Chapter 2
Problem Solutions

2.1
␯I                         ␯0


                       Rϭ1K



     ␯I
     10


      0


Ϫ10

Vγ = 0.6 V, rf = 20 Ω
                    ⎛ R ⎞
                    ⎜ R + r ⎟(
For vI = 10 V, v0 = ⎜            10 − 0.6 )
                              ⎟
                    ⎝       f ⎠

                    ⎛ 1 ⎞
                  =⎜            ⎟ ( 9.4 )
                    ⎝ 1 + 0.02 ⎠
               v0 = 9.22

     10


 0.6



     ␯0
9.22




2.2
          ϩ ␯D Ϫ
␯I                         ␯0
            D

                       R




 v0 = vI − vD
           ⎛i ⎞          v
vD = VT ln ⎜ D ⎟ and iD = 0
           ⎝ IS ⎠         R
                ⎛ v ⎞
v0 = vI − VT ln ⎜ 0 ⎟
                ⎝ IS R ⎠

2.3
             80sin ω t
(a)             vs =    = 13.33sin ω t
                 6
                              13.33
Peak diode current id (max) =
                                R
(b)       PIV = vs (max) = 13.3 V
(c)
                    To               π
               1                 1
vo ( avg ) =        ∫ v (t )dt = 2π ∫ 13.33sin × dt
                         o
               To   o                o

             13.33                13.33                   13.33
                   [ − cos x ]o =
                              π
           =                            ⎡ − ( −1 − 1) ⎤ =
                                        ⎣             ⎦
              2π                   2π                       π
vo ( avg ) = 4.24 V
(d)       50%

2.4
v0 = vS − 2Vγ ⇒ vS ( max ) = v0 ( max ) + 2Vγ
a.        For v0 ( max ) = 25 V ⇒ vS ( max ) = 25 + 2 ( 0.7 ) = 26.4 V
N1 160    N
   =     ⇒ 1 = 6.06
N 2 26.4  N2
b.        For v0 ( max ) = 100 V ⇒ vS ( max ) = 101.4 V
N1   160   N
   =      ⇒ 1 = 1.58
N 2 101.4  N2
From part (a) PIV = 2vS ( max ) − Vγ = 2 ( 26.4 ) − 0.7
or PIV = 52.1 V or, from part (b) PIV = 2 (101.4 ) − 0.7 or PIV = 202.1 V

2.5
(a)
 vs (max) = 12 + 2(0.7) = 13.4 V
              13.4
 vs ( rms ) =      ⇒ vs (rms) = 9.48 V
                2
(b)
         VM               VM
Vr =           ⇒C =
       2 f RC         2 f Vr R
               12
C=                         ⇒ C = 2222 μ F
      2 ( 60 )( 0.3)(150 )
(c)
            VM ⎡        2VM ⎤
id , peak =     ⎢1 + π       ⎥
             R ⎢⎣        Vr ⎥⎦
             12 ⎡        2 (12 ) ⎤
          =      ⎢1 + π          ⎥
            150 ⎢         0.3 ⎥
                 ⎣               ⎦
id , peak = 2.33 A

2.6
(a)
 vS ( max ) = 12 + 0.7 = 12.7 V
                vS ( max )
 vS ( rms ) =                ⇒ vS ( rms ) = 8.98 V
                         2
                     VM       V           12
(b)       Vr =           ⇒C = M =                    or C = 4444 μ F
                     fRC     fRVr ( 60 )(150 )( 0.3)
VM   ⎛        VM    ⎞ 12 ⎛           12 ⎞
(c)          For the half-wave rectifier iD , max =          ⎜ 1 + 4π
                                                             ⎜              ⎟=    ⎜ 1 + 4π
                                                                            ⎟ 150 ⎜                 ⎟ or
                                                         R   ⎝        2Vr   ⎠     ⎝        2 ( 0.3) ⎟
                                                                                                    ⎠
iD , max = 4.58 A

2.8
(a)
 vs ( peak ) = 15 + 2 ( 0.7 ) = 16.4 V
               16.4
  vs ( rms ) =       = 11.6 V
                 2
                    VM                 15
(b)         C=              =                   = 2857 μ F
                 2 f RVr 2 ( 60 )(125 )( 0.35 )

2.9
        ␯S
        26

       0.6
      Ϫ0.6

      Ϫ26



      25.4
 ϩ
␯O
         0

         0
 Ϫ
␯O
 Ϫ25.4


2.10
                    R

                    iD
                                            ϩ
␯S ϭ ϩ                                      VB ϭ 12 V
     Ϫ
                                            Ϫ




                              ␯S

                             iD
                                       ␻t
             x1              x2


vS ( t ) = 24sin ω t
                         T
                     1
Now iD ( avg ) =         iD ( t ) dt
                     T∫0

                                24sin x − 12.7
We have for x1 ≤ ω t ≤ x2 iD =
                                      R
To find x1 and x2, 24sin x1 = 12.7
x1 = 0.558 rad
x2 = π − 0.558 = 2.584 rad
Then
x2
                       1          ⎡ 24sin x − 12.7 ⎤
iD ( avg ) = 2 =               ∫⎢                  ⎥dx
                      2π        ⎣
                               x1         R        ⎦
   1 ⎛ 24 ⎞                 1 ⎛ 12.7 ⎞ x2          6.482 4.095
      ⎜ ⎟ ( − cos x ) x1 −                                     ⇒ R = 1.19Ω
                      x2
=                             ⎜      ⎟ ⋅ xx or 2 =      −
  2π ⎝ R ⎠                 2π ⎝ R ⎠ 1                R     R
                                            x −x           2.584 − 0.558
Fraction of time diode is conducting = 2 1 × 100% =                      × 100% or Fraction = 32.2%
                                             2π                 2π
Power rating
                                                 x                2
                                    R 2 ⎡ 24sin x − 12.7 ⎤
                           T
                       R 2
                         ∫ iD dt = 2π x∫ ⎢
            2
Pavg = R ⋅ irms =                                        ⎥ dx
                       T 0             1
                                         ⎣      R        ⎦
                 x2
            1     ⎡( 24 )          sin 2 x − 2 (12.7 )( 24 ) sin x + (12.7 ) ⎤dx
           2π R ∫ ⎣
                               2                                            2
       =
                                                                              ⎦
                 x1
                                                     x

                  ( 24 ) ⎡ −
            1 ⎡         2 x  sin 2 x ⎤ 2                            x2
                                     ⎥ − 2 (12.7 )( 24 )( − cos x ) x1 + (12.7 ) xx1 ⎦
                                                                                2 x2
       =                 ⎢2                                                          ⎤
           2π R ⎣        ⎣      4 ⎦x                 1

For R = 1.19 Ω, then Pavg = 17.9 W

2.11
(a)
             15
            R=    = 150Ω
             0.1
vS ( max ) = vo ( max ) + Vγ = 15 + 0.7 or vS ( max ) = 15.7 V
                           15.7
Then vS ( rms ) =                    = 11.1 V
                               2
           N1 120    N
Now           =     ⇒ 1 = 10.8
           N 2 11.1  N2
                       VM         VM             15
(b)          Vr =           ⇒C =       =                      or C = 2083 μ F
                      2 fRC      2 fRVr 2 ( 60 )(150 )( 0.4 )
(c)          PIV = 2vS ( max ) − Vγ = 2 (15.7 ) − 0.7 or PIV = 30.7 V

2.12
                                            ␯0
                D2
␯i    ϩ
      Ϫ                         R2        RL




                                R1



                                       ␯0

␯i    ϩ
      Ϫ                              RL
                      R2

                                     R1


For vi > 0
Vγ = 0
Voltage across RL + R1 = vi
                       ⎛ RL ⎞          1
Voltage Divider ⇒ v0 = ⎜         ⎟ vi = vi
                       ⎝ RL + R1 ⎠     2
␯0


20




2.13
For vi > 0, (Vγ = 0 )


                                   R1
␯i    ϩ
      Ϫ                                       ␯0
                         R2                  RL



a.
           ⎛ R2 || RL ⎞
      v0 = ⎜               ⎟ vi
           ⎝ R2 || RL + R1 ⎠
R2 || RL = 2.2 || 6.8 = 1.66 kΩ
               ⎛ 1.66 ⎞
          v0 = ⎜            ⎟ vi = 0.43 vi
               ⎝ 1.66 + 2.2 ⎠
␯0
4.3


                              v0 ( max )
b.            v0 ( rms ) =                         ⇒ v0 ( rms ) = 3.04 V
                                         2

2.14
      3.9
 IL =     ⇒ I 2 = 0.975 mA
       4
      20 − 3.9
IR =           = 1.3417 mA
         12
I Z = 1.3417 − 0.975 ⇒ I Z = 0.367 mA
PT = I Z ⋅ VZ = ( 0.367 )( 3.9 ) ⇒ PT = 1.43 mW

2.15
(a)
     40 − 12
IZ =         = 0.233 A
        120
 P = ( 0.233)(12 ) = 2.8 W
(b)     IR = 0.233 A, IL = (0.9)(0.233) = 0.21 A
          12
So 0.21 =    ⇒ RL = 57.1Ω
          RL
(c)           P = ( 0.1)( 0.233)(12 ) ⇒ P = 0.28 W

2.16
               Ri
VI                                                 V0
        II                    ϩ
                              VZ                  RL
                              Ϫ
                    IZ                  IL


VI = 6.3 V, Ri = 12Ω, VZ = 4.8
a.
      6.3 − 4.8
II =              ⇒ 125 mA
          12
I L = I I − I Z = 125 − I Z
25 ≤ I L ≤ 120 mA ⇒ 40 ≤ RL ≤ 192Ω
b.
PZ = I Z VZ = (100 )( 4.8 ) ⇒ PZ = 480 mW
PL = I LV0 = (120 )( 4.8 ) ⇒ PL = 576 mW

2.17
a.
      20 − 10
II =            ⇒ I I = 45.0 mA
         222
       10
IL =        ⇒ I L = 26.3 mA
      380
I Z = I I − I L ⇒ I Z = 18.7 mA
b.
                                                 400
      PZ ( max ) = 400 mW ⇒ I Z ( max ) =            = 40 mA
                                                 10
⇒ I L ( min ) = I I − I Z ( max ) = 45 − 40
                           10
⇒ I L ( min ) = 5 mA =
                           RL
⇒ RL = 2 kΩ
(c)        For Ri = 175Ω I I = 57.1 mA            I L = 26.3 mA   I Z = 30.8 mA
I Z ( max ) = 40 mA ⇒ I L ( min ) = 57.1 − 40 = 17.1 mA
                 10
         RL =        ⇒ RL = 585Ω
                17.1

2.18
a.        From Eq. (2-31)
              500 [ 20 − 10] − 50 [15 − 10]
I Z ( max ) =
              15 − ( 0.9 )(10 ) − ( 0.1)( 20 )
              5000 − 250
            =
                   4
I Z ( max ) = 1.1875 A
I Z ( min ) = 0.11875 A
                                20 − 10
From Eq. (2-29(b)) Ri =                   ⇒ Ri = 8.08Ω
                              1187.5 + 50
b.
PZ = (1.1875 )(10 ) ⇒ PZ = 11.9 W
PL = I L ( max ) V0 = ( 0.5 )(10 ) ⇒ PL = 5 W

2.19
(a)        As approximation, assume I Z ( max ) and I Z ( min ) are the same as in problem 2.18.
V0 ( max ) = V0 ( nom ) + I Z ( max ) rZ
           = 10 + (1.1875)(2) = 12.375 V
V0 ( min ) = V0 ( nom ) + I Z ( min ) rZ
            = 10 + (0.11875)(2) = 10.2375 V
12.375 − 10.2375
b.            % Reg =                      × 100% ⇒ % Reg = 21.4%
                                 10

2.20
              VL ( max ) − VL ( min )
% Reg =                                 × 100%
                      VL ( nom )
              VL ( nom ) + I Z ( max ) rz − (VL ( nom ) + I Z ( min ) rz )
          =
                                      VL ( nom )
           ⎡ I Z ( max ) − I Z ( min ) ⎤ ( 3)
         =⎣                            ⎦      = 0.05
                          6
So I Z ( max ) − I Z ( min ) = 0.1 A
                           6                             6
Now I L ( max ) =             = 0.012 A, I L ( min ) =      = 0.006 A
                         500                           1000
                     VPS ( min ) − VZ
Now Ri =
               I Z ( min ) + I L ( max )
                     15 − 6
or 280 =                          ⇒ I Z ( min ) = 0.020 A
              I Z ( min ) + 0.012
                                                                VPS ( max ) − VZ
Then I Z ( max ) = 0.1 + 0.02 = 0.12 A and Ri =
                                                             I Z ( max ) + I L ( min )
              VPS ( max ) − 6
or 280 =                         ⇒ VPS ( max ) = 41.3 V
              0.12 + 0.006

2.21
Using Figure 2.21
a.      VPS = 20 ± 25% ⇒ 15 ≤ VPS ≤ 25 V
For VPS ( min ) :
I I = I Z ( min ) + I L ( max ) = 5 + 20 = 25 mA
       VPS ( min ) − VZ         15 − 10
Ri =                        =           ⇒ Ri = 200Ω
                II                25
                                                   25 − 10
b.         For VPS ( max ) ⇒ I I ( max ) =                 ⇒ I I ( max ) = 75 mA
                                                     Ri
For I L ( min ) = 0 ⇒ I Z ( max ) = 75 mA
VZ 0 = VZ − I Z rZ = 10 − ( 0.025 )( 5 ) = 9.875 V
V0 ( max ) = 9.875 + ( 0.075 )( 5 ) = 10.25
V0 ( min ) = 9.875 + ( 0.005 )( 5 ) = 9.90
ΔV0 = 0.35 V
                             ΔV0
c.            % Reg =                × 100% ⇒ % Reg = 3.5%
                          V0 ( nom )

2.22
From Equation (2.29(a))
         VPS ( min ) − VZ       24 − 16
Ri =                          =         or Ri = 18.2Ω
     I Z ( min ) + I L ( max ) 40 + 400
                VM         VM
Also Vr =            ⇒C =
               2 fRC      2 fRVr
        R ≅ Ri + rz = 18.2 + 2 = 20.2Ω
Then
24
C=                          ⇒ C = 9901 μ F
        2 ( 60 )(1)( 20.2 )

2.23
VZ = VZ 0 + I Z rZ VZ ( nom ) = 8 V
  8 = VZ 0 + ( 0.1)( 0.5 ) ⇒ VZ 0 = 7.95 V
        VS ( max ) − VZ ( nom )       12 − 8
 Ii =                             =          = 1.333 A
                   Ri                   3
For I L = 0.2 A ⇒ I Z = 1.133 A
For I L = 1 A ⇒ I Z = 0.333 A
VL ( max ) = VZ 0 + I Z ( max ) rZ
             = 7.95 + (1.133)( 0.5 ) = 8.5165
VL ( min ) = VZ 0 + I Z ( min ) rZ
             = 7.95 + ( 0.333)( 0.5 ) = 8.1165
    ΔVL = 0.4 V
             ΔVL       0.4
  % Reg =            =     ⇒ % Reg = 5.0%
          V0 ( nom )    8
                  VM         VM
          Vr =         ⇒C =
                 2 fRC      2 fRVr
          R = Ri + rz = 3 + 0.5 = 3.5Ω
                       12
Then C =                             ⇒ C = 0.0357 F
              2 ( 60 )( 3.5 )( 0.8 )

2.24
(a)      For −10 ≤ vI ≤ 0, both diodes are conducting ⇒ vO = 0
For 0 ≤ vI ≤ 3, Zener not in breakdown, so i1 = 0, vO = 0
                  vI − 3
For vI > 3 i1 =          mA
                    20
                  ⎛ v −3⎞          1
             vo = ⎜ I     ⎟ (10 ) = vI − 1.5
                  ⎝   20 ⎠         2
At vI = 10 V, vo = 3.5 V, i1 = 0.35 mA
                              ␯O(V)
                                    4
                                  3.5




Ϫ10                                           3.0        10   ␯I(V)




(b)         For vI < 0, both diodes forward biased
      0 − vI
−i1 =        . At vI = −10 V , i1 = −1 mA
       10
                 v −3
For vI > 3, i1 = I     . At vI = 10 V , i1 = 0.35 mA
                  20
i1(mA)


                                    0.35


Ϫ10                                              3                 10 ␯I(V)



                                           Ϫ1


2.25
(a)
               1K
␯I                       ␯0



               1K              2K
                                           ϩ15
                    V1

     1
V1 = × 15 = 5 V ⇒ for vI ≤ 5.7, v0 = vI
     3
For vI > 5.7 V
vI − (V1 + 0.7 ) 15 − V1 V1
                 +          = , v0 = V1 + 0.7
        1              2      1
vI − v0    15 − ( v0 − 0.7 ) v0 − 0.7
         +                  =
   1               2             1
vI 15.7 0.7             ⎛ 1 1 1⎞
   +        +      = v0 ⎜ + + ⎟ = v0 ( 2.5 )
 1      2      1        ⎝ 1 2 1⎠
                                1
vI + 8.55 = v0 ( 2.5 ) ⇒ v0 =      vI + 3.42
                               2.5
vI = 5.7 ⇒ v0 = 5.7
vI = 15 ⇒ v0 = 9.42
␯0(V)
 9.42




     5.7




           0             5.7                         15   ␯I (V)
(b)      iD = 0 for 0 ≤ vI ≤ 5.7
Then for vI > 5.7 V
                    ⎛ v        ⎞
               vI − ⎜ I + 3.42 ⎟
     vI − vO        ⎝ 2.5      ⎠ or i = 0.6vI − 3.42 For v = 15, i = 5.58 mA
iD =         =                       D                    I       D
        1               1                     1
iD(mA)

  5.58




                       5.7                              15   ␯I (V)


2.26
                         ⎛ 20 ⎞
(a)      For D off, vo = ⎜ ⎟ (20) − 10 = 3.33 V
                         ⎝ 30 ⎠
Then for vI ≤ 3.33 + 0.7 = 4.03 V ⇒ vo = 3.33 V
For vI > 4.03, vo = vl − 0.7;
For vI = 10, vo = 9.3
                             ␯O(V)
                               9.3




                                         3.33




                                     0           4.03            10 ␯I (V)
(b)      For vI ≤ 4.03 V , iD = 0
                    10 − vo vo − ( −10 )
For vI > 4.03, iD +         =
                      10          20
                    3
Which yields iD =      vI − 0.605
                   20
For vI = 10, iD = 0.895 mA
                        iD(mA)
                             0.895




                                     0          4.03              10 ␯I(V)


2.27
          ␯O


         12.5
         10.7
Ϫ30
                10.7     30      ␯I


                Ϫ30

                      30 − 10.7
For vI = 30 V, i =              = 0.175 A
                      100 + 10
v0 = i(10) + 10.7 = 12.5 V
b.
 ␯O

12.5
10.7
  0



Ϫ30


2.28
          ϩ 5Ϫ
␯I                    ␯O

                 R ϭ 6.8 K


Vγ = 0.6 V
vI = 15sin ω t
         ␯O
                 ␯O


 Ϫ4.4

Ϫ19.4


2.29
a.
Vγ = 0

     0
Ϫ3 V

Vγ = 0.6

     0
Ϫ2.4

b.
Vγ = 0

20



 5

Vγ = 0.6

19.4



     5



2.30
10
     6.7

       0
Ϫ4.7

Ϫ10


2.31
One possible example is shown.
                  Ri         D          L


                 Ii
      ϩ                     ϩ               ϩ
      Ϫ                     VZ ϭ 14 V       Ϫ            RADIO
                       DZ   Ϫ
Vign                                            VRADIO


L will tend to block the transient signals
Dz will limit the voltage to +14 V and −0.7 V.
Power ratings depends on number of pulses per second and duration of pulse.

2.32
       ␯O(V)

           40


(a)         0


       ␯O(V)

           35


            0
(b)        Ϫ5


2.33
                 C
␯I                               ␯O



                            ϩ
                            Vx
                            Ϫ

a.               For Vγ = 0 ⇒ Vx = 2.7 V
b.               For Vγ = 0.7 V ⇒ Vx = 2.0 V

2.34
            C

ϩ                           ϩ


␯I               Ϫ          ␯O
                10 V
                 ϩ
Ϫ                           Ϫ



2.35
20
                                     ␯O
 10

     0                                                     VB ϭ 0
                               ␯I
Ϫ10



 20                             ␯O
 13
 10
     3
     0                                                     VB ϭ ϩ3 V
 Ϫ7                           ␯I ϩ VB



 20
                               ␯O
 10
  7
  0                                                        VB ϭ Ϫ3 V
 Ϫ3
                               ␯ I ϩ VB
Ϫ13

2.36
For Figure P2.32(a)

 10
                     ␯I
     0

Ϫ10                ␯O

Ϫ20


2.37
a.
      10 − 0.6
I D1 =             ⇒ I D1 = 0.94 mA        ID2 = 0
      9.5 + 0.5
 V0 = I D1 ( 9.5 ) ⇒ V0 = 8.93 V
b.
        5 − 0.6
I D1 =             ⇒ I D1 = 0.44 mA        ID2 = 0
      9.5 + 0.5
 V0 = I D1 ( 9.5 ) ⇒ V0 = 4.18 V
c.            Same as (a)
d.
         (I )
 10 =           ( 0.5 ) + 0.6 + I ( 9.5 ) ⇒ I = 0.964 mA
          2
 V0 = I ( 9.5 ) ⇒ V0 = 9.16 V
                  I
I D1 = I D 2 =      ⇒ I D1 = I D 2 = 0.482 mA
                  2

2.38
a.              I = I D1 = I D 2 = 0 V0 = 10
b.
10 = I ( 9.5 ) + 0.6 + I ( 0.5 ) ⇒ I = I D 2 = 0.94 mA       I D1 = 0
V0 = 10 − I ( 9.5 ) ⇒ V0 = 1.07 V
c.
10 = I ( 9.5 ) + 0.6 + I ( 0.5 ) + 5 ⇒ I = I D 2 = 0.44 mA        I D1 = 0
V0 = 10 − I ( 9.5 ) ⇒ V0 = 5.82 V
d.
                          I
 10 = I ( 9.5 ) + 0.6 +     ( 0.5) ⇒ I = 0.964 mA
                          2
             I
I D1 = I D 2 =  ⇒ I D1 = I D 2 = 0.482 mA
             2
 V0 = 10 − I ( 9.5 ) ⇒ V0 = 0.842 V

2.39
a.
  V1 = V2 = 0 ⇒ D1 , D2 , D3 , on V0 = 4.4 V
         10 − 4.4
     I=              ⇒ I = 0.589 mA
            9.5
                 4.4 − 0.6
I D1   = ID2 =              ⇒ I D1 = I D 2 = 7.6 mA
                      0.5
I D3   = I D1 + I D 2 − I = 2 ( 7.6 ) − 0.589 ⇒ I D 3 = 14.6 mA
b.
  V1 = V2 = 5 V D1 and D2 on, D3 off
                        I
 10 = I ( 9.5 ) + 0.6 + ( 0.5 ) + 5 ⇒ I = 0.451 mA
                        2
               I
I D1 = I D 2 = ⇒ I D1 = I D 2 = 0.226 mA
              2
                   I D3 = 0
 V0 = 10 − I ( 9.5 ) = 10 − ( 0.451)( 9.5 ) ⇒ V0 = 5.72 V
c.          V1 = 5 V, V2 = 0 D1 off, D2, D3 on V0 = 4.4 V
         10 − 4.4
     I=           ⇒                  I = 0.589 mA
           9.5
         4.4 − 0.6
I D2   =           ⇒                 I D 2 = 7.6 mA
            0.5
                                     I D1 = 0
I D 3 = I D 2 − I = 7.6 − 0.589 ⇒ I D 3 = 7.01 mA
d.          V1 = 5 V, V2 = 2 V D1 off, D2, D3 on V0 = 4.4 V
         10 − 4.4
     I=            ⇒                 I = 0.589 mA
            9.5
         4.4 − 0.6 − 2
I D2   =               ⇒             I D 2 = 3.6 mA
              0.5
                                     I D1 = 0
I D 3 = I D 2 − I = 3.6 − 0.589 ⇒ I D 3 = 3.01 mA

2.40
(a)       D1 on, D2 off, D3 on
So I D 2 = 0
                             10 − 0.6 − ( −0.6 )        10
Now V2 = −0.6V , I D1 =                            =       ⇒ I D1 = 1.25 mA
                                  R1 + R2              2+6
V1 = 10 − 0.6 − (1.25 )( 2 ) ⇒ V1 = 6.9 V
         −0.6 − ( −5 )
I R3 =                   = 2.2 mA
                 2
I D3   = I R 3 − I D1 = 2.2 − 1.25 ⇒ I D 3 = 0.95 mA
(b)       D1 on, D2 on, D3 off
So I D 3 = 0
                            10 − 0.6 − 4.4 5
V1 = 4.4 V , I D1 =                       =
                                  R1        6
or I D1 = 0.833 mA
         4.4 − ( −5 )       9.4
I R2 =                  =       = 0.94 mA
           R2 + R3          10
I D 2 = I R 2 − I D1 = 0.94 − 0.833 ⇒ I D 2 = 0.107 mA
 V2 = I R 2 R3 − 5 = ( 0.94 )( 5 ) − 5 ⇒ V2 = −0.3 V
(c)           All diodes are on V1 = 4.4V , V2 = −0.6 V
                     10 − 0.6 − 4.4
 I D1 = 0.5 mA =                    ⇒ R1 = 10 k Ω
                           R1
                                 4.4 − ( −0.6 )
I R 2 = 0.5 + 0.5 = 1 mA =                        ⇒ R2 = 5 k Ω
                                      R2
                     −0.6 − ( −5 )
I R 3 = 1.5 mA =                     ⇒ R3 = 2.93 k Ω
                            R3

2.41
                                   ⎛ 0.5 ⎞
For vI small, both diodes off vO = ⎜         ⎟ vI = 0.0909vI
                                   ⎝ 0.5 + 5 ⎠
When vI − vO = 0.6, D1 turns on. So we have vI − 0.0909vI = 0.6 ⇒ vI = 0.66, vO = 0.06
          vI − 0.6 − vO vI − vO vO                          2v − 0.6
For D1 on               +          =     which yields vO = I
                5             5      0.5                       12
                                           2vI − 0.6
When vO = 0.6, D2 turns on. Then 0.6 =               ⇒ vI = 3.9 V
                                              12
                   v − 0.6 − vO vI − vO vO vO − 0.6
Now for vI > 3.9 I               +         =     +
                         5            5      0.5     0.5
                    2vI + 5.4
Which yields vO =             ; For vI = 10 ⇒ vO = 1.15 V
                       22

2.42
               ϩ10 V


                     10 K


         D1                 D2

␯I                                      ␯0

          D3                D4       10 K



                     10 K


               Ϫ10 V
For vI > 0. when D1 and D4 turn off
     10 − 0.7
 I=           = 0.465 mA
        20
v0 = I (10 kΩ ) = 4.65 V
                         ␯0

                    4.65

Ϫ10        Ϫ4.65
                                   4.65        10   ␯I

                              Ϫ4.65


v0 = vI for − 4.65 ≤ vI ≤ 4.65

2.43
a.
                  R1           D2
ϩ10 V                                       V0

                              D1
                                          R2
                   ID1


                                    Ϫ10 V
R1 = 5 kΩ, R2 = 10 kΩ
D1 and D2 on ⇒ V0 = 0
         10 − 0.7 0 − ( −10 )
I D1 =           −            = 1.86 − 1.0
            5         10
I D1   = 0.86 mA
b.
R1 = 10 kΩ, R2 = 5 kΩ, D1 off, D2 on I D1 = 0
        10 − 0.7 − ( −10 )
 I=                  = 1.287
            15
V0 = IR2 − 10 ⇒ V0 = −3.57 V

2.44
If both diodes on
(a)
      VA = −0.7 V, VO = −1.4 V
                  10 − ( −0.7 )
         I R1 =                = 1.07 mA
                       10
                 −1.4 − ( −15 )
         IR2   =                 = 2.72 mA
                        5
I R1 + I D1    = I R 2 ⇒ I D1 = 2.72 − 1.07
      I D1 = 1.65 mA
(b)         D1 off, D2 on
               10 − 0.7 − ( −15 )
I R1 = I R 2 =                    = 1.62 mA
                    5 + 10
VO = I R 2 R2 − 15 = (1.62 )(10 ) − 15 ⇒ VO = 1.2 V
VA = 1.2 + 0.7 = 1.9 V ⇒ D1 off ,
I D1 = 0

2.45
(a)        D1 on, D2 off
        10 − 0.7
 I D1 =          = 0.93 mA
          10
 VO = −15 V
(b)        D1 on, D2 off
        10 − 0.7
 I D1 =          = 1.86 mA
           5
 VO = −15 V

2.46
15 − (V0 + 0.7 )
               V0 + 0.7 V0
                   =   +
      10           20     20
15 0.7 0.7        ⎛  1  1    1 ⎞    ⎛ 4.0 ⎞
   −     −   = V0 ⎜ +      + ⎟ = V0 ⎜     ⎟
10 10 20          ⎝ 10 20 20 ⎠      ⎝ 20 ⎠
V0 = 6.975 V
       V0
ID =      ⇒ I D = 0.349 mA
       20

2.47
       10 K            Ϫ VD ϩ                  10 K
                Va                 Vb
V1                                                    V2

                              ID
                       10 K             10 K



a.      V1 = 15 V, V2 = 10 V Diode off
Va = 7.5 V, Vb = 5 V ⇒ VD = −2.5 V
                                   ID = 0
b.        V1 = 10 V, V2 = 15 V Diode on
 V2 − Vb Vb Va Va − V1
        = + +               ⇒ Va = Vb − 0.6
   10      10 10       10
15 10         ⎛1 1⎞        ⎛1 1⎞           ⎛ 1 1⎞
   + = Vb ⎜ + ⎟ + Vb ⎜ + ⎟ − 0.6 ⎜ + ⎟
10 10         ⎝ 10 10 ⎠    ⎝ 10 10 ⎠       ⎝ 10 10 ⎠
          ⎛ 4⎞
2.62 = Vb ⎜ ⎟ ⇒ Vb = 6.55 V
          ⎝ 10 ⎠
     15 − 6.55 6.55
ID =             −    ⇒ I D = 0.19 mA
        10         10
                        VD = 0.6 V

2.48      vI = 0, D1 off, D2 on
     10 − 2.5
 I=            = 0.5 mA
        15
vo = 10 − ( 0.5 )( 5 ) ⇒ vo = 7.5 V for 0 ≤ vI ≤ 7.5 V
For vI > 7.5 V , Both D1 and D2 on
vI − vo vo − 2.5 vo − 10
        =            +         or vI = vo ( 5.5 ) − 33.75
  15          10          5
When vo = 10 V, D2 turns off
vI = (10 )( 5.5 ) − 33.75 = 21.25 V
For vI > 21.25 V, vo = 10 V
2.49
a.        V01 = V02 = 0
b.        V01 = 4.4 V, V02 = 3.8 V
c.        V01 = 4.4 V, V02 = 3.8 V
Logic “1” level degrades as it goes through additional logic gates.

2.50
a.        V01 = V02 = 5 V
b.        V01 = 0.6 V, V02 = 1.2 V
c.        V01 = 0.6 V, V02 = 1.2 V
Logic “0” signal degrades as it goes through additional logic gates.

2.51
(V1 AND V2 ) OR (V3 AND V4 )
2.52
    10 − 1.5 − 0.2
I=                 = 12 mA = 0.012
       R + 10
           8.3
R + 10 =         = 691.7Ω
          0.012
R = 681.7Ω

2.53
     10 − 1.7 − VI
 I=                  =8
         0.75
VI = 10 − 1.7 − 8 ( 0.75 ) ⇒ VI = 2.3 V

2.54
         ϩ VR Ϫ

 ϩ
VPS                    Rϭ 2 K
 Ϫ

 VR = 1 V, I = 0.8 mA
VPS = 1 + ( 0.8 )( 2 )
VPS = 2.6 V

2.55
I Ph = η eΦA
0.6 × 10−3 = (1) (1.6 × 10−19 )(1017 ) A
A = 3.75 × 10−2 cm 2

Ch02s

  • 1.
    Chapter 2 Problem Solutions 2.1 ␯I ␯0 Rϭ1K ␯I 10 0 Ϫ10 Vγ = 0.6 V, rf = 20 Ω ⎛ R ⎞ ⎜ R + r ⎟( For vI = 10 V, v0 = ⎜ 10 − 0.6 ) ⎟ ⎝ f ⎠ ⎛ 1 ⎞ =⎜ ⎟ ( 9.4 ) ⎝ 1 + 0.02 ⎠ v0 = 9.22 10 0.6 ␯0 9.22 2.2 ϩ ␯D Ϫ ␯I ␯0 D R v0 = vI − vD ⎛i ⎞ v vD = VT ln ⎜ D ⎟ and iD = 0 ⎝ IS ⎠ R ⎛ v ⎞ v0 = vI − VT ln ⎜ 0 ⎟ ⎝ IS R ⎠ 2.3 80sin ω t (a) vs = = 13.33sin ω t 6 13.33 Peak diode current id (max) = R
  • 2.
    (b) PIV = vs (max) = 13.3 V (c) To π 1 1 vo ( avg ) = ∫ v (t )dt = 2π ∫ 13.33sin × dt o To o o 13.33 13.33 13.33 [ − cos x ]o = π = ⎡ − ( −1 − 1) ⎤ = ⎣ ⎦ 2π 2π π vo ( avg ) = 4.24 V (d) 50% 2.4 v0 = vS − 2Vγ ⇒ vS ( max ) = v0 ( max ) + 2Vγ a. For v0 ( max ) = 25 V ⇒ vS ( max ) = 25 + 2 ( 0.7 ) = 26.4 V N1 160 N = ⇒ 1 = 6.06 N 2 26.4 N2 b. For v0 ( max ) = 100 V ⇒ vS ( max ) = 101.4 V N1 160 N = ⇒ 1 = 1.58 N 2 101.4 N2 From part (a) PIV = 2vS ( max ) − Vγ = 2 ( 26.4 ) − 0.7 or PIV = 52.1 V or, from part (b) PIV = 2 (101.4 ) − 0.7 or PIV = 202.1 V 2.5 (a) vs (max) = 12 + 2(0.7) = 13.4 V 13.4 vs ( rms ) = ⇒ vs (rms) = 9.48 V 2 (b) VM VM Vr = ⇒C = 2 f RC 2 f Vr R 12 C= ⇒ C = 2222 μ F 2 ( 60 )( 0.3)(150 ) (c) VM ⎡ 2VM ⎤ id , peak = ⎢1 + π ⎥ R ⎢⎣ Vr ⎥⎦ 12 ⎡ 2 (12 ) ⎤ = ⎢1 + π ⎥ 150 ⎢ 0.3 ⎥ ⎣ ⎦ id , peak = 2.33 A 2.6 (a) vS ( max ) = 12 + 0.7 = 12.7 V vS ( max ) vS ( rms ) = ⇒ vS ( rms ) = 8.98 V 2 VM V 12 (b) Vr = ⇒C = M = or C = 4444 μ F fRC fRVr ( 60 )(150 )( 0.3)
  • 3.
    VM ⎛ VM ⎞ 12 ⎛ 12 ⎞ (c) For the half-wave rectifier iD , max = ⎜ 1 + 4π ⎜ ⎟= ⎜ 1 + 4π ⎟ 150 ⎜ ⎟ or R ⎝ 2Vr ⎠ ⎝ 2 ( 0.3) ⎟ ⎠ iD , max = 4.58 A 2.8 (a) vs ( peak ) = 15 + 2 ( 0.7 ) = 16.4 V 16.4 vs ( rms ) = = 11.6 V 2 VM 15 (b) C= = = 2857 μ F 2 f RVr 2 ( 60 )(125 )( 0.35 ) 2.9 ␯S 26 0.6 Ϫ0.6 Ϫ26 25.4 ϩ ␯O 0 0 Ϫ ␯O Ϫ25.4 2.10 R iD ϩ ␯S ϭ ϩ VB ϭ 12 V Ϫ Ϫ ␯S iD ␻t x1 x2 vS ( t ) = 24sin ω t T 1 Now iD ( avg ) = iD ( t ) dt T∫0 24sin x − 12.7 We have for x1 ≤ ω t ≤ x2 iD = R To find x1 and x2, 24sin x1 = 12.7 x1 = 0.558 rad x2 = π − 0.558 = 2.584 rad Then
  • 4.
    x2 1 ⎡ 24sin x − 12.7 ⎤ iD ( avg ) = 2 = ∫⎢ ⎥dx 2π ⎣ x1 R ⎦ 1 ⎛ 24 ⎞ 1 ⎛ 12.7 ⎞ x2 6.482 4.095 ⎜ ⎟ ( − cos x ) x1 − ⇒ R = 1.19Ω x2 = ⎜ ⎟ ⋅ xx or 2 = − 2π ⎝ R ⎠ 2π ⎝ R ⎠ 1 R R x −x 2.584 − 0.558 Fraction of time diode is conducting = 2 1 × 100% = × 100% or Fraction = 32.2% 2π 2π Power rating x 2 R 2 ⎡ 24sin x − 12.7 ⎤ T R 2 ∫ iD dt = 2π x∫ ⎢ 2 Pavg = R ⋅ irms = ⎥ dx T 0 1 ⎣ R ⎦ x2 1 ⎡( 24 ) sin 2 x − 2 (12.7 )( 24 ) sin x + (12.7 ) ⎤dx 2π R ∫ ⎣ 2 2 = ⎦ x1 x ( 24 ) ⎡ − 1 ⎡ 2 x sin 2 x ⎤ 2 x2 ⎥ − 2 (12.7 )( 24 )( − cos x ) x1 + (12.7 ) xx1 ⎦ 2 x2 = ⎢2 ⎤ 2π R ⎣ ⎣ 4 ⎦x 1 For R = 1.19 Ω, then Pavg = 17.9 W 2.11 (a) 15 R= = 150Ω 0.1 vS ( max ) = vo ( max ) + Vγ = 15 + 0.7 or vS ( max ) = 15.7 V 15.7 Then vS ( rms ) = = 11.1 V 2 N1 120 N Now = ⇒ 1 = 10.8 N 2 11.1 N2 VM VM 15 (b) Vr = ⇒C = = or C = 2083 μ F 2 fRC 2 fRVr 2 ( 60 )(150 )( 0.4 ) (c) PIV = 2vS ( max ) − Vγ = 2 (15.7 ) − 0.7 or PIV = 30.7 V 2.12 ␯0 D2 ␯i ϩ Ϫ R2 RL R1 ␯0 ␯i ϩ Ϫ RL R2 R1 For vi > 0 Vγ = 0 Voltage across RL + R1 = vi ⎛ RL ⎞ 1 Voltage Divider ⇒ v0 = ⎜ ⎟ vi = vi ⎝ RL + R1 ⎠ 2
  • 5.
    ␯0 20 2.13 For vi >0, (Vγ = 0 ) R1 ␯i ϩ Ϫ ␯0 R2 RL a. ⎛ R2 || RL ⎞ v0 = ⎜ ⎟ vi ⎝ R2 || RL + R1 ⎠ R2 || RL = 2.2 || 6.8 = 1.66 kΩ ⎛ 1.66 ⎞ v0 = ⎜ ⎟ vi = 0.43 vi ⎝ 1.66 + 2.2 ⎠ ␯0 4.3 v0 ( max ) b. v0 ( rms ) = ⇒ v0 ( rms ) = 3.04 V 2 2.14 3.9 IL = ⇒ I 2 = 0.975 mA 4 20 − 3.9 IR = = 1.3417 mA 12 I Z = 1.3417 − 0.975 ⇒ I Z = 0.367 mA PT = I Z ⋅ VZ = ( 0.367 )( 3.9 ) ⇒ PT = 1.43 mW 2.15 (a) 40 − 12 IZ = = 0.233 A 120 P = ( 0.233)(12 ) = 2.8 W (b) IR = 0.233 A, IL = (0.9)(0.233) = 0.21 A 12 So 0.21 = ⇒ RL = 57.1Ω RL (c) P = ( 0.1)( 0.233)(12 ) ⇒ P = 0.28 W 2.16 Ri VI V0 II ϩ VZ RL Ϫ IZ IL VI = 6.3 V, Ri = 12Ω, VZ = 4.8
  • 6.
    a. 6.3 − 4.8 II = ⇒ 125 mA 12 I L = I I − I Z = 125 − I Z 25 ≤ I L ≤ 120 mA ⇒ 40 ≤ RL ≤ 192Ω b. PZ = I Z VZ = (100 )( 4.8 ) ⇒ PZ = 480 mW PL = I LV0 = (120 )( 4.8 ) ⇒ PL = 576 mW 2.17 a. 20 − 10 II = ⇒ I I = 45.0 mA 222 10 IL = ⇒ I L = 26.3 mA 380 I Z = I I − I L ⇒ I Z = 18.7 mA b. 400 PZ ( max ) = 400 mW ⇒ I Z ( max ) = = 40 mA 10 ⇒ I L ( min ) = I I − I Z ( max ) = 45 − 40 10 ⇒ I L ( min ) = 5 mA = RL ⇒ RL = 2 kΩ (c) For Ri = 175Ω I I = 57.1 mA I L = 26.3 mA I Z = 30.8 mA I Z ( max ) = 40 mA ⇒ I L ( min ) = 57.1 − 40 = 17.1 mA 10 RL = ⇒ RL = 585Ω 17.1 2.18 a. From Eq. (2-31) 500 [ 20 − 10] − 50 [15 − 10] I Z ( max ) = 15 − ( 0.9 )(10 ) − ( 0.1)( 20 ) 5000 − 250 = 4 I Z ( max ) = 1.1875 A I Z ( min ) = 0.11875 A 20 − 10 From Eq. (2-29(b)) Ri = ⇒ Ri = 8.08Ω 1187.5 + 50 b. PZ = (1.1875 )(10 ) ⇒ PZ = 11.9 W PL = I L ( max ) V0 = ( 0.5 )(10 ) ⇒ PL = 5 W 2.19 (a) As approximation, assume I Z ( max ) and I Z ( min ) are the same as in problem 2.18. V0 ( max ) = V0 ( nom ) + I Z ( max ) rZ = 10 + (1.1875)(2) = 12.375 V V0 ( min ) = V0 ( nom ) + I Z ( min ) rZ = 10 + (0.11875)(2) = 10.2375 V
  • 7.
    12.375 − 10.2375 b. % Reg = × 100% ⇒ % Reg = 21.4% 10 2.20 VL ( max ) − VL ( min ) % Reg = × 100% VL ( nom ) VL ( nom ) + I Z ( max ) rz − (VL ( nom ) + I Z ( min ) rz ) = VL ( nom ) ⎡ I Z ( max ) − I Z ( min ) ⎤ ( 3) =⎣ ⎦ = 0.05 6 So I Z ( max ) − I Z ( min ) = 0.1 A 6 6 Now I L ( max ) = = 0.012 A, I L ( min ) = = 0.006 A 500 1000 VPS ( min ) − VZ Now Ri = I Z ( min ) + I L ( max ) 15 − 6 or 280 = ⇒ I Z ( min ) = 0.020 A I Z ( min ) + 0.012 VPS ( max ) − VZ Then I Z ( max ) = 0.1 + 0.02 = 0.12 A and Ri = I Z ( max ) + I L ( min ) VPS ( max ) − 6 or 280 = ⇒ VPS ( max ) = 41.3 V 0.12 + 0.006 2.21 Using Figure 2.21 a. VPS = 20 ± 25% ⇒ 15 ≤ VPS ≤ 25 V For VPS ( min ) : I I = I Z ( min ) + I L ( max ) = 5 + 20 = 25 mA VPS ( min ) − VZ 15 − 10 Ri = = ⇒ Ri = 200Ω II 25 25 − 10 b. For VPS ( max ) ⇒ I I ( max ) = ⇒ I I ( max ) = 75 mA Ri For I L ( min ) = 0 ⇒ I Z ( max ) = 75 mA VZ 0 = VZ − I Z rZ = 10 − ( 0.025 )( 5 ) = 9.875 V V0 ( max ) = 9.875 + ( 0.075 )( 5 ) = 10.25 V0 ( min ) = 9.875 + ( 0.005 )( 5 ) = 9.90 ΔV0 = 0.35 V ΔV0 c. % Reg = × 100% ⇒ % Reg = 3.5% V0 ( nom ) 2.22 From Equation (2.29(a)) VPS ( min ) − VZ 24 − 16 Ri = = or Ri = 18.2Ω I Z ( min ) + I L ( max ) 40 + 400 VM VM Also Vr = ⇒C = 2 fRC 2 fRVr R ≅ Ri + rz = 18.2 + 2 = 20.2Ω Then
  • 8.
    24 C= ⇒ C = 9901 μ F 2 ( 60 )(1)( 20.2 ) 2.23 VZ = VZ 0 + I Z rZ VZ ( nom ) = 8 V 8 = VZ 0 + ( 0.1)( 0.5 ) ⇒ VZ 0 = 7.95 V VS ( max ) − VZ ( nom ) 12 − 8 Ii = = = 1.333 A Ri 3 For I L = 0.2 A ⇒ I Z = 1.133 A For I L = 1 A ⇒ I Z = 0.333 A VL ( max ) = VZ 0 + I Z ( max ) rZ = 7.95 + (1.133)( 0.5 ) = 8.5165 VL ( min ) = VZ 0 + I Z ( min ) rZ = 7.95 + ( 0.333)( 0.5 ) = 8.1165 ΔVL = 0.4 V ΔVL 0.4 % Reg = = ⇒ % Reg = 5.0% V0 ( nom ) 8 VM VM Vr = ⇒C = 2 fRC 2 fRVr R = Ri + rz = 3 + 0.5 = 3.5Ω 12 Then C = ⇒ C = 0.0357 F 2 ( 60 )( 3.5 )( 0.8 ) 2.24 (a) For −10 ≤ vI ≤ 0, both diodes are conducting ⇒ vO = 0 For 0 ≤ vI ≤ 3, Zener not in breakdown, so i1 = 0, vO = 0 vI − 3 For vI > 3 i1 = mA 20 ⎛ v −3⎞ 1 vo = ⎜ I ⎟ (10 ) = vI − 1.5 ⎝ 20 ⎠ 2 At vI = 10 V, vo = 3.5 V, i1 = 0.35 mA ␯O(V) 4 3.5 Ϫ10 3.0 10 ␯I(V) (b) For vI < 0, both diodes forward biased 0 − vI −i1 = . At vI = −10 V , i1 = −1 mA 10 v −3 For vI > 3, i1 = I . At vI = 10 V , i1 = 0.35 mA 20
  • 9.
    i1(mA) 0.35 Ϫ10 3 10 ␯I(V) Ϫ1 2.25 (a) 1K ␯I ␯0 1K 2K ϩ15 V1 1 V1 = × 15 = 5 V ⇒ for vI ≤ 5.7, v0 = vI 3 For vI > 5.7 V vI − (V1 + 0.7 ) 15 − V1 V1 + = , v0 = V1 + 0.7 1 2 1 vI − v0 15 − ( v0 − 0.7 ) v0 − 0.7 + = 1 2 1 vI 15.7 0.7 ⎛ 1 1 1⎞ + + = v0 ⎜ + + ⎟ = v0 ( 2.5 ) 1 2 1 ⎝ 1 2 1⎠ 1 vI + 8.55 = v0 ( 2.5 ) ⇒ v0 = vI + 3.42 2.5 vI = 5.7 ⇒ v0 = 5.7 vI = 15 ⇒ v0 = 9.42 ␯0(V) 9.42 5.7 0 5.7 15 ␯I (V) (b) iD = 0 for 0 ≤ vI ≤ 5.7 Then for vI > 5.7 V ⎛ v ⎞ vI − ⎜ I + 3.42 ⎟ vI − vO ⎝ 2.5 ⎠ or i = 0.6vI − 3.42 For v = 15, i = 5.58 mA iD = = D I D 1 1 1
  • 10.
    iD(mA) 5.58 5.7 15 ␯I (V) 2.26 ⎛ 20 ⎞ (a) For D off, vo = ⎜ ⎟ (20) − 10 = 3.33 V ⎝ 30 ⎠ Then for vI ≤ 3.33 + 0.7 = 4.03 V ⇒ vo = 3.33 V For vI > 4.03, vo = vl − 0.7; For vI = 10, vo = 9.3 ␯O(V) 9.3 3.33 0 4.03 10 ␯I (V) (b) For vI ≤ 4.03 V , iD = 0 10 − vo vo − ( −10 ) For vI > 4.03, iD + = 10 20 3 Which yields iD = vI − 0.605 20 For vI = 10, iD = 0.895 mA iD(mA) 0.895 0 4.03 10 ␯I(V) 2.27 ␯O 12.5 10.7 Ϫ30 10.7 30 ␯I Ϫ30 30 − 10.7 For vI = 30 V, i = = 0.175 A 100 + 10 v0 = i(10) + 10.7 = 12.5 V
  • 11.
    b. ␯O 12.5 10.7 0 Ϫ30 2.28 ϩ 5Ϫ ␯I ␯O R ϭ 6.8 K Vγ = 0.6 V vI = 15sin ω t ␯O ␯O Ϫ4.4 Ϫ19.4 2.29 a. Vγ = 0 0 Ϫ3 V Vγ = 0.6 0 Ϫ2.4 b. Vγ = 0 20 5 Vγ = 0.6 19.4 5 2.30
  • 12.
    10 6.7 0 Ϫ4.7 Ϫ10 2.31 One possible example is shown. Ri D L Ii ϩ ϩ ϩ Ϫ VZ ϭ 14 V Ϫ RADIO DZ Ϫ Vign VRADIO L will tend to block the transient signals Dz will limit the voltage to +14 V and −0.7 V. Power ratings depends on number of pulses per second and duration of pulse. 2.32 ␯O(V) 40 (a) 0 ␯O(V) 35 0 (b) Ϫ5 2.33 C ␯I ␯O ϩ Vx Ϫ a. For Vγ = 0 ⇒ Vx = 2.7 V b. For Vγ = 0.7 V ⇒ Vx = 2.0 V 2.34 C ϩ ϩ ␯I Ϫ ␯O 10 V ϩ Ϫ Ϫ 2.35
  • 13.
    20 ␯O 10 0 VB ϭ 0 ␯I Ϫ10 20 ␯O 13 10 3 0 VB ϭ ϩ3 V Ϫ7 ␯I ϩ VB 20 ␯O 10 7 0 VB ϭ Ϫ3 V Ϫ3 ␯ I ϩ VB Ϫ13 2.36 For Figure P2.32(a) 10 ␯I 0 Ϫ10 ␯O Ϫ20 2.37 a. 10 − 0.6 I D1 = ⇒ I D1 = 0.94 mA ID2 = 0 9.5 + 0.5 V0 = I D1 ( 9.5 ) ⇒ V0 = 8.93 V b. 5 − 0.6 I D1 = ⇒ I D1 = 0.44 mA ID2 = 0 9.5 + 0.5 V0 = I D1 ( 9.5 ) ⇒ V0 = 4.18 V c. Same as (a) d. (I ) 10 = ( 0.5 ) + 0.6 + I ( 9.5 ) ⇒ I = 0.964 mA 2 V0 = I ( 9.5 ) ⇒ V0 = 9.16 V I I D1 = I D 2 = ⇒ I D1 = I D 2 = 0.482 mA 2 2.38 a. I = I D1 = I D 2 = 0 V0 = 10 b.
  • 14.
    10 = I( 9.5 ) + 0.6 + I ( 0.5 ) ⇒ I = I D 2 = 0.94 mA I D1 = 0 V0 = 10 − I ( 9.5 ) ⇒ V0 = 1.07 V c. 10 = I ( 9.5 ) + 0.6 + I ( 0.5 ) + 5 ⇒ I = I D 2 = 0.44 mA I D1 = 0 V0 = 10 − I ( 9.5 ) ⇒ V0 = 5.82 V d. I 10 = I ( 9.5 ) + 0.6 + ( 0.5) ⇒ I = 0.964 mA 2 I I D1 = I D 2 = ⇒ I D1 = I D 2 = 0.482 mA 2 V0 = 10 − I ( 9.5 ) ⇒ V0 = 0.842 V 2.39 a. V1 = V2 = 0 ⇒ D1 , D2 , D3 , on V0 = 4.4 V 10 − 4.4 I= ⇒ I = 0.589 mA 9.5 4.4 − 0.6 I D1 = ID2 = ⇒ I D1 = I D 2 = 7.6 mA 0.5 I D3 = I D1 + I D 2 − I = 2 ( 7.6 ) − 0.589 ⇒ I D 3 = 14.6 mA b. V1 = V2 = 5 V D1 and D2 on, D3 off I 10 = I ( 9.5 ) + 0.6 + ( 0.5 ) + 5 ⇒ I = 0.451 mA 2 I I D1 = I D 2 = ⇒ I D1 = I D 2 = 0.226 mA 2 I D3 = 0 V0 = 10 − I ( 9.5 ) = 10 − ( 0.451)( 9.5 ) ⇒ V0 = 5.72 V c. V1 = 5 V, V2 = 0 D1 off, D2, D3 on V0 = 4.4 V 10 − 4.4 I= ⇒ I = 0.589 mA 9.5 4.4 − 0.6 I D2 = ⇒ I D 2 = 7.6 mA 0.5 I D1 = 0 I D 3 = I D 2 − I = 7.6 − 0.589 ⇒ I D 3 = 7.01 mA d. V1 = 5 V, V2 = 2 V D1 off, D2, D3 on V0 = 4.4 V 10 − 4.4 I= ⇒ I = 0.589 mA 9.5 4.4 − 0.6 − 2 I D2 = ⇒ I D 2 = 3.6 mA 0.5 I D1 = 0 I D 3 = I D 2 − I = 3.6 − 0.589 ⇒ I D 3 = 3.01 mA 2.40 (a) D1 on, D2 off, D3 on So I D 2 = 0 10 − 0.6 − ( −0.6 ) 10 Now V2 = −0.6V , I D1 = = ⇒ I D1 = 1.25 mA R1 + R2 2+6
  • 15.
    V1 = 10− 0.6 − (1.25 )( 2 ) ⇒ V1 = 6.9 V −0.6 − ( −5 ) I R3 = = 2.2 mA 2 I D3 = I R 3 − I D1 = 2.2 − 1.25 ⇒ I D 3 = 0.95 mA (b) D1 on, D2 on, D3 off So I D 3 = 0 10 − 0.6 − 4.4 5 V1 = 4.4 V , I D1 = = R1 6 or I D1 = 0.833 mA 4.4 − ( −5 ) 9.4 I R2 = = = 0.94 mA R2 + R3 10 I D 2 = I R 2 − I D1 = 0.94 − 0.833 ⇒ I D 2 = 0.107 mA V2 = I R 2 R3 − 5 = ( 0.94 )( 5 ) − 5 ⇒ V2 = −0.3 V (c) All diodes are on V1 = 4.4V , V2 = −0.6 V 10 − 0.6 − 4.4 I D1 = 0.5 mA = ⇒ R1 = 10 k Ω R1 4.4 − ( −0.6 ) I R 2 = 0.5 + 0.5 = 1 mA = ⇒ R2 = 5 k Ω R2 −0.6 − ( −5 ) I R 3 = 1.5 mA = ⇒ R3 = 2.93 k Ω R3 2.41 ⎛ 0.5 ⎞ For vI small, both diodes off vO = ⎜ ⎟ vI = 0.0909vI ⎝ 0.5 + 5 ⎠ When vI − vO = 0.6, D1 turns on. So we have vI − 0.0909vI = 0.6 ⇒ vI = 0.66, vO = 0.06 vI − 0.6 − vO vI − vO vO 2v − 0.6 For D1 on + = which yields vO = I 5 5 0.5 12 2vI − 0.6 When vO = 0.6, D2 turns on. Then 0.6 = ⇒ vI = 3.9 V 12 v − 0.6 − vO vI − vO vO vO − 0.6 Now for vI > 3.9 I + = + 5 5 0.5 0.5 2vI + 5.4 Which yields vO = ; For vI = 10 ⇒ vO = 1.15 V 22 2.42 ϩ10 V 10 K D1 D2 ␯I ␯0 D3 D4 10 K 10 K Ϫ10 V
  • 16.
    For vI >0. when D1 and D4 turn off 10 − 0.7 I= = 0.465 mA 20 v0 = I (10 kΩ ) = 4.65 V ␯0 4.65 Ϫ10 Ϫ4.65 4.65 10 ␯I Ϫ4.65 v0 = vI for − 4.65 ≤ vI ≤ 4.65 2.43 a. R1 D2 ϩ10 V V0 D1 R2 ID1 Ϫ10 V R1 = 5 kΩ, R2 = 10 kΩ D1 and D2 on ⇒ V0 = 0 10 − 0.7 0 − ( −10 ) I D1 = − = 1.86 − 1.0 5 10 I D1 = 0.86 mA b. R1 = 10 kΩ, R2 = 5 kΩ, D1 off, D2 on I D1 = 0 10 − 0.7 − ( −10 ) I= = 1.287 15 V0 = IR2 − 10 ⇒ V0 = −3.57 V 2.44 If both diodes on (a) VA = −0.7 V, VO = −1.4 V 10 − ( −0.7 ) I R1 = = 1.07 mA 10 −1.4 − ( −15 ) IR2 = = 2.72 mA 5 I R1 + I D1 = I R 2 ⇒ I D1 = 2.72 − 1.07 I D1 = 1.65 mA (b) D1 off, D2 on 10 − 0.7 − ( −15 ) I R1 = I R 2 = = 1.62 mA 5 + 10 VO = I R 2 R2 − 15 = (1.62 )(10 ) − 15 ⇒ VO = 1.2 V VA = 1.2 + 0.7 = 1.9 V ⇒ D1 off , I D1 = 0 2.45
  • 17.
    (a) D1 on, D2 off 10 − 0.7 I D1 = = 0.93 mA 10 VO = −15 V (b) D1 on, D2 off 10 − 0.7 I D1 = = 1.86 mA 5 VO = −15 V 2.46 15 − (V0 + 0.7 ) V0 + 0.7 V0 = + 10 20 20 15 0.7 0.7 ⎛ 1 1 1 ⎞ ⎛ 4.0 ⎞ − − = V0 ⎜ + + ⎟ = V0 ⎜ ⎟ 10 10 20 ⎝ 10 20 20 ⎠ ⎝ 20 ⎠ V0 = 6.975 V V0 ID = ⇒ I D = 0.349 mA 20 2.47 10 K Ϫ VD ϩ 10 K Va Vb V1 V2 ID 10 K 10 K a. V1 = 15 V, V2 = 10 V Diode off Va = 7.5 V, Vb = 5 V ⇒ VD = −2.5 V ID = 0 b. V1 = 10 V, V2 = 15 V Diode on V2 − Vb Vb Va Va − V1 = + + ⇒ Va = Vb − 0.6 10 10 10 10 15 10 ⎛1 1⎞ ⎛1 1⎞ ⎛ 1 1⎞ + = Vb ⎜ + ⎟ + Vb ⎜ + ⎟ − 0.6 ⎜ + ⎟ 10 10 ⎝ 10 10 ⎠ ⎝ 10 10 ⎠ ⎝ 10 10 ⎠ ⎛ 4⎞ 2.62 = Vb ⎜ ⎟ ⇒ Vb = 6.55 V ⎝ 10 ⎠ 15 − 6.55 6.55 ID = − ⇒ I D = 0.19 mA 10 10 VD = 0.6 V 2.48 vI = 0, D1 off, D2 on 10 − 2.5 I= = 0.5 mA 15 vo = 10 − ( 0.5 )( 5 ) ⇒ vo = 7.5 V for 0 ≤ vI ≤ 7.5 V For vI > 7.5 V , Both D1 and D2 on vI − vo vo − 2.5 vo − 10 = + or vI = vo ( 5.5 ) − 33.75 15 10 5 When vo = 10 V, D2 turns off vI = (10 )( 5.5 ) − 33.75 = 21.25 V For vI > 21.25 V, vo = 10 V
  • 18.
    2.49 a. V01 = V02 = 0 b. V01 = 4.4 V, V02 = 3.8 V c. V01 = 4.4 V, V02 = 3.8 V Logic “1” level degrades as it goes through additional logic gates. 2.50 a. V01 = V02 = 5 V b. V01 = 0.6 V, V02 = 1.2 V c. V01 = 0.6 V, V02 = 1.2 V Logic “0” signal degrades as it goes through additional logic gates. 2.51 (V1 AND V2 ) OR (V3 AND V4 ) 2.52 10 − 1.5 − 0.2 I= = 12 mA = 0.012 R + 10 8.3 R + 10 = = 691.7Ω 0.012 R = 681.7Ω 2.53 10 − 1.7 − VI I= =8 0.75 VI = 10 − 1.7 − 8 ( 0.75 ) ⇒ VI = 2.3 V 2.54 ϩ VR Ϫ ϩ VPS Rϭ 2 K Ϫ VR = 1 V, I = 0.8 mA VPS = 1 + ( 0.8 )( 2 ) VPS = 2.6 V 2.55 I Ph = η eΦA 0.6 × 10−3 = (1) (1.6 × 10−19 )(1017 ) A A = 3.75 × 10−2 cm 2