
(5)(0.025) + (4)(1) = (1 + 1.025)v2 ⇒ v2 = 4.0244 V
For Logic 0, v1:
(0)(0.05) + (4)(1) = (1 + 0.05)v1 ⇒ v1 = 3.8095 V
v2 :
(0)(0.025) + (4)(1) = (1 + 0.025)v2 ⇒ v2 = 3.9024 V

16.95
Not given

16.96
Not given

16.97
Not given
16.98
                                 1
(a)       Quantization error =     LSB ≤ 1% ≤ 0.05 V
                                 2
Or LSB ≤ 0.10 V
                             5
For a 6-bit word , LSB =        = 0.078125 V
                             64
                       5
(b)       1 − LSB =      = 0.078125 V
                      64
          3.5424
(c)              × 64 = 45.34 ⇒ n = 45
             5
Digital Output = 101101
45 × 5
       = 3.515625
  64
                                        .
                                     1
Δ = 3.5424 − 3.515625 = 0.026775 < LSB.
                                     2

16.99
                                 1
(a)       Quantization error =     LSB ≤ 0.5% ≤ 0.05 V
                                 2
1 − LSB = 0.10 V
                          10
For a 7-beit word, LSB =      = 0.078125 V
                          128
(b)       1 − LSB = 0.078125 V
          3.5424
(c)              ×128 = 45.34272 ⇒ n = 45
            10
Digital output = 0101101
        45 × 10
Now             = 3.515625
         128
                                          1
Δ = 3.5424 − 3.515625 = 0.026775 V <        LSB
                                          2

16.100
                ⎛0 1 0 1 ⎞
(a)        vo = ⎜ + + + ⎟ ( 5 )
                ⎝ 2 4 8 16 ⎠
           vo = 1.5625 V
                ⎛1 0 1 0 ⎞
(b)        vo = ⎜ + + + ⎟ ( 5 )
                ⎝ 2 4 8 16 ⎠
           vo = 3.125 V

16.101
               ⎛1⎞
(a)     LSB = ⎜ ⎟ ( 5 ) = 0.3125 V
               ⎝ 16 ⎠
        1
          LSB = 0.15625 V
        2
         ⎛ 10 ⎞
Now vo = ⎜           ⎟ (5)
         ⎝ 20 + ΔR1 ⎠
For vo = 2.5 + 0.15625 = 2.65625 V
             (10 )( 5)
20 + ΔR1 =          ⇒ ΔR1 = −1.176 K
            2.65625
For vo = 2.5 − 0.15625 = 2.34375 V
              (10 )( 5 )
20 + ΔR1 =
          2.34375 V
ΔR1 = +1.333 K
For ΔR1 = 1.176 K ⇒ ΔR1 = 5.88%
                       ⎛    10     ⎞
(b)      For R4 : vo = ⎜           ⎟ ( 5)
                       ⎝ 160 + ΔR4 ⎠
vo = 0.3125 + 0.15625 = 0.46875 V
              (10 )( 5 )
160 + ΔR4 =          ⇒ ΔR4 = −53.33K
            0.46875
Or vo = 0.3125 − 0.15625 = 0.15625 V
              (10 )( 5 )
160 + ΔR4 =        ⇒ ΔR4 = 160 K
           0.15625
For ΔR4 = 53.33K ⇒ ΔR4 = 33.33%

16.102
(a)       R5 = 320 kΩ
          R6 = 640 kΩ
          R7 = 1280 kΩ
          R8 = 2560 kΩ
               ⎛ 10 ⎞
(b)       vo = ⎜      ⎟ ( 5 ) = 0.01953125 V
               ⎝ 2560 ⎠

16.103
(a)
      V      −5
 I1 = REF =     ⇒ I1 = −0.50 mA
       2 R 10
       I
 I 2 = 1 = −0.25 mA
       2
      I2
 I 3 = = −0.125 mA
       2
       I3
 I 4 = = −0.0625 mA
       2
      I4
 I 5 = = −0.03125 mA
       2
       I
 I 6 = 5 = −0.015625 mA
       2
(b)       Δvo = I 6 RF = ( 0.015625 )( 5 )
          Δvo = 0.078125 V
(c)       vo = − [ I 2 + I 5 + I 6 ] RF = [ 0.25 + 0.03125 + 0.015625] ( 5 )
          vo = 1.484375 V
(d)      For 101010; vo = ( 0.50 + 0.125 + 0.03125 )( 5 ) = 3.28125 V
For 010101; vo = ( 0.25 + 0.0625 + 0.015625 )( 5 ) = 1.640625 V
Δvo = 1.640625 V

16.104
 1         ⎛V ⎞⎛ R ⎞ V           5
    LSB = ⎜ REF ⎟ ⎜ ⎟ = REF =      = 0.3125 V
 2         ⎝ 8 R ⎠ ⎝ 2 ⎠ 16     16
Ideal
                ⎛ 3V ⎞        3
 v A for 011 ⇒ ⎜ REF ⎟ ( R ) = VREF = 1.875 V
                ⎝  8R ⎠       8
                        1
Range of v A = 1.875 ± LSB
                        2
or 1.5625 ≤ vA ≤ 2.1875 V

16.105
6-bits ⇒ 26 = 64 resistors
26 − 1 = 63 comparators

16.106
(a)      10- bit output ⇒ 1024 clock periods
                  1     1
1 clock period = = 6 = 1 μS
                  f 10
May conversion time = 1024 μS = 1.024 mS
(b)
 1        1⎛ 5 ⎞
   LSB = ⎜          ⎟ = 0.002441406 V
 2        2 ⎝ 1024 ⎠
                      ⎛ 5 ⎞
 v′ = (128 + 16 + 2 ) ⎜
  A                          ⎟ = 0.712890625 V
                      ⎝ 1024 ⎠
                          1
So range of v A = v′ ± LSB
                     A
                          2
0.710449219 ≤ v A ≤ 0.715332031 V
(c)      0100100100 ⇒ 256 + 32 + 4 = 292 clock pulses

16.107
                N ×5
(a)      3.125 =     ⇒ N = 640 ⇒ 512 + 128
                1024
Output = 1010000000
(b)
         N ×5
1.8613 =      ⇒ N = 381.19 ⇒ N = 381 ⇒ 256 + 64 + 32 + 16 + 8 + 4 + 1
         1024
Output = 0101111101

Ch16s

  • 1.
    Chapter 16 Problem Solutions 16.1 (a) 2e ∈s N a ΔVTN = ⎡ 2φ fp + VSB − 2φ fp ⎤ Cax ⎣ ⎦ ∈ax (3.9)(8.85 × 10 −14 ) Cax = = = 7.67 × 10−8 tax 450 × 10−8 2e ∈s N a = ⎡ 2 (1.6 × 10 −19 ) (11.7 ) ( 8.85 × 10−14 )( 8 × 1015 ) ⎤ 1/ 2 ⎣ ⎦ = 5.15 × 10 −8 Then 5.15 × 10−8 ⎡ ⎤ ΔVTN = ⋅ 2(0.343) + VSB − 2(0.343) ⎦ 7.67 × 10−8 ⎣ For VSB = 1 V : ΔVTN = 0.671 ⎡ 1.686 − 0.686 ⎤ ⇒ ΔVTN = 0.316 V ⎣ ⎦ For VSB = 1 V : ⎡ ⎤ ΔVTN = 0.671 ⎣ 2.686 − 0.686 ⎦ ⇒ ΔVTN = 0.544 V (b) For VGS = 2.5 V, VDS = 5 V, transistor biased in the saturation region. ID = K n (VGS − VTN ) 2 For VSB = 0, ID = 0.2(2.5 − 0.8) 2 = 0.578 mA For VSB = 1, I D = 0.2 ( 2.5 − [ 0.8 + 0.316]) = 0.383 mA 2 For VSB = 2, I D = 0.2 ( 2.5 − [ 0.8 + 0.544]) = 0.267 mA 2 16.2 (a) VDD − vO ID = = K n ⎡ 2(VGS − VTN )vO − vO ⎤ ⎣ 2 ⎦ RD 5 − (0.1) = K n ⎡ 2 ( 5 − 0.8 )( 0.1) − ( 0.1) ⎤ 2 40 × 10 3 ⎣ ⎦ −5 8 × 10 ⎛ W ⎞ or K n = 1.476 × 10−4 A / V 2 = ⎜ ⎟ 2 ⎝L⎠ ⎛W ⎞ So that ⎜ ⎟ = 3.69 ⎝L⎠ b. From Equation (16.10). K n RD [VIt − VTN ] + [VIt − VTN ] − VDD = 0 2 (0.1476)(40) [VIt − 0.8] + [VIt − 0.8] − 5 = 0 2 −1 ± (1) 2 + 4(0.1476)(40)(5) or [VIt − 0.8] = 2(0.1476)(40) or [VIt − 0.8] = 0.839
  • 2.
    So that VIt= 1.64 V P = I D (max) ⋅ VDD 5 − (0.1) and I D (max) = = 0.1225 mA 40 or P = 0.6125 mW 16.3 a. From Equation (16.10), the transistor point is found from K n RD (VIt − VTN ) 2 + (VIt − VTN ) − VDD = 0 K n = 50 μ A / V 2 , RD = 20 k Ω, VTN = 0.8 V (0.05)(20)(VIt − VTN ) 2 + (VIt − VTN ) − 5 = 0 −1 ± 1 + 4(0.05)(20)(5) VIt − VTN = = 1.79 V So VIt = 2.59 V 2(0.05)(20) V0t = 1.79 V Output voltage for vI = 5 V is determined from Equation (16.12): v0 = 5 − (0.05)(20) ⎡ 2(5 − 0.8)v0 − v0 ⎤ ⎣ 2 ⎦ 2 v0 − 9.4v0 + 5 = 0 9.4 ± (9.4) 2 − 4(1)(5) So v0 = = 0.566 V 2(1) b. For RD = 200 kΩ, −1 ± 1 + 4(0.05)(200)(5) (VIt − VTN ) = = 0.659 V So VIt = 1.46 V 2(0.05)(200) V0t = 0.659 V v0 = 5 − (0.05)(200) ⎡ 2 ( 5 − 0.8 ) v0 − v0 ⎤ ⎣ 2 ⎦ 2 or 10v0 − 85v0 + 5 = 0 (85 ) − 4 (10 )( 5 ) 2 85 ± v0 = = 0.0592 V 2 (10 ) 16.4 (a) P = IV
  • 3.
    0.25 = I(33) ⇒ I = 75.76 μA 3.3 − 0.15 R= ⇒ R = 41.6 K 0.07576 ⎛ k ′ ⎞⎛ W ⎞ I = ⎜ n ⎟ ⎜ ⎟ (VGS − VTN ) 2 ⎝ 2 ⎠⎝ L ⎠ ⎛ 80 ⎞ ⎛ W ⎞ ⎛W ⎞ 75.76 = ⎜ ⎟ ⎜ ⎟ ( 3.3 − 0.8 ) ⇒ ⎜ ⎟ = 0.303 2 ⎝ 2 ⎠⎝ L ⎠ ⎝L⎠ (b) VDS (sat) = VGS − VTN V − VDS (sat) I D = K n (VGS − VTN ) = DD 2 R ⎛ 0.08 ⎞ 3.3 − (VGS − 0.8 ) ⎟ ( 0.303) (VGS − 1.6VGS + 0.64 ) = 2 ⎜ ⎝ 2 ⎠ 41.6 0.504 (VGS − 1.6VGS + 0.64 ) = 4.1 − VGS 2 2 0.504VGS + 0.1936VGS − 3.777 = 0 −0.1936 ± 0.03748 + 4(0.504)(3.777) VGS = 2(0.504) VGS = 2.55 V For 0.8 ≤ VGS ≤ 2.55 V Transistor biased in saturation region 16.5 (a) P = I ⋅ VDD 0.25 = I (3.3) ⇒ I = 75.76 μA For Sat Load ⎛ 80 ⎞ ⎛ W ⎞ ⎛W ⎞ I = 75.76 = ⎜ ⎟ ⎜ ⎟ ( 3.3 − 0.15 − 0.8 ) ⇒ ⎜ ⎟ = 0.343 2 ⎝ 2 ⎠ ⎝ L ⎠L ⎝ L ⎠L ⎛ 80 ⎞ ⎛ 80 ⎞ ⎛ W ⎞ ⎜ ⎟ ( 0.343)( 3.3 − 0.15 − 0.8 ) = I = 75.76 = ⎜ ⎟ ⎜ ⎟ ⎡ 2 ( 2.5 − 0.8 )( 0.15 ) − ( 0.15 ) ⎤ 2 2 ⎝ 2⎠ ⎝ 2 ⎠ ⎝ L ⎠D ⎣ ⎦ ⎛W ⎞ ⎜ ⎟ = 3.89 ⎝ L ⎠D Eq 16.21 ⎛ 3.89 ⎞ 3.3 − 0.8 + 0.8 ⎜1 + ⎜ ⎟ ⎝ 0.343 ⎟ 5.994 ⎠= VIt = 3.89 4.3677 1+ 0.343 0.8 ≤ VGS ≤ 1.372 V 16.6 (a) From Equation (16.23) KD ⎡ K 2 3 − 0.5 )( 0.25 ) − ( 0.25 ) ⎤ = ( 3 − 0.25 − 0.5 ) ⇒ D = 4.26 ⎣ ( 2 2 KL ⎦ KL
  • 4.
    KD ⎡ K 2 2.5 − 0.5 )( 0.25 ) − ( 0.25 ) ⎤ = ( 3 − 0.25 − 0.5 ) ⇒ D = 5.4 ⎣ ( 2 2 (b) KL ⎦ KL iD = K L (VGSL − VTNL ) = K L (VDD − vO − VTNL ) 2 2 (c) ⎛ 0.080 ⎞ ⎟ (1)(3 − 0.25 − 0.5) ⇒ iD = 0.203 mA 2 =⎜ ⎝ 2 ⎠ P = iD ⋅ VDD = (0.203)(3) ⇒ P = 0.608 mW for both parts (a) and (b). 16.7 P = 0.4 mW = iD ⋅ VDD = iD (3) ⇒ iD = 0.1333 mA iD = K L (VDD − vO − VTNL ) 2 ⎛ 0.080 ⎞ ⎛ W ⎞ ⎛W ⎞ ⎟ ⎜ ⎟ ( 3 − 0.1 − 0.5 ) = ( 0.2304 ) ⎜ ⎟ 2 0.1333 = ⎜ ⎝ 2 ⎠ ⎝ L ⎠L ⎝ L ⎠L ⎛W ⎞ So ⎜ ⎟ = 0.579 ⎝ L ⎠L KD ⎡ 2 2.5 − 0.5 )( 0.1) − ( 0.1) ⎤ = ( 3 − 0.1 − 0.5 ) ⎣ ( 2 2 KL ⎦ KD ⎛W ⎞ ⇒ = 14.8 so that ⎜ ⎟ = 8.55 KL ⎝ L ⎠D VIt = ( 3 − 0.5 + 0.5 1 + 14.8 ) 1 + 14.8 or VIt = 1.02 V , VOt = 0.52 V 16.8 We have KD ⎣ 2 ( vI − VTND ) vO − vO ⎦ = (VDD − vO − VTNL ) 2 ⎡ 2 ⎤ KL (W / L )D ⎡ 2 V − V − VTN )( 0.08VDD ) − ( 0.08VDD ) ⎤ = (VDD − 0.08VDD − VTN ) ⎣ ( DD TN 2 2 (W / L )L ⎦ (W / L )D ⎡ ⎣ 2 (VDD − 2 ( 0.2 )VDD ) ( 0.08VDD ) − 0.0064VDD ⎤ = ⎡( 0.92 − 0.2 )VDD ⎤ = 0.5184VDD 2 2 2 (W / L )L ⎦ ⎣ ⎦ (W / L )D (W / L )D [0.096] = 0.5184 ⇒ = 5.4 (W / L )L (W / L )L 16.9 VOH = VB − VTN = Logic 1 So (a) VB = 4 V ⇒ VOH = 3V (b) VB = 5 V ⇒ VOH = 4V (c) VB = 6 V ⇒ VOH = 5V (d) VB = 7 V ⇒ VOH = 5 V ,since VDS = 0 For vI = VOH
  • 5.
    K D ⎡2 ( vI − VT ) vO − vO ⎤ = K L [VB − vO − VT ] 2 2 ⎣ ⎦ Then (1) ⎡ 2 ( 3 − 1)VOL − VOL ⎤ = ( 0.4 ) [ 4 − VOL − 1] 2 (a) ⎣ 2 ⎦ ⇒ VOL = 0.657 V (1) ⎣ 2 ( 4 − 1)VOL − V ⎦ = ( 0.4 ) [5 − VOL − 1] ⇒ VOL = 0.791 V 2 (b) ⎡ 2 OL ⎤ (1) ⎡ 2 ( 5 − 1)VOL − VOL ⎤ = ( 0.4 ) [6 − VOL − 1] 2 (c) ⎣ 2 ⎦ ⇒ VOL = 0.935 V (d) Load in non-sat region iDD = iOL (1) ⎡ 2 ( 5 − 1) VOL − VOL ⎤ = ( 0.4 ) ⎡ 2 ( 7 − VOL − 1)( 5 − VOL ) − ( 5 − VOL ) ⎤ 2 2 ⎣ ⎦ ⎣ ⎦ 8VOL − VOL = ( 0.4 ) ⎡ 2 ( 6 − VOL )( 5 − VOL ) − ( 25 − 10VOL + VOL ) ⎤ 2 ⎣ 2 ⎦ = ( 0.4 ) ⎡ 2 ( 30 − 11VOL + VOL ) − 25 + 10VOL − VOL ⎤ ⎣ 2 2 ⎦ = ( 0.4 ) ⎡60 − 22VOL + 2VOL − 25 + 10VOL − VOL ⎤ ⎣ 2 2 ⎦ 2 2 8VOL − VOL = 14 − 4.8VOL + 0.4VOL 2 1.4VOL − 12.8VOL + 14 = 0 12.8 ± 163.84 − 4 (1.4 )(14 ) VOL = 2 (1.4 ) VOL = 1.27V For load VDS ( sat ) = 7 − 1.27 − 1 = 4.73V VDS = 5 − 1.27 = 3.73 non-sat 16.10 a. For load VOt = VDD + VTNL = 5 − 2 = 3 V KD ⋅ (VIt − VTND ) = −VTNL KL 500 (VIt − 0.8 ) = − ( −2 ) 100 ⇒ VIt = 1.69 V ⎫ ⎬ Load VOt = 3 V ⎭ Driver: VOt = VIt − VTND = 1.69 − 0.8 = 0.89 V VIt = 1.69 V ⎫ ⎬ Driver V0t = 0.89 V ⎭ b. From Equation (16.29(b)): 500 2 ⋅ ⎣ 2(5 − 0.8)v0 − v0 ⎦ = ⎡ − ( −2 ) ⎤ ⎡ 2 ⎤ ⎣ ⎦ 100 2 5v0 − 42v0 + 4 = 0 ( 42 ) − 4 ( 5)( 4 ) 2 42 ± v0 = ⇒ v0 = 0.0963 V 2 (5) 2 iD = K L ( −VTNL ) = 100 ⎣ − ( −2 ) ⎦ ⇒ iD = 400 μ A 2 c. ⎡ ⎤
  • 6.
    16.11 ⎛ 500 ⎞⎡ ⎟ ⎣ 2 ( 3 − 0.5 )( 0.1) − ( 0.1) ⎤ = ( −VTNL ) 2 2 ⎜ ⎦ ⎝ 50 ⎠ So ( −VTNL ) 2 = 4.9 ⇒ VTNL = −2.21 V 16.12 (a) P = iD ⋅ VDD 150 = iD ⋅ ( 3) ⇒ iD = 50 μ A iD = K L (−VTNL ) 2 ⎛ 80 ⎞ ⎛ W ⎞ 2 ⎛W ⎞ 50 = ⎜ ⎟ ⎜ ⎟ ⎡ − ( −1) ⎤ ⇒ ⎜ ⎟ = 1.25 ⎝ 2 ⎠ ⎝ L ⎠L ⎣ ⎦ ⎝ L ⎠L KD ⎡ 2 ( 3 − 0.5 )( 0.1) − ( 0.1) ⎤ = ⎡ − ( −1) ⎤ 2 2 KL ⎣ ⎦ ⎣ ⎦ K D (W / L ) D ⎛W ⎞ = = 2.04 ⇒ ⎜ ⎟ = 2.55 K L (W / L ) L ⎝ L ⎠D For the Load: VOt = VDD + VTNL = 3 − 1 ⇒ VOt = 2 V 2.04 (VIt − 0.5 ) = ⎡ − ( −1) ⎤ ⇒ VIt = 1.20 V ⎣ ⎦ For the Driver: VOt = VIt − VTND = 1.20 − 0.5 ⇒ VOt = 0.70 V VIt = 1.20 V (b) NM L = VIL − VOLU NM H = VOHU − VIH ⎡ − ( −1) ⎤ ⎣ ⎦ VIL = 0.5 + = 0.902 V ( 2.04 )(1 + 2.04 ) 2 ⎡ − ( −1) ⎤ VIH = 0.5 + ⎣ ⎦ = 1.31 V 3 ( 2.04 ) Then VOHU = ( 3 − 1) + ( 2.04 )( 0.902 − 0.5 ) = 2.82 V (1.31 − 0.5) VOLU = = 0.405 V 2 NM L = 0.902 − 0.405 ⇒ NM L = 0.497 V NM H = 2.82 − 1.31 ⇒ NM H = 1.51 V 16.13 a. From Equation (16.29(b)): ⎛W ⎞ ⎡ ⎛W ⎞ ⎜ ⎟ ⎣ 2 ( 2.5 − 0.5 )( 0.05 ) − ( 0.05 ) ⎤ = ⎜ ⎟ [− ( −1)] 2 2 ⎝ L ⎠D ⎦ ⎝ L ⎠L ⎛W ⎞ ⎜ ⎟ =1 ⎝ L ⎠L
  • 7.
    ⎛W ⎞ Then ⎜ ⎟ = 5.06 ⎝ L ⎠D ⎛ 80 ⎞ 2 b. iD = ⎜ ⎟ (1) ⎡ − ( −1) ⎤ ⎣ ⎦ ⎝ 2⎠ or iD = 40 μ A P = iD ⋅ VDD = ( 40 )( 2.5 ) ⇒ P = 100 μ W 16.14 a. i. vI = 0.5 V ⇒ iD = 0 ⇒ P = 0 ii. vI = 5 V, From Equation (16.12), v0 = 5 − ( 0.1)( 20 ) ⎡ 2 ( 5 − 1.5 ) v0 − v0 ⎤ ⎣ 2 ⎦ 2 2v0 − 15v0 + 5 = 0 (15 ) − 4 ( 2 )( 5 ) 2 15 ± v0 = ⇒ v0 = 0.35 V 2 ( 2) 5 − 0.35 iD = = 0.2325 mA 20 P = iD ⋅ VDD = ( 0.2325 )( 5 ) ⇒ P = 1.16 mW b. i. vI = 0.25 V ⇒ iD = 0 ⇒ P = 0 ii. vI = 4.3 V, From Equation (16.23), 100 ⎣ 2 ( 4.3 − 0.7 ) v0 − v0 ⎦ = 10 [5 − v0 − 0.7 ] 2 ⎡ 2 ⎤ 10 ⎡7.2v0 − v0 ⎤ = 18.49 − 8.6v0 + v0 ⎣ 2 ⎦ 2 Then 2 11v0 − 80.6v0 + 18.49 = 0 (80.6 ) − 4 (11)(18.49 ) 2 80.6 ± v0 = ⇒ v0 = 0.237 V 2 (11) Then iD = 10 [5 − 0.237 − 0.7 ] = 165 μ A 2 P = iD ⋅ VDD = (165 )( 5 ) ⇒ P = 825 μ W c. i. vI = 0.03 V ⇒ iD = 0 ⇒ P = 0 ii. vI = 5 V 2 iD = K L ( −VTNL ) = (10 ) ⎡ − ( −2 ) ⎤ = 40 μ A 2 ⎣ ⎦ P = iD ⋅ VDD = ( 40 )( 5 ) ⇒ P = 200 μ W 16.15 vo1 = 3.8V Load & Driver in Sat, region, ML1, MD1
  • 8.
    iDL = iDD ⎛W⎞ ⎛W ⎞ ⎜ ⎟ ( vGSL − VTNL ) = ⎜ ⎟ ( vGSD − VTND ) 2 2 ⎝ L ⎠L ⎝ L ⎠D (1) ( 5 − vo1 − 0.8 ) = (10 )( vI − 0.8 ) 2 2 0.16 = 10 ( vI − 0.8 ) 2 vI = 0.9265V Now MD2: Non Sat and ML2: Sat iDL = iDD ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ ( vGSL − VTNL ) = ⎜ ⎟ ⎡ 2 ( vo1 − VTND ) vo 2 − vo 2 ⎤ 2 2 ⎣ ⎦ ⎝ L ⎠L ⎝ L ⎠D (1)( 5 − vo 2 − 0.8 ) = (10 ) ⎡ 2 ( 3.8 − 0.8 ) vo 2 − vo 2 ⎤ 2 2 ⎣ ⎦ ( 4.2 − vo 2 ) 2 = 10 ⎡ 6vo 2 − vo 2 ⎤ ⎣ 2 ⎦ 2 2 17.64 − 8.4vo 2 + vo 2 = 60vo 2 − 10vo 2 2 11vo 2 − 68.4vo 2 + 17.64 = 0 68.4 ± 4678.56 − 4 (11)(17.64 ) vo 2 = 2 (11) vo 2 = 0.270 V 16.16 a. From Equation (16.41), 2 ⎡ − ( −2 ) ⎤ VIH = 0.8 + ⎣ ⎦ ⇒ V = 1.95 V = v 01 3( 4) IH M D 2 in non-saturation and M L 2 in saturation. K D ⎡ 2 ( v01 − VTND ) v02 − v02 ⎤ = K L ( −VTNL ) 2 2 ⎣ ⎦ 2 4 ⎣ 2 (1.95 − 0.8 ) v02 − v02 ⎦ = (1) ⎡ − ( −2 ) ⎤ ⎡ 2 ⎤ ⎣ ⎦ 2 4v02 − 9.2v02 + 4 = 0 ( 9.2 ) − 4 ( 4 )( 4 ) 2 9.2 ± v02 = ⇒ v02 = 0.582 V 2 ( 4) Both M D1 and M L1 in saturation region. From Equation (16.28(b)). 4 ⋅ ( vI − 0.8 ) = − ( −2 ) or vI = 1.8 V ( +2 ) b. VIL = 0.8 + = 1.25 V = v01 4 (1 + 4 ) M D 2 in saturation, M L 2 in non-saturation
  • 9.
    K D [vO1 − VTND ] = K L ⎡ 2 ( −VTNL )( 5 − vO 2 ) − ( 5 − vO 2 ) ⎤ 2 2 ⎣ ⎦ 4 (1.25 − 0.8 ) = 2 ( 2 )( 5 − v02 ) − ( 5 − v02 ) 2 2 ( 5 − v02 ) − 4 ( 5 − v02 ) + 0.81 = 0 2 ( 4) − 4 (1)( 0.81) 2 4± 5 − v02 = = 0.214 V 2 (1) so v02 = 4.786 V To find vI : 4 ( v01 − 0.8 ) = (1) ( − ( −2 ) ) 2 2 v01 − 0.8 = 1 v01 − 1.8 = V c. VIH = 1.95 V, VIL = 1.25 V 16.17 a. i. Neglecting the body effect, v0 = VDD − VTN Assume VDD = 5 V, then v0 = 4.2 V ii. Taking the body effect into account: From Problem 16.1. VTN = VTN 0 + 0.671 ⎡ 0.686 + VSB − 0.686 ⎤ ⎣ ⎦ and VSB = v0 Then ( v0 = 5 − ⎡ 0.8 + 0.671 0.686 + v0 − 0.686 ⎤ ⎣ ⎦ ) v0 = 4.756 − 0.671 0.686 + v0 0.671 0.686 + v0 = 4.756 − v0 0.450 ( 0.686 + v0 ) = 22.62 − 9.51v0 + v0 2 2 v0 − 9.96v0 + 22.3 = 0 ( 9.96 ) − 4 ( 22.3) 2 9.96 ± v0 = ⇒ v0 = 3.40 V 2 b. PSpice results similar to Figure 16.13(a). 16.18 Results similar to Figure 16.13(b). 16.19 a. M X on, M Y cutoff. From Equation (16.29(b)): KD ⎡ 2 5 − 0.8 )( 0.2 ) − ( 0.2 ) ⎤ = ⎡ − ( −2 ) ⎤ 2 ⎣ ( 2 KL ⎦ ⎣ ⎦ KD or = 2.44 KL b. For v X = vY = .5 V
  • 10.
    2 2 ( 2.44) ⎣ 2 ( 5 − 0.8 ) v0 − v0 ⎤ = ⎡ − ( −2 ) ⎤ ⎡ 2 ⎦ ⎣ ⎦ 2 4.88v0 − 41.0v0 + 4 = 0 ( 41) − 4 ( 4.88 )( 4 ) 2 41 ± v0 = 2 ( 4.88 ) or v0 = 0.0987 V c. ⎛ 80 ⎞ 2 iD = ⎜ ⎟ (1) ⎡ − ( −2 ) ⎤ = 160 μ A ⎝ 2⎠ ⎣ ⎦ P = (160 )( 5 ) ⇒ P = 800 μ W for both parts (a) and (b). 16.20 (a) Maximum value of vO in low state- when only one input is high, then, KD ⎡ 2 ( 3 − 0.5 )( 0.1) − ( 0.1) ⎤ = ⎡ − ( −1) ⎤ 2 2 KL ⎣ ⎦ ⎣ ⎦ KD = 2.04 KL (b) P = iD ⋅ VDD 0.1 = iD (3) ⇒ iD = 33.3 μ A ⎛ k′ ⎞⎛ W ⎞ iD = ⎜ n ⎟ ⎜ ⎟ ( −VTNL ) 2 ⎝ 2 ⎠ ⎝ L ⎠L ⎛ 80 ⎞⎛ W ⎞ 2 ⎛W ⎞ 33.3 = ⎜ ⎟⎜ ⎟ ⎡ − ( −1) ⎤ ⇒ ⎜ ⎟ = 0.8325 ⎣ ⎦ ⎝ 2 ⎠⎝ L ⎠ L ⎝ L ⎠L ⎛W ⎞ Then ⎜ ⎟ = 1.70 ⎝ L ⎠D 2 (c) 3 ( 2.04 ) ⎡ 2 ( 3 − 0.5 ) vO − vO ⎤ = ⎡ − ( −1) ⎤ ⇒ vO = 0.0329 V ⎣ 2 ⎦ ⎣ ⎦ 16.21 (a) One driver in non-sat, I D = K L ( −VTNL ) = K D ⎡ 2 (VGS − VTND ) VDSD − VDSD ⎤ 2 2 ⎣ ⎦ K ⎡ − ( −1) ⎤ = D ⎡ 2 ( 3.3 − 0.5 )( 0.1) − ( 0.1) ⎤ 2 2 ⎣ ⎦ KL ⎣ ⎦ KD = 1.82 KL (b)
  • 11.
    P = ±VDD 0.1 = ± ( 3.3) ⇒ I = 30.3 μ A ⎛ 80 ⎞ ⎛ W ⎞ 2 ⎛W ⎞ 30.3 = I = ⎜ ⎟ ⎜ ⎟ ⎡ − ( −1) ⎤ ⇒ ⎜ ⎟ = 0.7575 ⎣ ⎦ ⎝ 2 ⎠ ⎝ L ⎠L ⎝ L ⎠L ⎛W ⎞ ⎜ ⎟ = 1.38 ⎝ L ⎠D (c) 0.1 (i) Two inputs High, vo ≈ = 0.05 V 2 0.1 (ii) Three inputs High, vo ≈ = 0.0333 V 3 0.1 (iii) Four inputs High, vo ≈ = 0.025 V 4 16.22 a. P = iD ⋅ VDD 250 = iD ( 5 ) ⇒ iD = 50 μΑ ⎛ k' ⎞⎛W ⎞ iD = ⎜ n ⎟ ⎜ ⎟ [ −VTNL1 ] 2 ⎝ 2 ⎠ ⎝ L ⎠ ML1 ⎛ 60 ⎞ ⎛ W ⎞ 2 50 = ⎜ ⎟ ⎜ ⎟ ⎡ − ( −2 ) ⎤ ⎣ ⎦ ⎝ 2 ⎠ ⎝ L ⎠ ML1 ⎛W ⎞ So that ⎜ ⎟ = 0.417 ⎝ L ⎠ ML1 KD ⎡ 2 ( vI − VTND ) vO − vO ⎤ = [ −VTNL ] 2 2 KL ⎣ ⎦ KD ⎡ 2 5 − 0.8 )( 0.15 ) − ( 0.15 ) ⎤ = ⎡ − ( −2 ) ⎤ 2 ⎣ ( 2 KL ⎦ ⎣ ⎦ KD ⎛W ⎞ or = 3.23 ⇒ ⎜ ⎟ = 1.35 KL ⎝ L ⎠ MD1 b. For v X = vY = 0 ⇒ v01 = 5 and v03 = 4.2 Then K D 2 ⎡ 2 ( vO1 − VTND ) vO 2 − vO 2 ⎤ + K D 3 ⎡ 2 ( vO 3 − VTND ) vO 2 − vO 2 ⎤ = K L 2 [ −VTNL 2 ] 2 2 2 ⎣ ⎦ ⎣ ⎦ K D 2 ∝ 8, K D 3 ∝ 8, K L 2 ∝ 1 2 8 ⎡ 2 ( 5 − 0.8 ) v02 − v02 ⎤ + 8 ⎡ 2 ( 4.2 − 0.8 ) v02 − v02 ⎤ = (1) ⎡ − ( −2 ) ⎤ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ ⎦ 2 2 67.2v02 − 8v02 + 54.4v02 − 8v02 = 4 Then 2 16v0 − 121.6v0 + 4 = 0 (121.6 ) − 4 (16 )( 4 ) 2 121.6 ± v02 = 2 (16 ) So v02 = 0.0330 V 16.23
  • 12.
    a. We can write K x ⎡ 2 ( v X − VTN ) vDSX − vDSX ⎤ = K y ⎡ 2 ( vY − vDSX − VTN ) vDSY − vDSY ⎤ = K L [VDD − vO − VTN ] 2 2 2 ⎣ ⎦ ⎣ ⎦ where v0 = vDSX + vDSY We have v X = vY = 9.2 V , VDD = 10 V , VTN = 0.8 V 2 2 As a good first approximation, neglect the vDSX and vDSY terms. Let v0 ≈ 2vDSX . Then from the first and third terms in the above equation. 9 ⎡ 2 ( 9.2 − 0.8 ) vDSX ⎤ ≅ (1)(10 − 2vDSX − 0.8 ) 2 ⎣ ⎦ (151.2 ) vDSX ≅ 84.64 − 36.8vDSX So that vDSX = 0.450 V From the first and second terms of the above equation. 9 ⎡ 2 ( 9.2 − 0.8 ) vDSX ⎤ ≅ 9 ⎡ 2 ( 9.2 − vDSX − 0.8 ) vDSY ⎤ ⎣ ⎦ ⎣ ⎦ or (16.8)( 0.45) = 2 ( 9.2 − 0.45 − 0.8) vDSY which yields vDSY = 0.475 V Then v0 = vDSX + vDSY = 0.450 + 0.475 or v0 = 0.925 V We have vGSX = 9.2 V and vGSY = 9.2 − vDSX = 9.2 − 0.45 or vGSY = 8.75 V b. Since v0 is close to ground potential, the body effect will have minimal effect on the results. From a PSpice analysis: For part (a): vDSX = 0.462 V, vDSY = 0.491 V, v0 = 0.9536 V, vGSX = 9.2 V, and vGSY = 8.738 V For part (b): vDSX = 0.441 V, vDSY = 0.475 V, v0 = 0.9154 V, vGSX = 9.2 V, and vGSY = 8.759 V 16.24 a. We can write K x ⎡ 2 ( v X − VTNX ) vDSX − vDSX ⎤ = K y ⎡ 2 ( vY − vDSX − VTNY ) vDSY − vDSY ⎤ = K L [ −VTNL ] 2 2 2 ⎣ ⎦ ⎣ ⎦ 2 From the first and third terms, (neglect vDSX ), 2 4 ⎡ 2 ( 5 − 0.8 ) vDSX ⎤ = (1) ⎡ − ( −1.5 ) ⎤ ⎣ ⎦ ⎣ ⎦ or vDSX = 0.067 V 2 From the second and third terms, (neglect vDSY ), 2 4 ⎡ 2 ( 5 − 0.067 − 0.8 ) vDSY ⎤ = (1) ⎡ − ( −1.5 ) ⎤ ⎣ ⎦ ⎣ ⎦ or vDSY = 0.068 V Now vGSX = 5, vGSY = 5 − 0.067 ⇒ vGSY = 4.933 V and v0 = vDSX + vDSY ⇒ v0 = 0.135 V Since v0 is close to ground potential, the body-effect has little effect on the results. 16.25
  • 13.
    0.2 (a) We have VDS of each driver ≈ = 0.05 V 4 K L [ −VTNL ] = K D ⎡ 2 (VGSD − VTN ) VDSD 2 ⎣ − VDSD ⎤ 2 ⎦ K ⎡ − ( −1) ⎤ = D ⎡ 2 ( 3.3 − 0.4 )( 0.05 ) − ( 0.05 ) ⎤ 2 2 ⎣ ⎦ KL ⎣ ⎦ KD = 3.478 KL (b) P = I VDD 0.15 = I ( 3.3) ⇒ I = 45.45 μ A ⎛ 80 ⎞ ⎛ W ⎞ 2 ⎛W ⎞ 45.45 = ⎜ ⎟ ⎜ ⎟ ⎡ − ( −1) ⎤ ⇒ ⎜ ⎟ = 1.14 ⎣ ⎦ ⎝ 2 ⎠ ⎝ L ⎠L ⎝ L ⎠L ⎛W ⎞ ⎜ ⎟ = 3.95 ⎝ L ⎠D 16.26 Complement of (B AND C) OR A ⇒ ( B ⋅ C ) + A 16.27 Considering a truth table, we find A B Y 0 0 0 0 1 1 1 0 1 1 1 0 which shows that the circuit performs the exclusive-OR function. 16.28 ( A + B )(C + D) 16.29 (a) Carry-out = A • ( B + C ) + B • C
  • 14.
    (b) For vO1 = Low = 0.2 V KD ⎡ 2 ( 5 − 0.8 )( 0.2 ) − ( 0.2 ) ⎤ = ⎡ − ( −1.5 ) ⎤ ⇒ 2 2 KL ⎣ ⎦ ⎣ ⎦ ⎛W ⎞ ⎛W ⎞ For ⎜ ⎟ = 1, then ⎜ ⎟ = 1.37 ⎝ L ⎠L ⎝ L ⎠D ⎛W ⎞ So, for M 6 : ⎜ ⎟ = 1.37 ⎝ L ⎠6 To achieve the required composite conduction parameter, ⎛W ⎞ For M 1 − M 5 : ⎜ ⎟ = 2.74 ⎝ L ⎠1− 5 16.30 AE: VDS ≈ 0.075 ⎛W ⎞ (1) ⎡ − ( −1) ⎤ ≅ ⎜ ⎟ ⎡ 2 ( 3.3 − 0.4 )( 0.075 ) − ( 0.075 ) ⎤ 2 2 ⎣ ⎦ L ⎠D ⎣ ⎦ ⎝ ⎛W ⎞ ⎛W ⎞ ⎛W ⎞ ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ = ⎜ ⎟ = 2.33 ⇒ ⎜ ⎟ = ⎜ ⎟ = ⎜ ⎟ = 4.66 ⎝ L ⎠ A ⎝ L ⎠E ⎝ L ⎠ B ⎝ L ⎠C ⎝ L ⎠ D 16.31 Not given
  • 15.
    16.32 a. From Equation (16.43), 5 − 0.8 + 0.8 vI = VIt = = VIt = 2.5 V 1+1 p − channel, V0 Pt = 2.5 − ( −0.8 ) ⇒ V0 Pt = 3.3 V n − channel, V0 Nt = 2.5 − 0.8 ⇒ V0 Nt = 1.7 V c For vI = 2 V, NMOS in saturation and PMOS in nonsaturation. From Equation (16.49), ( 2 − 0.8)= ⎡ 2 ( 5 − 2 − 0.8 )( 5 − v0 ) − ( 5 − v0 ) ⎤ 2 2 ⎣ ⎦ 1.44 = 4.4(5 − v0 ) − (5 − v0 ) 2 So ( 5 − v0 ) − 4.4 ( 5 − v0 ) + 1.44 = 0 2 ( 4.4 ) − 4 (1)(1.44 ) 2 4.4 ± ( 5 − v0 ) = 2 or 5 − v0 = 0.356 ⇒ v0 = 4.64 V By symmetry, for vI = 3 V, v0 = 0.356 V 16.33 ⎛ 80 ⎞ (a) K n = ⎜ ⎟ ( 2 ) = 80 μ A / V 2 ⎝ 2⎠ ⎛ 40 ⎞ K p = ⎜ ⎟ ( 4 ) = 80 μ A / V 2 ⎝ 2 ⎠ Kn VDD + VTP + ⋅ VTN Kp 3.3 − 0.4 + (1)(0.4) (i) VIt = = Kn 1+1 1+ Kp VIt = 1.65 V PMOS: VOt = VIt − VTP = 1.65 − ( −0.4 ) ⇒ VOt = 2.05 V NMOS: VOt = VIt − VTN = 1.65 − ( 0.4 ) ⇒ VOt = 1.25 V (iii) For vO = 0.4 V : NMOS: Non-sat: PMOS:Sat K n ⎡ 2 (VGSN − VTN )VDS − VDS ⎤ = K p [VSGP + VTP ] 2 2 ⎣ ⎦ 2 ( vI − 0.4 )( 0.4 ) − ( 0.4 ) = ( 3.3 − vI − 0.4 ) ⇒ vI = 1.89 V 2 2 For vO = 2.9 V , By symmetry vI = 1.65 − (1.89 − 1.65 ) ⇒ vI = 1.41 V ⎛ 80 ⎞ (b) K n = ⎜ ⎟ ( 2 ) = 80 μ A/V 2 ⎝ 2⎠ ⎛ 40 ⎞ K p = ⎜ ⎟ ( 2 ) = 40 μ A/V 2 ⎝ 2 ⎠
  • 16.
    80 3.3 − 0.4 + ⋅ ( 0.4 ) (i) VIt = 40 ⇒ VIt = 1.44 V 80 1+ 40 PMOS: VOt = 1.44 − ( −0.4 ) ⇒ VOt = 1.84 V NMOS: VOt = 1.44 − 0.4 ⇒ VOt = 1.04 V (iii) For vO = 0.4 V ⎦ ( )[ ⎡ ⎤ = 40 3.3 − vI − 0.4]2 ⇒ vI = 1.62 V (80 ) ⎣ 2 ( vI − 0.4 )( 0.4 ) − ( 0.4 ) 2 For vO = 2.9 V : NMOS: Sat, PMOS: Non-sat (80 ) [vI − 0.4] = ( 40 ) ⎡ 2 ( 3.3 − vI − 0.4 )( 0.4 ) − ( 0.4 ) ⎤ ⇒ vI = 1.18 V 2 2 ⎣ ⎦ 16.34 (a) From Eq. (16.43), switching voltage (i) VDD + VTP + Kn ⋅ VTN 2 ( 4) Kp 3.3 + ( −0.4 ) + ( 0.4 ) 3.2266 vI t = = 12 = ⇒ vIt = 1.776 V Kn 2 ( 4) 1.8165 1+ 1+ Kp 12 (ii) v0 = 3.1 V , PMOS, non-sat; NMOS, sat ′ ⎛ kp ⎞⎛ W ⎞ ′ ⎛ kn ⎞ ⎛ W ⎞ ⎜ ⎟ ⎜ ⎟ ⎣ 2 (VSG + VTP ) VSD − VSD ⎦ = ⎜ ⎟ ⎜ ⎟ (VGS − VTN ) 2 ⎡ 2 ⎤ ⎝ 2 ⎠⎝ L ⎠p ⎝ 2 ⎠ ⎝ L ⎠n ⎛ 40 ⎞ ⎛ 80 ⎞ ⎜ ⎟ (12 ) ⎡ 2 ( 3.3 − vI − 0.4 )( 3.3 − 3.1) − ( 3.3 − 3.1) ⎤ = ⎜ ⎟ ( 4 ) [ vI − 0.4] 2 2 ⎝ 2 ⎠ ⎣ ⎦ ⎝ 2⎠ 12 [1.16 − 0.4vI − 0.04] = 8 ⎣ vI2 − 0.8vI + 0.16 ⎤ ⎡ ⎦ 8vI2 − 1.6vI − 12.16 = 0 1.6 ± 2.56 + 4 ( 8 ) (12.16 ) vI = ⇒ vI = 1.337 V 2 (8) (iii) v0 = 0.2 V PMOS: sat, NMOS, non-sat. ⎛ 40 ⎞ ⎛ 80 ⎞ ⎜ ⎟ (12 ) [3.3 − vI − 0.4] = ⎜ ⎟ ( 4 ) ⎡ 2 ( vI − 0.4 )( 0.2 ) − ( 0.2 ) ⎤ 2 2 ⎝ 2 ⎠ ⎝ 2⎠ ⎣ ⎦ 12 ⎡8.41 − 5.8vI + vI2 ⎤ = 8 [ 0.4vI − 0.2] ⎣ ⎦ 12vI2 − 72.8vI + 102.52 = 0 72.8 ± 5299.84 − 4 (12 )(102.52 ) vI = 2 (12 ) vI = 2.222 V (b)
  • 17.
    2 ( 6) 3.3 + ( −0.4 ) + ( 0.4 ) 3.5928 (i) vIt = 4 = 2 (6) 2.732 1+ 4 vIt = 1.315 V (ii) From (a), (ii) 4 [1.16 − 0.4vI − 0.04] = 12 ⎡vI2 − 0.8vI + 0.16 ⎤ ⎣ ⎦ 12vI2 − 8vI − 2.56 = 0 8 ± 64 + 4 (12 )( 2.56 ) vI = ⇒ vI = 0.903 V 2 (12 ) (iii) From (a), (iii) 4⎣⎡8.41 − 5.8vI + vI2 ⎤ = 12 [ 0.4vI − 0.2] ⎦ 4vI2 − 28vI + 36.04 = 0 28 ± 784 − 4 ( 4 )( 36.04 ) vI = ⇒ vI = 1.70 V 2 ( 4) 16.35 a. For vO1 = 0.6 < VTN ⇒ vO 2 = 5 V N1 in nonsaturation and P in saturation. From Equation (16.45), 1 ⎡ 2 ( vI − 0.8 )( 0.6 ) − ( 0.6 )2 ⎤ = [5 − vI − 0.8]2 ⎣ ⎦ 1.2vI − 1.32 = 17.64 − 8.4vI + vI2 or vI2 − 9.6vI + 18.96 = 0 ( 9.6 ) − 4 (1)(18.96 ) 2 9.6 ± vI = 2 or vI = 2.78 V b. V0 Nt ≤ v02 ≤ V0 Pt From symmetry, VIt = 2.5 V V0 Pt = 2.5 + 0.8 = 3.3 V and V0 Nt = 2.5 − 0.8 = 1.7 V So 1.7 ≤ v02 ≤ 3.3 V 16.36 a. V0 Nt ≤ v01 ≤ V0 Pt By symmetry, VIt = 2.5 V V0 Pt = 2.5 + 0.8 = 3.3 V and V0 Nt = 2.5 − 0.8 = 1.7 V So 1.7 ≤ v01 ≤ 3.3 V b. For vO 2 = 0.6 < VTN ⇒ vO 3 = 5 V N 2 in nonsaturation and P2 in saturation. From Equation (16.57),
  • 18.
    ⎡ 2 (vI 2 − 0.8 )( 0.6 ) − ( 0.6 )2 ⎤ = [5 − vI 2 − 0.8]2 ⎣ ⎦ 1.2vI 2 − 1.32 = 17.64 − 8.4vI 2 + vI22 or vI22 − 9.6vI 2 + 18.96 = 0 So vI 2 = v01 = 2.78 V For v01 = 2.78, both N1 and P in saturation. Then 1 vI = 2.5 V 16.37 a. iPeak = K n ( vI − VTN ) iPeak = 0.1 ⋅ ( 2.5 − 0.8 ) = 0.538 ( mA ) 1/ 2 iPeak = 0.1 ⋅ (1.65 − 0.8 ) = 0.269 ( mA ) 1/ 2 b. 16.38 ⎛ 50 ⎞ (a) K n = ⎜ ⎟ ( 2 ) = 50 μ A / V 2 ⎝ 2⎠ ⎛ 25 ⎞ K p = ⎜ ⎟ ( 4 ) = 50 μ A / V 2 ⎝ 2 ⎠ I D , peak = K n ( v1 − VTN ) = 50 ( 2.5 − 0.8 ) 2 2 or I D , peak = 144.5 μ A (b) K n = 50 μ A / V 2 , K p = 25 μ A/V 2 From Equation (16.55), 50 5 − 0.8 + (0.8) vIt = 25 = 2.21 V 50 1+ 25 Then I D , peak = K n (VIt − VTN ) 2 = 50 ( 2.21 − 0.8 ) 2 or I D , peak = 99.4 μ A 16.39
  • 19.
    (a) Switching Voltage, Eq. (16.43) 2 ( 4) 3.3 − 0.4 + ( 0.4 ) vIt = 8 = 1.65 V = vIt 2 ( 4) 1+ 8 ⎛ 80 ⎞ iD, peak = ⎜ ⎟ ( 4 )(1.65 − 0.4 ) ⇒ iD , peak = 250 μA 2 ⎝ 2⎠ (b) 2 ( 4) 3.3 − 0.4 + ( 0.4 ) vIt = 4 = 1.436 V = vIt 2 ( 4) 1+ 4 ⎛ 80 ⎞ iD , peak = ⎜ ⎟ ( 4 )(1.436 − 0.4 ) ⇒ iD , peak = 172 μA 2 ⎝ 2⎠ (c) 2 ( 4) 3.3 − 0.4 + ( 0.4 ) vIt = 12 ⇒ vIt = 1.776 V 2 ( 4) 1+ 12 ⎛ 80 ⎞ iD , peak = ⎜ ⎟ ( 4 )(1.776 − 0.4 ) ⇒ iD , peak = 303 μA 2 ⎝ 2⎠ 16.40 2 a. P = fCLVDD For VDD = 5 V, P = (10 × 106 )(0.2 ×10−12 )(5) 2 or P = 50 μ W For VDD = 15 V, P = (10 × 106 )(0.2 × 10−12 )(15) 2 or P = 450 μ W b. For VDD = 5 V, P = (10 × 106 )(0.2 ×10−12 )(5) 2 or P = 50 μ W 16.41 (a) P = fCLVDD = (150 × 106 )( 0.4 ×10−12 ) ( 5 ) = 1.5 × 10 −3 W / inverter 2 2 Total power: PT = ( 2 × 106 )(1.5 × 10−3 ) ⇒ PT = 3000 W !!!! (b) For f = 300 MHz 1.5 ×10 = ( 300 ×106 )( 0.4 × 10−12 ) VDD ⇒ VDD = 3.54 V −3 2 16.42 3 (a) P= 7 = 3 × 10−7 W 10 P (b) P = fCLVDD ⇒ CL = 2 2 fVDD
  • 20.
    3 × 10−7 (i) CL = ⇒ CL = 0.0024 pF ( 5 ×10 ) ( 5) 6 2 3 × 10−7 (ii) CL = ⇒ CL = 0.00551pF ( 5 ×10 ) ( 3.3) 6 2 3 × 10−7 (iii) CL = ⇒ CL = 0.0267 pF ( 5 ×10 ) (1.5) 6 2 16.43 10 (a) P= = 2 × 10−6 W 5 × 106 P (b) CL = 2 fVDD 2 × 10−6 (i) CL = ⇒ CL = 0.01 pF (8 ×10 ) ( 5) 6 2 2 × 10−6 (ii) CL = ⇒ CL = 0.023 pF (8 ×10 ) ( 3.3) 6 2 2 × 10−6 (iii) CL = ⇒ CL = 0.111 pF (8 ×10 ) (1.5) 6 2 16.44 (a) For vI ≅ VDD , NMOS in nonsaturation iD = K n ⎡ 2 ( vI − VTN ) vDS − vDS ⎤ and vDS ≅ 0 ⎣ 2 ⎦ 1 di So = D ≅ K n ⎡ 2 (VDD − VTN ) ⎤ ⎣ ⎦ rds dvDS Or 1 rds = ′ ⎛ kn ⎞ ⎛ W ⎞ ⎜ 2 ⎟ ⎜ L ⎟ ⋅ 2 (VDD − VTN ) ⎝ ⎠ ⎝ ⎠n or 1 rds = ′⎛ ⎞ W kn ⎜ ⎟ ⋅ (VDD − VTN ) ⎝L ⎠n For vI ≅ 0, PMOS in nonsaturation iD = K p ⎡ 2 (VDD − vI + VTP ) vSD − vSD ⎤ ⎣ 2 ⎦ and vSD ≅ 0 for vI ≅ 0. So 1 di ⎛ k′ ⎞⎛ W ⎞ = D ≅ ⎜ ⎟ ⎜ ⎟ ⋅ 2 (VDD + VTP ) p rsd dvSD ⎝ 2 ⎠ ⎝ L ⎠ p or 1 rsd = 1 ⎛W ⎞ ⎜ ⎜ Lp ⎟ ⋅ (VDD + VTP ) ⎟ k′ p ⎝ ⎠
  • 21.
    ⎛W ⎞ ⎛W ⎞ (b) For ⎜ ⎟ = 2, ⎜ ⎟ = 4 ⎝ L ⎠n ⎝ L ⎠p 1 rds = ⇒ rds = 2.38 k Ω ( 50 )( 2 )( 5 − 0.8 ) 1 rsd = ⇒ rsd = 2.38 k Ω ( 25 )( 4 )( 5 − 0.8 ) ⎛W ⎞ For ⎜ ⎟ = 2,. ⎝ L ⎠p 1 rsd = ⇒ rsd = 4.76 k Ω ( 25 )( 2 )( 5 − 0.8 ) Now, for NMOS: vds 0.5 vds = id rds or id = = ⇒ id = 0.21 mA rds 2.38 For PMOS: For rsd = 2.38 k Ω, vsd 0.5 id = = ⇒ id = 0.21 mA rsd 2.38 For rsd = 4.76 k Ω , vsd 0.5 id = = ⇒ id = 0.105 mA rsd 4.76 16.45 From Equation (16.63) 3 VIL = 1.5 + ⋅ (10 − 1.5 − 1.5 ) ⇒ VIL = 4.125 V 8 and Equation (16.62) 1 V0 HU = ⋅ ⎡ 2 ( 4.125 ) + 10 − 1.5 + 1.5⎤ 2 ⎣ ⎦ or V0 HU = 9.125 V From Equation (16.69) 5 VIH = 1.5 + ⋅ (10 − 1.5 − 1.5 ) ⇒ VIH = 5.875 V 8 and Equation (16.68) 1 V0 LU = ⋅ ⎡ 2 ( 5.875 ) − 10 − 1.5 + 1.5⎤ 2 ⎣ ⎦ or V0 LU = 0.875 V Now NM L = VIL − V0 LU = 4.125 − 0.875 ⇒ NM L = 3.25 V NM H = V0 HU − VTH = 9.125 − 5.875 ⇒ NM H = 3.25 V 16.46 From Equation (16.71) ⎡ 100 ⎤ (10 − 1.5 − 1.5 ) ⎢ ⎢ ⎥ 50 − 1 ⎥ = 1.5 + 7 ⎡ 2 ( 0.632 ) − 1⎤ VIL = 1.5 + 2 ⎣ ⎦ ⎛ 100 ⎞ − 1⎟ ⎢ 100 + 3 ⎥ ⎜ ⎢ 50 ⎥ ⎝ 50 ⎠ ⎣ ⎦
  • 22.
    or VIL = 3.348V From Equation (16.70) 1 ⎧⎛ 100 ⎞ ⎛ 100 ⎞ ⎫ V0 HU = ⋅ ⎨⎜1 + ⎟ ( 3.348 ) + 10 − ⎜ ⎟ (1.5 ) + 1.5⎬ 2 ⎩⎝ 50 ⎠ ⎝ 50 ⎠ ⎭ or V0 HU = 9.272 V From Equation (16.77) ⎡ ⎛ 100 ⎞ ⎤ ⎢ 2⎜ ⎟ ⎥ (10 − 1.5 − 1.5 ) ⎢ ⎝ 50 ⎠ VIH = 1.5 + − 1⎥ = 1.5 + 7 [1.51 − 1] ⎛ 100 ⎞ ⎢ ⎛ 100 ⎞ ⎥ ⎜ − 1⎟ ⎢ 3 ⎜ ⎟ +1 ⎥ ⎝ 50 ⎠ ⎢ ⎝ 50 ⎠ ⎣ ⎥ ⎦ or VIH = 5.07 V From Equation (16.76) ( 5.07 ) ⎛1 + ⎞ − 10 − ⎛ ⎞ (1.5 ) + 1.5 100 100 ⎜ ⎟ ⎜ ⎟ V0 LU = ⎝ 50 ⎠ ⎝ 50 ⎠ ⎛ 100 ⎞ 2⎜ ⎟ ⎝ 50 ⎠ or V0 LU = 0.9275 V Now NM L = VIL − V0 LU = 3.348 − 0.9275 or NM L = 2.42 V NM H = V0 HU − VIH = 9.272 − 5.07 or NM H = 4.20 V 16.47 (a) Kn = KP 3 VIL = VTN + (VDD + VTP − VTN ) 8 3 = 0.4 + ( 3.3 − 0.4 − 0.4 ) ⇒ VIL = 1.3375 V 8 1 VOHu = {2 (1.3375 ) + 3.3 − 0.4 + 0.4} 2 VOHu = 2.9875 V 5 VIH = 0.4 + ( 3.3 − 0.4 − 0.4 ) ⇒ VIH = 1.9625 V 8 1 VOLu = 2 {2 (1.9625) − 3.3 − 0.4 + 0.4} VOLu = 0.3125 V NM H = VOHu − VIH = 2.9875 − 1.9625 ⇒ NM H = 1.025 V NM L = VIL − VOLu = 1.3375 − 0.3125 ⇒ NM L = 1.025 V (b)
  • 23.
    2 ( 4) ⎤ ⎢ ( 3.3 − 0.4 − 0.4 ) ⎢ ⎥ 12 2.5 VIL = 0.4 + 2 − 1⎥ = 0.4 + ⎡( −0.147 ) ⎤ ⎛ ( 2 )( 4 ) ⎞ ⎢ 2 ( 4) +3 ⎥ ⎥ ( −0.333) ⎣ ⎦ ⎜ − 1⎟ ⎢ ⎝ 12 ⎠ ⎣ 12 ⎦ VIL = 1.505 V 1 ⎧⎛ ( 2 )( 4 ) ⎞ ⎪ ⎛ 2 ( 4) ⎞ ⎫ ⎪ 1 VOHu = ⎨⎜1 + ⎟ (1.505 ) + 3.3 − ⎜ ⎟ ( 0.4 ) + 0.4 ⎬ = {2.5083 + 3.3 − 0.2667 + 0.4} 2 ⎪⎝ ⎩ 12 ⎠ ⎝ 12 ⎠ ⎪ 2 ⎭ VOHu = 2.9708 V ⎡ ⎛ 2 ( 4) ⎞ ⎤ ⎢ 2⎜ ⎟ ⎥ ( 3.3 − 0.4 − 0.4 ) ⎢ ⎝ 12 ⎠ 2.5 VIH = 0.4 + − 1⎥ = 0.4 + [ −0.2302] ⇒ VIH = 2.1282 V ⎛ 2 ( 4) ⎞ ⎢ ⎥ ( −0.333) − 1⎟ ⎢ 3 ( 2 )( 4 ) + 1 ⎥ ⎜ ⎝ 12 ⎠ ⎢ ⎣ 12 ⎥ ⎦ ⎛ 2 ( 4) ⎞ ⎛ 2 ( 4) ⎞ ( 2.1282 ) ⎜1 + ⎟ − 3.3 − ⎜ ⎟ ( 0.4 ) + 0.4 ⎝ 12 ⎠ ⎝ 12 ⎠ 3.547 − 3.3 − 0.2667 + 0.4 VOLu = = ⇒ VOLu = 0.2853 V ⎛ 2 ( 4) ⎞ 1.333 2⎜ ⎟ ⎝ 12 ⎠ NM H = VOHu − VIH = 2.9708 − 2.1282 ⇒ NM H = 0.8426 V NM L = VIL − VOLu = 1.505 − 0.2853 ⇒ NM L = 1.22 V 16.48 a. v A = vB = 5 V N1 and N 2 on, so vDS1 ≈ vDS 2 ≈ 0 V P and P2 off 1 So we have a P3 − N 3 CMOS inverter. By symmetry, vC = 2.5 V (Transition Point). b. For v A = vB = vC ≡ vI Want K n ,eff = K p ,eff ′ kn ⎛ W ⎞ k ′ ⎛ 3W ⎞ ⋅⎜ ⎟ = P ⋅⎜ ⎟ 2 ⎝ 3L ⎠ n 2 ⎝ L ⎠ P ′ ′ With kn = 2k P , then 2 1 ⎛W ⎞ 1 ⎛W ⎞ ⋅ ⋅⎜ ⎟ = ⋅3⋅⎜ ⎟ 2 3 ⎝ L ⎠n 2 ⎝ L ⎠ P ⎛W ⎞ 9 ⎛W ⎞ Or ⎜ ⎟ = ⋅ ⎜ ⎟ ⎝ L ⎠n 2 ⎝ L ⎠ P c. We have ⎛ k ′ ⎞ ⎛ W ⎞ ⎛ 2k ′ ⎞ ⎛ 9 ⎞ ⎛ W ⎞ Kn = ⎜ n ⎟ ⎜ ⎟ = ⎜ p ⎟⎜ ⎟⎜ ⎟ ⎝ 2 ⎠ ⎝ L ⎠n ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ L ⎠ p ⎛ k′ ⎞⎛ W ⎞ Kp = ⎜ ⎟⎜ ⎟ p ⎝ 2 ⎠⎝ L ⎠p Then from Equation (16.55)
  • 24.
    Kn 5 + ( −0.8 ) + ⋅ ( 0.8 ) Kp VIt = Kn 1+ Kp Now Kn ⎛9⎞ = ( 2) ⎜ ⎟ = 9 Kp ⎝ 2⎠ Then 5 + ( −0.8 ) + 3 ( 0.8 ) VIt = ⇒ VIt = 1.65 V 1+ 3 16.49 By definition, NMOS is on if gate voltage is 5 V and is off if gate voltage is 0 V. State N1 N2 N3 N4 N5 v0 1 off on off on on 0 2 off off on on off 0 3 on on off off on 5 4 on on off on on 0 Logic function ( v X OR vY ) ⊗ ( v X AND vZ ) Exclusive OR of ( vX OR vY ) with ( vX AND vZ ) 16.50 ⎛W ⎞ NMOS in Parallel ⇒ ⎜ ⎟ = 2 ⎝ L ⎠n ⎛W ⎞ 4-PMOS in series ⇒ ⎜ ⎟ = 4 ( 4 ) = 16 ⎝ L ⎠p (b) CL doubles ⇒ current must double to maintain switching speed. ⎛W ⎞ ⇒⎜ ⎟ =4 ⎝ L ⎠n ⎛W ⎞ ⎜ ⎟ = 32 ⎝ L ⎠p 16.51 ⎛W ⎞ 4-NMOS in series ⎜ ⎟ = 4 ( 2 ) = 8 ⎝ L ⎠n ⎛W ⎞ 4-PMOS in parallel ⎜ ⎟ = 4 ⎝ L ⎠p ⎛W ⎞ (b) ⎜ ⎟ = 16 ⎝L ⎠n ⎛W ⎞ ⎜ ⎟ =8 ⎝L ⎠p 16.52
  • 25.
    ⎛W ⎞ (a) NMOS in parallel ⇒ ⎜ ⎟ = 2 ⎝ L ⎠n ⎛W ⎞ 3-PMOS in series ⇒ ⎜ ⎟ = 3 ( 4 ) = 12 ⎝ L ⎠P ⎛W ⎞ (b) ⎜ ⎟ =4 ⎝L ⎠n ⎛W ⎞ ⎜ ⎟ = 24 ⎝L ⎠p 16.53 ⎛W ⎞ (a) 3-NMOS in series ⎜ ⎟ = 3 ( 2 ) = 6 ⎝ L ⎠n ⎛W ⎞ 3-PMOS in parallel ⎜ ⎟ = 4 ⎝ L ⎠p ⎛W ⎞ (b) ⎜ ⎟ = 12 ⎝L ⎠n ⎛W ⎞ ⎜ ⎟ =8 ⎝L ⎠p 16.54 (a) Y = A( B + C )( D + E ) (b) ⎛W ⎞ (c) For NMOS in pull down mode, 3 in series ⇒ ⎜ ⎟ = 3 ( 2 ) = 6 ⎝ L ⎠n For PMOS ⎛W ⎞ ⎜ ⎟ =4 ⎝ L ⎠P, A ⎛W ⎞ ⎜ ⎟ = 2 ( 4) = 8 ⎝ L ⎠ P , B ,C , D , E
  • 26.
    16.55 (a) Y = A( BD + CE ) (b) (c) NMOS: 3 transistors in series for pull down mode. ⎛W ⎞ For twice the speed: ⎜ ⎟ = 2 ( 3)( 2 ) = 12 ⎝ L ⎠n ⎛W ⎞ PMOS: ⎜ ⎟ = 2 ( 4 ) = 8 ⎝ L ⎠P, A ⎛W ⎞ ⎜ ⎟ = 2 ( 2 )( 4 ) = 16 ⎝ L ⎠ P , B ,C , D , E 16.56 (a) Y = A + BC + DE (b) ⎛W ⎞ ⎛W ⎞ (c) NMOS: ⎜ ⎟ = 2 ⎜ ⎟ =4 ⎝ L ⎠n, A ⎝ L ⎠ n , B ,C , D , E PMOS: 3 transistors in series for the pull-up mode
  • 27.
    ⎛W ⎞ ⎜ ⎟= 3 ( 4 ) = 12 ⎝ L ⎠p 16.57 (a) Y = A + ( B + D)(C + E ) (b) ⎛W ⎞ ⎛W ⎞ (c) NMOS: ⎜ ⎟ = 2 ( 2 ) = 4 ⎜ ⎟ = ( 2 )( 4 ) = 8 ⎝ L ⎠n, A ⎝ L ⎠ n , B ,C , D , E PMOS: ⎛W ⎞ ⎜ ⎟ = ( 2 ) 3 ( 4 ) = 24 ⎝ L ⎠p 16.58 (a) A classic design is shown:
  • 28.
    A, B, Csignals supplied through inverters. ⎛W ⎞ ⎛W ⎞ (b) For Inverters, ⎜ ⎟ = 1 and ⎜ ⎟ = 2 ⎝ L ⎠n ⎝ L ⎠p ⎛W ⎞ ⎛W ⎞ For PMOS in Logic function, let ⎜ ⎟ = 1 , then for NMOS in Logic function, ⎜ ⎟ = 2.25 ⎝ L ⎠p ⎝ L ⎠n 16.59 (a) A classic design is shown:
  • 29.
    ⎛W ⎞ ⎛W ⎞ (b) ⎜ ⎟ = 1, ⎜ ⎟ =2 ⎝ L ⎠ ND ⎝ L ⎠ NA, NB , NC ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ = 8, ⎜ ⎟ =4 ⎝ L ⎠ PA, PB ⎝ L ⎠ PC , PD 16.60 ( A OR B ) AND C 16.61 ⎛W ⎞ 5-NMOS in series ⇒ ⎜ ⎟ = 5 ( 2 ) = 10 ⎝ L ⎠n ⎛W ⎞ 5-PMOS in parallel ⇒ ⎜ ⎟ = 4 ⎝ L ⎠p 16.62 By definition: NMOS off if gate voltage = 0 NMOS on if gate voltage = 5 V PMOS off if gate voltage = 5 V PMOS on if gate voltage = 0 State N1 P1 NA NB NC v01 N2 P2 v02 1 off on off off off 5 on off 0 2 on off on off off 5 on off 0
  • 30.
    3 off on off off off 5 on off 0 4 on off off off on 5 on off 0 5 off on off off off 5 on off 0 6 on off off on on 0 off on 5 Logic function is v02 = ( v A OR vB ) AND vC 16.63 State v01 v02 v03 1 5 5 0 2 0 0 5 3 5 5 0 4 5 0 5 5 5 5 0 6 0 5 0 Logic function: v03 = ( vX OR vZ ) AND vY 16.64
  • 31.
  • 32.
  • 33.
    16.67 dVC 2 I = −C dt So 1 ΔVC = − ( 2I ) ⋅ t C For ΔVC = −0.5 V
  • 34.
    2 ( 2x 10−12 ) ⋅ t −0.5 = − ⇒ t = 3.125 ms 25 x 10−15 16.68 (a) (i) vO = 0 (ii) vO = 4.2 V (iii) vO = 2.5 V (b) (i) vO = 0 (ii) vO = 3.2 V (iii) vO = 2.5 V 16.69 (a) (i) vo = 0 (ii) vo = 2.9 V (iii) vo = 2.4 V (b) (i) vo = 0 (ii) vo = 2.0 V (iii) vo = 2.0 V 16.70 Neglect the body effect. a. v01 (logic 1) = 4.2 V , v02 (logic 1) = 5 V b. vI = 5 V ⇒ vGS 1 = 4.2 V M 1 in nonsaturation and M 2 in saturation. From Equation (16.23) ⎛W ⎞ ⎛W ⎞ ⎟ ⎡ 2 ( vGS 1 − VTND ) vO1 − vO1 ⎤ = ⎜ ⎟ (VDD − vO1 − VTNL ) 2 2 ⎜ ⎣ ⎦ ⎝L ⎠D ⎝ L ⎠L ⎛W ⎞ ⎡ ⎟ ⎣ 2 ( 4.2 − 0.8 )( 0.1) − ( 0.1) ⎤ = (1) [5 − 0.1 − 0.8] 2 2 ⎜ ⎦ ⎝L ⎠D Or ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ ( 0.67 ) = 16.81 ⇒ ⎜ ⎟ = 25.1 ⎝L ⎠D ⎝ L ⎠D Now v01 = 4.2 V ⇒ vGS 3 = 4.2 V M 3 in nonsaturation and M 4 in saturation. From Equation (16.29(b)). ⎛W ⎞ ⎛W ⎞ ⎟ ⎡ 2 ( vGS 3 − VTND ) vO 2 − vO 2 ⎤ = ⎜ ⎟ [ −VTNL ] 2 2 ⎜ ⎣ ⎦ ⎝L ⎠D ⎝ L ⎠L ⎛W ⎞ ⎟ ⎡ 2 ( 4.2 − 0.8 )( 0.1) − ( 0.1) ⎤ = ( 2 ) ⎡ − ( −1.5 ) ⎤ 2 2 ⎜ ⎣ ⎦ ⎣ ⎦ ⎝L ⎠D ⎛W ⎞ ⎜ ⎟ (0.67) = 2.25 ⎝ L ⎠D
  • 35.
    ⎛W ⎞ Or ⎜⎟ = 3.36 ⎝ L ⎠D 16.71 A B Y 0 0 1 0 1 0 1 0 0 1 1 0.1 ⇒ indeterminate Without the top transistor, the circuit performs the exclusive-NOR function. 16.72 A A B B Y Z 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 Y = A + AB = A + B Z = Y or Z = AB 16.73 16.74 For φ = 1, φ = 0, then Y = B. And for φ = 0, φ = 1, then Y = A . A multiplexer. 16.75 Y = AC + BC 16.76 Y = AB + AB = A ⊗ B 16.77
  • 36.
    A B Y 0 0 0 1 0 1 0 1 1 1 1 0 Exclusive-OR function. 16.78 This circuit is referred to as a two-phase ratioed circuit. The same width-to-length ratios between the driver and load transistors must be maintained as discussed previously with the enhancement load inverter. When φ1 is high, v01 becomes the complement of vI . When φ2 goes high, then v0 becomes the complement of v01 or is the same as vI . The circuit is a shift register. 16.79 Let Q = 0 and Q = 1 ; as S increases, Q decreases. When Q reaches the transition point of the M 5 − M 6 inverter, the flip-flop with change state. From Equation (16.28(b)), KL VIt = ⋅ ( −VTNL ) + VTND KD where K L = K 6 and K D = K 5 . Then 30 VIt = ⋅ ⎡ − ( −2 ) ⎤ + 1 ⇒ VIt = Q = 2.095 V 100 ⎣ ⎦ This is the region where both M 1 and M 3 are biased in the saturation region. Then K3 30 S= ⋅ ( −VTNL ) + VTND = ⋅ ⎡ − ( −2 ) ⎤ + 1 K1 200 ⎣ ⎦ or S = 1.77 V This analysis neglects the effect of M 2 starting to turn on at the same time. 16.80 Let vY = R, v X = S , v02 = Q, and v01 = Q. Assume VThN = 0.5 V and VThP = −0.5 V. For S = 0, we have the following:
  • 37.
    If we wantthe switching to occur for R = 2.5 V, then because of the nonsymmetry between the two circuits, we cannot have Q and Q both equal to 2.5 V. Set R = Q = 2.5 V and assume Q goes low. For the M 1 − M 5 inverter, M 1 in nonsaturation and M 5 in saturation. Then K n ⎡ 2 ( 2.5 − 0.5 ) Q − Q ⎤ = K p [ 2.5 − 0.5] 2 2 ⎢ ⎣ ⎥ ⎦ Or 2 ⎛ Kp ⎞ 4Q − Q = 4 ⎜ ⎟ ⎝ Kn ⎠ For the other circuit, M 2 − M 4 in saturation and M 6 in nonsaturation. Then 2 ⎣ ( ) K n ( 2.5 − 0.5 ) + K n (Q − 0.5) 2 = K p ⎡ 2 5 − Q − 0.5 ( 2.5 ) − ( 2.52 ) ⎤ ⎦ Combining these equations and neglecting the Q 3 term, we find Kp Q = 1.4 V and = 0.9 kn 16.81 3.3 + ( −0.4 ) + 0.5 vIt = = 1.7 V 1+1 vI = 1.5 V NMOS Sat; PMOS Non Sat = ⎡ 2 ( 3.3 − vI − 0.4 )( 3.3 − vo1 ) − ( 3.3 − vo1 ) ⎤ ⇒ vo1 = 2.88 V ( vI − 0.5) 2 2 ⎣ ⎦ vI = 1.6 V vo1 = 2.693 V vI = 1.7 V vo1 = variable (switching region) vI = 1.8 V NMOS Non Sat; PMOS Sat ( 3.3 − VI − 0.4 ) = ⎡ 2 ( vI − 0.5 ) vo1 − vo1 ⎤ ⇒ vo1 = 0.607 V 2 2 ⎣ ⎦ Now vI = 1.5 V, vo1 = 2.88 V ⇒ vo ≈ 0V vI = 1.6 V, vo1 = 2.693 V NMOS Non Sat; PMOS Sat ( 3.3 − vo1 − 0.4 ) = ⎡ 2 ( vo1 − 0.5 ) vo − vo2 ⎤ 2 ⎣ ⎦ vo = 0.00979 V vI = 1.7 V, v o1 = Switching Mode ⇒ v0 = Switching Mode. vI = 1.8 V, vo1 = 0.607 V NMOS Sat; PMOS Non Sat ( v01 − 0.5) = ⎡ 2 ( 3.3 − v01 − 0.4 )( 3.3 − v0 ) − ( 3.3 − v0 ) ⎤ ⇒ v0 = 3.298 V 2 2 ⎣ ⎦ 16.82 For R = φ = VDD and S = 0 ⇒ Q = 0, Q = 1 For S = φ = VDD and R = 0 ⇒ Q = 1, Q = 1 The signal φ is a clock signal. For φ = 0, The output signals will remain in their previous state. 16.83 a. Positive edge triggered flip-flop when CLK = 1, output of first inverter is D and then Q = D = D .
  • 38.
    b. For example, put a CMOS transmission gate between the output and the gate of M 1 driven by a CLK pulse. 16.84 For J = 1, K = 0, and CLK = 1; this makes Q = 1 and Q = 0 . For J = 0, K = 1, and CLK = 1 , and if Q = 1, then the circuit is driven so that Q = 0 and Q = 1. If initially, Q = 0, then the circuit is driven so that there is no change and Q = 0 and Q = 1. J = 1, K = 1, and CLK = 1, and if Q = 1, then the circuit is driven so that Q = 0. If initially, Q = 0 , then the circuit is driven so that Q = 1. So if J = K = 1, the output changes state. 16.85 For J = v X = 1, K = vY = 0, and CLK = vZ = 1, then v0 = 0. For J = v X = 0, K = vY = 1, and CLK = vZ = 1, then v0 = 1. Now consider J = K = CLK = 1. With v X = vZ = 1, the output is always v0 = 0, So the output does not change state when J = K = CLK = 1. This is not actually a J − K flip-flop. 16.86 64 K ⇒ 65,536 transistors arranged in a 256 × 256 array. (a) Each column and row decoder required 8 inputs. (b) (i) Address = 01011110 so input = a7 a6 a5 a4 a3 a2 a1a0 (ii) Address = 11101111 so input = a7 a6 a5 a4 a3 a2 a1a0 (c) (i) Address = 00100111 so input = a7 a6 a5 a4 a3 a2 a1a0 (ii) Address = 01111011 so input = a7 a6 a5 a4 a3 a2 a1a0 16.87 (a) 1-Megabit memory ⇒ = 1, 048,576 ⇒ 1024 × 1024 Nuclear & input row and column decodes lines necessary = 10 (b) 250K × 4 bits ⇒ 262,144 × 4 bits ⇒ 512 × 512 For 512 lines ⇒ 9 row and column decoder lines necessary. 16.88 Put 128 words in a 8 × 16 array, which means 8 row (or column) address lines and 16 column (or row) address lines. 16.89 Assume the address line is initially uncharged, then dV 1 I I = C C or VC = ∫ Idt = ⋅ t dt C C VC ⋅ C ( 2.7 ) ( 5.8 × 10 ) −12 Then t = = ⇒ I 250 × 10−6 t = 6.26 × 10 −8 s ⇒ 62.6 ns 16.90
  • 39.
    5 − 0.1⎛ 35 ⎞⎛ W ⎞⎡ ⎟ ⎣ 2 ( 5 − 0.7 )( 0.1) − ( 0.1) ⎤ 2 (a) = ⎜ ⎟⎜ 1 ⎝ 2 ⎠⎝ L ⎠ ⎦ ⎛W ⎞ or ⎜ ⎟ = 0.329 ⎝L ⎠ (b) 16 K ⇒ 16,384 cells 2 iD ≅ = 2 μA 1 Power per cell = (2 μ A)(2 V ) = 4 μW Total Power = PT = (4 μW )(16,384) ⇒ PT = 65.5 mW Standby current = (2 μ A)(16,384) ⇒ IT = 32.8 mA 16.91 16 K ⇒ 16,384 cells 200 PT = 200 mW ⇒ Power per cell = ⇒ 12.2 μW 16,384 P 12.2 V 2.5 iD = = = 4.88 μ A ≅ DD = ⇒ R = 0.512 M Ω VDD 2.5 R R If we want vO = 0.1 V for a logic 0, then ⎛ k′ ⎞⎛ W ⎞ iD = ⎜ n ⎟ ⎜ ⎟ ⎡ 2 (VDD − VTN ) vO − vO ⎤ 2 ⎝ 2 ⎠⎝ L ⎠ ⎣ ⎦ ⎛ 35 ⎞ ⎛ W ⎞ 4.88 = ⎜ ⎟ ⎜ ⎟ ⎡ 2 ( 2.5 − 0.7 )( 0.1) − ( 0.1) ⎤ 2 ⎝ 2 ⎠⎝ L ⎠ ⎣ ⎦ ⎛W ⎞ So ⎜ ⎟ = 0.797 ⎝L⎠ 16.92 Q = 0, Q = 1 So D = Logic 1 = 5 V A very short time after the row has been addressed, D remains charged at VDD = 5 V . Then M p 3, M A, and M N 1 begin to conduct and D decreases. In steady-state, all three transistors are biased in the nonsaturation region. Then K p 3 ⎡ 2 (VSG 3 + VTP 3 ) VSD 3 − VSD 3 ⎤ = K nA ⎡ 2 (VGSA − VTNA ) VDSA − VDSA ⎤ = K n1 ⎡ 2 (VGS 1 − VTN 1 ) VDS 1 − VDS 1 ⎤ ⎣ 2 ⎦ ⎣ 2 ⎦ ⎣ 2 ⎦ Or K p 3 ⎡ 2 (VDD + VTP 3 )(VDD − D ) − (VDD − D ) ⎤ = K nA ⎡ 2 (VDD − Q − VTNA )( D − Q ) − ( D − Q ) ⎤ 2 2 ⎣ ⎦ ⎣ ⎦ = K n1 ⎡ 2 (VDD − VTN 1 ) Q − Q 2 ⎤ (1) ⎣ ⎦ Equating the first and third terms: ⎛ 20 ⎞ ⎡ ⎤ ⎛ 40 ⎞ ⎜ ⎟ (1) ⎣ 2 ( 5 − 0.8 )( 5 − D ) − ( 5 − D ) ⎦ = ⎜ ⎟ ( 2 ) ⎣ 2 ( 5 − 0.8 ) Q − Q ⎦ (2) 2 ⎡ 2 ⎤ ⎝ 2 ⎠ ⎝ 2 ⎠ As a first approximation, neglect the ( 5 − D ) and Q 2 terms. We find 2 Q = 1.25 − 0.25 D (3) Then, equating the first and second terms of Equation (1): ⎛ 20 ⎞ ⎡ ⎛ 40 ⎞ ⎜ ⎟ (1) ⎣ 2 ( 5 − 0.8 )( 5 − D ) − ( 5 − D ) ⎤ = ⎜ ⎟ (1) ⎡ 2 ( 5 − Q − 0.8 )( D − Q ) − ( D − Q ) ⎤ 2 2 ⎝ 2 ⎠ ⎦ ⎝ 2 ⎠ ⎣ ⎦
  • 40.
    Substituting Equation (3),we find as a first approximation: D = 2.14 V Substituting this value of D into equation (2), we find 8.4 ( 5 − 2.14 ) − ( 5 − 2.14 ) = 4 ⎡8.4Q − Q 2 ⎤ 2 ⎣ ⎦ We find Q = 0.50 V Using this value of Q, we can find a second approximation for D by equating the second and third terms of equation (1). We have 20 ⎡ 2 ( 4.2 − Q )( D − Q ) − ( D − Q ) ⎤ = 40 ⎡ 2 ( 4.2Q ) − Q 2 ⎤ 2 ⎣ ⎦ ⎣ ⎦ Using Q = 0.50 V , we find D = 1.79 V 16.93 Initially M N 1 and M A turn on. M N 1, Nonsat; M A , sat. K nA [VDD − Q − VTN ] = K n1 ⎡ 2 (VDD − VTN 1 ) Q − Q 2 ⎤ 2 ⎣ ⎦ ⎛ 40 ⎞ ⎛ 40 ⎞ ⎜ ⎟ (1) [5 − Q − 0.8] = ⎜ ⎟ ( 2 ) ⎣ 2 ( 5 − 0.8 ) Q − Q ⎦ 2 ⎡ 2 ⎤ ⎝ 2 ⎠ ⎝ 2 ⎠ which yields Q = 0.771 V Initially M P 2 and M B turn on Both biased in nonsaturation reagion ( ) ( ) K P 2 ⎡ 2 (VDD + VTP 3 ) VDD − Q − VDD − Q ⎤ = K nB ⎡ 2 (VDD − VTNB ) Q − Q ⎤ 2 2 ⎢ ⎣ ⎥ ⎦ ⎢ ⎣ ⎥ ⎦ ⎛ 20 ⎞ ⎤ ⎛ 40 ⎞ ⎡ ⎡ ( ) ( ) ⎤ 2 2 ⎜ ⎟ ( 4 ) ⎢ 2 ( 5 − 0.8 ) 5 − Q − 5 − Q ⎥ = ⎜ ⎟ (1) ⎢ 2 ( 5 − 0.8 ) Q − Q ⎥ ⎣ ⎦ ⎝ 2 ⎠ ⎣ ⎦ ⎝ 2 ⎠ which yields Q = 3.78 V Note: (W / L) ratios do not satisfy Equation (16.86) 16.94 For Logic 1, v1: ( 5 )( 0.05 ) + ( 4 )(1) = (1 + 0.05 ) v1 ⇒ v1 = 4.0476 V v2 : (5)(0.025) + (4)(1) = (1 + 1.025)v2 ⇒ v2 = 4.0244 V For Logic 0, v1: (0)(0.05) + (4)(1) = (1 + 0.05)v1 ⇒ v1 = 3.8095 V v2 : (0)(0.025) + (4)(1) = (1 + 0.025)v2 ⇒ v2 = 3.9024 V 16.95 Not given 16.96 Not given 16.97 Not given
  • 41.
    16.98 1 (a) Quantization error = LSB ≤ 1% ≤ 0.05 V 2 Or LSB ≤ 0.10 V 5 For a 6-bit word , LSB = = 0.078125 V 64 5 (b) 1 − LSB = = 0.078125 V 64 3.5424 (c) × 64 = 45.34 ⇒ n = 45 5 Digital Output = 101101 45 × 5 = 3.515625 64 . 1 Δ = 3.5424 − 3.515625 = 0.026775 < LSB. 2 16.99 1 (a) Quantization error = LSB ≤ 0.5% ≤ 0.05 V 2 1 − LSB = 0.10 V 10 For a 7-beit word, LSB = = 0.078125 V 128 (b) 1 − LSB = 0.078125 V 3.5424 (c) ×128 = 45.34272 ⇒ n = 45 10 Digital output = 0101101 45 × 10 Now = 3.515625 128 1 Δ = 3.5424 − 3.515625 = 0.026775 V < LSB 2 16.100 ⎛0 1 0 1 ⎞ (a) vo = ⎜ + + + ⎟ ( 5 ) ⎝ 2 4 8 16 ⎠ vo = 1.5625 V ⎛1 0 1 0 ⎞ (b) vo = ⎜ + + + ⎟ ( 5 ) ⎝ 2 4 8 16 ⎠ vo = 3.125 V 16.101 ⎛1⎞ (a) LSB = ⎜ ⎟ ( 5 ) = 0.3125 V ⎝ 16 ⎠ 1 LSB = 0.15625 V 2 ⎛ 10 ⎞ Now vo = ⎜ ⎟ (5) ⎝ 20 + ΔR1 ⎠
  • 42.
    For vo =2.5 + 0.15625 = 2.65625 V (10 )( 5) 20 + ΔR1 = ⇒ ΔR1 = −1.176 K 2.65625 For vo = 2.5 − 0.15625 = 2.34375 V (10 )( 5 ) 20 + ΔR1 = 2.34375 V ΔR1 = +1.333 K For ΔR1 = 1.176 K ⇒ ΔR1 = 5.88% ⎛ 10 ⎞ (b) For R4 : vo = ⎜ ⎟ ( 5) ⎝ 160 + ΔR4 ⎠ vo = 0.3125 + 0.15625 = 0.46875 V (10 )( 5 ) 160 + ΔR4 = ⇒ ΔR4 = −53.33K 0.46875 Or vo = 0.3125 − 0.15625 = 0.15625 V (10 )( 5 ) 160 + ΔR4 = ⇒ ΔR4 = 160 K 0.15625 For ΔR4 = 53.33K ⇒ ΔR4 = 33.33% 16.102 (a) R5 = 320 kΩ R6 = 640 kΩ R7 = 1280 kΩ R8 = 2560 kΩ ⎛ 10 ⎞ (b) vo = ⎜ ⎟ ( 5 ) = 0.01953125 V ⎝ 2560 ⎠ 16.103 (a) V −5 I1 = REF = ⇒ I1 = −0.50 mA 2 R 10 I I 2 = 1 = −0.25 mA 2 I2 I 3 = = −0.125 mA 2 I3 I 4 = = −0.0625 mA 2 I4 I 5 = = −0.03125 mA 2 I I 6 = 5 = −0.015625 mA 2 (b) Δvo = I 6 RF = ( 0.015625 )( 5 ) Δvo = 0.078125 V (c) vo = − [ I 2 + I 5 + I 6 ] RF = [ 0.25 + 0.03125 + 0.015625] ( 5 ) vo = 1.484375 V
  • 43.
    (d) For 101010; vo = ( 0.50 + 0.125 + 0.03125 )( 5 ) = 3.28125 V For 010101; vo = ( 0.25 + 0.0625 + 0.015625 )( 5 ) = 1.640625 V Δvo = 1.640625 V 16.104 1 ⎛V ⎞⎛ R ⎞ V 5 LSB = ⎜ REF ⎟ ⎜ ⎟ = REF = = 0.3125 V 2 ⎝ 8 R ⎠ ⎝ 2 ⎠ 16 16 Ideal ⎛ 3V ⎞ 3 v A for 011 ⇒ ⎜ REF ⎟ ( R ) = VREF = 1.875 V ⎝ 8R ⎠ 8 1 Range of v A = 1.875 ± LSB 2 or 1.5625 ≤ vA ≤ 2.1875 V 16.105 6-bits ⇒ 26 = 64 resistors 26 − 1 = 63 comparators 16.106 (a) 10- bit output ⇒ 1024 clock periods 1 1 1 clock period = = 6 = 1 μS f 10 May conversion time = 1024 μS = 1.024 mS (b) 1 1⎛ 5 ⎞ LSB = ⎜ ⎟ = 0.002441406 V 2 2 ⎝ 1024 ⎠ ⎛ 5 ⎞ v′ = (128 + 16 + 2 ) ⎜ A ⎟ = 0.712890625 V ⎝ 1024 ⎠ 1 So range of v A = v′ ± LSB A 2 0.710449219 ≤ v A ≤ 0.715332031 V (c) 0100100100 ⇒ 256 + 32 + 4 = 292 clock pulses 16.107 N ×5 (a) 3.125 = ⇒ N = 640 ⇒ 512 + 128 1024 Output = 1010000000 (b) N ×5 1.8613 = ⇒ N = 381.19 ⇒ N = 381 ⇒ 256 + 64 + 32 + 16 + 8 + 4 + 1 1024 Output = 0101111101