SlideShare a Scribd company logo
Chapter 2
Problem Solutions

2.1
␯I                         ␯0


                       Rϭ1K



     ␯I
     10


      0


Ϫ10

Vγ = 0.6 V, rf = 20 Ω
                    ⎛ R ⎞
                    ⎜ R + r ⎟(
For vI = 10 V, v0 = ⎜            10 − 0.6 )
                              ⎟
                    ⎝       f ⎠

                    ⎛ 1 ⎞
                  =⎜            ⎟ ( 9.4 )
                    ⎝ 1 + 0.02 ⎠
               v0 = 9.22

     10


 0.6



     ␯0
9.22




2.2
          ϩ ␯D Ϫ
␯I                         ␯0
            D

                       R




 v0 = vI − vD
           ⎛i ⎞          v
vD = VT ln ⎜ D ⎟ and iD = 0
           ⎝ IS ⎠         R
                ⎛ v ⎞
v0 = vI − VT ln ⎜ 0 ⎟
                ⎝ IS R ⎠

2.3
             80sin ω t
(a)             vs =    = 13.33sin ω t
                 6
                              13.33
Peak diode current id (max) =
                                R
(b)       PIV = vs (max) = 13.3 V
(c)
                    To               π
               1                 1
vo ( avg ) =        ∫ v (t )dt = 2π ∫ 13.33sin × dt
                         o
               To   o                o

             13.33                13.33                   13.33
                   [ − cos x ]o =
                              π
           =                            ⎡ − ( −1 − 1) ⎤ =
                                        ⎣             ⎦
              2π                   2π                       π
vo ( avg ) = 4.24 V
(d)       50%

2.4
v0 = vS − 2Vγ ⇒ vS ( max ) = v0 ( max ) + 2Vγ
a.        For v0 ( max ) = 25 V ⇒ vS ( max ) = 25 + 2 ( 0.7 ) = 26.4 V
N1 160    N
   =     ⇒ 1 = 6.06
N 2 26.4  N2
b.        For v0 ( max ) = 100 V ⇒ vS ( max ) = 101.4 V
N1   160   N
   =      ⇒ 1 = 1.58
N 2 101.4  N2
From part (a) PIV = 2vS ( max ) − Vγ = 2 ( 26.4 ) − 0.7
or PIV = 52.1 V or, from part (b) PIV = 2 (101.4 ) − 0.7 or PIV = 202.1 V

2.5
(a)
 vs (max) = 12 + 2(0.7) = 13.4 V
              13.4
 vs ( rms ) =      ⇒ vs (rms) = 9.48 V
                2
(b)
         VM               VM
Vr =           ⇒C =
       2 f RC         2 f Vr R
               12
C=                         ⇒ C = 2222 μ F
      2 ( 60 )( 0.3)(150 )
(c)
            VM ⎡        2VM ⎤
id , peak =     ⎢1 + π       ⎥
             R ⎢⎣        Vr ⎥⎦
             12 ⎡        2 (12 ) ⎤
          =      ⎢1 + π          ⎥
            150 ⎢         0.3 ⎥
                 ⎣               ⎦
id , peak = 2.33 A

2.6
(a)
 vS ( max ) = 12 + 0.7 = 12.7 V
                vS ( max )
 vS ( rms ) =                ⇒ vS ( rms ) = 8.98 V
                         2
                     VM       V           12
(b)       Vr =           ⇒C = M =                    or C = 4444 μ F
                     fRC     fRVr ( 60 )(150 )( 0.3)
VM   ⎛        VM    ⎞ 12 ⎛           12 ⎞
(c)          For the half-wave rectifier iD , max =          ⎜ 1 + 4π
                                                             ⎜              ⎟=    ⎜ 1 + 4π
                                                                            ⎟ 150 ⎜                 ⎟ or
                                                         R   ⎝        2Vr   ⎠     ⎝        2 ( 0.3) ⎟
                                                                                                    ⎠
iD , max = 4.58 A

2.8
(a)
 vs ( peak ) = 15 + 2 ( 0.7 ) = 16.4 V
               16.4
  vs ( rms ) =       = 11.6 V
                 2
                    VM                 15
(b)         C=              =                   = 2857 μ F
                 2 f RVr 2 ( 60 )(125 )( 0.35 )

2.9
        ␯S
        26

       0.6
      Ϫ0.6

      Ϫ26



      25.4
 ϩ
␯O
         0

         0
 Ϫ
␯O
 Ϫ25.4


2.10
                    R

                    iD
                                            ϩ
␯S ϭ ϩ                                      VB ϭ 12 V
     Ϫ
                                            Ϫ




                              ␯S

                             iD
                                       ␻t
             x1              x2


vS ( t ) = 24sin ω t
                         T
                     1
Now iD ( avg ) =         iD ( t ) dt
                     T∫0

                                24sin x − 12.7
We have for x1 ≤ ω t ≤ x2 iD =
                                      R
To find x1 and x2, 24sin x1 = 12.7
x1 = 0.558 rad
x2 = π − 0.558 = 2.584 rad
Then
x2
                       1          ⎡ 24sin x − 12.7 ⎤
iD ( avg ) = 2 =               ∫⎢                  ⎥dx
                      2π        ⎣
                               x1         R        ⎦
   1 ⎛ 24 ⎞                 1 ⎛ 12.7 ⎞ x2          6.482 4.095
      ⎜ ⎟ ( − cos x ) x1 −                                     ⇒ R = 1.19Ω
                      x2
=                             ⎜      ⎟ ⋅ xx or 2 =      −
  2π ⎝ R ⎠                 2π ⎝ R ⎠ 1                R     R
                                            x −x           2.584 − 0.558
Fraction of time diode is conducting = 2 1 × 100% =                      × 100% or Fraction = 32.2%
                                             2π                 2π
Power rating
                                                 x                2
                                    R 2 ⎡ 24sin x − 12.7 ⎤
                           T
                       R 2
                         ∫ iD dt = 2π x∫ ⎢
            2
Pavg = R ⋅ irms =                                        ⎥ dx
                       T 0             1
                                         ⎣      R        ⎦
                 x2
            1     ⎡( 24 )          sin 2 x − 2 (12.7 )( 24 ) sin x + (12.7 ) ⎤dx
           2π R ∫ ⎣
                               2                                            2
       =
                                                                              ⎦
                 x1
                                                     x

                  ( 24 ) ⎡ −
            1 ⎡         2 x  sin 2 x ⎤ 2                            x2
                                     ⎥ − 2 (12.7 )( 24 )( − cos x ) x1 + (12.7 ) xx1 ⎦
                                                                                2 x2
       =                 ⎢2                                                          ⎤
           2π R ⎣        ⎣      4 ⎦x                 1

For R = 1.19 Ω, then Pavg = 17.9 W

2.11
(a)
             15
            R=    = 150Ω
             0.1
vS ( max ) = vo ( max ) + Vγ = 15 + 0.7 or vS ( max ) = 15.7 V
                           15.7
Then vS ( rms ) =                    = 11.1 V
                               2
           N1 120    N
Now           =     ⇒ 1 = 10.8
           N 2 11.1  N2
                       VM         VM             15
(b)          Vr =           ⇒C =       =                      or C = 2083 μ F
                      2 fRC      2 fRVr 2 ( 60 )(150 )( 0.4 )
(c)          PIV = 2vS ( max ) − Vγ = 2 (15.7 ) − 0.7 or PIV = 30.7 V

2.12
                                            ␯0
                D2
␯i    ϩ
      Ϫ                         R2        RL




                                R1



                                       ␯0

␯i    ϩ
      Ϫ                              RL
                      R2

                                     R1


For vi > 0
Vγ = 0
Voltage across RL + R1 = vi
                       ⎛ RL ⎞          1
Voltage Divider ⇒ v0 = ⎜         ⎟ vi = vi
                       ⎝ RL + R1 ⎠     2
␯0


20




2.13
For vi > 0, (Vγ = 0 )


                                   R1
␯i    ϩ
      Ϫ                                       ␯0
                         R2                  RL



a.
           ⎛ R2 || RL ⎞
      v0 = ⎜               ⎟ vi
           ⎝ R2 || RL + R1 ⎠
R2 || RL = 2.2 || 6.8 = 1.66 kΩ
               ⎛ 1.66 ⎞
          v0 = ⎜            ⎟ vi = 0.43 vi
               ⎝ 1.66 + 2.2 ⎠
␯0
4.3


                              v0 ( max )
b.            v0 ( rms ) =                         ⇒ v0 ( rms ) = 3.04 V
                                         2

2.14
      3.9
 IL =     ⇒ I 2 = 0.975 mA
       4
      20 − 3.9
IR =           = 1.3417 mA
         12
I Z = 1.3417 − 0.975 ⇒ I Z = 0.367 mA
PT = I Z ⋅ VZ = ( 0.367 )( 3.9 ) ⇒ PT = 1.43 mW

2.15
(a)
     40 − 12
IZ =         = 0.233 A
        120
 P = ( 0.233)(12 ) = 2.8 W
(b)     IR = 0.233 A, IL = (0.9)(0.233) = 0.21 A
          12
So 0.21 =    ⇒ RL = 57.1Ω
          RL
(c)           P = ( 0.1)( 0.233)(12 ) ⇒ P = 0.28 W

2.16
               Ri
VI                                                 V0
        II                    ϩ
                              VZ                  RL
                              Ϫ
                    IZ                  IL


VI = 6.3 V, Ri = 12Ω, VZ = 4.8
a.
      6.3 − 4.8
II =              ⇒ 125 mA
          12
I L = I I − I Z = 125 − I Z
25 ≤ I L ≤ 120 mA ⇒ 40 ≤ RL ≤ 192Ω
b.
PZ = I Z VZ = (100 )( 4.8 ) ⇒ PZ = 480 mW
PL = I LV0 = (120 )( 4.8 ) ⇒ PL = 576 mW

2.17
a.
      20 − 10
II =            ⇒ I I = 45.0 mA
         222
       10
IL =        ⇒ I L = 26.3 mA
      380
I Z = I I − I L ⇒ I Z = 18.7 mA
b.
                                                 400
      PZ ( max ) = 400 mW ⇒ I Z ( max ) =            = 40 mA
                                                 10
⇒ I L ( min ) = I I − I Z ( max ) = 45 − 40
                           10
⇒ I L ( min ) = 5 mA =
                           RL
⇒ RL = 2 kΩ
(c)        For Ri = 175Ω I I = 57.1 mA            I L = 26.3 mA   I Z = 30.8 mA
I Z ( max ) = 40 mA ⇒ I L ( min ) = 57.1 − 40 = 17.1 mA
                 10
         RL =        ⇒ RL = 585Ω
                17.1

2.18
a.        From Eq. (2-31)
              500 [ 20 − 10] − 50 [15 − 10]
I Z ( max ) =
              15 − ( 0.9 )(10 ) − ( 0.1)( 20 )
              5000 − 250
            =
                   4
I Z ( max ) = 1.1875 A
I Z ( min ) = 0.11875 A
                                20 − 10
From Eq. (2-29(b)) Ri =                   ⇒ Ri = 8.08Ω
                              1187.5 + 50
b.
PZ = (1.1875 )(10 ) ⇒ PZ = 11.9 W
PL = I L ( max ) V0 = ( 0.5 )(10 ) ⇒ PL = 5 W

2.19
(a)        As approximation, assume I Z ( max ) and I Z ( min ) are the same as in problem 2.18.
V0 ( max ) = V0 ( nom ) + I Z ( max ) rZ
           = 10 + (1.1875)(2) = 12.375 V
V0 ( min ) = V0 ( nom ) + I Z ( min ) rZ
            = 10 + (0.11875)(2) = 10.2375 V
12.375 − 10.2375
b.            % Reg =                      × 100% ⇒ % Reg = 21.4%
                                 10

2.20
              VL ( max ) − VL ( min )
% Reg =                                 × 100%
                      VL ( nom )
              VL ( nom ) + I Z ( max ) rz − (VL ( nom ) + I Z ( min ) rz )
          =
                                      VL ( nom )
           ⎡ I Z ( max ) − I Z ( min ) ⎤ ( 3)
         =⎣                            ⎦      = 0.05
                          6
So I Z ( max ) − I Z ( min ) = 0.1 A
                           6                             6
Now I L ( max ) =             = 0.012 A, I L ( min ) =      = 0.006 A
                         500                           1000
                     VPS ( min ) − VZ
Now Ri =
               I Z ( min ) + I L ( max )
                     15 − 6
or 280 =                          ⇒ I Z ( min ) = 0.020 A
              I Z ( min ) + 0.012
                                                                VPS ( max ) − VZ
Then I Z ( max ) = 0.1 + 0.02 = 0.12 A and Ri =
                                                             I Z ( max ) + I L ( min )
              VPS ( max ) − 6
or 280 =                         ⇒ VPS ( max ) = 41.3 V
              0.12 + 0.006

2.21
Using Figure 2.21
a.      VPS = 20 ± 25% ⇒ 15 ≤ VPS ≤ 25 V
For VPS ( min ) :
I I = I Z ( min ) + I L ( max ) = 5 + 20 = 25 mA
       VPS ( min ) − VZ         15 − 10
Ri =                        =           ⇒ Ri = 200Ω
                II                25
                                                   25 − 10
b.         For VPS ( max ) ⇒ I I ( max ) =                 ⇒ I I ( max ) = 75 mA
                                                     Ri
For I L ( min ) = 0 ⇒ I Z ( max ) = 75 mA
VZ 0 = VZ − I Z rZ = 10 − ( 0.025 )( 5 ) = 9.875 V
V0 ( max ) = 9.875 + ( 0.075 )( 5 ) = 10.25
V0 ( min ) = 9.875 + ( 0.005 )( 5 ) = 9.90
ΔV0 = 0.35 V
                             ΔV0
c.            % Reg =                × 100% ⇒ % Reg = 3.5%
                          V0 ( nom )

2.22
From Equation (2.29(a))
         VPS ( min ) − VZ       24 − 16
Ri =                          =         or Ri = 18.2Ω
     I Z ( min ) + I L ( max ) 40 + 400
                VM         VM
Also Vr =            ⇒C =
               2 fRC      2 fRVr
        R ≅ Ri + rz = 18.2 + 2 = 20.2Ω
Then
24
C=                          ⇒ C = 9901 μ F
        2 ( 60 )(1)( 20.2 )

2.23
VZ = VZ 0 + I Z rZ VZ ( nom ) = 8 V
  8 = VZ 0 + ( 0.1)( 0.5 ) ⇒ VZ 0 = 7.95 V
        VS ( max ) − VZ ( nom )       12 − 8
 Ii =                             =          = 1.333 A
                   Ri                   3
For I L = 0.2 A ⇒ I Z = 1.133 A
For I L = 1 A ⇒ I Z = 0.333 A
VL ( max ) = VZ 0 + I Z ( max ) rZ
             = 7.95 + (1.133)( 0.5 ) = 8.5165
VL ( min ) = VZ 0 + I Z ( min ) rZ
             = 7.95 + ( 0.333)( 0.5 ) = 8.1165
    ΔVL = 0.4 V
             ΔVL       0.4
  % Reg =            =     ⇒ % Reg = 5.0%
          V0 ( nom )    8
                  VM         VM
          Vr =         ⇒C =
                 2 fRC      2 fRVr
          R = Ri + rz = 3 + 0.5 = 3.5Ω
                       12
Then C =                             ⇒ C = 0.0357 F
              2 ( 60 )( 3.5 )( 0.8 )

2.24
(a)      For −10 ≤ vI ≤ 0, both diodes are conducting ⇒ vO = 0
For 0 ≤ vI ≤ 3, Zener not in breakdown, so i1 = 0, vO = 0
                  vI − 3
For vI > 3 i1 =          mA
                    20
                  ⎛ v −3⎞          1
             vo = ⎜ I     ⎟ (10 ) = vI − 1.5
                  ⎝   20 ⎠         2
At vI = 10 V, vo = 3.5 V, i1 = 0.35 mA
                              ␯O(V)
                                    4
                                  3.5




Ϫ10                                           3.0        10   ␯I(V)




(b)         For vI < 0, both diodes forward biased
      0 − vI
−i1 =        . At vI = −10 V , i1 = −1 mA
       10
                 v −3
For vI > 3, i1 = I     . At vI = 10 V , i1 = 0.35 mA
                  20
i1(mA)


                                    0.35


Ϫ10                                              3                 10 ␯I(V)



                                           Ϫ1


2.25
(a)
               1K
␯I                       ␯0



               1K              2K
                                           ϩ15
                    V1

     1
V1 = × 15 = 5 V ⇒ for vI ≤ 5.7, v0 = vI
     3
For vI > 5.7 V
vI − (V1 + 0.7 ) 15 − V1 V1
                 +          = , v0 = V1 + 0.7
        1              2      1
vI − v0    15 − ( v0 − 0.7 ) v0 − 0.7
         +                  =
   1               2             1
vI 15.7 0.7             ⎛ 1 1 1⎞
   +        +      = v0 ⎜ + + ⎟ = v0 ( 2.5 )
 1      2      1        ⎝ 1 2 1⎠
                                1
vI + 8.55 = v0 ( 2.5 ) ⇒ v0 =      vI + 3.42
                               2.5
vI = 5.7 ⇒ v0 = 5.7
vI = 15 ⇒ v0 = 9.42
␯0(V)
 9.42




     5.7




           0             5.7                         15   ␯I (V)
(b)      iD = 0 for 0 ≤ vI ≤ 5.7
Then for vI > 5.7 V
                    ⎛ v        ⎞
               vI − ⎜ I + 3.42 ⎟
     vI − vO        ⎝ 2.5      ⎠ or i = 0.6vI − 3.42 For v = 15, i = 5.58 mA
iD =         =                       D                    I       D
        1               1                     1
iD(mA)

  5.58




                       5.7                              15   ␯I (V)


2.26
                         ⎛ 20 ⎞
(a)      For D off, vo = ⎜ ⎟ (20) − 10 = 3.33 V
                         ⎝ 30 ⎠
Then for vI ≤ 3.33 + 0.7 = 4.03 V ⇒ vo = 3.33 V
For vI > 4.03, vo = vl − 0.7;
For vI = 10, vo = 9.3
                             ␯O(V)
                               9.3




                                         3.33




                                     0           4.03            10 ␯I (V)
(b)      For vI ≤ 4.03 V , iD = 0
                    10 − vo vo − ( −10 )
For vI > 4.03, iD +         =
                      10          20
                    3
Which yields iD =      vI − 0.605
                   20
For vI = 10, iD = 0.895 mA
                        iD(mA)
                             0.895




                                     0          4.03              10 ␯I(V)


2.27
          ␯O


         12.5
         10.7
Ϫ30
                10.7     30      ␯I


                Ϫ30

                      30 − 10.7
For vI = 30 V, i =              = 0.175 A
                      100 + 10
v0 = i(10) + 10.7 = 12.5 V
b.
 ␯O

12.5
10.7
  0



Ϫ30


2.28
          ϩ 5Ϫ
␯I                    ␯O

                 R ϭ 6.8 K


Vγ = 0.6 V
vI = 15sin ω t
         ␯O
                 ␯O


 Ϫ4.4

Ϫ19.4


2.29
a.
Vγ = 0

     0
Ϫ3 V

Vγ = 0.6

     0
Ϫ2.4

b.
Vγ = 0

20



 5

Vγ = 0.6

19.4



     5



2.30
10
     6.7

       0
Ϫ4.7

Ϫ10


2.31
One possible example is shown.
                  Ri         D          L


                 Ii
      ϩ                     ϩ               ϩ
      Ϫ                     VZ ϭ 14 V       Ϫ            RADIO
                       DZ   Ϫ
Vign                                            VRADIO


L will tend to block the transient signals
Dz will limit the voltage to +14 V and −0.7 V.
Power ratings depends on number of pulses per second and duration of pulse.

2.32
       ␯O(V)

           40


(a)         0


       ␯O(V)

           35


            0
(b)        Ϫ5


2.33
                 C
␯I                               ␯O



                            ϩ
                            Vx
                            Ϫ

a.               For Vγ = 0 ⇒ Vx = 2.7 V
b.               For Vγ = 0.7 V ⇒ Vx = 2.0 V

2.34
            C

ϩ                           ϩ


␯I               Ϫ          ␯O
                10 V
                 ϩ
Ϫ                           Ϫ



2.35
20
                                     ␯O
 10

     0                                                     VB ϭ 0
                               ␯I
Ϫ10



 20                             ␯O
 13
 10
     3
     0                                                     VB ϭ ϩ3 V
 Ϫ7                           ␯I ϩ VB



 20
                               ␯O
 10
  7
  0                                                        VB ϭ Ϫ3 V
 Ϫ3
                               ␯ I ϩ VB
Ϫ13

2.36
For Figure P2.32(a)

 10
                     ␯I
     0

Ϫ10                ␯O

Ϫ20


2.37
a.
      10 − 0.6
I D1 =             ⇒ I D1 = 0.94 mA        ID2 = 0
      9.5 + 0.5
 V0 = I D1 ( 9.5 ) ⇒ V0 = 8.93 V
b.
        5 − 0.6
I D1 =             ⇒ I D1 = 0.44 mA        ID2 = 0
      9.5 + 0.5
 V0 = I D1 ( 9.5 ) ⇒ V0 = 4.18 V
c.            Same as (a)
d.
         (I )
 10 =           ( 0.5 ) + 0.6 + I ( 9.5 ) ⇒ I = 0.964 mA
          2
 V0 = I ( 9.5 ) ⇒ V0 = 9.16 V
                  I
I D1 = I D 2 =      ⇒ I D1 = I D 2 = 0.482 mA
                  2

2.38
a.              I = I D1 = I D 2 = 0 V0 = 10
b.
10 = I ( 9.5 ) + 0.6 + I ( 0.5 ) ⇒ I = I D 2 = 0.94 mA       I D1 = 0
V0 = 10 − I ( 9.5 ) ⇒ V0 = 1.07 V
c.
10 = I ( 9.5 ) + 0.6 + I ( 0.5 ) + 5 ⇒ I = I D 2 = 0.44 mA        I D1 = 0
V0 = 10 − I ( 9.5 ) ⇒ V0 = 5.82 V
d.
                          I
 10 = I ( 9.5 ) + 0.6 +     ( 0.5) ⇒ I = 0.964 mA
                          2
             I
I D1 = I D 2 =  ⇒ I D1 = I D 2 = 0.482 mA
             2
 V0 = 10 − I ( 9.5 ) ⇒ V0 = 0.842 V

2.39
a.
  V1 = V2 = 0 ⇒ D1 , D2 , D3 , on V0 = 4.4 V
         10 − 4.4
     I=              ⇒ I = 0.589 mA
            9.5
                 4.4 − 0.6
I D1   = ID2 =              ⇒ I D1 = I D 2 = 7.6 mA
                      0.5
I D3   = I D1 + I D 2 − I = 2 ( 7.6 ) − 0.589 ⇒ I D 3 = 14.6 mA
b.
  V1 = V2 = 5 V D1 and D2 on, D3 off
                        I
 10 = I ( 9.5 ) + 0.6 + ( 0.5 ) + 5 ⇒ I = 0.451 mA
                        2
               I
I D1 = I D 2 = ⇒ I D1 = I D 2 = 0.226 mA
              2
                   I D3 = 0
 V0 = 10 − I ( 9.5 ) = 10 − ( 0.451)( 9.5 ) ⇒ V0 = 5.72 V
c.          V1 = 5 V, V2 = 0 D1 off, D2, D3 on V0 = 4.4 V
         10 − 4.4
     I=           ⇒                  I = 0.589 mA
           9.5
         4.4 − 0.6
I D2   =           ⇒                 I D 2 = 7.6 mA
            0.5
                                     I D1 = 0
I D 3 = I D 2 − I = 7.6 − 0.589 ⇒ I D 3 = 7.01 mA
d.          V1 = 5 V, V2 = 2 V D1 off, D2, D3 on V0 = 4.4 V
         10 − 4.4
     I=            ⇒                 I = 0.589 mA
            9.5
         4.4 − 0.6 − 2
I D2   =               ⇒             I D 2 = 3.6 mA
              0.5
                                     I D1 = 0
I D 3 = I D 2 − I = 3.6 − 0.589 ⇒ I D 3 = 3.01 mA

2.40
(a)       D1 on, D2 off, D3 on
So I D 2 = 0
                             10 − 0.6 − ( −0.6 )        10
Now V2 = −0.6V , I D1 =                            =       ⇒ I D1 = 1.25 mA
                                  R1 + R2              2+6
V1 = 10 − 0.6 − (1.25 )( 2 ) ⇒ V1 = 6.9 V
         −0.6 − ( −5 )
I R3 =                   = 2.2 mA
                 2
I D3   = I R 3 − I D1 = 2.2 − 1.25 ⇒ I D 3 = 0.95 mA
(b)       D1 on, D2 on, D3 off
So I D 3 = 0
                            10 − 0.6 − 4.4 5
V1 = 4.4 V , I D1 =                       =
                                  R1        6
or I D1 = 0.833 mA
         4.4 − ( −5 )       9.4
I R2 =                  =       = 0.94 mA
           R2 + R3          10
I D 2 = I R 2 − I D1 = 0.94 − 0.833 ⇒ I D 2 = 0.107 mA
 V2 = I R 2 R3 − 5 = ( 0.94 )( 5 ) − 5 ⇒ V2 = −0.3 V
(c)           All diodes are on V1 = 4.4V , V2 = −0.6 V
                     10 − 0.6 − 4.4
 I D1 = 0.5 mA =                    ⇒ R1 = 10 k Ω
                           R1
                                 4.4 − ( −0.6 )
I R 2 = 0.5 + 0.5 = 1 mA =                        ⇒ R2 = 5 k Ω
                                      R2
                     −0.6 − ( −5 )
I R 3 = 1.5 mA =                     ⇒ R3 = 2.93 k Ω
                            R3

2.41
                                   ⎛ 0.5 ⎞
For vI small, both diodes off vO = ⎜         ⎟ vI = 0.0909vI
                                   ⎝ 0.5 + 5 ⎠
When vI − vO = 0.6, D1 turns on. So we have vI − 0.0909vI = 0.6 ⇒ vI = 0.66, vO = 0.06
          vI − 0.6 − vO vI − vO vO                          2v − 0.6
For D1 on               +          =     which yields vO = I
                5             5      0.5                       12
                                           2vI − 0.6
When vO = 0.6, D2 turns on. Then 0.6 =               ⇒ vI = 3.9 V
                                              12
                   v − 0.6 − vO vI − vO vO vO − 0.6
Now for vI > 3.9 I               +         =     +
                         5            5      0.5     0.5
                    2vI + 5.4
Which yields vO =             ; For vI = 10 ⇒ vO = 1.15 V
                       22

2.42
               ϩ10 V


                     10 K


         D1                 D2

␯I                                      ␯0

          D3                D4       10 K



                     10 K


               Ϫ10 V
For vI > 0. when D1 and D4 turn off
     10 − 0.7
 I=           = 0.465 mA
        20
v0 = I (10 kΩ ) = 4.65 V
                         ␯0

                    4.65

Ϫ10        Ϫ4.65
                                   4.65        10   ␯I

                              Ϫ4.65


v0 = vI for − 4.65 ≤ vI ≤ 4.65

2.43
a.
                  R1           D2
ϩ10 V                                       V0

                              D1
                                          R2
                   ID1


                                    Ϫ10 V
R1 = 5 kΩ, R2 = 10 kΩ
D1 and D2 on ⇒ V0 = 0
         10 − 0.7 0 − ( −10 )
I D1 =           −            = 1.86 − 1.0
            5         10
I D1   = 0.86 mA
b.
R1 = 10 kΩ, R2 = 5 kΩ, D1 off, D2 on I D1 = 0
        10 − 0.7 − ( −10 )
 I=                  = 1.287
            15
V0 = IR2 − 10 ⇒ V0 = −3.57 V

2.44
If both diodes on
(a)
      VA = −0.7 V, VO = −1.4 V
                  10 − ( −0.7 )
         I R1 =                = 1.07 mA
                       10
                 −1.4 − ( −15 )
         IR2   =                 = 2.72 mA
                        5
I R1 + I D1    = I R 2 ⇒ I D1 = 2.72 − 1.07
      I D1 = 1.65 mA
(b)         D1 off, D2 on
               10 − 0.7 − ( −15 )
I R1 = I R 2 =                    = 1.62 mA
                    5 + 10
VO = I R 2 R2 − 15 = (1.62 )(10 ) − 15 ⇒ VO = 1.2 V
VA = 1.2 + 0.7 = 1.9 V ⇒ D1 off ,
I D1 = 0

2.45
(a)        D1 on, D2 off
        10 − 0.7
 I D1 =          = 0.93 mA
          10
 VO = −15 V
(b)        D1 on, D2 off
        10 − 0.7
 I D1 =          = 1.86 mA
           5
 VO = −15 V

2.46
15 − (V0 + 0.7 )
               V0 + 0.7 V0
                   =   +
      10           20     20
15 0.7 0.7        ⎛  1  1    1 ⎞    ⎛ 4.0 ⎞
   −     −   = V0 ⎜ +      + ⎟ = V0 ⎜     ⎟
10 10 20          ⎝ 10 20 20 ⎠      ⎝ 20 ⎠
V0 = 6.975 V
       V0
ID =      ⇒ I D = 0.349 mA
       20

2.47
       10 K            Ϫ VD ϩ                  10 K
                Va                 Vb
V1                                                    V2

                              ID
                       10 K             10 K



a.      V1 = 15 V, V2 = 10 V Diode off
Va = 7.5 V, Vb = 5 V ⇒ VD = −2.5 V
                                   ID = 0
b.        V1 = 10 V, V2 = 15 V Diode on
 V2 − Vb Vb Va Va − V1
        = + +               ⇒ Va = Vb − 0.6
   10      10 10       10
15 10         ⎛1 1⎞        ⎛1 1⎞           ⎛ 1 1⎞
   + = Vb ⎜ + ⎟ + Vb ⎜ + ⎟ − 0.6 ⎜ + ⎟
10 10         ⎝ 10 10 ⎠    ⎝ 10 10 ⎠       ⎝ 10 10 ⎠
          ⎛ 4⎞
2.62 = Vb ⎜ ⎟ ⇒ Vb = 6.55 V
          ⎝ 10 ⎠
     15 − 6.55 6.55
ID =             −    ⇒ I D = 0.19 mA
        10         10
                        VD = 0.6 V

2.48      vI = 0, D1 off, D2 on
     10 − 2.5
 I=            = 0.5 mA
        15
vo = 10 − ( 0.5 )( 5 ) ⇒ vo = 7.5 V for 0 ≤ vI ≤ 7.5 V
For vI > 7.5 V , Both D1 and D2 on
vI − vo vo − 2.5 vo − 10
        =            +         or vI = vo ( 5.5 ) − 33.75
  15          10          5
When vo = 10 V, D2 turns off
vI = (10 )( 5.5 ) − 33.75 = 21.25 V
For vI > 21.25 V, vo = 10 V
2.49
a.        V01 = V02 = 0
b.        V01 = 4.4 V, V02 = 3.8 V
c.        V01 = 4.4 V, V02 = 3.8 V
Logic “1” level degrades as it goes through additional logic gates.

2.50
a.        V01 = V02 = 5 V
b.        V01 = 0.6 V, V02 = 1.2 V
c.        V01 = 0.6 V, V02 = 1.2 V
Logic “0” signal degrades as it goes through additional logic gates.

2.51
(V1 AND V2 ) OR (V3 AND V4 )
2.52
    10 − 1.5 − 0.2
I=                 = 12 mA = 0.012
       R + 10
           8.3
R + 10 =         = 691.7Ω
          0.012
R = 681.7Ω

2.53
     10 − 1.7 − VI
 I=                  =8
         0.75
VI = 10 − 1.7 − 8 ( 0.75 ) ⇒ VI = 2.3 V

2.54
         ϩ VR Ϫ

 ϩ
VPS                    Rϭ 2 K
 Ϫ

 VR = 1 V, I = 0.8 mA
VPS = 1 + ( 0.8 )( 2 )
VPS = 2.6 V

2.55
I Ph = η eΦA
0.6 × 10−3 = (1) (1.6 × 10−19 )(1017 ) A
A = 3.75 × 10−2 cm 2

More Related Content

What's hot

51549 0131469657 ism-8
51549 0131469657 ism-851549 0131469657 ism-8
51549 0131469657 ism-8Carlos Fuentes
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13Carlos Fuentes
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15Carlos Fuentes
 
ゲーム理論NEXT 線形計画問題第5回 -双対定理証明-
ゲーム理論NEXT 線形計画問題第5回 -双対定理証明-ゲーム理論NEXT 線形計画問題第5回 -双対定理証明-
ゲーム理論NEXT 線形計画問題第5回 -双対定理証明-
ssusere0a682
 
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2Breno Costa
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
cideni
 
2007
20072007
Calculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manualCalculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manual
Reece1334
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
HelpWithAssignment.com
 
23 industrial engineering
23 industrial engineering23 industrial engineering
23 industrial engineeringmloeb825
 
Final Exam Review (Integration)
Final Exam Review (Integration)Final Exam Review (Integration)
Final Exam Review (Integration)
Matthew Leingang
 
Theory of elasticity and plasticity (Equations sheet, Part 3) Att 9035
Theory of elasticity and plasticity (Equations sheet, Part 3) Att 9035Theory of elasticity and plasticity (Equations sheet, Part 3) Att 9035
Theory of elasticity and plasticity (Equations sheet, Part 3) Att 9035
Shekh Muhsen Uddin Ahmed
 
近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定
Kosei ABE
 
Introduction to Neural Networks and Deep Learning from Scratch
Introduction to Neural Networks and Deep Learning from ScratchIntroduction to Neural Networks and Deep Learning from Scratch
Introduction to Neural Networks and Deep Learning from Scratch
Ahmed BESBES
 
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan
brandwin marcelo lavado
 
09 - Program verification
09 - Program verification09 - Program verification
09 - Program verificationTudor Girba
 

What's hot (20)

51549 0131469657 ism-8
51549 0131469657 ism-851549 0131469657 ism-8
51549 0131469657 ism-8
 
Ch04s
Ch04sCh04s
Ch04s
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15
 
ゲーム理論NEXT 線形計画問題第5回 -双対定理証明-
ゲーム理論NEXT 線形計画問題第5回 -双対定理証明-ゲーム理論NEXT 線形計画問題第5回 -双対定理証明-
ゲーム理論NEXT 線形計画問題第5回 -双対定理証明-
 
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 
2007
20072007
2007
 
Calculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manualCalculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manual
 
Lecture6 svdd
Lecture6 svddLecture6 svdd
Lecture6 svdd
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Sect2 3
Sect2 3Sect2 3
Sect2 3
 
Ch10p
Ch10pCh10p
Ch10p
 
23 industrial engineering
23 industrial engineering23 industrial engineering
23 industrial engineering
 
Final Exam Review (Integration)
Final Exam Review (Integration)Final Exam Review (Integration)
Final Exam Review (Integration)
 
Theory of elasticity and plasticity (Equations sheet, Part 3) Att 9035
Theory of elasticity and plasticity (Equations sheet, Part 3) Att 9035Theory of elasticity and plasticity (Equations sheet, Part 3) Att 9035
Theory of elasticity and plasticity (Equations sheet, Part 3) Att 9035
 
近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定
 
Introduction to Neural Networks and Deep Learning from Scratch
Introduction to Neural Networks and Deep Learning from ScratchIntroduction to Neural Networks and Deep Learning from Scratch
Introduction to Neural Networks and Deep Learning from Scratch
 
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan
 
09 - Program verification
09 - Program verification09 - Program verification
09 - Program verification
 

Viewers also liked

Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
Bilal Sarwar
 
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Ontico
 
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Ontico
 
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Ontico
 
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Ontico
 

Viewers also liked (17)

Ch09s
Ch09sCh09s
Ch09s
 
Ch04p
Ch04pCh04p
Ch04p
 
Ch12p
Ch12pCh12p
Ch12p
 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
 
Ch08s
Ch08sCh08s
Ch08s
 
Ch11p
Ch11pCh11p
Ch11p
 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
 
Ch05p
Ch05pCh05p
Ch05p
 
Ch06s
Ch06sCh06s
Ch06s
 
Ch15p
Ch15pCh15p
Ch15p
 
Ch16s
Ch16sCh16s
Ch16s
 
Ch10s
Ch10sCh10s
Ch10s
 
Ch14p
Ch14pCh14p
Ch14p
 
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
 
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
 
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
 
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
 

Similar to Ch02s

Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
alexkhan129
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
NiccoloAaronMendozaA
 
LP Graphical Solution
LP Graphical SolutionLP Graphical Solution
LP Graphical Solution
unemployedmba
 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
nodyligomi
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Pamelaew
 
William hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solution
Salman Salman
 
Gr 11 equations
Gr 11   equationsGr 11   equations
Gr 11 equations
Renate Rohrs
 
Jacobi and gauss-seidel
Jacobi and gauss-seidelJacobi and gauss-seidel
Jacobi and gauss-seidel
arunsmm
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma edición
Sohar Carr
 
Chapter 04 drill_solution
Chapter 04 drill_solutionChapter 04 drill_solution
Chapter 04 drill_solution
khalil ur rehman marwat
 
งานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เคงานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เคkrookay2012
 
Ism et chapter_12
Ism et chapter_12Ism et chapter_12
Ism et chapter_12
Drradz Maths
 

Similar to Ch02s (20)

Ch11s
Ch11sCh11s
Ch11s
 
Shell theory
Shell theoryShell theory
Shell theory
 
Ch03s
Ch03sCh03s
Ch03s
 
Ch16p
Ch16pCh16p
Ch16p
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Sect1 6
Sect1 6Sect1 6
Sect1 6
 
Sol Purcell Ingles
Sol Purcell InglesSol Purcell Ingles
Sol Purcell Ingles
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
LP Graphical Solution
LP Graphical SolutionLP Graphical Solution
LP Graphical Solution
 
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions ManualCalculus Early Transcendentals 10th Edition Anton Solutions Manual
Calculus Early Transcendentals 10th Edition Anton Solutions Manual
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
 
William hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solution
 
Gr 11 equations
Gr 11   equationsGr 11   equations
Gr 11 equations
 
Jacobi and gauss-seidel
Jacobi and gauss-seidelJacobi and gauss-seidel
Jacobi and gauss-seidel
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma edición
 
Chapter 04 drill_solution
Chapter 04 drill_solutionChapter 04 drill_solution
Chapter 04 drill_solution
 
งานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เคงานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เค
 
Ch09p
Ch09pCh09p
Ch09p
 
Ism et chapter_12
Ism et chapter_12Ism et chapter_12
Ism et chapter_12
 

More from Bilal Sarwar

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
Bilal Sarwar
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
Bilal Sarwar
 

More from Bilal Sarwar (11)

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
 
Ramey soft
Ramey softRamey soft
Ramey soft
 
Ch14s
Ch14sCh14s
Ch14s
 
Ch13s
Ch13sCh13s
Ch13s
 
Ch13p
Ch13pCh13p
Ch13p
 
Ch12s
Ch12sCh12s
Ch12s
 
Ch07s
Ch07sCh07s
Ch07s
 
Ch07p
Ch07pCh07p
Ch07p
 
Ch06p
Ch06pCh06p
Ch06p
 
Ch05s
Ch05sCh05s
Ch05s
 

Recently uploaded

Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Product School
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
Jemma Hussein Allen
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Jeffrey Haguewood
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
DianaGray10
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
Dorra BARTAGUIZ
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 

Recently uploaded (20)

Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
The Future of Platform Engineering
The Future of Platform EngineeringThe Future of Platform Engineering
The Future of Platform Engineering
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 

Ch02s

  • 1. Chapter 2 Problem Solutions 2.1 ␯I ␯0 Rϭ1K ␯I 10 0 Ϫ10 Vγ = 0.6 V, rf = 20 Ω ⎛ R ⎞ ⎜ R + r ⎟( For vI = 10 V, v0 = ⎜ 10 − 0.6 ) ⎟ ⎝ f ⎠ ⎛ 1 ⎞ =⎜ ⎟ ( 9.4 ) ⎝ 1 + 0.02 ⎠ v0 = 9.22 10 0.6 ␯0 9.22 2.2 ϩ ␯D Ϫ ␯I ␯0 D R v0 = vI − vD ⎛i ⎞ v vD = VT ln ⎜ D ⎟ and iD = 0 ⎝ IS ⎠ R ⎛ v ⎞ v0 = vI − VT ln ⎜ 0 ⎟ ⎝ IS R ⎠ 2.3 80sin ω t (a) vs = = 13.33sin ω t 6 13.33 Peak diode current id (max) = R
  • 2. (b) PIV = vs (max) = 13.3 V (c) To π 1 1 vo ( avg ) = ∫ v (t )dt = 2π ∫ 13.33sin × dt o To o o 13.33 13.33 13.33 [ − cos x ]o = π = ⎡ − ( −1 − 1) ⎤ = ⎣ ⎦ 2π 2π π vo ( avg ) = 4.24 V (d) 50% 2.4 v0 = vS − 2Vγ ⇒ vS ( max ) = v0 ( max ) + 2Vγ a. For v0 ( max ) = 25 V ⇒ vS ( max ) = 25 + 2 ( 0.7 ) = 26.4 V N1 160 N = ⇒ 1 = 6.06 N 2 26.4 N2 b. For v0 ( max ) = 100 V ⇒ vS ( max ) = 101.4 V N1 160 N = ⇒ 1 = 1.58 N 2 101.4 N2 From part (a) PIV = 2vS ( max ) − Vγ = 2 ( 26.4 ) − 0.7 or PIV = 52.1 V or, from part (b) PIV = 2 (101.4 ) − 0.7 or PIV = 202.1 V 2.5 (a) vs (max) = 12 + 2(0.7) = 13.4 V 13.4 vs ( rms ) = ⇒ vs (rms) = 9.48 V 2 (b) VM VM Vr = ⇒C = 2 f RC 2 f Vr R 12 C= ⇒ C = 2222 μ F 2 ( 60 )( 0.3)(150 ) (c) VM ⎡ 2VM ⎤ id , peak = ⎢1 + π ⎥ R ⎢⎣ Vr ⎥⎦ 12 ⎡ 2 (12 ) ⎤ = ⎢1 + π ⎥ 150 ⎢ 0.3 ⎥ ⎣ ⎦ id , peak = 2.33 A 2.6 (a) vS ( max ) = 12 + 0.7 = 12.7 V vS ( max ) vS ( rms ) = ⇒ vS ( rms ) = 8.98 V 2 VM V 12 (b) Vr = ⇒C = M = or C = 4444 μ F fRC fRVr ( 60 )(150 )( 0.3)
  • 3. VM ⎛ VM ⎞ 12 ⎛ 12 ⎞ (c) For the half-wave rectifier iD , max = ⎜ 1 + 4π ⎜ ⎟= ⎜ 1 + 4π ⎟ 150 ⎜ ⎟ or R ⎝ 2Vr ⎠ ⎝ 2 ( 0.3) ⎟ ⎠ iD , max = 4.58 A 2.8 (a) vs ( peak ) = 15 + 2 ( 0.7 ) = 16.4 V 16.4 vs ( rms ) = = 11.6 V 2 VM 15 (b) C= = = 2857 μ F 2 f RVr 2 ( 60 )(125 )( 0.35 ) 2.9 ␯S 26 0.6 Ϫ0.6 Ϫ26 25.4 ϩ ␯O 0 0 Ϫ ␯O Ϫ25.4 2.10 R iD ϩ ␯S ϭ ϩ VB ϭ 12 V Ϫ Ϫ ␯S iD ␻t x1 x2 vS ( t ) = 24sin ω t T 1 Now iD ( avg ) = iD ( t ) dt T∫0 24sin x − 12.7 We have for x1 ≤ ω t ≤ x2 iD = R To find x1 and x2, 24sin x1 = 12.7 x1 = 0.558 rad x2 = π − 0.558 = 2.584 rad Then
  • 4. x2 1 ⎡ 24sin x − 12.7 ⎤ iD ( avg ) = 2 = ∫⎢ ⎥dx 2π ⎣ x1 R ⎦ 1 ⎛ 24 ⎞ 1 ⎛ 12.7 ⎞ x2 6.482 4.095 ⎜ ⎟ ( − cos x ) x1 − ⇒ R = 1.19Ω x2 = ⎜ ⎟ ⋅ xx or 2 = − 2π ⎝ R ⎠ 2π ⎝ R ⎠ 1 R R x −x 2.584 − 0.558 Fraction of time diode is conducting = 2 1 × 100% = × 100% or Fraction = 32.2% 2π 2π Power rating x 2 R 2 ⎡ 24sin x − 12.7 ⎤ T R 2 ∫ iD dt = 2π x∫ ⎢ 2 Pavg = R ⋅ irms = ⎥ dx T 0 1 ⎣ R ⎦ x2 1 ⎡( 24 ) sin 2 x − 2 (12.7 )( 24 ) sin x + (12.7 ) ⎤dx 2π R ∫ ⎣ 2 2 = ⎦ x1 x ( 24 ) ⎡ − 1 ⎡ 2 x sin 2 x ⎤ 2 x2 ⎥ − 2 (12.7 )( 24 )( − cos x ) x1 + (12.7 ) xx1 ⎦ 2 x2 = ⎢2 ⎤ 2π R ⎣ ⎣ 4 ⎦x 1 For R = 1.19 Ω, then Pavg = 17.9 W 2.11 (a) 15 R= = 150Ω 0.1 vS ( max ) = vo ( max ) + Vγ = 15 + 0.7 or vS ( max ) = 15.7 V 15.7 Then vS ( rms ) = = 11.1 V 2 N1 120 N Now = ⇒ 1 = 10.8 N 2 11.1 N2 VM VM 15 (b) Vr = ⇒C = = or C = 2083 μ F 2 fRC 2 fRVr 2 ( 60 )(150 )( 0.4 ) (c) PIV = 2vS ( max ) − Vγ = 2 (15.7 ) − 0.7 or PIV = 30.7 V 2.12 ␯0 D2 ␯i ϩ Ϫ R2 RL R1 ␯0 ␯i ϩ Ϫ RL R2 R1 For vi > 0 Vγ = 0 Voltage across RL + R1 = vi ⎛ RL ⎞ 1 Voltage Divider ⇒ v0 = ⎜ ⎟ vi = vi ⎝ RL + R1 ⎠ 2
  • 5. ␯0 20 2.13 For vi > 0, (Vγ = 0 ) R1 ␯i ϩ Ϫ ␯0 R2 RL a. ⎛ R2 || RL ⎞ v0 = ⎜ ⎟ vi ⎝ R2 || RL + R1 ⎠ R2 || RL = 2.2 || 6.8 = 1.66 kΩ ⎛ 1.66 ⎞ v0 = ⎜ ⎟ vi = 0.43 vi ⎝ 1.66 + 2.2 ⎠ ␯0 4.3 v0 ( max ) b. v0 ( rms ) = ⇒ v0 ( rms ) = 3.04 V 2 2.14 3.9 IL = ⇒ I 2 = 0.975 mA 4 20 − 3.9 IR = = 1.3417 mA 12 I Z = 1.3417 − 0.975 ⇒ I Z = 0.367 mA PT = I Z ⋅ VZ = ( 0.367 )( 3.9 ) ⇒ PT = 1.43 mW 2.15 (a) 40 − 12 IZ = = 0.233 A 120 P = ( 0.233)(12 ) = 2.8 W (b) IR = 0.233 A, IL = (0.9)(0.233) = 0.21 A 12 So 0.21 = ⇒ RL = 57.1Ω RL (c) P = ( 0.1)( 0.233)(12 ) ⇒ P = 0.28 W 2.16 Ri VI V0 II ϩ VZ RL Ϫ IZ IL VI = 6.3 V, Ri = 12Ω, VZ = 4.8
  • 6. a. 6.3 − 4.8 II = ⇒ 125 mA 12 I L = I I − I Z = 125 − I Z 25 ≤ I L ≤ 120 mA ⇒ 40 ≤ RL ≤ 192Ω b. PZ = I Z VZ = (100 )( 4.8 ) ⇒ PZ = 480 mW PL = I LV0 = (120 )( 4.8 ) ⇒ PL = 576 mW 2.17 a. 20 − 10 II = ⇒ I I = 45.0 mA 222 10 IL = ⇒ I L = 26.3 mA 380 I Z = I I − I L ⇒ I Z = 18.7 mA b. 400 PZ ( max ) = 400 mW ⇒ I Z ( max ) = = 40 mA 10 ⇒ I L ( min ) = I I − I Z ( max ) = 45 − 40 10 ⇒ I L ( min ) = 5 mA = RL ⇒ RL = 2 kΩ (c) For Ri = 175Ω I I = 57.1 mA I L = 26.3 mA I Z = 30.8 mA I Z ( max ) = 40 mA ⇒ I L ( min ) = 57.1 − 40 = 17.1 mA 10 RL = ⇒ RL = 585Ω 17.1 2.18 a. From Eq. (2-31) 500 [ 20 − 10] − 50 [15 − 10] I Z ( max ) = 15 − ( 0.9 )(10 ) − ( 0.1)( 20 ) 5000 − 250 = 4 I Z ( max ) = 1.1875 A I Z ( min ) = 0.11875 A 20 − 10 From Eq. (2-29(b)) Ri = ⇒ Ri = 8.08Ω 1187.5 + 50 b. PZ = (1.1875 )(10 ) ⇒ PZ = 11.9 W PL = I L ( max ) V0 = ( 0.5 )(10 ) ⇒ PL = 5 W 2.19 (a) As approximation, assume I Z ( max ) and I Z ( min ) are the same as in problem 2.18. V0 ( max ) = V0 ( nom ) + I Z ( max ) rZ = 10 + (1.1875)(2) = 12.375 V V0 ( min ) = V0 ( nom ) + I Z ( min ) rZ = 10 + (0.11875)(2) = 10.2375 V
  • 7. 12.375 − 10.2375 b. % Reg = × 100% ⇒ % Reg = 21.4% 10 2.20 VL ( max ) − VL ( min ) % Reg = × 100% VL ( nom ) VL ( nom ) + I Z ( max ) rz − (VL ( nom ) + I Z ( min ) rz ) = VL ( nom ) ⎡ I Z ( max ) − I Z ( min ) ⎤ ( 3) =⎣ ⎦ = 0.05 6 So I Z ( max ) − I Z ( min ) = 0.1 A 6 6 Now I L ( max ) = = 0.012 A, I L ( min ) = = 0.006 A 500 1000 VPS ( min ) − VZ Now Ri = I Z ( min ) + I L ( max ) 15 − 6 or 280 = ⇒ I Z ( min ) = 0.020 A I Z ( min ) + 0.012 VPS ( max ) − VZ Then I Z ( max ) = 0.1 + 0.02 = 0.12 A and Ri = I Z ( max ) + I L ( min ) VPS ( max ) − 6 or 280 = ⇒ VPS ( max ) = 41.3 V 0.12 + 0.006 2.21 Using Figure 2.21 a. VPS = 20 ± 25% ⇒ 15 ≤ VPS ≤ 25 V For VPS ( min ) : I I = I Z ( min ) + I L ( max ) = 5 + 20 = 25 mA VPS ( min ) − VZ 15 − 10 Ri = = ⇒ Ri = 200Ω II 25 25 − 10 b. For VPS ( max ) ⇒ I I ( max ) = ⇒ I I ( max ) = 75 mA Ri For I L ( min ) = 0 ⇒ I Z ( max ) = 75 mA VZ 0 = VZ − I Z rZ = 10 − ( 0.025 )( 5 ) = 9.875 V V0 ( max ) = 9.875 + ( 0.075 )( 5 ) = 10.25 V0 ( min ) = 9.875 + ( 0.005 )( 5 ) = 9.90 ΔV0 = 0.35 V ΔV0 c. % Reg = × 100% ⇒ % Reg = 3.5% V0 ( nom ) 2.22 From Equation (2.29(a)) VPS ( min ) − VZ 24 − 16 Ri = = or Ri = 18.2Ω I Z ( min ) + I L ( max ) 40 + 400 VM VM Also Vr = ⇒C = 2 fRC 2 fRVr R ≅ Ri + rz = 18.2 + 2 = 20.2Ω Then
  • 8. 24 C= ⇒ C = 9901 μ F 2 ( 60 )(1)( 20.2 ) 2.23 VZ = VZ 0 + I Z rZ VZ ( nom ) = 8 V 8 = VZ 0 + ( 0.1)( 0.5 ) ⇒ VZ 0 = 7.95 V VS ( max ) − VZ ( nom ) 12 − 8 Ii = = = 1.333 A Ri 3 For I L = 0.2 A ⇒ I Z = 1.133 A For I L = 1 A ⇒ I Z = 0.333 A VL ( max ) = VZ 0 + I Z ( max ) rZ = 7.95 + (1.133)( 0.5 ) = 8.5165 VL ( min ) = VZ 0 + I Z ( min ) rZ = 7.95 + ( 0.333)( 0.5 ) = 8.1165 ΔVL = 0.4 V ΔVL 0.4 % Reg = = ⇒ % Reg = 5.0% V0 ( nom ) 8 VM VM Vr = ⇒C = 2 fRC 2 fRVr R = Ri + rz = 3 + 0.5 = 3.5Ω 12 Then C = ⇒ C = 0.0357 F 2 ( 60 )( 3.5 )( 0.8 ) 2.24 (a) For −10 ≤ vI ≤ 0, both diodes are conducting ⇒ vO = 0 For 0 ≤ vI ≤ 3, Zener not in breakdown, so i1 = 0, vO = 0 vI − 3 For vI > 3 i1 = mA 20 ⎛ v −3⎞ 1 vo = ⎜ I ⎟ (10 ) = vI − 1.5 ⎝ 20 ⎠ 2 At vI = 10 V, vo = 3.5 V, i1 = 0.35 mA ␯O(V) 4 3.5 Ϫ10 3.0 10 ␯I(V) (b) For vI < 0, both diodes forward biased 0 − vI −i1 = . At vI = −10 V , i1 = −1 mA 10 v −3 For vI > 3, i1 = I . At vI = 10 V , i1 = 0.35 mA 20
  • 9. i1(mA) 0.35 Ϫ10 3 10 ␯I(V) Ϫ1 2.25 (a) 1K ␯I ␯0 1K 2K ϩ15 V1 1 V1 = × 15 = 5 V ⇒ for vI ≤ 5.7, v0 = vI 3 For vI > 5.7 V vI − (V1 + 0.7 ) 15 − V1 V1 + = , v0 = V1 + 0.7 1 2 1 vI − v0 15 − ( v0 − 0.7 ) v0 − 0.7 + = 1 2 1 vI 15.7 0.7 ⎛ 1 1 1⎞ + + = v0 ⎜ + + ⎟ = v0 ( 2.5 ) 1 2 1 ⎝ 1 2 1⎠ 1 vI + 8.55 = v0 ( 2.5 ) ⇒ v0 = vI + 3.42 2.5 vI = 5.7 ⇒ v0 = 5.7 vI = 15 ⇒ v0 = 9.42 ␯0(V) 9.42 5.7 0 5.7 15 ␯I (V) (b) iD = 0 for 0 ≤ vI ≤ 5.7 Then for vI > 5.7 V ⎛ v ⎞ vI − ⎜ I + 3.42 ⎟ vI − vO ⎝ 2.5 ⎠ or i = 0.6vI − 3.42 For v = 15, i = 5.58 mA iD = = D I D 1 1 1
  • 10. iD(mA) 5.58 5.7 15 ␯I (V) 2.26 ⎛ 20 ⎞ (a) For D off, vo = ⎜ ⎟ (20) − 10 = 3.33 V ⎝ 30 ⎠ Then for vI ≤ 3.33 + 0.7 = 4.03 V ⇒ vo = 3.33 V For vI > 4.03, vo = vl − 0.7; For vI = 10, vo = 9.3 ␯O(V) 9.3 3.33 0 4.03 10 ␯I (V) (b) For vI ≤ 4.03 V , iD = 0 10 − vo vo − ( −10 ) For vI > 4.03, iD + = 10 20 3 Which yields iD = vI − 0.605 20 For vI = 10, iD = 0.895 mA iD(mA) 0.895 0 4.03 10 ␯I(V) 2.27 ␯O 12.5 10.7 Ϫ30 10.7 30 ␯I Ϫ30 30 − 10.7 For vI = 30 V, i = = 0.175 A 100 + 10 v0 = i(10) + 10.7 = 12.5 V
  • 11. b. ␯O 12.5 10.7 0 Ϫ30 2.28 ϩ 5Ϫ ␯I ␯O R ϭ 6.8 K Vγ = 0.6 V vI = 15sin ω t ␯O ␯O Ϫ4.4 Ϫ19.4 2.29 a. Vγ = 0 0 Ϫ3 V Vγ = 0.6 0 Ϫ2.4 b. Vγ = 0 20 5 Vγ = 0.6 19.4 5 2.30
  • 12. 10 6.7 0 Ϫ4.7 Ϫ10 2.31 One possible example is shown. Ri D L Ii ϩ ϩ ϩ Ϫ VZ ϭ 14 V Ϫ RADIO DZ Ϫ Vign VRADIO L will tend to block the transient signals Dz will limit the voltage to +14 V and −0.7 V. Power ratings depends on number of pulses per second and duration of pulse. 2.32 ␯O(V) 40 (a) 0 ␯O(V) 35 0 (b) Ϫ5 2.33 C ␯I ␯O ϩ Vx Ϫ a. For Vγ = 0 ⇒ Vx = 2.7 V b. For Vγ = 0.7 V ⇒ Vx = 2.0 V 2.34 C ϩ ϩ ␯I Ϫ ␯O 10 V ϩ Ϫ Ϫ 2.35
  • 13. 20 ␯O 10 0 VB ϭ 0 ␯I Ϫ10 20 ␯O 13 10 3 0 VB ϭ ϩ3 V Ϫ7 ␯I ϩ VB 20 ␯O 10 7 0 VB ϭ Ϫ3 V Ϫ3 ␯ I ϩ VB Ϫ13 2.36 For Figure P2.32(a) 10 ␯I 0 Ϫ10 ␯O Ϫ20 2.37 a. 10 − 0.6 I D1 = ⇒ I D1 = 0.94 mA ID2 = 0 9.5 + 0.5 V0 = I D1 ( 9.5 ) ⇒ V0 = 8.93 V b. 5 − 0.6 I D1 = ⇒ I D1 = 0.44 mA ID2 = 0 9.5 + 0.5 V0 = I D1 ( 9.5 ) ⇒ V0 = 4.18 V c. Same as (a) d. (I ) 10 = ( 0.5 ) + 0.6 + I ( 9.5 ) ⇒ I = 0.964 mA 2 V0 = I ( 9.5 ) ⇒ V0 = 9.16 V I I D1 = I D 2 = ⇒ I D1 = I D 2 = 0.482 mA 2 2.38 a. I = I D1 = I D 2 = 0 V0 = 10 b.
  • 14. 10 = I ( 9.5 ) + 0.6 + I ( 0.5 ) ⇒ I = I D 2 = 0.94 mA I D1 = 0 V0 = 10 − I ( 9.5 ) ⇒ V0 = 1.07 V c. 10 = I ( 9.5 ) + 0.6 + I ( 0.5 ) + 5 ⇒ I = I D 2 = 0.44 mA I D1 = 0 V0 = 10 − I ( 9.5 ) ⇒ V0 = 5.82 V d. I 10 = I ( 9.5 ) + 0.6 + ( 0.5) ⇒ I = 0.964 mA 2 I I D1 = I D 2 = ⇒ I D1 = I D 2 = 0.482 mA 2 V0 = 10 − I ( 9.5 ) ⇒ V0 = 0.842 V 2.39 a. V1 = V2 = 0 ⇒ D1 , D2 , D3 , on V0 = 4.4 V 10 − 4.4 I= ⇒ I = 0.589 mA 9.5 4.4 − 0.6 I D1 = ID2 = ⇒ I D1 = I D 2 = 7.6 mA 0.5 I D3 = I D1 + I D 2 − I = 2 ( 7.6 ) − 0.589 ⇒ I D 3 = 14.6 mA b. V1 = V2 = 5 V D1 and D2 on, D3 off I 10 = I ( 9.5 ) + 0.6 + ( 0.5 ) + 5 ⇒ I = 0.451 mA 2 I I D1 = I D 2 = ⇒ I D1 = I D 2 = 0.226 mA 2 I D3 = 0 V0 = 10 − I ( 9.5 ) = 10 − ( 0.451)( 9.5 ) ⇒ V0 = 5.72 V c. V1 = 5 V, V2 = 0 D1 off, D2, D3 on V0 = 4.4 V 10 − 4.4 I= ⇒ I = 0.589 mA 9.5 4.4 − 0.6 I D2 = ⇒ I D 2 = 7.6 mA 0.5 I D1 = 0 I D 3 = I D 2 − I = 7.6 − 0.589 ⇒ I D 3 = 7.01 mA d. V1 = 5 V, V2 = 2 V D1 off, D2, D3 on V0 = 4.4 V 10 − 4.4 I= ⇒ I = 0.589 mA 9.5 4.4 − 0.6 − 2 I D2 = ⇒ I D 2 = 3.6 mA 0.5 I D1 = 0 I D 3 = I D 2 − I = 3.6 − 0.589 ⇒ I D 3 = 3.01 mA 2.40 (a) D1 on, D2 off, D3 on So I D 2 = 0 10 − 0.6 − ( −0.6 ) 10 Now V2 = −0.6V , I D1 = = ⇒ I D1 = 1.25 mA R1 + R2 2+6
  • 15. V1 = 10 − 0.6 − (1.25 )( 2 ) ⇒ V1 = 6.9 V −0.6 − ( −5 ) I R3 = = 2.2 mA 2 I D3 = I R 3 − I D1 = 2.2 − 1.25 ⇒ I D 3 = 0.95 mA (b) D1 on, D2 on, D3 off So I D 3 = 0 10 − 0.6 − 4.4 5 V1 = 4.4 V , I D1 = = R1 6 or I D1 = 0.833 mA 4.4 − ( −5 ) 9.4 I R2 = = = 0.94 mA R2 + R3 10 I D 2 = I R 2 − I D1 = 0.94 − 0.833 ⇒ I D 2 = 0.107 mA V2 = I R 2 R3 − 5 = ( 0.94 )( 5 ) − 5 ⇒ V2 = −0.3 V (c) All diodes are on V1 = 4.4V , V2 = −0.6 V 10 − 0.6 − 4.4 I D1 = 0.5 mA = ⇒ R1 = 10 k Ω R1 4.4 − ( −0.6 ) I R 2 = 0.5 + 0.5 = 1 mA = ⇒ R2 = 5 k Ω R2 −0.6 − ( −5 ) I R 3 = 1.5 mA = ⇒ R3 = 2.93 k Ω R3 2.41 ⎛ 0.5 ⎞ For vI small, both diodes off vO = ⎜ ⎟ vI = 0.0909vI ⎝ 0.5 + 5 ⎠ When vI − vO = 0.6, D1 turns on. So we have vI − 0.0909vI = 0.6 ⇒ vI = 0.66, vO = 0.06 vI − 0.6 − vO vI − vO vO 2v − 0.6 For D1 on + = which yields vO = I 5 5 0.5 12 2vI − 0.6 When vO = 0.6, D2 turns on. Then 0.6 = ⇒ vI = 3.9 V 12 v − 0.6 − vO vI − vO vO vO − 0.6 Now for vI > 3.9 I + = + 5 5 0.5 0.5 2vI + 5.4 Which yields vO = ; For vI = 10 ⇒ vO = 1.15 V 22 2.42 ϩ10 V 10 K D1 D2 ␯I ␯0 D3 D4 10 K 10 K Ϫ10 V
  • 16. For vI > 0. when D1 and D4 turn off 10 − 0.7 I= = 0.465 mA 20 v0 = I (10 kΩ ) = 4.65 V ␯0 4.65 Ϫ10 Ϫ4.65 4.65 10 ␯I Ϫ4.65 v0 = vI for − 4.65 ≤ vI ≤ 4.65 2.43 a. R1 D2 ϩ10 V V0 D1 R2 ID1 Ϫ10 V R1 = 5 kΩ, R2 = 10 kΩ D1 and D2 on ⇒ V0 = 0 10 − 0.7 0 − ( −10 ) I D1 = − = 1.86 − 1.0 5 10 I D1 = 0.86 mA b. R1 = 10 kΩ, R2 = 5 kΩ, D1 off, D2 on I D1 = 0 10 − 0.7 − ( −10 ) I= = 1.287 15 V0 = IR2 − 10 ⇒ V0 = −3.57 V 2.44 If both diodes on (a) VA = −0.7 V, VO = −1.4 V 10 − ( −0.7 ) I R1 = = 1.07 mA 10 −1.4 − ( −15 ) IR2 = = 2.72 mA 5 I R1 + I D1 = I R 2 ⇒ I D1 = 2.72 − 1.07 I D1 = 1.65 mA (b) D1 off, D2 on 10 − 0.7 − ( −15 ) I R1 = I R 2 = = 1.62 mA 5 + 10 VO = I R 2 R2 − 15 = (1.62 )(10 ) − 15 ⇒ VO = 1.2 V VA = 1.2 + 0.7 = 1.9 V ⇒ D1 off , I D1 = 0 2.45
  • 17. (a) D1 on, D2 off 10 − 0.7 I D1 = = 0.93 mA 10 VO = −15 V (b) D1 on, D2 off 10 − 0.7 I D1 = = 1.86 mA 5 VO = −15 V 2.46 15 − (V0 + 0.7 ) V0 + 0.7 V0 = + 10 20 20 15 0.7 0.7 ⎛ 1 1 1 ⎞ ⎛ 4.0 ⎞ − − = V0 ⎜ + + ⎟ = V0 ⎜ ⎟ 10 10 20 ⎝ 10 20 20 ⎠ ⎝ 20 ⎠ V0 = 6.975 V V0 ID = ⇒ I D = 0.349 mA 20 2.47 10 K Ϫ VD ϩ 10 K Va Vb V1 V2 ID 10 K 10 K a. V1 = 15 V, V2 = 10 V Diode off Va = 7.5 V, Vb = 5 V ⇒ VD = −2.5 V ID = 0 b. V1 = 10 V, V2 = 15 V Diode on V2 − Vb Vb Va Va − V1 = + + ⇒ Va = Vb − 0.6 10 10 10 10 15 10 ⎛1 1⎞ ⎛1 1⎞ ⎛ 1 1⎞ + = Vb ⎜ + ⎟ + Vb ⎜ + ⎟ − 0.6 ⎜ + ⎟ 10 10 ⎝ 10 10 ⎠ ⎝ 10 10 ⎠ ⎝ 10 10 ⎠ ⎛ 4⎞ 2.62 = Vb ⎜ ⎟ ⇒ Vb = 6.55 V ⎝ 10 ⎠ 15 − 6.55 6.55 ID = − ⇒ I D = 0.19 mA 10 10 VD = 0.6 V 2.48 vI = 0, D1 off, D2 on 10 − 2.5 I= = 0.5 mA 15 vo = 10 − ( 0.5 )( 5 ) ⇒ vo = 7.5 V for 0 ≤ vI ≤ 7.5 V For vI > 7.5 V , Both D1 and D2 on vI − vo vo − 2.5 vo − 10 = + or vI = vo ( 5.5 ) − 33.75 15 10 5 When vo = 10 V, D2 turns off vI = (10 )( 5.5 ) − 33.75 = 21.25 V For vI > 21.25 V, vo = 10 V
  • 18. 2.49 a. V01 = V02 = 0 b. V01 = 4.4 V, V02 = 3.8 V c. V01 = 4.4 V, V02 = 3.8 V Logic “1” level degrades as it goes through additional logic gates. 2.50 a. V01 = V02 = 5 V b. V01 = 0.6 V, V02 = 1.2 V c. V01 = 0.6 V, V02 = 1.2 V Logic “0” signal degrades as it goes through additional logic gates. 2.51 (V1 AND V2 ) OR (V3 AND V4 ) 2.52 10 − 1.5 − 0.2 I= = 12 mA = 0.012 R + 10 8.3 R + 10 = = 691.7Ω 0.012 R = 681.7Ω 2.53 10 − 1.7 − VI I= =8 0.75 VI = 10 − 1.7 − 8 ( 0.75 ) ⇒ VI = 2.3 V 2.54 ϩ VR Ϫ ϩ VPS Rϭ 2 K Ϫ VR = 1 V, I = 0.8 mA VPS = 1 + ( 0.8 )( 2 ) VPS = 2.6 V 2.55 I Ph = η eΦA 0.6 × 10−3 = (1) (1.6 × 10−19 )(1017 ) A A = 3.75 × 10−2 cm 2