SlideShare a Scribd company logo
Chapter 8
Problem Solutions

8.1
a.




b.        i.      VD D = 80 V




                            VD D
Maximum power at VDS =             = 40 V
                             2
        PT   25
ID =       =    = 0.625 A
       VD S 40
       80 − 40
RD =           ⇒ RD = 64 Ω
        0.625
ii.       VD D = 50 V




                            VD D
Maximum power at VD S =            = 25 V
                             2
        PT   25
ID =       =    =1 A
       VDS 25
       50 − 25
RD =           ⇒ RD = 25 Ω
          1

8.2
a.
VC C
PQ (max) = I C Q ⋅
                        2
                2 PQ (max)           2(20)
So I C Q =                       =         = 1.67 A
                    VCC               24
         VCC − (VCC / 2) 24 − 12
RL =                    =        ⇒ RL = 7.2 Ω
              I CQ        1.67
         I CQ1.67
 IB =           =   ⇒ 20.8 mA
          β   80
     24 − 0.7
RB =           ⇒ RB = 1.12 kΩ
       20.8
b.
                I CQ ⋅ RL (1.67 )( 7.2 )
 Av = g m RL =           =               = 462
                   VT        0.026
                                      V0 (max) 12
V0 (max) = 12 V ⇒ VP =                        =     ⇒ VP ≅ 26 mV
                                          Av    462

8.3
                                                                     VC C
a.            For maximum power delivered to the load, set VC EQ =
                                                                      2
Set VC C = 25 V = VCE ( sus )
                    VCC 25
Then I Cm =            =
                     RL 0.1
I Cm = 250 mA < I C ,max
      25 − 12.5
I CQ =            = 125 mA
          0.1
                   V
PQ ( max ) = I CQ ⋅ CC = ( 0.125 )(12.5 )
                    2
                        = 1.56 W < PD,max
     125
I BQ =    = 1.25 mA
     100
     25 − 0.7
RB =          ⇒ RB = 19.4 kΩ
      1.25
                    1 2           1
        PL ( max ) = ⋅ I CQ ⋅ RL = ( 0.125 ) (100 ) ⇒ PL ( max ) = 0.781 W ( rms )
                                            2
b.
                    2             2

8.4




Point (b): Maximum power delivered to load.
Point (a): Will obtain maximum signal current output.
Point (c): Will obtain maximum signal voltage output.
8.5
a.




b.
VGG = 5 V, I D = 0.25 ( 5 − 4 ) = 0.25 A, VD S = 37.5 V, P = 9.375 W
                                   2



VGG = 6 V, I D = 0.25 ( 6 − 4 ) = 1.0 A, VD S = 30 V, P = 30 W
                                   2



VGG = 7 V, I D = 0.25 ( 7 − 4 ) = 2.25 A, VD S = 17.5 V, P = 39.375 W
                                   2



VGG = 8 V, I D     = 0.25 ⎡ 2 ( 8 − 4 )VD S − VD S ⎤
                          ⎣
                                               2
                                                   ⎦
                       40 − VD S
                   =               ⇒ VD S = 2.92
                      10
I D = 3.71 A, P = 10.8 W
VGG = 9 V, I D     = 0.25 ⎡ 2 ( 9 − 4 ) VD S − VD S ⎤
                          ⎣
                                                2
                                                    ⎦
                       40 − VD S
                   =        ⇒ VD S = 1.88 V
                      10
I D = 3.81 A, P = 7.16 W
c.       Yes, at VGG = 7 V, P = 39.375 W > PD ,max = 35 W

8.6
a.
              VDD
Set VDSQ =        = 25 V
               2
         50 − 25
I DQ   =         = 1.25 A
           20
I DQ = K n (VGS − VTN )
                          2



     1.25
          + 4 = VGS = 6.5 V
      0.2
      ⎛ R2 ⎞
VGS = ⎜         ⎟ VDD
      ⎝ R1 + R2 ⎠
Let R1 + R2 = 100 kΩ
      ⎛ R ⎞
6.5 = ⎜ 2 ⎟ ( 50 ) ⇒ R2 = 13 kΩ
      ⎝ 100 ⎠
                     R1 = 87 kΩ
b.          PD = I DQVDSQ = (1.25 )( 25 ) ⇒ PD = 31.25 W
c.
I D ,max = 2 I DQ ⇒ I D ,max = 2.5 A
VDS ,max = VDD ⇒ VDS ,max = 50 V
                       PD ,max = 31.25 W
d.
V0
    = g m RL
 Vi
 g m = 2 K n I DQ = 2               ( 0.2 )(1.25) = 1 A / V
 V0 = (1)( 20 )( 0.5 ) = 10 V
        1 V02 1 (10 )
                                     2

 PL =    ⋅   = ⋅      ⇒ PL = 2.5 W
        2 RL 2 20
 PQ = 31.25 − 2.5 ⇒ PQ = 28.75 W

8.7
(a)




(b)           PD = PD ,max − ( Slope ) (T j − 25 )
                              60
At PD = 0, T j ,max =              + 25 ⇒ T j ,max = 145°C
                             0.5
                          T j ,max − Tcase                  145 − 25
(c)           PD ,max   =                  or θ dev − amb =          ⇒ θ dev − amb = 2°C/W
                              θ dev − amb                     60

8.8
              T j ,max − Tamb
PD ,rated =
                θ dev − case
                    T j ,max − Tamb
or θ dev − case =
                        PD ,rated
                  150 − 25
                =           = 2.5°C/W
                     50
Then Tdev      − Tamb = PD (θ dev − case + θ case − amb )
150 − 25 = PD ( 2.5 + θ case − amb ) ⇒ 125 = PD ( 2.5 + θ case − amb )

8.9
PD = I D ⋅ VDS = ( 4 )( 5 ) = 20 W
Tdev − Tamb = PD (θ dev − case + θ case − snk + θ snk − amb )
Tdev − 25 = 20 (1.75 + 0.8 + 3) = 111 ⇒ Tdev = 136°C
Tdev − Tcase = PD ⋅θ dev − case = ( 20 )(1.75 ) = 35
Tcase = Tdev − 35 = 136 − 35 ⇒ Tcase = 101°C
Tcase − Tsink = PD ⋅θ case − snk = ( 20 )( 0.8 ) = 16°C
Tsink = Tcase − 16 = 101 − 16 ⇒ Tsink = 85°C

8.10
Tdev − Tamb = PD (θ dev − case + θ case − amb )
200 − 25 = 25 ( 3 + θ case − amb ) ⇒ θ case − amb = 4°C/W

8.11
                 T j ,max − Tamb       175 − 25
θ dev − case =                     =            = 10°C/W
                    PD ,rated            15
                    T j ,max − Tamb
PD =
         θ dev − case + θ case −snk + θ snk − amb
         175 − 25
     =              ⇒ PD = 10 W
         10 + 1 + 4

8.12
         PL
 η=
         PS
PS = VCC ⋅ I Q
                ⎛V ⎞
PL = VP ⋅ I P = ⎜ CC ⎟ ( I Q )
                ⎝ 2 ⎠
     1
       ⋅ VCC ⋅ I Q
 η= 2              ⇒ η = 50%
      VCC ⋅ I Q

8.13
vo ( max ) = 4.8 V
                                                     −0.7 − ( −5 )
                                     iC 3 = iC 2 =                   = 4.3 mA
                                                          1
                                                                     vS ( min )
vI = vo + 0.7                        iL ( max ) = −4.3 mA =
                                                                         1
so − 3.6 ≤ vI ≤ 5.5 V vo ( min ) = −4.3 V

8.14
0 − VGS 3 − ( −5 )
I D 3 = K (VGS 3 − VTN ) =
                               2

                                               R
12 (VGS 3 − 0.5 ) = 5 − VGS 3
                     2

    2
2VGS 3 − 11VGS − 2 = 0

                   (11)       + 4 (12 )( 2 )
                          2
          11 ±
VGS 3 =
                         2 (12 )
VGS 3 = VGS 2 = 1.072 V
I D 3 = I D 2 = 12 (1.072 − 0.5 ) = 3.93 mA
                                           2


VDS 2 ( sat ) = VGS 2 − VTN = 1.072 − 0.5 = 0.572 V
                                               V0 ( min )
vo ( min ) : i2 ( max ) = −3.93 =                           ⇒ V0 ( min ) = −3.93 V
                                                 1
vI ( min ) = vo ( min ) + VTN            = −3.93 + 0.5
vI ( min ) = −3.43 V
vo ( max ) = 5 − VDS ( sat ) = 5 − 0.572
vo ( max ) = 4.43 V
                      4.43
I D1 ( max ) = 3.93 +        = 8.36 mA
                        1
I D1 = 8.36 = 12 (VGS 1 − 0.5 ) ⇒ VGS 1 = 1.33 V
                                          2


vI ( max ) = vo + VGS1 = 4.43 + 1.33 ⇒ vI ( max ) = 5.76 V

8.15
a.        Neglect base currents.
v0 ( max ) = V + − VCE (sat) = 10 − 0.2 = 9.8 V
                   9.8 9.8
 iL (max) = I Q =       =     ⇒ I Q = 9.8 mA
                   RL      1
                  0 − 0.7 − ( −10 )
          R=                 ⇒ R = 949 Ω
                     9.8
iE1 ( max ) = 2 I Q ⇒ iE1 ( max ) = 19.6 mA
                                   iE1 ( min ) = 0
              iL ( max ) = I Q = 9.8 mA
             iL ( min ) = − I Q = −9.8 mA
b.
     1                        1
        ( iL ( max ) ) RL = 2 ( 9.8)2 (1) ⇒ PL = 48.02 mW
                      2
PL =
     2
PS = I Q (V + − V − ) + I Q ( 0 − V − )
     = 9.8 ( 20 ) + 9.8 (10 ) ⇒ PS = 294 mW
        PL        48.02
 η=           =         ⇒ η = 16.3%
       PS          294

8.16
a.
                  v0 ( max )           10
I Q ( min ) =                      =       ⇒ I Q ( min ) = 100 mA
                     RL                0.1
       0 − 0.7 − ( −12 )
R=                             ⇒ R = 113 Ω
               100
b.
PQ1 = I Q ⋅ VCE1 = (100 )(12 ) ⇒ PQ1 = 1.2 W
P (source) = 2 I Q (12 ) = 2.4 W
c.
               (10 )
                           2
       1 VP2
PL =    ⋅    =       = 0.5 W
       2 RL 2 (100 )
PS = 1.2 + 2.4 = 3.6 W
        PL       0.5
 η=          =       ⇒ η = 13.9%
        PS       3.6

8.17
I D1 = K n (VGS − VTN ) = 12 ( 0 − ( −1.8 ) )
                               2                2



 I D1 = 38.9 mA
(a)
 For RL = ∞
vo ( max ) = 4.8 V
VDS ( sat ) = VGS − VTN = 1.8 V
vo ( min ) = −5 + 1.8 = −3.2 V
vI = vo + 0.7 ⇒ −2.5 ≤ vI ≤ 5.5 V
(b)          For RL = 500 Ω vo ( max ) = 4.8 V
                                                    vo −3.2
For vo < 0, vo ( min ) = −3.2 V              ′
                                            I2 =       =     = −6.4 mA
                                                    RL   0.5
 −2.5 ≤ vI ≤ 5.5 V
(c)
 For vo = −2V , I 2 ( max ) = −38.9 mA
                  ′
               −2
 R2 ( min ) =         ⇒ RL ( min ) = 51.4 Ω
              −38.9
    1 v2 1 ( 2)
                               2

PL = ⋅ o = ⋅    ⇒ PL = 38.9 mW
    2 RL 2 51.4
                                         38.9
PL = 10 ( 38.9 ) = 389 mW % =                 = 10%
                                         389

8.18
    V 2 (V )
           +           2

PL = P =
    RL    RL

    1 (V ) 1 (V )
                 + 2               − 2

PS = ⋅    + ⋅     , V − = −V +
    2 RL   2 RL

So PS       =
              (V )
                 + 2


                 RL
       PL
η=           ⇒ η = 100%
       PS

8.19
(a)
As maximum conversion efficiency
   π V
η = , P = 0.785
    4 VCC
                                ⎛4⎞
So V p ( max ) = ( 0.785 )( 5 ) ⎜ ⎟
                                ⎝π ⎠
               V p ( max ) = 5 V
                                                                                     2VCC       2 ( 5)
(b)        Maximum power dissipation occurs when V p =                                      =            = 3.183 V
                                                                                      π          π
                                    2
                                 VCC
(c)          P ( max ) =
              θ
                                π RL
                                  2


                                    ( 5)
                                           2

                           2=                  ⇒ RL = 1.27 Ω
                                π 2 RL

8.20
                      2
                   1 Vp
(a)          P=     ⋅
                   2 RL
                     2
                 1 Vp
            50 =   ⋅    ⇒ V p = 49 V ⇒ V + = 52 V, V − = −52 V
                 2 24
                 V     49
(b)          IP = P =     = 2.04 A
                 RL 24
                 π VP                π ⎛ 49 ⎞
(c)         η=     ⋅            =       ⎜ ⎟
                 4 VCC                4 ⎝ 52 ⎠
            η = 74.0%

8.21
(a)
VDS ≥ VDS ( sat ) = VGS − VTN = VGS
VDS = 10 − Vo ( max ) and I D = I L = K n (VGS )
                                                                      2


Vo ( max )
             = K n (VGS )
                                2

      RL
           Vo ( max )
VGS =
            RL ⋅ K n
                                Vo ( max )                Vo ( max )
So 10 − Vo ( max ) =                                  =
                                     RL ⋅ K n              ( 5 )( 0.4 )
                       2    V0 ( max )
⎡10 − V0 ( max ) ⎤ =
⎣                ⎦                    2
                                                       V0 ( max )
100 − 20V0 ( max ) + V02 ( max ) =
                                                           2
V02 ( max ) − 20.5V0 ( max ) + 100 = 0

                            ( 20.5 )               − 4 (100 )
                                               2
               20.5 ±
V0 ( max ) =                                                    ⇒ V0 ( max ) = 8 V
                                      2
       8
iL =     ⇒ iL = 1.6 mA
       5
          i       1.6
VGS    = L =          = 2 V ⇒ VI = 10 V
          Kn      0.4
b.
1 (8)
                2

PL = ⋅         = 6.4 mW
     2 5
     20 (1.6 )
PS =           = 10.2 mW
            π
       PL        6.4
 η=         =        ⇒ η = 62.7%
       PS       10.2

8.22
vO = iL RL and iL = iD = K n ( vGS − VTN ) or iL = K n ( vGS ) and vGS = vI − vO
                                           2               2


Then
vO = K n RL ( vI − vO ) or vO = 2 ( vI − vO )
                        2                       2


dv0                         ⎛ dv ⎞
    = ( 2 )( 2 )( vI − v0 ) ⎜ 1 − 0 ⎟
dvI                         ⎝ dvI ⎠
dv0
    ⎡1 + 4 ( vI − v0 ) ⎤ = 4 ( vI − v0 )
dvI ⎣                  ⎦

     dv0   4 ( vI − v0 )
or       =
     dvI 1 + 4 ( vI − v0 )
                                  dv0   4 (10 − 8 )   dv
For vI = 10 V, v0 = 8 V ⇒             =              ⇒ 0 = 0.889
                                  dvI 1 + 4 (10 − 8 ) dvI
                            dv0
At vI = 0, v0 = 0 ⇒             =0
                            dvI
                             dv0
At vI = 1, v0 = 0.5 ⇒            = 0.667
                             dvI

8.23
a.
             ⎛i ⎞                ⎛ 5 × 10−3 ⎞
VBE = VT ln ⎜ C ⎟ = ( 0.026 ) ln ⎜       −13 ⎟
             ⎝ IS ⎠              ⎝ 5 × 10 ⎠
      V
VBE = BB = 0.5987 V ⇒ VBB = 1.1973 V
        2
 PQ = iC ⋅ vCE = ( 5 )(10 ) ⇒ PQ = 50 mW
b.
v0 = −8 V
         −8
  iL =       ⇒ iL = −80 mA
         0.1
               iCp ≈ 80 mA
            ⎛ iCp ⎞            ⎛ 80 × 10−3 ⎞
vEB = VT ln ⎜ ⎟ = ( 0.026 ) ln ⎜       −13 ⎟
            ⎝ IS ⎠             ⎝ 5 × 10 ⎠
vEB = 0.6708 V
         VBB
 vI =        − vEB + v0 = 0.5987 − 0.6708 − 8⇒ vI = −8.072 V
          2
VBE    = VBB − vEB = 1.1973 − 0.6708 = 0.5265 V
               ⎛v ⎞                   ⎛ 0.5265 ⎞
 iCn = I S exp ⎜ BE ⎟ = 5 × 10−13 exp ⎜        ⎟ ⇒ iCn = 0.311 mA
               ⎝ VT ⎠                 ⎝ 0.026 ⎠
 PL = iL RL = ( 80 ) ( 0.1) ⇒ PL = 640 mW
       2               2


PQn = iCn ⋅ vCE = ( 0.311) (10 − ( −8 ) ) ⇒ PQn = 5.60 mW
PQp = iCp ⋅ vEC = ( 80 )( 2 ) ⇒ PQp = 160 mW

8.24
           iDn = K n ( vGSn − VTN )
                                      2
(a)
               0.5                       V
                    + 2 = vGSn = 2.5 V = BB ⇒ VBB = 5.0 V
                2                         2
             Pn = ( 0.5 )(10 ) ⇒ Pn = Pp = 5 mW
(b)        VDS = VGS − VTN ⇒ VDS = VGS − 2 VDS = 10 − vo ( max )
           and
                       iL         v ( max )      v ( max )
           VGS =          + VTN = O         +2 = O         +2
                       Kn          RL K n         ( 2 )(1)
so
                       v0 ( max )            v0 ( max )
10 − v0 ( max ) =                   +2−2 =
                           2                     2
so v0 ( max ) = 8 V
             8
iDn = iL =     ⇒ iDn = iL = 8 mA
             1
         8
VGS =      + 2 ⇒ VGS = 4 V
         2
                       V
Then vI = vo + VGS − BB = 8 + 4 − 2.5 ⇒ vI = 9.5 V
                         2
            ⎛      VBB ⎞
vSGp = vo − ⎜ vI −     ⎟ = 8 − ( 9.5 − 2.5 )
            ⎝       2 ⎠
vSGp = 1 V ⇒ M p cutoff ⇒ iDp = 0

PL = iL RL = ( 8 ) (1) ⇒ PL = 64 mW
      2            2


PMn = iDn ⋅ vDS = ( 8 )(10 − 8 ) ⇒ PMn = 16 mW
PMp = iDp ⋅ vSD ⇒ PMp = 0

8.25
a.
24
 v0 = 24 V ⇒ iL =          ⇒ iL ≈ iN = 3 A
                        8
      3
iBn =    ⇒ iBn = 73.2 mA
      41
For iD = 25 mA ⇒ iR1 = 25 + 73.2 = 98.2 mA
            ⎛i     ⎞                ⎛     3     ⎞
VBE = VT ln ⎜ N    ⎟ = ( 0.026 ) ln ⎜       −12 ⎟
            ⎝ IS   ⎠                ⎝ 6 × 10 ⎠
                     = 0.7004 V
                30 − ( 24 + 0.7 )                  5.3
Then 98.2 =                             ⇒ R1 =         ⇒ R1 = 53.97 Ω
                         R1                       98.2
                  ⎛ 25 × 10−3 ⎞
VD = ( 0.026 ) ln ⎜       −12 ⎟
                                = 0.5759 V
                  ⎝ 6 × 10 ⎠
VEB = 2VD − VBE = 2 ( 0.5759 ) − 0.7004
                        = 0.4514 V
             ⎛V ⎞                       ⎛ 0.4514 ⎞
iP = I S exp ⎜ EB ⎟ = ( 6 × 10−12 ) exp ⎜        ⎟ ⇒ iP = 0.208 mA
             ⎝ VT ⎠                     ⎝ 0.026 ⎠
b.        Neglecting base current
       30 − 0.6 30 − 0.6
 iD ≈           =            ⇒ iD ≈ 545 mA
          R1        53.97
                  ⎛ 0.545 ⎞
VD = ( 0.026 ) ln ⎜       −12 ⎟
                                = 0.656 V
                  ⎝ 6 × 10 ⎠
Approximation for iD is okay.
Diodes and transistors matched ⇒ iN = iP = 545 mA

8.26
(a)
 I D1 = K1 (VGS 1 − VTN )
                              2



           5
VGS1 =       +1 = 2 V
           5
 I D 3 = K 3 (VGS 3 − VTN )
                              2



200 = K 3 ( 2 − 1) ⇒ K n3 = K p 4 = 200 μ A / V 2
                    2



(b)
vI + VSG 4 + VGS 3 − VGS1 = vO
For vo large, iL = i1 = K n1 (VGS1 − VTN )
                                                  2



           iL                      vo
VGS1 =          + VTN =                   + VTN
           K n1                   RL K n1
                ⎛           vo       ⎞
So vI + 2 + 2 − ⎜                 + 1⎟ = v0
                ⎜       ( 0.5)( 5) ⎟
                ⎝                    ⎠
        v0
vI = v0 +   −3
        2.5
dvI    dv 1    1   dv
    =1= 0 + ⋅     ⋅ 0
dvI    dvI 2 2.5v0 dvI
       ⎡
     dv0       1 ⎤
1=     ⎢1 +      ⎥
       ⎢ 2 2.5v0 ⎥
     dvI
       ⎣         ⎦
For vO = 5 V :
dv0 ⎡    1        ⎤ dv             dv
1=       ⎢1 +          ⎥ = 0 (1.1414 ) ⇒ 0 = 0.876
     dvI ⎢ 2 2.5 ( 5 ) ⎥ dvI            dvI
         ⎣             ⎦

8.27
            VBB                           I Dn
vO = vI +       − VGS and VGS =                + VTN
             2                            Kn
                                            vO
For vO ≈ 0, I Dn = I DQ + iL = I DQ +
                                            RL
                   VBB         I DQ + ( vO / RL )             V           I DQ        v
Then vO = vI +         − VTN −                    or vO = vI + BB − VTN −      ⋅ 1+ O
                    2                 Kn                       2          Kn       I DQ RL

                             VBB         I DQ     1 v
For vO small, vO ≅ vI +          − VTN −      ⋅ 1+ ⋅ O
                              2          Kn       2 I DQ RL
   ⎡ 1 I DQ               1 ⎤          V           I DQ
vO ⎢1 + ⋅          ⋅           ⎥ = vI + BB − VTN −
   ⎢ 2 Kn
   ⎣                   I DQ RL ⎥
                               ⎦        2          Kn
Now
dvO                    1
     =                               = 0.95
dvI ⎡ 1             I DQ   1 ⎤
       ⎢1 + ⋅          ⋅        ⎥
       ⎢ 2
       ⎣            K n I DQ RL ⎥
                                ⎦
     1 I DQ   1     1
So    ⋅     ⋅     =     − 1 = 0.0526
     2 K n I DQ RL 0.95
                                 1
For RL = 0.1 k Ω, then                    = 0.01052
                               K n I DQ
Or     K n I DQ = 95.1
We can write g m = 2 K n I DQ = 190 mA/V
This is the required transconductance for the output transistor. This implies a very large transistor.

8.28
 Av = − g m RL
                                                 I CQ
So −12 = − g m ( 2 ) ⇒ g m = 6 mA/V=
                                                 VT
I CQ = ( 6 )( 0.026 ) ⇒ I CQ = 0.156 mA
                                                          VCC 10
But for maximum symmetrical swing, set I CQ =                 =   = 5 mA ⇒ Av > 12
                                                           RL   2
Maximum power to the load:
                 1 VCC (10 )
                     2          2

 PL ( max ) =     ⋅    =        ⇒ PL ( max ) = 25 mW
                 2 RL    2 ( 2)
PS = VCC ⋅ I CQ = (10 )( 5 ) = 50 mW
So η = 50%
5
          I CQ
I BQ =            =
                = 0.0278 mA
       β 180
R1 = RTH = 6 kΩ
VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE
Set RE = 20 Ω
VTH = ( 0.0278 )( 6 ) + 0.7 + (181)( 0.0278 )( 0.020 )
VTH = 0.967 V
          1
VTH =        ⋅ RTH ⋅ VCC
          R1
             1
0.967 =         ( 6 )(10 ) ⇒ R1 = 62.0 kΩ
             R1
                                R2 = 6.64 kΩ

8.29
         VCC 15
I CQ =       = = 15 mA
          RL  1
          15
I BQ =       = 0.15 mA
         100
                    (15)
                                 2
            1 V2
PL ( max ) = ⋅ CC =        ⇒ PL ( max ) = 112.5 mW
            2 RL     2 (1)
Let RTH = 10 kΩ
VTH = I BQ RTH + VBE + (1 + β ) I BQ RE
       = ( 0.15 )(10 ) + 0.7 + (101)( 0.15 )( 0.1)
                      1               1
VTH = 3.715 =            ⋅ RTH ⋅ VCC = ⋅ (10 )(15 )
                      R1              R1
                 R1 = 40.4 kΩ
                 R2 = 13.3 kΩ

8.30
      ⎛ R2 ⎞            ⎛ 1.55 ⎞
VTH = ⎜         ⎟ VCC = ⎜             ⎟ (10 )
      ⎝ R1 + R2 ⎠       ⎝ 1.55 + 0.73 ⎠
                      = 6.80 V
 RTH = R1 R2 = 0.73 1.55 = 0.496 kΩ
              VTH − VBE          6.80 − 0.70
 I BQ =                     =
           RTH + (1 + β ) RE 0.496 + ( 26 )( 0.02 )
 I BQ = 6.0 mA, I CQ = 150 mA
  Av = − g m RL and RL = a 2 RL = ( 3) ( 8 ) = 72 Ω
                                           2
              ′      ′
           I CQ        150
  gm =            =         ⇒ 5.77 A/V
           VT         0.026
Av = − ( 5.77 )( 72 ) = −415

Vo ′ = Av ⋅ Vi = ( 415 )( 0.017 ) = 7.06 V
     7.06
Vo =         = 2.35 V
        3
     7.06
Vo =         = 2.35 V
        3
     7.06
Vo =         = 2.35 V
        3
PS = I CQ ⋅ VCC = ( 0.15 )(10 ) = 1.5 W
       PL       0.345
η=          =         ⇒ η = 23%
       PS        1.5


8.31
a.         Assuming the maximum power is being delivered, then
                           36                9
Vo′ ( peak ) = 36 V ⇒ Vo =    = 9 V ⇒ Vrms =    ⇒ Vrms = 6.36 V
                            4                 2
                 36
b.         Vo =     ⇒ Vo = 25.5 V
                  2
                                 PL    2
c.          Secondary I rms =       =     ⇒ I rms = 0.314 A
                                Vrms 6.36
                   0.314
Primary I P =            ⇒ I P = 78.6 mA
                     4
d.
PS = I CQ .VCC = ( 0.15 )( 36 ) = 5.4 W
     2
η=       ⇒ η = 37%
    5.4

8.32
a.
⎛V            ⎞           ⎛1      ⎞
ve = ⎜ π + g mVπ      ′
                   ⎟ RE = Vπ              ′
                               ⎜ + g m ⎟ RE
     ⎝ rπ          ⎠           ⎝ rπ    ⎠
                          ⎛1+ β      ⎞
                    = Vπ ⎜              ′
                                     ⎟ RE
                          ⎝ rπ       ⎠
vi = Vπ + ve ⇒ Vπ = vi − ve
                 ⎛ 1+ β ⎞
ve = (vi − ve ) ⎜           ′
                         ⎟ RE
                 ⎝ rπ ⎠
       1+ β
                ⋅ RE′
                            (1 + β ) RE
                                                                2
ve        rπ                          ′    v             ⎛n ⎞
   =                    =                            ′
                                          = e where RE = ⎜ 1 ⎟ RL
vi 1 + 1 + β ⋅ R ′ rπ + (1 + β ) RE vi  ′                ⎝ n2 ⎠
                      E
             rπ
       ve               ⎛n ⎞
v0 =         so ve − v0 ⎜ 1 ⎟
     ⎛ n1 ⎞             ⎝ n2 ⎠
     ⎜ ⎟
     ⎝ n2 ⎠
   v        1       (1 + β ) RE′
so 0 =           ⋅
   vi ⎛ n1 ⎞ rπ + (1 + β ) RE    ′
          ⎜ ⎟
          ⎝ n2 ⎠
b.
     1 2              n1       I         1
PL =    ⋅ I P RL , a = , I CQ = P so PL = .a 2 I CQ RL
                                                 2

     2                n2        a        2
PS = I CQ .VCC
For η = 50% :
            1 2 2
              ⋅ a I CQ RL a 2 I R
 PL                                               VCC        VCC             V
    = 0.5 = 2            =            so a 2 =          =             ⇒ a 2 = CC
                               CQ L

 PS           I CQ ⋅ VCC     2VCC              I CQ ⋅ RL ( 0.1)( 50 )         5
c.
        r          β VT      49 ( 0.026 )
R0 = π =                   =              ⇒ R0 = 0.255 Ω
      1 + β (1 + β ) I CQ ( 50 )( 0.1)

8.33
a.        With a 10:1 transformer ratio, we need a current gain of 8 through the transistor.




                          ⎛ R1 R2 ⎞                      ie            ⎛ R1 R2      ⎞
ie = (1 + β ) ib and ib = ⎜             ⎟ ii so we need = 8 = (1 + β ) ⎜            ⎟ where
                          ⎜R R +R ⎟                      ii            ⎜R R +R      ⎟
                          ⎝ 1 2      ib ⎠                              ⎝ 1 2   ib   ⎠
Rib = rπ + (1 + β ) RL ≈ (1 + β ) RL = (101)( 0.8 ) = 80.8
                       ′           ′
⎛   R1 R2    ⎞
Then 8 = (101) ⎜
               ⎜ R R + 80.8 ⎟
                            ⎟
               ⎝ 1 2        ⎠
   R1 R2
             = 0.0792 or R1 R2 = 6.95 kΩ
R1 R2 + 80.8
       2VCC                V     12
Set           = RL ⇒ I CQ = CC =
                 ′                  = 15 mA
       2 I CQ                ′
                            RL 0.8
          15
I BQ =         = 0.15 mA
         100
VTH    = I BQ RTH + VBE
1
   ⋅ RTH ⋅ VCC = I BQ RTH + VBE
R1
 1
     ( 6.95)(12 ) = ( 0.15)( 6.95) + 0.7 ⇒ R1 = 47.9 kΩ then R2 = 8.13 kΩ
 R1
b.
                               I
 I e = 0.9 I CQ = 13.5 mA = L ⇒ I L = 135 mA
                                a
        1
PL = ( 0.135 ) ( 8 ) ⇒ PL = 72.9 mW
                  2

        2
PS = VCC I CQ = (12 )(15 ) ⇒ PS = 180 mW
         PL
 η=           ⇒ η = 40.5%
        PS

8.34
a.
VP = 2 RL PL
VP = 2 ( 8 )( 2 ) = 5.66 V = peak output voltage
       VP 5.66
IP =      =    = 0.708 A = peak output current
       RL   8
Set Ve = 0.9VCC = aVP to minimize distortion
               ( 0.9 )(18)
Then a =                     ⇒ a = 2.86
                 5.66
b.
            1 ⎛ I P ⎞ 1 ⎛ 0.708 ⎞
Now I CQ =            =      ⎜      ⎟ ⇒ I CQ = 0.275 A
           0.9 ⎜ a ⎟ 0.9 ⎝ 2.86 ⎠
               ⎝ ⎠
Then PQ = VCC I Q = (18 )( 0.275 ) ⇒ PQ = 4.95 W Power rating of transistor

8.35
a.            Need a current gain of 8 through the transistor.
ib                ⎛ R1 R2           ⎞
   = 8 = (1 + β ) ⎜                 ⎟ where Rib ≈ (1 + β )( 0.9 ) = 90.9 kΩ
ii                ⎜R R +R           ⎟
                  ⎝ 1 2   ib        ⎠
 8  ⎛   R1 R2    ⎞
   =⎜              = 0.0792 or R1 R2 = 7.82 kΩ
    ⎜ R R + 90.9 ⎟
101 ⎝ 1 2        ⎟
                 ⎠
        2VCC                     12
Set            = 0.9 kΩ ⇒ I CQ =     = 13.3 mA
        2 I CQ                   0.9
        13.3
I BQ =          = 0.133 mA
         100
          1
Then         ( 7.82 )(12 ) = ( 0.133)( 7.82 ) + 0.7 ⇒ R1 = 53.9 kΩ and R 2 = 9.15 kΩ
         R1
b.
                                 I
I e = ( 0.9 ) I CQ = 12 mA = L ⇒ I L = 120 mA
                                 a
       1
PL = ( 0.12 ) ( 8 ) ⇒ PL = 57.6 mW
                  2

       2
PS = VCC I CQ = (12 )(13.3) ⇒ PS = 159.6 mW
        PL 57.6
η=        =      ⇒ η = 36.1%
        PS 159.6

8.36
a.       All transistors are matched.
                    ⎛1+ β ⎞      iC
3 mA = iE1 + iB 3 = ⎜     ⎟ iC +
                    ⎝ β ⎠        β
    ⎛ 61 1 ⎞
3 = ⎜ + ⎟ iC ⇒ iC = 2.90 mA
    ⎝ 60 60 ⎠
b.
For vo = 6 V , let RL = 200 Ω.
       6
io =      = 0.03 A = 30 mA ≅ iE 3
      200
       30
iB 3 =    = 0.492 mA
       61
iE1 = 3 − 0.492 = 2.508 mA
       2.508
iB1 =          ⇒ iB1 = 41.11 μ A
         61
                        3
iE 2 ≅ 3 mA ⇒ iB 2 =       ⇒ 49.18 μ A
                        61
iI = iB 2 − iB1 = 49.18 − 41.11 ⇒ iI = 8.07 μ A
Current gain
         30 × 10−3
Ai =                  ⇒ Ai = 3.72 × 103
        8.07 × 10−6
                ⎛i ⎞                   ⎛ 30 × 10−3 ⎞
VBE 3   = VT ln ⎜ E 3 ⎟ = ( 0.026 ) ln ⎜       −13 ⎟
                ⎝ IS ⎠                 ⎝ 5 × 10 ⎠
VBE 3 = 0.6453 V
             ⎛i ⎞                  ⎛ 2.508 × 10−3 ⎞
VEB1 = VT ln ⎜ E1 ⎟ = ( 0.026 ) ln ⎜         −13  ⎟
             ⎝ IS ⎠                ⎝ 5 × 10       ⎠
VEB1 = 0.5807 V
vI = v0 + VBE 3 − VEB1 = 6 + 0.6453 − 0.5807
vI = 6.0646 V
Voltage gain
       v0    6
Av =      =      ⇒ Av = 0.989
       vI 6.0646


8.37
                                       1
a.         For i0 = 1 A, I B 3 ≅         ⇒ 20 mA
                                      50
                     10 − VEB1    ⎡10 − ( v0,max + VBE 3 )      ⎤
We can then write              = 2⎢                        − 20 ⎥
                        R1        ⎢
                                  ⎣          R1                 ⎥
                                                                ⎦
                                                              10 − VBE 2vo,max
If, for simplicity, we assume VEB1 = VBE 3 = 0.7 V, then              =        + 40
                                                                  R1     R1
                                              9.3 2 ( 4 )
If we assume v0,max = 4 V, then                  =        + 40 which yields R1 = R2 = 32.5 Ω
                                              R1   R1
                                     9.3
b.         For vI = 0, I E1 =             ⇒ I E1 = 0.286 A = I E 2
                                   32.5
Since I S 3,4   = 10 I S1,2 , then I E 3 = I E 4 = 2.86 A
c.
We can write
      ⎧              rπ 1 ⎫
      ⎪ rπ 3 + R1          ⎪
    1⎪             1 + β1 ⎪
R0 = ⎨                     ⎬
    2⎪        1 + β3       ⎪
      ⎪                    ⎪
      ⎩                    ⎭
            βV       ( 50 )( 0.026 )
Now rπ 3 = 3 T =                     = 0.4545 Ω
             IC 3         2.86
                β1VT        (120 )( 0.026 )
       rπ 1 =           =                     = 10.91 Ω
                 I C1           0.286
So
       ⎧               10.91 ⎫
         0.4545 + 32.5
     1⎪⎪                121 ⎪⎪
R0 = ⎨                       ⎬
     2⎪           51         ⎪
       ⎪
       ⎩                     ⎪
                             ⎭
     10.91
32.5        = 32.5 0.0902 = 0.0900
      121
                1 ⎧ 0.4545 + 0.0900 ⎫
Then R0 =         ⎨                 ⎬ or R 0 = 0.00534 Ω
                2⎩        51        ⎭

8.38
Ri =
      1
      2
        {                ⎣                             }
         rπ 1 + (1 + β ) ⎡ R1 ( rπ 3 + (1 + β ) 2 RL ) ⎤
                                                       ⎦
iC1 ≈ 7.2 mA and iC 3 ≈ 7.2 mA
             ( 60 )( 0.026 )
Then rπ =                      = 0.217 kΩ
                   7.2
So Ri =
        1
        2
            {
          0.217 + ( 61) ⎡ 2 ( 0.217 + ( 61)( 0.2 ) ) ⎤
                        ⎣                            ⎦     }
        1
        2
            {        ⎣         ⎦      }
       = 0.217 + 61 ⎡ 2 12.4 ⎤ or Ri = 52.6 kΩ


8.39
a.




b.
                             V + − VSG
I1 = K1 (VSG + VTP ) =
                         2

                                 R1
5 = 10 (VSG − 2 ) ⇒ VSG = 2.707 V
                   2


   10 − 2.707
5=            ⇒ R1 = R2 = 1.46 kΩ
       R1
c.       RL = 100 Ω For a sinusoidal output signal:
1 (v ) 1 ( 5)
                   2               2

PL = ⋅ o = ⋅      ⇒ PL = 125 mW
    2 RL   2 0.1
         ( vo ) ( 5 )
iD 3 ≈         =         ⇒ iD 3 = 50 mA
          RL       0.1
         50
VGS 3 =       + 2 = 4.236 V
         10
     10 − ( 4.236 + 5 )
I1 =                    ⇒ I D1 = 0.523 mA
            1.46
         0.523
VSG1 =           + 2 = 2.229 V
           10
vI = 5 + 4.236 − 2.229 ⇒ vI = 7.007 V
         (VI − VGS ) − ( −10 )
                                       = 10 (VGS − 2 )
                                                         2
I D2 =
             1.46
17.007 − VGS
             = 10 (VGS − 4VGS + 4 )
                     2

    1.46
      2
14.6VGS − 57.4VGS + 41.4 = 0

                       ( 57.4 ) − 4 (14.6 )( 41.4 )
                               2
          57.4 ±
VGS =
                            2 (14.6 )
VGS 2 = 2.98 V
I D 2 = 10 ( 2.98 − 2 ) ⇒ I D 2 = 9.60 mA
                           2


VG 4 = vI − VGS 2 = 7 − 2.98 = 4.02 V
VSG 4 = 5 − 4.02 = 0.98 V ⇒ I D 4 = 0

8.40
For v0 = 0
 I Q = I C 3 + I C 2 + I E1
               ⎛ 1+ βn ⎞          IC 3
I B3 = I E 2 = ⎜         ⎟ IC 2 =
               ⎝    βn ⎠          βn
I C 3 = (1 + β n ) I C 2
                ⎛ β ⎞       I
I B 2 = I C 1 = ⎜ P ⎟ I E1 = C 2
                ⎝ 1+ βP ⎠    βn
             ⎛ β ⎞
I C 2 = β n ⎜ P ⎟ I E1
             ⎝ 1+ βP ⎠
                       ⎛ β ⎞
I C 3 = (1 + β n ) β n ⎜ P ⎟ I E1
                       ⎜1+ β ⎟
                       ⎝    p ⎠

                       ⎛ β ⎞              ⎛ β ⎞
 I Q = (1 + β n ) β n ⎜ P ⎟ I E1 + β n ⎜ P ⎟ I E1 + I E1
                       ⎝1+ βP ⎠           ⎝ 1+ βP ⎠
                    ⎛ 10 ⎞            ⎛ 10 ⎞
      = ( 51)( 50 ) ⎜ ⎟ I E1 + ( 50 ) ⎜ ⎟ I E1 + I E1
                    ⎝ 11 ⎠            ⎝ 11 ⎠
 I Q = 2318.18I E1 + 45.45 I E1 + I E1
I E1 = 1.692 μ A ⇒ I C1 = 1.534 μ A
               ⎛ 10 ⎞
I C 2 = ( 50 ) ⎜ ⎟ (1.692 ) ⇒ I C 2 = 76.9 μ A
               ⎝ 11 ⎠
                    ⎛ 10 ⎞
I C 3 = ( 51)( 50 ) ⎜ ⎟ (1.692 ) ⇒ I C 3 = 3.92 mA
                    ⎝ 11 ⎠
Because of rπ 1 and Z, neglect effect of r0. Then neglecting r01, r02 and r03, we find
                                                VX
I X = g m 3Vπ 3 + g m 2Vπ 2 + g m1Vπ 1 +
                                             rπ 1 + Z
Now
       ⎛ r        ⎞
Vπ 1 = ⎜ π 1 ⎟ VX , Vπ 2 ≅ g m1Vπ 1rπ 2
       ⎝ rπ 1 + Z ⎠
and
Vπ 3 = ( g m1Vπ 1 + g m 2Vπ 2 ) rπ 3
     = ⎡ g m1Vπ 1 + g m 2 ( g m1Vπ 1rπ 2 ) ⎤ rπ 3
       ⎣                                   ⎦
       ⎛ r          ⎞
Vπ 3 = ⎜ π 1 ⎟ [ g m1 + g m1 g m 2 rπ 2 ] rπ 3 ⋅ VX
       ⎝ rπ 1 + Z ⎠
       ( β + β1 β 2 ) rπ 3
Vπ 3 = 1                   ⋅ VX
              rπ 1 + Z
                ⎛ r        ⎞         ⎛ βr ⎞
and Vπ 2 = g m1 ⎜ π 1 ⎟ rπ 2VX = ⎜ 1 π 2 ⎟ VX
                ⎝ rπ 1 + Z ⎠         ⎝ rπ 1 + Z ⎠
           ( β + β1 β 2 ) β 3          ββ             β1             VX
Then I X = 1                  ⋅ V X + 1 2 ⋅ VX +           ⋅ VX +
                 rπ 1 + Z            rπ 1 + Z     rπ 1 + Z        rπ 1 + Z
Then
         VX               rπ 1 + Z
R0 =        =
         I X 1 + β1 + β1 β 2 + ( β1 + β1 β 2 ) β 3
         (10 )( 0.026 )
rπ 1 =                    = 0.169 MΩ
        1.534
Z = 25 kΩ
Then
                             169 + 25
R0 =
         1 + (10 ) + (10 )( 50 ) + ⎡10 + (10 )( 50 ) ⎤ ( 50 )
                                   ⎣                 ⎦
          194
R0 =             = 0.00746 kΩ or Ro = 7.46 Ω
         26, 011

8.41
a          Neglect base currents.
                      ⎛I ⎞
VBB    = 2VD = 2VT ln ⎜ Bias ⎟
                      ⎝ IS ⎠
                        ⎛ 5 × 10−3 ⎞
       = 2 ( 0.026 ) ln ⎜      −13 ⎟
                                     ⇒ VBB = 1.281 V
                        ⎝ 10       ⎠
VBE1 + VEB 3 = VBB
I E1 = I E 3 + I C 2
              ⎛ β ⎞
I B2 = IC 3 = ⎜ P ⎟ I E 3
              ⎝ 1+ βP ⎠
                       ⎛ β ⎞
IC 2 = β n I B 2 = β n ⎜ P ⎟ I E 3
                       ⎝ 1+ βP ⎠
                   ⎛ β              ⎞
I E1 = I E 3 + β n ⎜ P              ⎟ IE3
                   ⎝ 1+ βP          ⎠
             ⎡        ⎛ β              ⎞⎤
I E1 = I E 3 ⎢1 + β n ⎜ P              ⎟⎥
             ⎣        ⎝ 1+ βP          ⎠⎦
⎛ 1+ βn ⎞        ⎛ 1+ βP ⎞       ⎡        ⎛ βP           ⎞⎤
⎜       ⎟ I C1 = ⎜       ⎟ I C 3 ⎢1 + β n ⎜              ⎟⎥
⎝ βn ⎠           ⎝ βP ⎠          ⎣        ⎝ 1+ βP        ⎠⎦
             ⎡I ⎤                   ⎡I ⎤
VBE1 = VT ln ⎢ C1 ⎥ , VEB 3 = VT ln ⎢ C 3 ⎥
             ⎣ IS ⎦                 ⎣ IS ⎦
                                  ⎡           ⎛ 20 ⎞ ⎤
(1.01) I C1 = ⎛
                      21 ⎞
              ⎜          ⎟ IC 3   ⎢1 + (100 ) ⎜ 21 ⎟ ⎥
                    ⎝ 20 ⎠        ⎣           ⎝ ⎠⎦
                      ⎡ 21   ⎤
             = I C 3 ⎢ + 100 ⎥ = 101.05 I C 3
                      ⎣ 20   ⎦
I C1   = 100.05 I C 3
      ⎛ 100.05 I C 3 ⎞         ⎛ IC 3 ⎞
VT ln ⎜              ⎟ + VT ln ⎜      ⎟ = VBB
      ⎝     IS       ⎠         ⎝ IS ⎠
      ⎛ 100.05 I C 3 ⎞
                 2
VT ln ⎜      2       ⎟ = VBB
      ⎝     IS       ⎠
         2
100.05 I C 3          ⎛V ⎞
           2
                = exp ⎜ BB ⎟
       I   S          ⎝ VT ⎠
               IS      ⎛V ⎞
IC 3 =            exp ⎜ BB ⎟ = 0.4995 mA = I C3
        100.05         ⎝ VT ⎠
Then I E 3 = 0.5245 mA
Now I C1 = 100.05 I C 3 = 49.97 mA = I C1
               ⎛ 20 ⎞
I C 2 = (100 ) ⎜ ⎟ ( 0.5245 ) = 49.95 mA = I C 2
               ⎝ 21 ⎠
             ⎛I ⎞              ⎛ 49.97 × 10−3 ⎞
VBE1 = VT ln ⎜ C1 ⎟ = 0.026 ln ⎜      −13     ⎟
             ⎝ IS ⎠            ⎝ 10           ⎠
     = 0.70037
              ⎛I ⎞               ⎛ 0.4995 × 10−3 ⎞
VEB 3 = VT ln ⎜ C 3 ⎟ = 0.026 ln ⎜               ⎟
              ⎝ IS ⎠             ⎝     10−13     ⎠
      = 0.58062
Note: VBE1 + VEB 3 = 0.70037 + 0.58062 = 1.28099
        = VBB
b.
10
  v0 = 10 V ⇒ iE1 ≈                   = 0.10 A = iC1
                                  100
         100
  iB1 =        = 1 mA
         100
                        ⎛ 4 × 10−3 ⎞
 VBB   = 2 ( 0.026 ) ln ⎜     −13 ⎟
                                     = 1.2694 V
                        ⎝ 10       ⎠
                    ⎛ 0.1 ⎞
VBE1 = ( 0.026 ) ln ⎜ −13 ⎟ = 0.7184
                    ⎝ 10 ⎠
VEB 3 = 1.2694 − 0.7184 = 0.55099 V
                   ⎛ 0.55099 ⎞
 I C 3 = 10−13 exp ⎜         ⎟ = 0.1598 mA
                   ⎝ 0.026 ⎠
      V 2 (10 )
                           2

  PL = 0 =      ⇒ PL = 1 W
      RL   100
PQ1 = iC1 ⋅ vCE1 = ( 0.1)(12 − 10 ) ⇒ PQ1 = 0.2 W
PQ 3 = iC 3 ⋅ vEC 3 = ( 0.1598 ) (10 − [ 0.7 − 12]) ⇒ PQ 3 = 3.40 mW
 iC 2 = (100 )( iC 3 ) = (100 )( 0.1598 ) = 15.98 mA
PQ 2 = iC 2 ⋅ vCE 2 = (15.98 ) (10 − [ −12]) ⇒ PQ 2 = 0.352 W



8.42
a.
                     ⎛ 10 × 10−3 ⎞
VBB = 3 ( 0.026 ) ln ⎜       −12 ⎟
                                   ⇒ VBB = 1.74195 V
                     ⎝ 2 × 10 ⎠
VBE1 + VBE 2 + VEB 3 = VBB
         IC 2              IC 2
I C1 ≈          , IC 3 ≈
          βn               β n2
      ⎛I ⎞           ⎛I ⎞            ⎛I ⎞
VT ln ⎜ C1 ⎟ + VT ln ⎜ C 2 ⎟ + VT ln ⎜ C 3 ⎟ = VBB
      ⎝ IS ⎠         ⎝ IS ⎠          ⎝ IS ⎠
      ⎡ IC ⎤
          3
VT ln ⎢ 3 2 3 ⎥ = VBB
      ⎣ βn IS ⎦
                      ⎛V ⎞
I C 2 = β n I S 3 exp ⎜ BB ⎟
                      ⎝ VT ⎠
                                    ⎛ 1.74195 ⎞
      = ( 20 ) ( 20 × 10−12 ) 3 exp ⎜         ⎟
                                    ⎝ 0.026 ⎠
 I C 2 = 0.20 A, I C1 ≈ 10 mA, I C 3 ≈ 0.5 mA
                     ⎛ 10 × 10−3 ⎞
VBE1 = ( 0.026 ) ln ⎜        −12 ⎟
                                   ⇒ VBE1 = 0.58065 V
                     ⎝ 2 × 10 ⎠
                     ⎛ 0.2 ⎞
VBE 2 = ( 0.026 ) ln ⎜       −12 ⎟
                                   ⇒ VBE 2 = 0.6585 V
                     ⎝ 2 × 10 ⎠
                     ⎛ 0.5 × 10−3 ⎞
VEB 3 = ( 0.026 ) ln ⎜        −12 ⎟
                                    ⇒ VEB 3 = 0.50276 V
                     ⎝ 2 × 10 ⎠
b.
              1 V2 1 V2
PL = 10 W= ⋅ 0 = ⋅ 0 ⇒ V0 ( max ) = 20 V
              2 RL 2 20
For v0 ( max ) :
v0 ( 20 )
          2        2

PL =        =      ⇒ PL = 20 W
         RL   20
                  20
i0 ( max ) = −        = −1 A
                  20
iC 5 + iC 4 + iE 3 = −io ( max ) = 1 A
         iC 5 ⎛ β n ⎞ iC 4 ⎛ 1 + β p
                                   ⎞
iC 5 +       ⋅⎜      ⎟+    ⎜       ⎟ =1
         βn ⎝ 1 + βn ⎠ βn ⎜ β p
                           ⎝
                                   ⎟
                                   ⎠
       i ⎛ β ⎞ i ⎛ β ⎞ ⎡ 1 ⎛ 1+ β p                 ⎞⎤
iC 5 + C 5 ⎜ n ⎟ + C 5 ⎜ n ⎟ ⎢ ⎜                    ⎟⎥ = 1
       βn ⎝ 1 + βn ⎠ βn ⎝ 1 + βn ⎠ ⎣ βn ⎜ β p
                                   ⎢ ⎝              ⎟⎥
                                                    ⎠⎦
     ⎡    1 ⎛ 20 ⎞ ⎤ ⎛ 1 ⎞ ⎡ 1 ⎛ 6 ⎞ ⎤
iC 5 ⎢1 + ⎜ ⎟ ⎥ + ⎜ ⎟ ⎢ ⎜ ⎟ ⎥ = 1
     ⎣ 20 ⎝ 21 ⎠ ⎦ ⎝ 21 ⎠ ⎣ 20 ⎝ 5 ⎠ ⎦
iC 5 (1.05048 ) = 1 iC 5 = 0.952 A
                       iC 4 = 0.0453 A
                       iE 3 = 0.00272 A
                                      ⎛5⎞
                       iC 3 = 0.00272 ⎜ ⎟
                                      ⎝6⎠
                       = 0.002267 A
                     ⎛ 2.267 × 10−3 ⎞
VEB 3 = ( 0.026 ) ln ⎜         −12  ⎟ = 0.54206 V
                     ⎝ 2 × 10       ⎠
VBE1 + VBE 2 = 1.74195 − 0.54206 = 1.19989
      ⎛ I ⎞           ⎛I ⎞
VT ln ⎜ C 2 ⎟ + VT ln ⎜ C 2 ⎟ = 1.19989
      ⎝ βn IS ⎠       ⎝ IS ⎠
                     ⎛ 1.19989 ⎞
iC 2 = β n ⋅ I S exp ⎜         ⎟
                     ⎝ 0.026 ⎠
    = 20 (18.83) mA
iC 2 = 93.9 mA
      iC 2 ⎛ β n ⎞ 93.9
iC1 =       ⎜         ⎟=         = 4.47 mA
      β n ⎝ 1 + β n ⎠ 21
PQ 2 = I C 2 ( 24 − ( −20 ) ) = ( 0.0939 ) ( 44 ) = 4.13 W
PQ 5 = ( 0.952 ) ( −10 − ( −24 ) ) = 13.3 W

More Related Content

What's hot

Chapter 04 is
Chapter 04 isChapter 04 is
Chapter 04 is
SHUBHAMMittal186
 
A.gate by-rk-kanodia
A.gate by-rk-kanodiaA.gate by-rk-kanodia
A.gate by-rk-kanodia
Venugopala Rao P
 
Solucionario circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6edSolucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario circuitos eléctricos - dorf, svoboda - 6ed
galiap22
 
Anschp32
Anschp32Anschp32
Anschp32
FnC Music
 
Kanodia murolia previousyears
Kanodia murolia previousyearsKanodia murolia previousyears
Kanodia murolia previousyears
Anwesa Roy
 
Solution manual for introduction to electric circuits
Solution manual for introduction to electric circuitsSolution manual for introduction to electric circuits
Solution manual for introduction to electric circuits
christian bastidas
 
[E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda]
[E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda][E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda]
[E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda]
tensasparda
 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
Bilal Sarwar
 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-sol
Ankit Chaurasia
 
Ch01p
Ch01pCh01p
Chapter 01
Chapter 01Chapter 01
Chapter 01
federicoblanco
 
Problemas del Laboratorio N°1 de Física II
Problemas del Laboratorio N°1 de Física IIProblemas del Laboratorio N°1 de Física II
Problemas del Laboratorio N°1 de Física II
guestf39ed9c1
 
Solucionario serway cap 33
Solucionario serway cap 33Solucionario serway cap 33
Solucionario serway cap 33
Carlo Magno
 
Ch10p
Ch10pCh10p
Anschp26
Anschp26Anschp26
Anschp26
FnC Music
 
Anschp24
Anschp24Anschp24
Anschp24
FnC Music
 
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENSPROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
LUIS POWELL
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
manish katara
 
Anschp30
Anschp30Anschp30
Anschp30
FnC Music
 

What's hot (19)

Chapter 04 is
Chapter 04 isChapter 04 is
Chapter 04 is
 
A.gate by-rk-kanodia
A.gate by-rk-kanodiaA.gate by-rk-kanodia
A.gate by-rk-kanodia
 
Solucionario circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6edSolucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario circuitos eléctricos - dorf, svoboda - 6ed
 
Anschp32
Anschp32Anschp32
Anschp32
 
Kanodia murolia previousyears
Kanodia murolia previousyearsKanodia murolia previousyears
Kanodia murolia previousyears
 
Solution manual for introduction to electric circuits
Solution manual for introduction to electric circuitsSolution manual for introduction to electric circuits
Solution manual for introduction to electric circuits
 
[E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda]
[E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda][E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda]
[E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda]
 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-sol
 
Ch01p
Ch01pCh01p
Ch01p
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
Problemas del Laboratorio N°1 de Física II
Problemas del Laboratorio N°1 de Física IIProblemas del Laboratorio N°1 de Física II
Problemas del Laboratorio N°1 de Física II
 
Solucionario serway cap 33
Solucionario serway cap 33Solucionario serway cap 33
Solucionario serway cap 33
 
Ch10p
Ch10pCh10p
Ch10p
 
Anschp26
Anschp26Anschp26
Anschp26
 
Anschp24
Anschp24Anschp24
Anschp24
 
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENSPROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
PROBLEMAS RESUELTOS (42) DE LABORATORIO N° 1 DE FÍSICA II - TIPPENS
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
 
Anschp30
Anschp30Anschp30
Anschp30
 

Similar to Ch08s

Ch04s
Ch04sCh04s
Ch04p
Ch04pCh04p
Ch02s
Ch02sCh02s
Khb 7d0n65f2 datasheet
Khb 7d0n65f2 datasheetKhb 7d0n65f2 datasheet
Khb 7d0n65f2 datasheet
Cezar Derevlean
 
Ch06p
Ch06pCh06p
Ch05p
Ch05pCh05p
Stm4433a
Stm4433aStm4433a
Stm4433a
dcerebel
 
Ch16s
Ch16sCh16s
000912
000912000912
Original IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 New
Original IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 NewOriginal IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 New
Original IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 New
AUTHELECTRONIC
 
Original N-Channel Mosfet R6020ANX 6020 600V 20A TO-220 New ROHM Semiconductor
Original N-Channel Mosfet R6020ANX 6020 600V 20A TO-220 New ROHM SemiconductorOriginal N-Channel Mosfet R6020ANX 6020 600V 20A TO-220 New ROHM Semiconductor
Original N-Channel Mosfet R6020ANX 6020 600V 20A TO-220 New ROHM Semiconductor
AUTHELECTRONIC
 
Original N-Channel Mosfet IRF2907ZPBF 2907 75V 170A TO-220 New IR
Original N-Channel Mosfet IRF2907ZPBF 2907 75V 170A TO-220 New IROriginal N-Channel Mosfet IRF2907ZPBF 2907 75V 170A TO-220 New IR
Original N-Channel Mosfet IRF2907ZPBF 2907 75V 170A TO-220 New IR
AUTHELECTRONIC
 
73T02GH / AP73T02GH Datasheet PDF
73T02GH / AP73T02GH Datasheet PDF73T02GH / AP73T02GH Datasheet PDF
73T02GH / AP73T02GH Datasheet PDF
Datasheet
 
Original P-Channel Mosfet MDD3752RH 3752 43A 40V TO-252 New MagnaChip Semicon...
Original P-Channel Mosfet MDD3752RH 3752 43A 40V TO-252 New MagnaChip Semicon...Original P-Channel Mosfet MDD3752RH 3752 43A 40V TO-252 New MagnaChip Semicon...
Original P-Channel Mosfet MDD3752RH 3752 43A 40V TO-252 New MagnaChip Semicon...
AUTHELECTRONIC
 
Original IGBT IRFR4615TRLPBF IRFR4615 4615 150V 33A TO-252 New IR
Original IGBT IRFR4615TRLPBF IRFR4615 4615 150V 33A TO-252 New IROriginal IGBT IRFR4615TRLPBF IRFR4615 4615 150V 33A TO-252 New IR
Original IGBT IRFR4615TRLPBF IRFR4615 4615 150V 33A TO-252 New IR
AUTHELECTRONIC
 
Original N-CHANNEL MOSFET SPP20N60C3 20N60C3 20N60 20A 600V TO-220 New Infine...
Original N-CHANNEL MOSFET SPP20N60C3 20N60C3 20N60 20A 600V TO-220 New Infine...Original N-CHANNEL MOSFET SPP20N60C3 20N60C3 20N60 20A 600V TO-220 New Infine...
Original N-CHANNEL MOSFET SPP20N60C3 20N60C3 20N60 20A 600V TO-220 New Infine...
AUTHELECTRONIC
 
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 NewOriginal MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
AUTHELECTRONIC
 
Electronic devices and circuit theory 11th copy
Electronic devices and circuit theory 11th   copyElectronic devices and circuit theory 11th   copy
Electronic devices and circuit theory 11th copy
KitTrnTun5
 
Original IGBT RJH60D2DPP RJH60D2 12A 600V TO-220 New Renesas
Original IGBT RJH60D2DPP RJH60D2 12A 600V TO-220 New RenesasOriginal IGBT RJH60D2DPP RJH60D2 12A 600V TO-220 New Renesas
Original IGBT RJH60D2DPP RJH60D2 12A 600V TO-220 New Renesas
AUTHELECTRONIC
 
Original IGBT FGP20N60 20N60 FGP20N60UFD 20A 600V TO-220 New
Original IGBT FGP20N60 20N60 FGP20N60UFD 20A 600V TO-220 NewOriginal IGBT FGP20N60 20N60 FGP20N60UFD 20A 600V TO-220 New
Original IGBT FGP20N60 20N60 FGP20N60UFD 20A 600V TO-220 New
AUTHELECTRONIC
 

Similar to Ch08s (20)

Ch04s
Ch04sCh04s
Ch04s
 
Ch04p
Ch04pCh04p
Ch04p
 
Ch02s
Ch02sCh02s
Ch02s
 
Khb 7d0n65f2 datasheet
Khb 7d0n65f2 datasheetKhb 7d0n65f2 datasheet
Khb 7d0n65f2 datasheet
 
Ch06p
Ch06pCh06p
Ch06p
 
Ch05p
Ch05pCh05p
Ch05p
 
Stm4433a
Stm4433aStm4433a
Stm4433a
 
Ch16s
Ch16sCh16s
Ch16s
 
000912
000912000912
000912
 
Original IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 New
Original IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 NewOriginal IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 New
Original IGBT IRG4BC20KD G4BC20KD 600V 9A TO-220 New
 
Original N-Channel Mosfet R6020ANX 6020 600V 20A TO-220 New ROHM Semiconductor
Original N-Channel Mosfet R6020ANX 6020 600V 20A TO-220 New ROHM SemiconductorOriginal N-Channel Mosfet R6020ANX 6020 600V 20A TO-220 New ROHM Semiconductor
Original N-Channel Mosfet R6020ANX 6020 600V 20A TO-220 New ROHM Semiconductor
 
Original N-Channel Mosfet IRF2907ZPBF 2907 75V 170A TO-220 New IR
Original N-Channel Mosfet IRF2907ZPBF 2907 75V 170A TO-220 New IROriginal N-Channel Mosfet IRF2907ZPBF 2907 75V 170A TO-220 New IR
Original N-Channel Mosfet IRF2907ZPBF 2907 75V 170A TO-220 New IR
 
73T02GH / AP73T02GH Datasheet PDF
73T02GH / AP73T02GH Datasheet PDF73T02GH / AP73T02GH Datasheet PDF
73T02GH / AP73T02GH Datasheet PDF
 
Original P-Channel Mosfet MDD3752RH 3752 43A 40V TO-252 New MagnaChip Semicon...
Original P-Channel Mosfet MDD3752RH 3752 43A 40V TO-252 New MagnaChip Semicon...Original P-Channel Mosfet MDD3752RH 3752 43A 40V TO-252 New MagnaChip Semicon...
Original P-Channel Mosfet MDD3752RH 3752 43A 40V TO-252 New MagnaChip Semicon...
 
Original IGBT IRFR4615TRLPBF IRFR4615 4615 150V 33A TO-252 New IR
Original IGBT IRFR4615TRLPBF IRFR4615 4615 150V 33A TO-252 New IROriginal IGBT IRFR4615TRLPBF IRFR4615 4615 150V 33A TO-252 New IR
Original IGBT IRFR4615TRLPBF IRFR4615 4615 150V 33A TO-252 New IR
 
Original N-CHANNEL MOSFET SPP20N60C3 20N60C3 20N60 20A 600V TO-220 New Infine...
Original N-CHANNEL MOSFET SPP20N60C3 20N60C3 20N60 20A 600V TO-220 New Infine...Original N-CHANNEL MOSFET SPP20N60C3 20N60C3 20N60 20A 600V TO-220 New Infine...
Original N-CHANNEL MOSFET SPP20N60C3 20N60C3 20N60 20A 600V TO-220 New Infine...
 
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 NewOriginal MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
Original MOSFET N-CHANNEL IRF530NPBF IRF530N IRF530 17A 100V TO-220 New
 
Electronic devices and circuit theory 11th copy
Electronic devices and circuit theory 11th   copyElectronic devices and circuit theory 11th   copy
Electronic devices and circuit theory 11th copy
 
Original IGBT RJH60D2DPP RJH60D2 12A 600V TO-220 New Renesas
Original IGBT RJH60D2DPP RJH60D2 12A 600V TO-220 New RenesasOriginal IGBT RJH60D2DPP RJH60D2 12A 600V TO-220 New Renesas
Original IGBT RJH60D2DPP RJH60D2 12A 600V TO-220 New Renesas
 
Original IGBT FGP20N60 20N60 FGP20N60UFD 20A 600V TO-220 New
Original IGBT FGP20N60 20N60 FGP20N60UFD 20A 600V TO-220 NewOriginal IGBT FGP20N60 20N60 FGP20N60UFD 20A 600V TO-220 New
Original IGBT FGP20N60 20N60 FGP20N60UFD 20A 600V TO-220 New
 

More from Bilal Sarwar

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
Bilal Sarwar
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
Bilal Sarwar
 
Ramey soft
Ramey softRamey soft
Ramey soft
Bilal Sarwar
 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
Bilal Sarwar
 
Ch16p
Ch16pCh16p
Ch15s
Ch15sCh15s
Ch14s
Ch14sCh14s
Ch14p
Ch14pCh14p
Ch13s
Ch13sCh13s
Ch13p
Ch13pCh13p
Ch12s
Ch12sCh12s
Ch12p
Ch12pCh12p
Ch10s
Ch10sCh10s
Ch09s
Ch09sCh09s
Ch09p
Ch09pCh09p
Ch07s
Ch07sCh07s
Ch07p
Ch07pCh07p
Ch05s
Ch05sCh05s
Ch03s
Ch03sCh03s

More from Bilal Sarwar (19)

Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+
 
Ramey soft
Ramey soft Ramey soft
Ramey soft
 
Ramey soft
Ramey softRamey soft
Ramey soft
 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
 
Ch16p
Ch16pCh16p
Ch16p
 
Ch15s
Ch15sCh15s
Ch15s
 
Ch14s
Ch14sCh14s
Ch14s
 
Ch14p
Ch14pCh14p
Ch14p
 
Ch13s
Ch13sCh13s
Ch13s
 
Ch13p
Ch13pCh13p
Ch13p
 
Ch12s
Ch12sCh12s
Ch12s
 
Ch12p
Ch12pCh12p
Ch12p
 
Ch10s
Ch10sCh10s
Ch10s
 
Ch09s
Ch09sCh09s
Ch09s
 
Ch09p
Ch09pCh09p
Ch09p
 
Ch07s
Ch07sCh07s
Ch07s
 
Ch07p
Ch07pCh07p
Ch07p
 
Ch05s
Ch05sCh05s
Ch05s
 
Ch03s
Ch03sCh03s
Ch03s
 

Recently uploaded

How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
danishmna97
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
Octavian Nadolu
 
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
Speck&Tech
 
HCL Notes and Domino License Cost Reduction in the World of DLAU
HCL Notes and Domino License Cost Reduction in the World of DLAUHCL Notes and Domino License Cost Reduction in the World of DLAU
HCL Notes and Domino License Cost Reduction in the World of DLAU
panagenda
 
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
SOFTTECHHUB
 
RESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for studentsRESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for students
KAMESHS29
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
Zilliz
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
Aftab Hussain
 
Mariano G Tinti - Decoding SpaceX
Mariano G Tinti - Decoding SpaceXMariano G Tinti - Decoding SpaceX
Mariano G Tinti - Decoding SpaceX
Mariano Tinti
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
SOFTTECHHUB
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
Zilliz
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
Neo4j
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
mikeeftimakis1
 
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with SlackLet's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
shyamraj55
 
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
Neo4j
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Malak Abu Hammad
 
Mind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AIMind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AI
Kumud Singh
 
Infrastructure Challenges in Scaling RAG with Custom AI models
Infrastructure Challenges in Scaling RAG with Custom AI modelsInfrastructure Challenges in Scaling RAG with Custom AI models
Infrastructure Challenges in Scaling RAG with Custom AI models
Zilliz
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Paige Cruz
 
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
Neo4j
 

Recently uploaded (20)

How to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptxHow to Get CNIC Information System with Paksim Ga.pptx
How to Get CNIC Information System with Paksim Ga.pptx
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
 
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
Cosa hanno in comune un mattoncino Lego e la backdoor XZ?
 
HCL Notes and Domino License Cost Reduction in the World of DLAU
HCL Notes and Domino License Cost Reduction in the World of DLAUHCL Notes and Domino License Cost Reduction in the World of DLAU
HCL Notes and Domino License Cost Reduction in the World of DLAU
 
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
Why You Should Replace Windows 11 with Nitrux Linux 3.5.0 for enhanced perfor...
 
RESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for studentsRESUME BUILDER APPLICATION Project for students
RESUME BUILDER APPLICATION Project for students
 
Full-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalizationFull-RAG: A modern architecture for hyper-personalization
Full-RAG: A modern architecture for hyper-personalization
 
Removing Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software FuzzingRemoving Uninteresting Bytes in Software Fuzzing
Removing Uninteresting Bytes in Software Fuzzing
 
Mariano G Tinti - Decoding SpaceX
Mariano G Tinti - Decoding SpaceXMariano G Tinti - Decoding SpaceX
Mariano G Tinti - Decoding SpaceX
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
 
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024GraphSummit Singapore | The Art of the  Possible with Graph - Q2 2024
GraphSummit Singapore | The Art of the Possible with Graph - Q2 2024
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
 
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with SlackLet's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
 
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
 
Mind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AIMind map of terminologies used in context of Generative AI
Mind map of terminologies used in context of Generative AI
 
Infrastructure Challenges in Scaling RAG with Custom AI models
Infrastructure Challenges in Scaling RAG with Custom AI modelsInfrastructure Challenges in Scaling RAG with Custom AI models
Infrastructure Challenges in Scaling RAG with Custom AI models
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
 
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
GraphSummit Singapore | Enhancing Changi Airport Group's Passenger Experience...
 

Ch08s

  • 1. Chapter 8 Problem Solutions 8.1 a. b. i. VD D = 80 V VD D Maximum power at VDS = = 40 V 2 PT 25 ID = = = 0.625 A VD S 40 80 − 40 RD = ⇒ RD = 64 Ω 0.625 ii. VD D = 50 V VD D Maximum power at VD S = = 25 V 2 PT 25 ID = = =1 A VDS 25 50 − 25 RD = ⇒ RD = 25 Ω 1 8.2 a.
  • 2. VC C PQ (max) = I C Q ⋅ 2 2 PQ (max) 2(20) So I C Q = = = 1.67 A VCC 24 VCC − (VCC / 2) 24 − 12 RL = = ⇒ RL = 7.2 Ω I CQ 1.67 I CQ1.67 IB = = ⇒ 20.8 mA β 80 24 − 0.7 RB = ⇒ RB = 1.12 kΩ 20.8 b. I CQ ⋅ RL (1.67 )( 7.2 ) Av = g m RL = = = 462 VT 0.026 V0 (max) 12 V0 (max) = 12 V ⇒ VP = = ⇒ VP ≅ 26 mV Av 462 8.3 VC C a. For maximum power delivered to the load, set VC EQ = 2 Set VC C = 25 V = VCE ( sus ) VCC 25 Then I Cm = = RL 0.1 I Cm = 250 mA < I C ,max 25 − 12.5 I CQ = = 125 mA 0.1 V PQ ( max ) = I CQ ⋅ CC = ( 0.125 )(12.5 ) 2 = 1.56 W < PD,max 125 I BQ = = 1.25 mA 100 25 − 0.7 RB = ⇒ RB = 19.4 kΩ 1.25 1 2 1 PL ( max ) = ⋅ I CQ ⋅ RL = ( 0.125 ) (100 ) ⇒ PL ( max ) = 0.781 W ( rms ) 2 b. 2 2 8.4 Point (b): Maximum power delivered to load. Point (a): Will obtain maximum signal current output. Point (c): Will obtain maximum signal voltage output.
  • 3. 8.5 a. b. VGG = 5 V, I D = 0.25 ( 5 − 4 ) = 0.25 A, VD S = 37.5 V, P = 9.375 W 2 VGG = 6 V, I D = 0.25 ( 6 − 4 ) = 1.0 A, VD S = 30 V, P = 30 W 2 VGG = 7 V, I D = 0.25 ( 7 − 4 ) = 2.25 A, VD S = 17.5 V, P = 39.375 W 2 VGG = 8 V, I D = 0.25 ⎡ 2 ( 8 − 4 )VD S − VD S ⎤ ⎣ 2 ⎦ 40 − VD S = ⇒ VD S = 2.92 10 I D = 3.71 A, P = 10.8 W VGG = 9 V, I D = 0.25 ⎡ 2 ( 9 − 4 ) VD S − VD S ⎤ ⎣ 2 ⎦ 40 − VD S = ⇒ VD S = 1.88 V 10 I D = 3.81 A, P = 7.16 W c. Yes, at VGG = 7 V, P = 39.375 W > PD ,max = 35 W 8.6 a. VDD Set VDSQ = = 25 V 2 50 − 25 I DQ = = 1.25 A 20 I DQ = K n (VGS − VTN ) 2 1.25 + 4 = VGS = 6.5 V 0.2 ⎛ R2 ⎞ VGS = ⎜ ⎟ VDD ⎝ R1 + R2 ⎠ Let R1 + R2 = 100 kΩ ⎛ R ⎞ 6.5 = ⎜ 2 ⎟ ( 50 ) ⇒ R2 = 13 kΩ ⎝ 100 ⎠ R1 = 87 kΩ b. PD = I DQVDSQ = (1.25 )( 25 ) ⇒ PD = 31.25 W c. I D ,max = 2 I DQ ⇒ I D ,max = 2.5 A VDS ,max = VDD ⇒ VDS ,max = 50 V PD ,max = 31.25 W d.
  • 4. V0 = g m RL Vi g m = 2 K n I DQ = 2 ( 0.2 )(1.25) = 1 A / V V0 = (1)( 20 )( 0.5 ) = 10 V 1 V02 1 (10 ) 2 PL = ⋅ = ⋅ ⇒ PL = 2.5 W 2 RL 2 20 PQ = 31.25 − 2.5 ⇒ PQ = 28.75 W 8.7 (a) (b) PD = PD ,max − ( Slope ) (T j − 25 ) 60 At PD = 0, T j ,max = + 25 ⇒ T j ,max = 145°C 0.5 T j ,max − Tcase 145 − 25 (c) PD ,max = or θ dev − amb = ⇒ θ dev − amb = 2°C/W θ dev − amb 60 8.8 T j ,max − Tamb PD ,rated = θ dev − case T j ,max − Tamb or θ dev − case = PD ,rated 150 − 25 = = 2.5°C/W 50 Then Tdev − Tamb = PD (θ dev − case + θ case − amb ) 150 − 25 = PD ( 2.5 + θ case − amb ) ⇒ 125 = PD ( 2.5 + θ case − amb ) 8.9 PD = I D ⋅ VDS = ( 4 )( 5 ) = 20 W Tdev − Tamb = PD (θ dev − case + θ case − snk + θ snk − amb ) Tdev − 25 = 20 (1.75 + 0.8 + 3) = 111 ⇒ Tdev = 136°C Tdev − Tcase = PD ⋅θ dev − case = ( 20 )(1.75 ) = 35 Tcase = Tdev − 35 = 136 − 35 ⇒ Tcase = 101°C Tcase − Tsink = PD ⋅θ case − snk = ( 20 )( 0.8 ) = 16°C Tsink = Tcase − 16 = 101 − 16 ⇒ Tsink = 85°C 8.10
  • 5. Tdev − Tamb = PD (θ dev − case + θ case − amb ) 200 − 25 = 25 ( 3 + θ case − amb ) ⇒ θ case − amb = 4°C/W 8.11 T j ,max − Tamb 175 − 25 θ dev − case = = = 10°C/W PD ,rated 15 T j ,max − Tamb PD = θ dev − case + θ case −snk + θ snk − amb 175 − 25 = ⇒ PD = 10 W 10 + 1 + 4 8.12 PL η= PS PS = VCC ⋅ I Q ⎛V ⎞ PL = VP ⋅ I P = ⎜ CC ⎟ ( I Q ) ⎝ 2 ⎠ 1 ⋅ VCC ⋅ I Q η= 2 ⇒ η = 50% VCC ⋅ I Q 8.13 vo ( max ) = 4.8 V −0.7 − ( −5 ) iC 3 = iC 2 = = 4.3 mA 1 vS ( min ) vI = vo + 0.7 iL ( max ) = −4.3 mA = 1 so − 3.6 ≤ vI ≤ 5.5 V vo ( min ) = −4.3 V 8.14
  • 6. 0 − VGS 3 − ( −5 ) I D 3 = K (VGS 3 − VTN ) = 2 R 12 (VGS 3 − 0.5 ) = 5 − VGS 3 2 2 2VGS 3 − 11VGS − 2 = 0 (11) + 4 (12 )( 2 ) 2 11 ± VGS 3 = 2 (12 ) VGS 3 = VGS 2 = 1.072 V I D 3 = I D 2 = 12 (1.072 − 0.5 ) = 3.93 mA 2 VDS 2 ( sat ) = VGS 2 − VTN = 1.072 − 0.5 = 0.572 V V0 ( min ) vo ( min ) : i2 ( max ) = −3.93 = ⇒ V0 ( min ) = −3.93 V 1 vI ( min ) = vo ( min ) + VTN = −3.93 + 0.5 vI ( min ) = −3.43 V vo ( max ) = 5 − VDS ( sat ) = 5 − 0.572 vo ( max ) = 4.43 V 4.43 I D1 ( max ) = 3.93 + = 8.36 mA 1 I D1 = 8.36 = 12 (VGS 1 − 0.5 ) ⇒ VGS 1 = 1.33 V 2 vI ( max ) = vo + VGS1 = 4.43 + 1.33 ⇒ vI ( max ) = 5.76 V 8.15 a. Neglect base currents. v0 ( max ) = V + − VCE (sat) = 10 − 0.2 = 9.8 V 9.8 9.8 iL (max) = I Q = = ⇒ I Q = 9.8 mA RL 1 0 − 0.7 − ( −10 ) R= ⇒ R = 949 Ω 9.8 iE1 ( max ) = 2 I Q ⇒ iE1 ( max ) = 19.6 mA iE1 ( min ) = 0 iL ( max ) = I Q = 9.8 mA iL ( min ) = − I Q = −9.8 mA b. 1 1 ( iL ( max ) ) RL = 2 ( 9.8)2 (1) ⇒ PL = 48.02 mW 2 PL = 2 PS = I Q (V + − V − ) + I Q ( 0 − V − ) = 9.8 ( 20 ) + 9.8 (10 ) ⇒ PS = 294 mW PL 48.02 η= = ⇒ η = 16.3% PS 294 8.16 a. v0 ( max ) 10 I Q ( min ) = = ⇒ I Q ( min ) = 100 mA RL 0.1 0 − 0.7 − ( −12 ) R= ⇒ R = 113 Ω 100 b.
  • 7. PQ1 = I Q ⋅ VCE1 = (100 )(12 ) ⇒ PQ1 = 1.2 W P (source) = 2 I Q (12 ) = 2.4 W c. (10 ) 2 1 VP2 PL = ⋅ = = 0.5 W 2 RL 2 (100 ) PS = 1.2 + 2.4 = 3.6 W PL 0.5 η= = ⇒ η = 13.9% PS 3.6 8.17 I D1 = K n (VGS − VTN ) = 12 ( 0 − ( −1.8 ) ) 2 2 I D1 = 38.9 mA (a) For RL = ∞ vo ( max ) = 4.8 V VDS ( sat ) = VGS − VTN = 1.8 V vo ( min ) = −5 + 1.8 = −3.2 V vI = vo + 0.7 ⇒ −2.5 ≤ vI ≤ 5.5 V (b) For RL = 500 Ω vo ( max ) = 4.8 V vo −3.2 For vo < 0, vo ( min ) = −3.2 V ′ I2 = = = −6.4 mA RL 0.5 −2.5 ≤ vI ≤ 5.5 V (c) For vo = −2V , I 2 ( max ) = −38.9 mA ′ −2 R2 ( min ) = ⇒ RL ( min ) = 51.4 Ω −38.9 1 v2 1 ( 2) 2 PL = ⋅ o = ⋅ ⇒ PL = 38.9 mW 2 RL 2 51.4 38.9 PL = 10 ( 38.9 ) = 389 mW % = = 10% 389 8.18 V 2 (V ) + 2 PL = P = RL RL 1 (V ) 1 (V ) + 2 − 2 PS = ⋅ + ⋅ , V − = −V + 2 RL 2 RL So PS = (V ) + 2 RL PL η= ⇒ η = 100% PS 8.19 (a)
  • 8. As maximum conversion efficiency π V η = , P = 0.785 4 VCC ⎛4⎞ So V p ( max ) = ( 0.785 )( 5 ) ⎜ ⎟ ⎝π ⎠ V p ( max ) = 5 V 2VCC 2 ( 5) (b) Maximum power dissipation occurs when V p = = = 3.183 V π π 2 VCC (c) P ( max ) = θ π RL 2 ( 5) 2 2= ⇒ RL = 1.27 Ω π 2 RL 8.20 2 1 Vp (a) P= ⋅ 2 RL 2 1 Vp 50 = ⋅ ⇒ V p = 49 V ⇒ V + = 52 V, V − = −52 V 2 24 V 49 (b) IP = P = = 2.04 A RL 24 π VP π ⎛ 49 ⎞ (c) η= ⋅ = ⎜ ⎟ 4 VCC 4 ⎝ 52 ⎠ η = 74.0% 8.21 (a) VDS ≥ VDS ( sat ) = VGS − VTN = VGS VDS = 10 − Vo ( max ) and I D = I L = K n (VGS ) 2 Vo ( max ) = K n (VGS ) 2 RL Vo ( max ) VGS = RL ⋅ K n Vo ( max ) Vo ( max ) So 10 − Vo ( max ) = = RL ⋅ K n ( 5 )( 0.4 ) 2 V0 ( max ) ⎡10 − V0 ( max ) ⎤ = ⎣ ⎦ 2 V0 ( max ) 100 − 20V0 ( max ) + V02 ( max ) = 2 V02 ( max ) − 20.5V0 ( max ) + 100 = 0 ( 20.5 ) − 4 (100 ) 2 20.5 ± V0 ( max ) = ⇒ V0 ( max ) = 8 V 2 8 iL = ⇒ iL = 1.6 mA 5 i 1.6 VGS = L = = 2 V ⇒ VI = 10 V Kn 0.4 b.
  • 9. 1 (8) 2 PL = ⋅ = 6.4 mW 2 5 20 (1.6 ) PS = = 10.2 mW π PL 6.4 η= = ⇒ η = 62.7% PS 10.2 8.22 vO = iL RL and iL = iD = K n ( vGS − VTN ) or iL = K n ( vGS ) and vGS = vI − vO 2 2 Then vO = K n RL ( vI − vO ) or vO = 2 ( vI − vO ) 2 2 dv0 ⎛ dv ⎞ = ( 2 )( 2 )( vI − v0 ) ⎜ 1 − 0 ⎟ dvI ⎝ dvI ⎠ dv0 ⎡1 + 4 ( vI − v0 ) ⎤ = 4 ( vI − v0 ) dvI ⎣ ⎦ dv0 4 ( vI − v0 ) or = dvI 1 + 4 ( vI − v0 ) dv0 4 (10 − 8 ) dv For vI = 10 V, v0 = 8 V ⇒ = ⇒ 0 = 0.889 dvI 1 + 4 (10 − 8 ) dvI dv0 At vI = 0, v0 = 0 ⇒ =0 dvI dv0 At vI = 1, v0 = 0.5 ⇒ = 0.667 dvI 8.23 a. ⎛i ⎞ ⎛ 5 × 10−3 ⎞ VBE = VT ln ⎜ C ⎟ = ( 0.026 ) ln ⎜ −13 ⎟ ⎝ IS ⎠ ⎝ 5 × 10 ⎠ V VBE = BB = 0.5987 V ⇒ VBB = 1.1973 V 2 PQ = iC ⋅ vCE = ( 5 )(10 ) ⇒ PQ = 50 mW b.
  • 10. v0 = −8 V −8 iL = ⇒ iL = −80 mA 0.1 iCp ≈ 80 mA ⎛ iCp ⎞ ⎛ 80 × 10−3 ⎞ vEB = VT ln ⎜ ⎟ = ( 0.026 ) ln ⎜ −13 ⎟ ⎝ IS ⎠ ⎝ 5 × 10 ⎠ vEB = 0.6708 V VBB vI = − vEB + v0 = 0.5987 − 0.6708 − 8⇒ vI = −8.072 V 2 VBE = VBB − vEB = 1.1973 − 0.6708 = 0.5265 V ⎛v ⎞ ⎛ 0.5265 ⎞ iCn = I S exp ⎜ BE ⎟ = 5 × 10−13 exp ⎜ ⎟ ⇒ iCn = 0.311 mA ⎝ VT ⎠ ⎝ 0.026 ⎠ PL = iL RL = ( 80 ) ( 0.1) ⇒ PL = 640 mW 2 2 PQn = iCn ⋅ vCE = ( 0.311) (10 − ( −8 ) ) ⇒ PQn = 5.60 mW PQp = iCp ⋅ vEC = ( 80 )( 2 ) ⇒ PQp = 160 mW 8.24 iDn = K n ( vGSn − VTN ) 2 (a) 0.5 V + 2 = vGSn = 2.5 V = BB ⇒ VBB = 5.0 V 2 2 Pn = ( 0.5 )(10 ) ⇒ Pn = Pp = 5 mW (b) VDS = VGS − VTN ⇒ VDS = VGS − 2 VDS = 10 − vo ( max ) and iL v ( max ) v ( max ) VGS = + VTN = O +2 = O +2 Kn RL K n ( 2 )(1) so v0 ( max ) v0 ( max ) 10 − v0 ( max ) = +2−2 = 2 2 so v0 ( max ) = 8 V 8 iDn = iL = ⇒ iDn = iL = 8 mA 1 8 VGS = + 2 ⇒ VGS = 4 V 2 V Then vI = vo + VGS − BB = 8 + 4 − 2.5 ⇒ vI = 9.5 V 2 ⎛ VBB ⎞ vSGp = vo − ⎜ vI − ⎟ = 8 − ( 9.5 − 2.5 ) ⎝ 2 ⎠ vSGp = 1 V ⇒ M p cutoff ⇒ iDp = 0 PL = iL RL = ( 8 ) (1) ⇒ PL = 64 mW 2 2 PMn = iDn ⋅ vDS = ( 8 )(10 − 8 ) ⇒ PMn = 16 mW PMp = iDp ⋅ vSD ⇒ PMp = 0 8.25 a.
  • 11. 24 v0 = 24 V ⇒ iL = ⇒ iL ≈ iN = 3 A 8 3 iBn = ⇒ iBn = 73.2 mA 41 For iD = 25 mA ⇒ iR1 = 25 + 73.2 = 98.2 mA ⎛i ⎞ ⎛ 3 ⎞ VBE = VT ln ⎜ N ⎟ = ( 0.026 ) ln ⎜ −12 ⎟ ⎝ IS ⎠ ⎝ 6 × 10 ⎠ = 0.7004 V 30 − ( 24 + 0.7 ) 5.3 Then 98.2 = ⇒ R1 = ⇒ R1 = 53.97 Ω R1 98.2 ⎛ 25 × 10−3 ⎞ VD = ( 0.026 ) ln ⎜ −12 ⎟ = 0.5759 V ⎝ 6 × 10 ⎠ VEB = 2VD − VBE = 2 ( 0.5759 ) − 0.7004 = 0.4514 V ⎛V ⎞ ⎛ 0.4514 ⎞ iP = I S exp ⎜ EB ⎟ = ( 6 × 10−12 ) exp ⎜ ⎟ ⇒ iP = 0.208 mA ⎝ VT ⎠ ⎝ 0.026 ⎠ b. Neglecting base current 30 − 0.6 30 − 0.6 iD ≈ = ⇒ iD ≈ 545 mA R1 53.97 ⎛ 0.545 ⎞ VD = ( 0.026 ) ln ⎜ −12 ⎟ = 0.656 V ⎝ 6 × 10 ⎠ Approximation for iD is okay. Diodes and transistors matched ⇒ iN = iP = 545 mA 8.26 (a) I D1 = K1 (VGS 1 − VTN ) 2 5 VGS1 = +1 = 2 V 5 I D 3 = K 3 (VGS 3 − VTN ) 2 200 = K 3 ( 2 − 1) ⇒ K n3 = K p 4 = 200 μ A / V 2 2 (b) vI + VSG 4 + VGS 3 − VGS1 = vO For vo large, iL = i1 = K n1 (VGS1 − VTN ) 2 iL vo VGS1 = + VTN = + VTN K n1 RL K n1 ⎛ vo ⎞ So vI + 2 + 2 − ⎜ + 1⎟ = v0 ⎜ ( 0.5)( 5) ⎟ ⎝ ⎠ v0 vI = v0 + −3 2.5 dvI dv 1 1 dv =1= 0 + ⋅ ⋅ 0 dvI dvI 2 2.5v0 dvI ⎡ dv0 1 ⎤ 1= ⎢1 + ⎥ ⎢ 2 2.5v0 ⎥ dvI ⎣ ⎦ For vO = 5 V :
  • 12. dv0 ⎡ 1 ⎤ dv dv 1= ⎢1 + ⎥ = 0 (1.1414 ) ⇒ 0 = 0.876 dvI ⎢ 2 2.5 ( 5 ) ⎥ dvI dvI ⎣ ⎦ 8.27 VBB I Dn vO = vI + − VGS and VGS = + VTN 2 Kn vO For vO ≈ 0, I Dn = I DQ + iL = I DQ + RL VBB I DQ + ( vO / RL ) V I DQ v Then vO = vI + − VTN − or vO = vI + BB − VTN − ⋅ 1+ O 2 Kn 2 Kn I DQ RL VBB I DQ 1 v For vO small, vO ≅ vI + − VTN − ⋅ 1+ ⋅ O 2 Kn 2 I DQ RL ⎡ 1 I DQ 1 ⎤ V I DQ vO ⎢1 + ⋅ ⋅ ⎥ = vI + BB − VTN − ⎢ 2 Kn ⎣ I DQ RL ⎥ ⎦ 2 Kn Now dvO 1 = = 0.95 dvI ⎡ 1 I DQ 1 ⎤ ⎢1 + ⋅ ⋅ ⎥ ⎢ 2 ⎣ K n I DQ RL ⎥ ⎦ 1 I DQ 1 1 So ⋅ ⋅ = − 1 = 0.0526 2 K n I DQ RL 0.95 1 For RL = 0.1 k Ω, then = 0.01052 K n I DQ Or K n I DQ = 95.1 We can write g m = 2 K n I DQ = 190 mA/V This is the required transconductance for the output transistor. This implies a very large transistor. 8.28 Av = − g m RL I CQ So −12 = − g m ( 2 ) ⇒ g m = 6 mA/V= VT I CQ = ( 6 )( 0.026 ) ⇒ I CQ = 0.156 mA VCC 10 But for maximum symmetrical swing, set I CQ = = = 5 mA ⇒ Av > 12 RL 2 Maximum power to the load: 1 VCC (10 ) 2 2 PL ( max ) = ⋅ = ⇒ PL ( max ) = 25 mW 2 RL 2 ( 2) PS = VCC ⋅ I CQ = (10 )( 5 ) = 50 mW So η = 50%
  • 13. 5 I CQ I BQ = = = 0.0278 mA β 180 R1 = RTH = 6 kΩ VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE Set RE = 20 Ω VTH = ( 0.0278 )( 6 ) + 0.7 + (181)( 0.0278 )( 0.020 ) VTH = 0.967 V 1 VTH = ⋅ RTH ⋅ VCC R1 1 0.967 = ( 6 )(10 ) ⇒ R1 = 62.0 kΩ R1 R2 = 6.64 kΩ 8.29 VCC 15 I CQ = = = 15 mA RL 1 15 I BQ = = 0.15 mA 100 (15) 2 1 V2 PL ( max ) = ⋅ CC = ⇒ PL ( max ) = 112.5 mW 2 RL 2 (1) Let RTH = 10 kΩ VTH = I BQ RTH + VBE + (1 + β ) I BQ RE = ( 0.15 )(10 ) + 0.7 + (101)( 0.15 )( 0.1) 1 1 VTH = 3.715 = ⋅ RTH ⋅ VCC = ⋅ (10 )(15 ) R1 R1 R1 = 40.4 kΩ R2 = 13.3 kΩ 8.30 ⎛ R2 ⎞ ⎛ 1.55 ⎞ VTH = ⎜ ⎟ VCC = ⎜ ⎟ (10 ) ⎝ R1 + R2 ⎠ ⎝ 1.55 + 0.73 ⎠ = 6.80 V RTH = R1 R2 = 0.73 1.55 = 0.496 kΩ VTH − VBE 6.80 − 0.70 I BQ = = RTH + (1 + β ) RE 0.496 + ( 26 )( 0.02 ) I BQ = 6.0 mA, I CQ = 150 mA Av = − g m RL and RL = a 2 RL = ( 3) ( 8 ) = 72 Ω 2 ′ ′ I CQ 150 gm = = ⇒ 5.77 A/V VT 0.026
  • 14. Av = − ( 5.77 )( 72 ) = −415 Vo ′ = Av ⋅ Vi = ( 415 )( 0.017 ) = 7.06 V 7.06 Vo = = 2.35 V 3 7.06 Vo = = 2.35 V 3 7.06 Vo = = 2.35 V 3 PS = I CQ ⋅ VCC = ( 0.15 )(10 ) = 1.5 W PL 0.345 η= = ⇒ η = 23% PS 1.5 8.31 a. Assuming the maximum power is being delivered, then 36 9 Vo′ ( peak ) = 36 V ⇒ Vo = = 9 V ⇒ Vrms = ⇒ Vrms = 6.36 V 4 2 36 b. Vo = ⇒ Vo = 25.5 V 2 PL 2 c. Secondary I rms = = ⇒ I rms = 0.314 A Vrms 6.36 0.314 Primary I P = ⇒ I P = 78.6 mA 4 d. PS = I CQ .VCC = ( 0.15 )( 36 ) = 5.4 W 2 η= ⇒ η = 37% 5.4 8.32 a.
  • 15. ⎛V ⎞ ⎛1 ⎞ ve = ⎜ π + g mVπ ′ ⎟ RE = Vπ ′ ⎜ + g m ⎟ RE ⎝ rπ ⎠ ⎝ rπ ⎠ ⎛1+ β ⎞ = Vπ ⎜ ′ ⎟ RE ⎝ rπ ⎠ vi = Vπ + ve ⇒ Vπ = vi − ve ⎛ 1+ β ⎞ ve = (vi − ve ) ⎜ ′ ⎟ RE ⎝ rπ ⎠ 1+ β ⋅ RE′ (1 + β ) RE 2 ve rπ ′ v ⎛n ⎞ = = ′ = e where RE = ⎜ 1 ⎟ RL vi 1 + 1 + β ⋅ R ′ rπ + (1 + β ) RE vi ′ ⎝ n2 ⎠ E rπ ve ⎛n ⎞ v0 = so ve − v0 ⎜ 1 ⎟ ⎛ n1 ⎞ ⎝ n2 ⎠ ⎜ ⎟ ⎝ n2 ⎠ v 1 (1 + β ) RE′ so 0 = ⋅ vi ⎛ n1 ⎞ rπ + (1 + β ) RE ′ ⎜ ⎟ ⎝ n2 ⎠ b. 1 2 n1 I 1 PL = ⋅ I P RL , a = , I CQ = P so PL = .a 2 I CQ RL 2 2 n2 a 2 PS = I CQ .VCC For η = 50% : 1 2 2 ⋅ a I CQ RL a 2 I R PL VCC VCC V = 0.5 = 2 = so a 2 = = ⇒ a 2 = CC CQ L PS I CQ ⋅ VCC 2VCC I CQ ⋅ RL ( 0.1)( 50 ) 5 c. r β VT 49 ( 0.026 ) R0 = π = = ⇒ R0 = 0.255 Ω 1 + β (1 + β ) I CQ ( 50 )( 0.1) 8.33 a. With a 10:1 transformer ratio, we need a current gain of 8 through the transistor. ⎛ R1 R2 ⎞ ie ⎛ R1 R2 ⎞ ie = (1 + β ) ib and ib = ⎜ ⎟ ii so we need = 8 = (1 + β ) ⎜ ⎟ where ⎜R R +R ⎟ ii ⎜R R +R ⎟ ⎝ 1 2 ib ⎠ ⎝ 1 2 ib ⎠ Rib = rπ + (1 + β ) RL ≈ (1 + β ) RL = (101)( 0.8 ) = 80.8 ′ ′
  • 16. R1 R2 ⎞ Then 8 = (101) ⎜ ⎜ R R + 80.8 ⎟ ⎟ ⎝ 1 2 ⎠ R1 R2 = 0.0792 or R1 R2 = 6.95 kΩ R1 R2 + 80.8 2VCC V 12 Set = RL ⇒ I CQ = CC = ′ = 15 mA 2 I CQ ′ RL 0.8 15 I BQ = = 0.15 mA 100 VTH = I BQ RTH + VBE 1 ⋅ RTH ⋅ VCC = I BQ RTH + VBE R1 1 ( 6.95)(12 ) = ( 0.15)( 6.95) + 0.7 ⇒ R1 = 47.9 kΩ then R2 = 8.13 kΩ R1 b. I I e = 0.9 I CQ = 13.5 mA = L ⇒ I L = 135 mA a 1 PL = ( 0.135 ) ( 8 ) ⇒ PL = 72.9 mW 2 2 PS = VCC I CQ = (12 )(15 ) ⇒ PS = 180 mW PL η= ⇒ η = 40.5% PS 8.34 a. VP = 2 RL PL VP = 2 ( 8 )( 2 ) = 5.66 V = peak output voltage VP 5.66 IP = = = 0.708 A = peak output current RL 8 Set Ve = 0.9VCC = aVP to minimize distortion ( 0.9 )(18) Then a = ⇒ a = 2.86 5.66 b. 1 ⎛ I P ⎞ 1 ⎛ 0.708 ⎞ Now I CQ = = ⎜ ⎟ ⇒ I CQ = 0.275 A 0.9 ⎜ a ⎟ 0.9 ⎝ 2.86 ⎠ ⎝ ⎠ Then PQ = VCC I Q = (18 )( 0.275 ) ⇒ PQ = 4.95 W Power rating of transistor 8.35 a. Need a current gain of 8 through the transistor.
  • 17. ib ⎛ R1 R2 ⎞ = 8 = (1 + β ) ⎜ ⎟ where Rib ≈ (1 + β )( 0.9 ) = 90.9 kΩ ii ⎜R R +R ⎟ ⎝ 1 2 ib ⎠ 8 ⎛ R1 R2 ⎞ =⎜ = 0.0792 or R1 R2 = 7.82 kΩ ⎜ R R + 90.9 ⎟ 101 ⎝ 1 2 ⎟ ⎠ 2VCC 12 Set = 0.9 kΩ ⇒ I CQ = = 13.3 mA 2 I CQ 0.9 13.3 I BQ = = 0.133 mA 100 1 Then ( 7.82 )(12 ) = ( 0.133)( 7.82 ) + 0.7 ⇒ R1 = 53.9 kΩ and R 2 = 9.15 kΩ R1 b. I I e = ( 0.9 ) I CQ = 12 mA = L ⇒ I L = 120 mA a 1 PL = ( 0.12 ) ( 8 ) ⇒ PL = 57.6 mW 2 2 PS = VCC I CQ = (12 )(13.3) ⇒ PS = 159.6 mW PL 57.6 η= = ⇒ η = 36.1% PS 159.6 8.36 a. All transistors are matched. ⎛1+ β ⎞ iC 3 mA = iE1 + iB 3 = ⎜ ⎟ iC + ⎝ β ⎠ β ⎛ 61 1 ⎞ 3 = ⎜ + ⎟ iC ⇒ iC = 2.90 mA ⎝ 60 60 ⎠ b. For vo = 6 V , let RL = 200 Ω. 6 io = = 0.03 A = 30 mA ≅ iE 3 200 30 iB 3 = = 0.492 mA 61 iE1 = 3 − 0.492 = 2.508 mA 2.508 iB1 = ⇒ iB1 = 41.11 μ A 61 3 iE 2 ≅ 3 mA ⇒ iB 2 = ⇒ 49.18 μ A 61 iI = iB 2 − iB1 = 49.18 − 41.11 ⇒ iI = 8.07 μ A Current gain 30 × 10−3 Ai = ⇒ Ai = 3.72 × 103 8.07 × 10−6 ⎛i ⎞ ⎛ 30 × 10−3 ⎞ VBE 3 = VT ln ⎜ E 3 ⎟ = ( 0.026 ) ln ⎜ −13 ⎟ ⎝ IS ⎠ ⎝ 5 × 10 ⎠ VBE 3 = 0.6453 V ⎛i ⎞ ⎛ 2.508 × 10−3 ⎞ VEB1 = VT ln ⎜ E1 ⎟ = ( 0.026 ) ln ⎜ −13 ⎟ ⎝ IS ⎠ ⎝ 5 × 10 ⎠ VEB1 = 0.5807 V
  • 18. vI = v0 + VBE 3 − VEB1 = 6 + 0.6453 − 0.5807 vI = 6.0646 V Voltage gain v0 6 Av = = ⇒ Av = 0.989 vI 6.0646 8.37 1 a. For i0 = 1 A, I B 3 ≅ ⇒ 20 mA 50 10 − VEB1 ⎡10 − ( v0,max + VBE 3 ) ⎤ We can then write = 2⎢ − 20 ⎥ R1 ⎢ ⎣ R1 ⎥ ⎦ 10 − VBE 2vo,max If, for simplicity, we assume VEB1 = VBE 3 = 0.7 V, then = + 40 R1 R1 9.3 2 ( 4 ) If we assume v0,max = 4 V, then = + 40 which yields R1 = R2 = 32.5 Ω R1 R1 9.3 b. For vI = 0, I E1 = ⇒ I E1 = 0.286 A = I E 2 32.5 Since I S 3,4 = 10 I S1,2 , then I E 3 = I E 4 = 2.86 A c. We can write ⎧ rπ 1 ⎫ ⎪ rπ 3 + R1 ⎪ 1⎪ 1 + β1 ⎪ R0 = ⎨ ⎬ 2⎪ 1 + β3 ⎪ ⎪ ⎪ ⎩ ⎭ βV ( 50 )( 0.026 ) Now rπ 3 = 3 T = = 0.4545 Ω IC 3 2.86 β1VT (120 )( 0.026 ) rπ 1 = = = 10.91 Ω I C1 0.286 So ⎧ 10.91 ⎫ 0.4545 + 32.5 1⎪⎪ 121 ⎪⎪ R0 = ⎨ ⎬ 2⎪ 51 ⎪ ⎪ ⎩ ⎪ ⎭ 10.91 32.5 = 32.5 0.0902 = 0.0900 121 1 ⎧ 0.4545 + 0.0900 ⎫ Then R0 = ⎨ ⎬ or R 0 = 0.00534 Ω 2⎩ 51 ⎭ 8.38
  • 19. Ri = 1 2 { ⎣ } rπ 1 + (1 + β ) ⎡ R1 ( rπ 3 + (1 + β ) 2 RL ) ⎤ ⎦ iC1 ≈ 7.2 mA and iC 3 ≈ 7.2 mA ( 60 )( 0.026 ) Then rπ = = 0.217 kΩ 7.2 So Ri = 1 2 { 0.217 + ( 61) ⎡ 2 ( 0.217 + ( 61)( 0.2 ) ) ⎤ ⎣ ⎦ } 1 2 { ⎣ ⎦ } = 0.217 + 61 ⎡ 2 12.4 ⎤ or Ri = 52.6 kΩ 8.39 a. b. V + − VSG I1 = K1 (VSG + VTP ) = 2 R1 5 = 10 (VSG − 2 ) ⇒ VSG = 2.707 V 2 10 − 2.707 5= ⇒ R1 = R2 = 1.46 kΩ R1 c. RL = 100 Ω For a sinusoidal output signal:
  • 20. 1 (v ) 1 ( 5) 2 2 PL = ⋅ o = ⋅ ⇒ PL = 125 mW 2 RL 2 0.1 ( vo ) ( 5 ) iD 3 ≈ = ⇒ iD 3 = 50 mA RL 0.1 50 VGS 3 = + 2 = 4.236 V 10 10 − ( 4.236 + 5 ) I1 = ⇒ I D1 = 0.523 mA 1.46 0.523 VSG1 = + 2 = 2.229 V 10 vI = 5 + 4.236 − 2.229 ⇒ vI = 7.007 V (VI − VGS ) − ( −10 ) = 10 (VGS − 2 ) 2 I D2 = 1.46 17.007 − VGS = 10 (VGS − 4VGS + 4 ) 2 1.46 2 14.6VGS − 57.4VGS + 41.4 = 0 ( 57.4 ) − 4 (14.6 )( 41.4 ) 2 57.4 ± VGS = 2 (14.6 ) VGS 2 = 2.98 V I D 2 = 10 ( 2.98 − 2 ) ⇒ I D 2 = 9.60 mA 2 VG 4 = vI − VGS 2 = 7 − 2.98 = 4.02 V VSG 4 = 5 − 4.02 = 0.98 V ⇒ I D 4 = 0 8.40 For v0 = 0 I Q = I C 3 + I C 2 + I E1 ⎛ 1+ βn ⎞ IC 3 I B3 = I E 2 = ⎜ ⎟ IC 2 = ⎝ βn ⎠ βn I C 3 = (1 + β n ) I C 2 ⎛ β ⎞ I I B 2 = I C 1 = ⎜ P ⎟ I E1 = C 2 ⎝ 1+ βP ⎠ βn ⎛ β ⎞ I C 2 = β n ⎜ P ⎟ I E1 ⎝ 1+ βP ⎠ ⎛ β ⎞ I C 3 = (1 + β n ) β n ⎜ P ⎟ I E1 ⎜1+ β ⎟ ⎝ p ⎠ ⎛ β ⎞ ⎛ β ⎞ I Q = (1 + β n ) β n ⎜ P ⎟ I E1 + β n ⎜ P ⎟ I E1 + I E1 ⎝1+ βP ⎠ ⎝ 1+ βP ⎠ ⎛ 10 ⎞ ⎛ 10 ⎞ = ( 51)( 50 ) ⎜ ⎟ I E1 + ( 50 ) ⎜ ⎟ I E1 + I E1 ⎝ 11 ⎠ ⎝ 11 ⎠ I Q = 2318.18I E1 + 45.45 I E1 + I E1 I E1 = 1.692 μ A ⇒ I C1 = 1.534 μ A ⎛ 10 ⎞ I C 2 = ( 50 ) ⎜ ⎟ (1.692 ) ⇒ I C 2 = 76.9 μ A ⎝ 11 ⎠ ⎛ 10 ⎞ I C 3 = ( 51)( 50 ) ⎜ ⎟ (1.692 ) ⇒ I C 3 = 3.92 mA ⎝ 11 ⎠
  • 21. Because of rπ 1 and Z, neglect effect of r0. Then neglecting r01, r02 and r03, we find VX I X = g m 3Vπ 3 + g m 2Vπ 2 + g m1Vπ 1 + rπ 1 + Z Now ⎛ r ⎞ Vπ 1 = ⎜ π 1 ⎟ VX , Vπ 2 ≅ g m1Vπ 1rπ 2 ⎝ rπ 1 + Z ⎠ and Vπ 3 = ( g m1Vπ 1 + g m 2Vπ 2 ) rπ 3 = ⎡ g m1Vπ 1 + g m 2 ( g m1Vπ 1rπ 2 ) ⎤ rπ 3 ⎣ ⎦ ⎛ r ⎞ Vπ 3 = ⎜ π 1 ⎟ [ g m1 + g m1 g m 2 rπ 2 ] rπ 3 ⋅ VX ⎝ rπ 1 + Z ⎠ ( β + β1 β 2 ) rπ 3 Vπ 3 = 1 ⋅ VX rπ 1 + Z ⎛ r ⎞ ⎛ βr ⎞ and Vπ 2 = g m1 ⎜ π 1 ⎟ rπ 2VX = ⎜ 1 π 2 ⎟ VX ⎝ rπ 1 + Z ⎠ ⎝ rπ 1 + Z ⎠ ( β + β1 β 2 ) β 3 ββ β1 VX Then I X = 1 ⋅ V X + 1 2 ⋅ VX + ⋅ VX + rπ 1 + Z rπ 1 + Z rπ 1 + Z rπ 1 + Z Then VX rπ 1 + Z R0 = = I X 1 + β1 + β1 β 2 + ( β1 + β1 β 2 ) β 3 (10 )( 0.026 ) rπ 1 = = 0.169 MΩ 1.534 Z = 25 kΩ Then 169 + 25 R0 = 1 + (10 ) + (10 )( 50 ) + ⎡10 + (10 )( 50 ) ⎤ ( 50 ) ⎣ ⎦ 194 R0 = = 0.00746 kΩ or Ro = 7.46 Ω 26, 011 8.41 a Neglect base currents. ⎛I ⎞ VBB = 2VD = 2VT ln ⎜ Bias ⎟ ⎝ IS ⎠ ⎛ 5 × 10−3 ⎞ = 2 ( 0.026 ) ln ⎜ −13 ⎟ ⇒ VBB = 1.281 V ⎝ 10 ⎠
  • 22. VBE1 + VEB 3 = VBB I E1 = I E 3 + I C 2 ⎛ β ⎞ I B2 = IC 3 = ⎜ P ⎟ I E 3 ⎝ 1+ βP ⎠ ⎛ β ⎞ IC 2 = β n I B 2 = β n ⎜ P ⎟ I E 3 ⎝ 1+ βP ⎠ ⎛ β ⎞ I E1 = I E 3 + β n ⎜ P ⎟ IE3 ⎝ 1+ βP ⎠ ⎡ ⎛ β ⎞⎤ I E1 = I E 3 ⎢1 + β n ⎜ P ⎟⎥ ⎣ ⎝ 1+ βP ⎠⎦ ⎛ 1+ βn ⎞ ⎛ 1+ βP ⎞ ⎡ ⎛ βP ⎞⎤ ⎜ ⎟ I C1 = ⎜ ⎟ I C 3 ⎢1 + β n ⎜ ⎟⎥ ⎝ βn ⎠ ⎝ βP ⎠ ⎣ ⎝ 1+ βP ⎠⎦ ⎡I ⎤ ⎡I ⎤ VBE1 = VT ln ⎢ C1 ⎥ , VEB 3 = VT ln ⎢ C 3 ⎥ ⎣ IS ⎦ ⎣ IS ⎦ ⎡ ⎛ 20 ⎞ ⎤ (1.01) I C1 = ⎛ 21 ⎞ ⎜ ⎟ IC 3 ⎢1 + (100 ) ⎜ 21 ⎟ ⎥ ⎝ 20 ⎠ ⎣ ⎝ ⎠⎦ ⎡ 21 ⎤ = I C 3 ⎢ + 100 ⎥ = 101.05 I C 3 ⎣ 20 ⎦ I C1 = 100.05 I C 3 ⎛ 100.05 I C 3 ⎞ ⎛ IC 3 ⎞ VT ln ⎜ ⎟ + VT ln ⎜ ⎟ = VBB ⎝ IS ⎠ ⎝ IS ⎠ ⎛ 100.05 I C 3 ⎞ 2 VT ln ⎜ 2 ⎟ = VBB ⎝ IS ⎠ 2 100.05 I C 3 ⎛V ⎞ 2 = exp ⎜ BB ⎟ I S ⎝ VT ⎠ IS ⎛V ⎞ IC 3 = exp ⎜ BB ⎟ = 0.4995 mA = I C3 100.05 ⎝ VT ⎠ Then I E 3 = 0.5245 mA Now I C1 = 100.05 I C 3 = 49.97 mA = I C1 ⎛ 20 ⎞ I C 2 = (100 ) ⎜ ⎟ ( 0.5245 ) = 49.95 mA = I C 2 ⎝ 21 ⎠ ⎛I ⎞ ⎛ 49.97 × 10−3 ⎞ VBE1 = VT ln ⎜ C1 ⎟ = 0.026 ln ⎜ −13 ⎟ ⎝ IS ⎠ ⎝ 10 ⎠ = 0.70037 ⎛I ⎞ ⎛ 0.4995 × 10−3 ⎞ VEB 3 = VT ln ⎜ C 3 ⎟ = 0.026 ln ⎜ ⎟ ⎝ IS ⎠ ⎝ 10−13 ⎠ = 0.58062 Note: VBE1 + VEB 3 = 0.70037 + 0.58062 = 1.28099 = VBB b.
  • 23. 10 v0 = 10 V ⇒ iE1 ≈ = 0.10 A = iC1 100 100 iB1 = = 1 mA 100 ⎛ 4 × 10−3 ⎞ VBB = 2 ( 0.026 ) ln ⎜ −13 ⎟ = 1.2694 V ⎝ 10 ⎠ ⎛ 0.1 ⎞ VBE1 = ( 0.026 ) ln ⎜ −13 ⎟ = 0.7184 ⎝ 10 ⎠ VEB 3 = 1.2694 − 0.7184 = 0.55099 V ⎛ 0.55099 ⎞ I C 3 = 10−13 exp ⎜ ⎟ = 0.1598 mA ⎝ 0.026 ⎠ V 2 (10 ) 2 PL = 0 = ⇒ PL = 1 W RL 100 PQ1 = iC1 ⋅ vCE1 = ( 0.1)(12 − 10 ) ⇒ PQ1 = 0.2 W PQ 3 = iC 3 ⋅ vEC 3 = ( 0.1598 ) (10 − [ 0.7 − 12]) ⇒ PQ 3 = 3.40 mW iC 2 = (100 )( iC 3 ) = (100 )( 0.1598 ) = 15.98 mA PQ 2 = iC 2 ⋅ vCE 2 = (15.98 ) (10 − [ −12]) ⇒ PQ 2 = 0.352 W 8.42 a. ⎛ 10 × 10−3 ⎞ VBB = 3 ( 0.026 ) ln ⎜ −12 ⎟ ⇒ VBB = 1.74195 V ⎝ 2 × 10 ⎠ VBE1 + VBE 2 + VEB 3 = VBB IC 2 IC 2 I C1 ≈ , IC 3 ≈ βn β n2 ⎛I ⎞ ⎛I ⎞ ⎛I ⎞ VT ln ⎜ C1 ⎟ + VT ln ⎜ C 2 ⎟ + VT ln ⎜ C 3 ⎟ = VBB ⎝ IS ⎠ ⎝ IS ⎠ ⎝ IS ⎠ ⎡ IC ⎤ 3 VT ln ⎢ 3 2 3 ⎥ = VBB ⎣ βn IS ⎦ ⎛V ⎞ I C 2 = β n I S 3 exp ⎜ BB ⎟ ⎝ VT ⎠ ⎛ 1.74195 ⎞ = ( 20 ) ( 20 × 10−12 ) 3 exp ⎜ ⎟ ⎝ 0.026 ⎠ I C 2 = 0.20 A, I C1 ≈ 10 mA, I C 3 ≈ 0.5 mA ⎛ 10 × 10−3 ⎞ VBE1 = ( 0.026 ) ln ⎜ −12 ⎟ ⇒ VBE1 = 0.58065 V ⎝ 2 × 10 ⎠ ⎛ 0.2 ⎞ VBE 2 = ( 0.026 ) ln ⎜ −12 ⎟ ⇒ VBE 2 = 0.6585 V ⎝ 2 × 10 ⎠ ⎛ 0.5 × 10−3 ⎞ VEB 3 = ( 0.026 ) ln ⎜ −12 ⎟ ⇒ VEB 3 = 0.50276 V ⎝ 2 × 10 ⎠ b. 1 V2 1 V2 PL = 10 W= ⋅ 0 = ⋅ 0 ⇒ V0 ( max ) = 20 V 2 RL 2 20 For v0 ( max ) :
  • 24. v0 ( 20 ) 2 2 PL = = ⇒ PL = 20 W RL 20 20 i0 ( max ) = − = −1 A 20 iC 5 + iC 4 + iE 3 = −io ( max ) = 1 A iC 5 ⎛ β n ⎞ iC 4 ⎛ 1 + β p ⎞ iC 5 + ⋅⎜ ⎟+ ⎜ ⎟ =1 βn ⎝ 1 + βn ⎠ βn ⎜ β p ⎝ ⎟ ⎠ i ⎛ β ⎞ i ⎛ β ⎞ ⎡ 1 ⎛ 1+ β p ⎞⎤ iC 5 + C 5 ⎜ n ⎟ + C 5 ⎜ n ⎟ ⎢ ⎜ ⎟⎥ = 1 βn ⎝ 1 + βn ⎠ βn ⎝ 1 + βn ⎠ ⎣ βn ⎜ β p ⎢ ⎝ ⎟⎥ ⎠⎦ ⎡ 1 ⎛ 20 ⎞ ⎤ ⎛ 1 ⎞ ⎡ 1 ⎛ 6 ⎞ ⎤ iC 5 ⎢1 + ⎜ ⎟ ⎥ + ⎜ ⎟ ⎢ ⎜ ⎟ ⎥ = 1 ⎣ 20 ⎝ 21 ⎠ ⎦ ⎝ 21 ⎠ ⎣ 20 ⎝ 5 ⎠ ⎦ iC 5 (1.05048 ) = 1 iC 5 = 0.952 A iC 4 = 0.0453 A iE 3 = 0.00272 A ⎛5⎞ iC 3 = 0.00272 ⎜ ⎟ ⎝6⎠ = 0.002267 A ⎛ 2.267 × 10−3 ⎞ VEB 3 = ( 0.026 ) ln ⎜ −12 ⎟ = 0.54206 V ⎝ 2 × 10 ⎠ VBE1 + VBE 2 = 1.74195 − 0.54206 = 1.19989 ⎛ I ⎞ ⎛I ⎞ VT ln ⎜ C 2 ⎟ + VT ln ⎜ C 2 ⎟ = 1.19989 ⎝ βn IS ⎠ ⎝ IS ⎠ ⎛ 1.19989 ⎞ iC 2 = β n ⋅ I S exp ⎜ ⎟ ⎝ 0.026 ⎠ = 20 (18.83) mA iC 2 = 93.9 mA iC 2 ⎛ β n ⎞ 93.9 iC1 = ⎜ ⎟= = 4.47 mA β n ⎝ 1 + β n ⎠ 21 PQ 2 = I C 2 ( 24 − ( −20 ) ) = ( 0.0939 ) ( 44 ) = 4.13 W PQ 5 = ( 0.952 ) ( −10 − ( −24 ) ) = 13.3 W