Chapter 8
Problem Solutions

8.1
a.




b.        i.      VD D = 80 V




                            VD D
Maximum power at VDS =             = 40 V
                             2
        PT   25
ID =       =    = 0.625 A
       VD S 40
       80 − 40
RD =           ⇒ RD = 64 Ω
        0.625
ii.       VD D = 50 V




                            VD D
Maximum power at VD S =            = 25 V
                             2
        PT   25
ID =       =    =1 A
       VDS 25
       50 − 25
RD =           ⇒ RD = 25 Ω
          1

8.2
a.
VC C
PQ (max) = I C Q ⋅
                        2
                2 PQ (max)           2(20)
So I C Q =                       =         = 1.67 A
                    VCC               24
         VCC − (VCC / 2) 24 − 12
RL =                    =        ⇒ RL = 7.2 Ω
              I CQ        1.67
         I CQ1.67
 IB =           =   ⇒ 20.8 mA
          β   80
     24 − 0.7
RB =           ⇒ RB = 1.12 kΩ
       20.8
b.
                I CQ ⋅ RL (1.67 )( 7.2 )
 Av = g m RL =           =               = 462
                   VT        0.026
                                      V0 (max) 12
V0 (max) = 12 V ⇒ VP =                        =     ⇒ VP ≅ 26 mV
                                          Av    462

8.3
                                                                     VC C
a.            For maximum power delivered to the load, set VC EQ =
                                                                      2
Set VC C = 25 V = VCE ( sus )
                    VCC 25
Then I Cm =            =
                     RL 0.1
I Cm = 250 mA < I C ,max
      25 − 12.5
I CQ =            = 125 mA
          0.1
                   V
PQ ( max ) = I CQ ⋅ CC = ( 0.125 )(12.5 )
                    2
                        = 1.56 W < PD,max
     125
I BQ =    = 1.25 mA
     100
     25 − 0.7
RB =          ⇒ RB = 19.4 kΩ
      1.25
                    1 2           1
        PL ( max ) = ⋅ I CQ ⋅ RL = ( 0.125 ) (100 ) ⇒ PL ( max ) = 0.781 W ( rms )
                                            2
b.
                    2             2

8.4




Point (b): Maximum power delivered to load.
Point (a): Will obtain maximum signal current output.
Point (c): Will obtain maximum signal voltage output.
8.5
a.




b.
VGG = 5 V, I D = 0.25 ( 5 − 4 ) = 0.25 A, VD S = 37.5 V, P = 9.375 W
                                   2



VGG = 6 V, I D = 0.25 ( 6 − 4 ) = 1.0 A, VD S = 30 V, P = 30 W
                                   2



VGG = 7 V, I D = 0.25 ( 7 − 4 ) = 2.25 A, VD S = 17.5 V, P = 39.375 W
                                   2



VGG = 8 V, I D     = 0.25 ⎡ 2 ( 8 − 4 )VD S − VD S ⎤
                          ⎣
                                               2
                                                   ⎦
                       40 − VD S
                   =               ⇒ VD S = 2.92
                      10
I D = 3.71 A, P = 10.8 W
VGG = 9 V, I D     = 0.25 ⎡ 2 ( 9 − 4 ) VD S − VD S ⎤
                          ⎣
                                                2
                                                    ⎦
                       40 − VD S
                   =        ⇒ VD S = 1.88 V
                      10
I D = 3.81 A, P = 7.16 W
c.       Yes, at VGG = 7 V, P = 39.375 W > PD ,max = 35 W

8.6
a.
              VDD
Set VDSQ =        = 25 V
               2
         50 − 25
I DQ   =         = 1.25 A
           20
I DQ = K n (VGS − VTN )
                          2



     1.25
          + 4 = VGS = 6.5 V
      0.2
      ⎛ R2 ⎞
VGS = ⎜         ⎟ VDD
      ⎝ R1 + R2 ⎠
Let R1 + R2 = 100 kΩ
      ⎛ R ⎞
6.5 = ⎜ 2 ⎟ ( 50 ) ⇒ R2 = 13 kΩ
      ⎝ 100 ⎠
                     R1 = 87 kΩ
b.          PD = I DQVDSQ = (1.25 )( 25 ) ⇒ PD = 31.25 W
c.
I D ,max = 2 I DQ ⇒ I D ,max = 2.5 A
VDS ,max = VDD ⇒ VDS ,max = 50 V
                       PD ,max = 31.25 W
d.
V0
    = g m RL
 Vi
 g m = 2 K n I DQ = 2               ( 0.2 )(1.25) = 1 A / V
 V0 = (1)( 20 )( 0.5 ) = 10 V
        1 V02 1 (10 )
                                     2

 PL =    ⋅   = ⋅      ⇒ PL = 2.5 W
        2 RL 2 20
 PQ = 31.25 − 2.5 ⇒ PQ = 28.75 W

8.7
(a)




(b)           PD = PD ,max − ( Slope ) (T j − 25 )
                              60
At PD = 0, T j ,max =              + 25 ⇒ T j ,max = 145°C
                             0.5
                          T j ,max − Tcase                  145 − 25
(c)           PD ,max   =                  or θ dev − amb =          ⇒ θ dev − amb = 2°C/W
                              θ dev − amb                     60

8.8
              T j ,max − Tamb
PD ,rated =
                θ dev − case
                    T j ,max − Tamb
or θ dev − case =
                        PD ,rated
                  150 − 25
                =           = 2.5°C/W
                     50
Then Tdev      − Tamb = PD (θ dev − case + θ case − amb )
150 − 25 = PD ( 2.5 + θ case − amb ) ⇒ 125 = PD ( 2.5 + θ case − amb )

8.9
PD = I D ⋅ VDS = ( 4 )( 5 ) = 20 W
Tdev − Tamb = PD (θ dev − case + θ case − snk + θ snk − amb )
Tdev − 25 = 20 (1.75 + 0.8 + 3) = 111 ⇒ Tdev = 136°C
Tdev − Tcase = PD ⋅θ dev − case = ( 20 )(1.75 ) = 35
Tcase = Tdev − 35 = 136 − 35 ⇒ Tcase = 101°C
Tcase − Tsink = PD ⋅θ case − snk = ( 20 )( 0.8 ) = 16°C
Tsink = Tcase − 16 = 101 − 16 ⇒ Tsink = 85°C

8.10
Tdev − Tamb = PD (θ dev − case + θ case − amb )
200 − 25 = 25 ( 3 + θ case − amb ) ⇒ θ case − amb = 4°C/W

8.11
                 T j ,max − Tamb       175 − 25
θ dev − case =                     =            = 10°C/W
                    PD ,rated            15
                    T j ,max − Tamb
PD =
         θ dev − case + θ case −snk + θ snk − amb
         175 − 25
     =              ⇒ PD = 10 W
         10 + 1 + 4

8.12
         PL
 η=
         PS
PS = VCC ⋅ I Q
                ⎛V ⎞
PL = VP ⋅ I P = ⎜ CC ⎟ ( I Q )
                ⎝ 2 ⎠
     1
       ⋅ VCC ⋅ I Q
 η= 2              ⇒ η = 50%
      VCC ⋅ I Q

8.13
vo ( max ) = 4.8 V
                                                     −0.7 − ( −5 )
                                     iC 3 = iC 2 =                   = 4.3 mA
                                                          1
                                                                     vS ( min )
vI = vo + 0.7                        iL ( max ) = −4.3 mA =
                                                                         1
so − 3.6 ≤ vI ≤ 5.5 V vo ( min ) = −4.3 V

8.14
0 − VGS 3 − ( −5 )
I D 3 = K (VGS 3 − VTN ) =
                               2

                                               R
12 (VGS 3 − 0.5 ) = 5 − VGS 3
                     2

    2
2VGS 3 − 11VGS − 2 = 0

                   (11)       + 4 (12 )( 2 )
                          2
          11 ±
VGS 3 =
                         2 (12 )
VGS 3 = VGS 2 = 1.072 V
I D 3 = I D 2 = 12 (1.072 − 0.5 ) = 3.93 mA
                                           2


VDS 2 ( sat ) = VGS 2 − VTN = 1.072 − 0.5 = 0.572 V
                                               V0 ( min )
vo ( min ) : i2 ( max ) = −3.93 =                           ⇒ V0 ( min ) = −3.93 V
                                                 1
vI ( min ) = vo ( min ) + VTN            = −3.93 + 0.5
vI ( min ) = −3.43 V
vo ( max ) = 5 − VDS ( sat ) = 5 − 0.572
vo ( max ) = 4.43 V
                      4.43
I D1 ( max ) = 3.93 +        = 8.36 mA
                        1
I D1 = 8.36 = 12 (VGS 1 − 0.5 ) ⇒ VGS 1 = 1.33 V
                                          2


vI ( max ) = vo + VGS1 = 4.43 + 1.33 ⇒ vI ( max ) = 5.76 V

8.15
a.        Neglect base currents.
v0 ( max ) = V + − VCE (sat) = 10 − 0.2 = 9.8 V
                   9.8 9.8
 iL (max) = I Q =       =     ⇒ I Q = 9.8 mA
                   RL      1
                  0 − 0.7 − ( −10 )
          R=                 ⇒ R = 949 Ω
                     9.8
iE1 ( max ) = 2 I Q ⇒ iE1 ( max ) = 19.6 mA
                                   iE1 ( min ) = 0
              iL ( max ) = I Q = 9.8 mA
             iL ( min ) = − I Q = −9.8 mA
b.
     1                        1
        ( iL ( max ) ) RL = 2 ( 9.8)2 (1) ⇒ PL = 48.02 mW
                      2
PL =
     2
PS = I Q (V + − V − ) + I Q ( 0 − V − )
     = 9.8 ( 20 ) + 9.8 (10 ) ⇒ PS = 294 mW
        PL        48.02
 η=           =         ⇒ η = 16.3%
       PS          294

8.16
a.
                  v0 ( max )           10
I Q ( min ) =                      =       ⇒ I Q ( min ) = 100 mA
                     RL                0.1
       0 − 0.7 − ( −12 )
R=                             ⇒ R = 113 Ω
               100
b.
PQ1 = I Q ⋅ VCE1 = (100 )(12 ) ⇒ PQ1 = 1.2 W
P (source) = 2 I Q (12 ) = 2.4 W
c.
               (10 )
                           2
       1 VP2
PL =    ⋅    =       = 0.5 W
       2 RL 2 (100 )
PS = 1.2 + 2.4 = 3.6 W
        PL       0.5
 η=          =       ⇒ η = 13.9%
        PS       3.6

8.17
I D1 = K n (VGS − VTN ) = 12 ( 0 − ( −1.8 ) )
                               2                2



 I D1 = 38.9 mA
(a)
 For RL = ∞
vo ( max ) = 4.8 V
VDS ( sat ) = VGS − VTN = 1.8 V
vo ( min ) = −5 + 1.8 = −3.2 V
vI = vo + 0.7 ⇒ −2.5 ≤ vI ≤ 5.5 V
(b)          For RL = 500 Ω vo ( max ) = 4.8 V
                                                    vo −3.2
For vo < 0, vo ( min ) = −3.2 V              ′
                                            I2 =       =     = −6.4 mA
                                                    RL   0.5
 −2.5 ≤ vI ≤ 5.5 V
(c)
 For vo = −2V , I 2 ( max ) = −38.9 mA
                  ′
               −2
 R2 ( min ) =         ⇒ RL ( min ) = 51.4 Ω
              −38.9
    1 v2 1 ( 2)
                               2

PL = ⋅ o = ⋅    ⇒ PL = 38.9 mW
    2 RL 2 51.4
                                         38.9
PL = 10 ( 38.9 ) = 389 mW % =                 = 10%
                                         389

8.18
    V 2 (V )
           +           2

PL = P =
    RL    RL

    1 (V ) 1 (V )
                 + 2               − 2

PS = ⋅    + ⋅     , V − = −V +
    2 RL   2 RL

So PS       =
              (V )
                 + 2


                 RL
       PL
η=           ⇒ η = 100%
       PS

8.19
(a)
As maximum conversion efficiency
   π V
η = , P = 0.785
    4 VCC
                                ⎛4⎞
So V p ( max ) = ( 0.785 )( 5 ) ⎜ ⎟
                                ⎝π ⎠
               V p ( max ) = 5 V
                                                                                     2VCC       2 ( 5)
(b)        Maximum power dissipation occurs when V p =                                      =            = 3.183 V
                                                                                      π          π
                                    2
                                 VCC
(c)          P ( max ) =
              θ
                                π RL
                                  2


                                    ( 5)
                                           2

                           2=                  ⇒ RL = 1.27 Ω
                                π 2 RL

8.20
                      2
                   1 Vp
(a)          P=     ⋅
                   2 RL
                     2
                 1 Vp
            50 =   ⋅    ⇒ V p = 49 V ⇒ V + = 52 V, V − = −52 V
                 2 24
                 V     49
(b)          IP = P =     = 2.04 A
                 RL 24
                 π VP                π ⎛ 49 ⎞
(c)         η=     ⋅            =       ⎜ ⎟
                 4 VCC                4 ⎝ 52 ⎠
            η = 74.0%

8.21
(a)
VDS ≥ VDS ( sat ) = VGS − VTN = VGS
VDS = 10 − Vo ( max ) and I D = I L = K n (VGS )
                                                                      2


Vo ( max )
             = K n (VGS )
                                2

      RL
           Vo ( max )
VGS =
            RL ⋅ K n
                                Vo ( max )                Vo ( max )
So 10 − Vo ( max ) =                                  =
                                     RL ⋅ K n              ( 5 )( 0.4 )
                       2    V0 ( max )
⎡10 − V0 ( max ) ⎤ =
⎣                ⎦                    2
                                                       V0 ( max )
100 − 20V0 ( max ) + V02 ( max ) =
                                                           2
V02 ( max ) − 20.5V0 ( max ) + 100 = 0

                            ( 20.5 )               − 4 (100 )
                                               2
               20.5 ±
V0 ( max ) =                                                    ⇒ V0 ( max ) = 8 V
                                      2
       8
iL =     ⇒ iL = 1.6 mA
       5
          i       1.6
VGS    = L =          = 2 V ⇒ VI = 10 V
          Kn      0.4
b.
1 (8)
                2

PL = ⋅         = 6.4 mW
     2 5
     20 (1.6 )
PS =           = 10.2 mW
            π
       PL        6.4
 η=         =        ⇒ η = 62.7%
       PS       10.2

8.22
vO = iL RL and iL = iD = K n ( vGS − VTN ) or iL = K n ( vGS ) and vGS = vI − vO
                                           2               2


Then
vO = K n RL ( vI − vO ) or vO = 2 ( vI − vO )
                        2                       2


dv0                         ⎛ dv ⎞
    = ( 2 )( 2 )( vI − v0 ) ⎜ 1 − 0 ⎟
dvI                         ⎝ dvI ⎠
dv0
    ⎡1 + 4 ( vI − v0 ) ⎤ = 4 ( vI − v0 )
dvI ⎣                  ⎦

     dv0   4 ( vI − v0 )
or       =
     dvI 1 + 4 ( vI − v0 )
                                  dv0   4 (10 − 8 )   dv
For vI = 10 V, v0 = 8 V ⇒             =              ⇒ 0 = 0.889
                                  dvI 1 + 4 (10 − 8 ) dvI
                            dv0
At vI = 0, v0 = 0 ⇒             =0
                            dvI
                             dv0
At vI = 1, v0 = 0.5 ⇒            = 0.667
                             dvI

8.23
a.
             ⎛i ⎞                ⎛ 5 × 10−3 ⎞
VBE = VT ln ⎜ C ⎟ = ( 0.026 ) ln ⎜       −13 ⎟
             ⎝ IS ⎠              ⎝ 5 × 10 ⎠
      V
VBE = BB = 0.5987 V ⇒ VBB = 1.1973 V
        2
 PQ = iC ⋅ vCE = ( 5 )(10 ) ⇒ PQ = 50 mW
b.
v0 = −8 V
         −8
  iL =       ⇒ iL = −80 mA
         0.1
               iCp ≈ 80 mA
            ⎛ iCp ⎞            ⎛ 80 × 10−3 ⎞
vEB = VT ln ⎜ ⎟ = ( 0.026 ) ln ⎜       −13 ⎟
            ⎝ IS ⎠             ⎝ 5 × 10 ⎠
vEB = 0.6708 V
         VBB
 vI =        − vEB + v0 = 0.5987 − 0.6708 − 8⇒ vI = −8.072 V
          2
VBE    = VBB − vEB = 1.1973 − 0.6708 = 0.5265 V
               ⎛v ⎞                   ⎛ 0.5265 ⎞
 iCn = I S exp ⎜ BE ⎟ = 5 × 10−13 exp ⎜        ⎟ ⇒ iCn = 0.311 mA
               ⎝ VT ⎠                 ⎝ 0.026 ⎠
 PL = iL RL = ( 80 ) ( 0.1) ⇒ PL = 640 mW
       2               2


PQn = iCn ⋅ vCE = ( 0.311) (10 − ( −8 ) ) ⇒ PQn = 5.60 mW
PQp = iCp ⋅ vEC = ( 80 )( 2 ) ⇒ PQp = 160 mW

8.24
           iDn = K n ( vGSn − VTN )
                                      2
(a)
               0.5                       V
                    + 2 = vGSn = 2.5 V = BB ⇒ VBB = 5.0 V
                2                         2
             Pn = ( 0.5 )(10 ) ⇒ Pn = Pp = 5 mW
(b)        VDS = VGS − VTN ⇒ VDS = VGS − 2 VDS = 10 − vo ( max )
           and
                       iL         v ( max )      v ( max )
           VGS =          + VTN = O         +2 = O         +2
                       Kn          RL K n         ( 2 )(1)
so
                       v0 ( max )            v0 ( max )
10 − v0 ( max ) =                   +2−2 =
                           2                     2
so v0 ( max ) = 8 V
             8
iDn = iL =     ⇒ iDn = iL = 8 mA
             1
         8
VGS =      + 2 ⇒ VGS = 4 V
         2
                       V
Then vI = vo + VGS − BB = 8 + 4 − 2.5 ⇒ vI = 9.5 V
                         2
            ⎛      VBB ⎞
vSGp = vo − ⎜ vI −     ⎟ = 8 − ( 9.5 − 2.5 )
            ⎝       2 ⎠
vSGp = 1 V ⇒ M p cutoff ⇒ iDp = 0

PL = iL RL = ( 8 ) (1) ⇒ PL = 64 mW
      2            2


PMn = iDn ⋅ vDS = ( 8 )(10 − 8 ) ⇒ PMn = 16 mW
PMp = iDp ⋅ vSD ⇒ PMp = 0

8.25
a.
24
 v0 = 24 V ⇒ iL =          ⇒ iL ≈ iN = 3 A
                        8
      3
iBn =    ⇒ iBn = 73.2 mA
      41
For iD = 25 mA ⇒ iR1 = 25 + 73.2 = 98.2 mA
            ⎛i     ⎞                ⎛     3     ⎞
VBE = VT ln ⎜ N    ⎟ = ( 0.026 ) ln ⎜       −12 ⎟
            ⎝ IS   ⎠                ⎝ 6 × 10 ⎠
                     = 0.7004 V
                30 − ( 24 + 0.7 )                  5.3
Then 98.2 =                             ⇒ R1 =         ⇒ R1 = 53.97 Ω
                         R1                       98.2
                  ⎛ 25 × 10−3 ⎞
VD = ( 0.026 ) ln ⎜       −12 ⎟
                                = 0.5759 V
                  ⎝ 6 × 10 ⎠
VEB = 2VD − VBE = 2 ( 0.5759 ) − 0.7004
                        = 0.4514 V
             ⎛V ⎞                       ⎛ 0.4514 ⎞
iP = I S exp ⎜ EB ⎟ = ( 6 × 10−12 ) exp ⎜        ⎟ ⇒ iP = 0.208 mA
             ⎝ VT ⎠                     ⎝ 0.026 ⎠
b.        Neglecting base current
       30 − 0.6 30 − 0.6
 iD ≈           =            ⇒ iD ≈ 545 mA
          R1        53.97
                  ⎛ 0.545 ⎞
VD = ( 0.026 ) ln ⎜       −12 ⎟
                                = 0.656 V
                  ⎝ 6 × 10 ⎠
Approximation for iD is okay.
Diodes and transistors matched ⇒ iN = iP = 545 mA

8.26
(a)
 I D1 = K1 (VGS 1 − VTN )
                              2



           5
VGS1 =       +1 = 2 V
           5
 I D 3 = K 3 (VGS 3 − VTN )
                              2



200 = K 3 ( 2 − 1) ⇒ K n3 = K p 4 = 200 μ A / V 2
                    2



(b)
vI + VSG 4 + VGS 3 − VGS1 = vO
For vo large, iL = i1 = K n1 (VGS1 − VTN )
                                                  2



           iL                      vo
VGS1 =          + VTN =                   + VTN
           K n1                   RL K n1
                ⎛           vo       ⎞
So vI + 2 + 2 − ⎜                 + 1⎟ = v0
                ⎜       ( 0.5)( 5) ⎟
                ⎝                    ⎠
        v0
vI = v0 +   −3
        2.5
dvI    dv 1    1   dv
    =1= 0 + ⋅     ⋅ 0
dvI    dvI 2 2.5v0 dvI
       ⎡
     dv0       1 ⎤
1=     ⎢1 +      ⎥
       ⎢ 2 2.5v0 ⎥
     dvI
       ⎣         ⎦
For vO = 5 V :
dv0 ⎡    1        ⎤ dv             dv
1=       ⎢1 +          ⎥ = 0 (1.1414 ) ⇒ 0 = 0.876
     dvI ⎢ 2 2.5 ( 5 ) ⎥ dvI            dvI
         ⎣             ⎦

8.27
            VBB                           I Dn
vO = vI +       − VGS and VGS =                + VTN
             2                            Kn
                                            vO
For vO ≈ 0, I Dn = I DQ + iL = I DQ +
                                            RL
                   VBB         I DQ + ( vO / RL )             V           I DQ        v
Then vO = vI +         − VTN −                    or vO = vI + BB − VTN −      ⋅ 1+ O
                    2                 Kn                       2          Kn       I DQ RL

                             VBB         I DQ     1 v
For vO small, vO ≅ vI +          − VTN −      ⋅ 1+ ⋅ O
                              2          Kn       2 I DQ RL
   ⎡ 1 I DQ               1 ⎤          V           I DQ
vO ⎢1 + ⋅          ⋅           ⎥ = vI + BB − VTN −
   ⎢ 2 Kn
   ⎣                   I DQ RL ⎥
                               ⎦        2          Kn
Now
dvO                    1
     =                               = 0.95
dvI ⎡ 1             I DQ   1 ⎤
       ⎢1 + ⋅          ⋅        ⎥
       ⎢ 2
       ⎣            K n I DQ RL ⎥
                                ⎦
     1 I DQ   1     1
So    ⋅     ⋅     =     − 1 = 0.0526
     2 K n I DQ RL 0.95
                                 1
For RL = 0.1 k Ω, then                    = 0.01052
                               K n I DQ
Or     K n I DQ = 95.1
We can write g m = 2 K n I DQ = 190 mA/V
This is the required transconductance for the output transistor. This implies a very large transistor.

8.28
 Av = − g m RL
                                                 I CQ
So −12 = − g m ( 2 ) ⇒ g m = 6 mA/V=
                                                 VT
I CQ = ( 6 )( 0.026 ) ⇒ I CQ = 0.156 mA
                                                          VCC 10
But for maximum symmetrical swing, set I CQ =                 =   = 5 mA ⇒ Av > 12
                                                           RL   2
Maximum power to the load:
                 1 VCC (10 )
                     2          2

 PL ( max ) =     ⋅    =        ⇒ PL ( max ) = 25 mW
                 2 RL    2 ( 2)
PS = VCC ⋅ I CQ = (10 )( 5 ) = 50 mW
So η = 50%
5
          I CQ
I BQ =            =
                = 0.0278 mA
       β 180
R1 = RTH = 6 kΩ
VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE
Set RE = 20 Ω
VTH = ( 0.0278 )( 6 ) + 0.7 + (181)( 0.0278 )( 0.020 )
VTH = 0.967 V
          1
VTH =        ⋅ RTH ⋅ VCC
          R1
             1
0.967 =         ( 6 )(10 ) ⇒ R1 = 62.0 kΩ
             R1
                                R2 = 6.64 kΩ

8.29
         VCC 15
I CQ =       = = 15 mA
          RL  1
          15
I BQ =       = 0.15 mA
         100
                    (15)
                                 2
            1 V2
PL ( max ) = ⋅ CC =        ⇒ PL ( max ) = 112.5 mW
            2 RL     2 (1)
Let RTH = 10 kΩ
VTH = I BQ RTH + VBE + (1 + β ) I BQ RE
       = ( 0.15 )(10 ) + 0.7 + (101)( 0.15 )( 0.1)
                      1               1
VTH = 3.715 =            ⋅ RTH ⋅ VCC = ⋅ (10 )(15 )
                      R1              R1
                 R1 = 40.4 kΩ
                 R2 = 13.3 kΩ

8.30
      ⎛ R2 ⎞            ⎛ 1.55 ⎞
VTH = ⎜         ⎟ VCC = ⎜             ⎟ (10 )
      ⎝ R1 + R2 ⎠       ⎝ 1.55 + 0.73 ⎠
                      = 6.80 V
 RTH = R1 R2 = 0.73 1.55 = 0.496 kΩ
              VTH − VBE          6.80 − 0.70
 I BQ =                     =
           RTH + (1 + β ) RE 0.496 + ( 26 )( 0.02 )
 I BQ = 6.0 mA, I CQ = 150 mA
  Av = − g m RL and RL = a 2 RL = ( 3) ( 8 ) = 72 Ω
                                           2
              ′      ′
           I CQ        150
  gm =            =         ⇒ 5.77 A/V
           VT         0.026
Av = − ( 5.77 )( 72 ) = −415

Vo ′ = Av ⋅ Vi = ( 415 )( 0.017 ) = 7.06 V
     7.06
Vo =         = 2.35 V
        3
     7.06
Vo =         = 2.35 V
        3
     7.06
Vo =         = 2.35 V
        3
PS = I CQ ⋅ VCC = ( 0.15 )(10 ) = 1.5 W
       PL       0.345
η=          =         ⇒ η = 23%
       PS        1.5


8.31
a.         Assuming the maximum power is being delivered, then
                           36                9
Vo′ ( peak ) = 36 V ⇒ Vo =    = 9 V ⇒ Vrms =    ⇒ Vrms = 6.36 V
                            4                 2
                 36
b.         Vo =     ⇒ Vo = 25.5 V
                  2
                                 PL    2
c.          Secondary I rms =       =     ⇒ I rms = 0.314 A
                                Vrms 6.36
                   0.314
Primary I P =            ⇒ I P = 78.6 mA
                     4
d.
PS = I CQ .VCC = ( 0.15 )( 36 ) = 5.4 W
     2
η=       ⇒ η = 37%
    5.4

8.32
a.
⎛V            ⎞           ⎛1      ⎞
ve = ⎜ π + g mVπ      ′
                   ⎟ RE = Vπ              ′
                               ⎜ + g m ⎟ RE
     ⎝ rπ          ⎠           ⎝ rπ    ⎠
                          ⎛1+ β      ⎞
                    = Vπ ⎜              ′
                                     ⎟ RE
                          ⎝ rπ       ⎠
vi = Vπ + ve ⇒ Vπ = vi − ve
                 ⎛ 1+ β ⎞
ve = (vi − ve ) ⎜           ′
                         ⎟ RE
                 ⎝ rπ ⎠
       1+ β
                ⋅ RE′
                            (1 + β ) RE
                                                                2
ve        rπ                          ′    v             ⎛n ⎞
   =                    =                            ′
                                          = e where RE = ⎜ 1 ⎟ RL
vi 1 + 1 + β ⋅ R ′ rπ + (1 + β ) RE vi  ′                ⎝ n2 ⎠
                      E
             rπ
       ve               ⎛n ⎞
v0 =         so ve − v0 ⎜ 1 ⎟
     ⎛ n1 ⎞             ⎝ n2 ⎠
     ⎜ ⎟
     ⎝ n2 ⎠
   v        1       (1 + β ) RE′
so 0 =           ⋅
   vi ⎛ n1 ⎞ rπ + (1 + β ) RE    ′
          ⎜ ⎟
          ⎝ n2 ⎠
b.
     1 2              n1       I         1
PL =    ⋅ I P RL , a = , I CQ = P so PL = .a 2 I CQ RL
                                                 2

     2                n2        a        2
PS = I CQ .VCC
For η = 50% :
            1 2 2
              ⋅ a I CQ RL a 2 I R
 PL                                               VCC        VCC             V
    = 0.5 = 2            =            so a 2 =          =             ⇒ a 2 = CC
                               CQ L

 PS           I CQ ⋅ VCC     2VCC              I CQ ⋅ RL ( 0.1)( 50 )         5
c.
        r          β VT      49 ( 0.026 )
R0 = π =                   =              ⇒ R0 = 0.255 Ω
      1 + β (1 + β ) I CQ ( 50 )( 0.1)

8.33
a.        With a 10:1 transformer ratio, we need a current gain of 8 through the transistor.




                          ⎛ R1 R2 ⎞                      ie            ⎛ R1 R2      ⎞
ie = (1 + β ) ib and ib = ⎜             ⎟ ii so we need = 8 = (1 + β ) ⎜            ⎟ where
                          ⎜R R +R ⎟                      ii            ⎜R R +R      ⎟
                          ⎝ 1 2      ib ⎠                              ⎝ 1 2   ib   ⎠
Rib = rπ + (1 + β ) RL ≈ (1 + β ) RL = (101)( 0.8 ) = 80.8
                       ′           ′
⎛   R1 R2    ⎞
Then 8 = (101) ⎜
               ⎜ R R + 80.8 ⎟
                            ⎟
               ⎝ 1 2        ⎠
   R1 R2
             = 0.0792 or R1 R2 = 6.95 kΩ
R1 R2 + 80.8
       2VCC                V     12
Set           = RL ⇒ I CQ = CC =
                 ′                  = 15 mA
       2 I CQ                ′
                            RL 0.8
          15
I BQ =         = 0.15 mA
         100
VTH    = I BQ RTH + VBE
1
   ⋅ RTH ⋅ VCC = I BQ RTH + VBE
R1
 1
     ( 6.95)(12 ) = ( 0.15)( 6.95) + 0.7 ⇒ R1 = 47.9 kΩ then R2 = 8.13 kΩ
 R1
b.
                               I
 I e = 0.9 I CQ = 13.5 mA = L ⇒ I L = 135 mA
                                a
        1
PL = ( 0.135 ) ( 8 ) ⇒ PL = 72.9 mW
                  2

        2
PS = VCC I CQ = (12 )(15 ) ⇒ PS = 180 mW
         PL
 η=           ⇒ η = 40.5%
        PS

8.34
a.
VP = 2 RL PL
VP = 2 ( 8 )( 2 ) = 5.66 V = peak output voltage
       VP 5.66
IP =      =    = 0.708 A = peak output current
       RL   8
Set Ve = 0.9VCC = aVP to minimize distortion
               ( 0.9 )(18)
Then a =                     ⇒ a = 2.86
                 5.66
b.
            1 ⎛ I P ⎞ 1 ⎛ 0.708 ⎞
Now I CQ =            =      ⎜      ⎟ ⇒ I CQ = 0.275 A
           0.9 ⎜ a ⎟ 0.9 ⎝ 2.86 ⎠
               ⎝ ⎠
Then PQ = VCC I Q = (18 )( 0.275 ) ⇒ PQ = 4.95 W Power rating of transistor

8.35
a.            Need a current gain of 8 through the transistor.
ib                ⎛ R1 R2           ⎞
   = 8 = (1 + β ) ⎜                 ⎟ where Rib ≈ (1 + β )( 0.9 ) = 90.9 kΩ
ii                ⎜R R +R           ⎟
                  ⎝ 1 2   ib        ⎠
 8  ⎛   R1 R2    ⎞
   =⎜              = 0.0792 or R1 R2 = 7.82 kΩ
    ⎜ R R + 90.9 ⎟
101 ⎝ 1 2        ⎟
                 ⎠
        2VCC                     12
Set            = 0.9 kΩ ⇒ I CQ =     = 13.3 mA
        2 I CQ                   0.9
        13.3
I BQ =          = 0.133 mA
         100
          1
Then         ( 7.82 )(12 ) = ( 0.133)( 7.82 ) + 0.7 ⇒ R1 = 53.9 kΩ and R 2 = 9.15 kΩ
         R1
b.
                                 I
I e = ( 0.9 ) I CQ = 12 mA = L ⇒ I L = 120 mA
                                 a
       1
PL = ( 0.12 ) ( 8 ) ⇒ PL = 57.6 mW
                  2

       2
PS = VCC I CQ = (12 )(13.3) ⇒ PS = 159.6 mW
        PL 57.6
η=        =      ⇒ η = 36.1%
        PS 159.6

8.36
a.       All transistors are matched.
                    ⎛1+ β ⎞      iC
3 mA = iE1 + iB 3 = ⎜     ⎟ iC +
                    ⎝ β ⎠        β
    ⎛ 61 1 ⎞
3 = ⎜ + ⎟ iC ⇒ iC = 2.90 mA
    ⎝ 60 60 ⎠
b.
For vo = 6 V , let RL = 200 Ω.
       6
io =      = 0.03 A = 30 mA ≅ iE 3
      200
       30
iB 3 =    = 0.492 mA
       61
iE1 = 3 − 0.492 = 2.508 mA
       2.508
iB1 =          ⇒ iB1 = 41.11 μ A
         61
                        3
iE 2 ≅ 3 mA ⇒ iB 2 =       ⇒ 49.18 μ A
                        61
iI = iB 2 − iB1 = 49.18 − 41.11 ⇒ iI = 8.07 μ A
Current gain
         30 × 10−3
Ai =                  ⇒ Ai = 3.72 × 103
        8.07 × 10−6
                ⎛i ⎞                   ⎛ 30 × 10−3 ⎞
VBE 3   = VT ln ⎜ E 3 ⎟ = ( 0.026 ) ln ⎜       −13 ⎟
                ⎝ IS ⎠                 ⎝ 5 × 10 ⎠
VBE 3 = 0.6453 V
             ⎛i ⎞                  ⎛ 2.508 × 10−3 ⎞
VEB1 = VT ln ⎜ E1 ⎟ = ( 0.026 ) ln ⎜         −13  ⎟
             ⎝ IS ⎠                ⎝ 5 × 10       ⎠
VEB1 = 0.5807 V
vI = v0 + VBE 3 − VEB1 = 6 + 0.6453 − 0.5807
vI = 6.0646 V
Voltage gain
       v0    6
Av =      =      ⇒ Av = 0.989
       vI 6.0646


8.37
                                       1
a.         For i0 = 1 A, I B 3 ≅         ⇒ 20 mA
                                      50
                     10 − VEB1    ⎡10 − ( v0,max + VBE 3 )      ⎤
We can then write              = 2⎢                        − 20 ⎥
                        R1        ⎢
                                  ⎣          R1                 ⎥
                                                                ⎦
                                                              10 − VBE 2vo,max
If, for simplicity, we assume VEB1 = VBE 3 = 0.7 V, then              =        + 40
                                                                  R1     R1
                                              9.3 2 ( 4 )
If we assume v0,max = 4 V, then                  =        + 40 which yields R1 = R2 = 32.5 Ω
                                              R1   R1
                                     9.3
b.         For vI = 0, I E1 =             ⇒ I E1 = 0.286 A = I E 2
                                   32.5
Since I S 3,4   = 10 I S1,2 , then I E 3 = I E 4 = 2.86 A
c.
We can write
      ⎧              rπ 1 ⎫
      ⎪ rπ 3 + R1          ⎪
    1⎪             1 + β1 ⎪
R0 = ⎨                     ⎬
    2⎪        1 + β3       ⎪
      ⎪                    ⎪
      ⎩                    ⎭
            βV       ( 50 )( 0.026 )
Now rπ 3 = 3 T =                     = 0.4545 Ω
             IC 3         2.86
                β1VT        (120 )( 0.026 )
       rπ 1 =           =                     = 10.91 Ω
                 I C1           0.286
So
       ⎧               10.91 ⎫
         0.4545 + 32.5
     1⎪⎪                121 ⎪⎪
R0 = ⎨                       ⎬
     2⎪           51         ⎪
       ⎪
       ⎩                     ⎪
                             ⎭
     10.91
32.5        = 32.5 0.0902 = 0.0900
      121
                1 ⎧ 0.4545 + 0.0900 ⎫
Then R0 =         ⎨                 ⎬ or R 0 = 0.00534 Ω
                2⎩        51        ⎭

8.38
Ri =
      1
      2
        {                ⎣                             }
         rπ 1 + (1 + β ) ⎡ R1 ( rπ 3 + (1 + β ) 2 RL ) ⎤
                                                       ⎦
iC1 ≈ 7.2 mA and iC 3 ≈ 7.2 mA
             ( 60 )( 0.026 )
Then rπ =                      = 0.217 kΩ
                   7.2
So Ri =
        1
        2
            {
          0.217 + ( 61) ⎡ 2 ( 0.217 + ( 61)( 0.2 ) ) ⎤
                        ⎣                            ⎦     }
        1
        2
            {        ⎣         ⎦      }
       = 0.217 + 61 ⎡ 2 12.4 ⎤ or Ri = 52.6 kΩ


8.39
a.




b.
                             V + − VSG
I1 = K1 (VSG + VTP ) =
                         2

                                 R1
5 = 10 (VSG − 2 ) ⇒ VSG = 2.707 V
                   2


   10 − 2.707
5=            ⇒ R1 = R2 = 1.46 kΩ
       R1
c.       RL = 100 Ω For a sinusoidal output signal:
1 (v ) 1 ( 5)
                   2               2

PL = ⋅ o = ⋅      ⇒ PL = 125 mW
    2 RL   2 0.1
         ( vo ) ( 5 )
iD 3 ≈         =         ⇒ iD 3 = 50 mA
          RL       0.1
         50
VGS 3 =       + 2 = 4.236 V
         10
     10 − ( 4.236 + 5 )
I1 =                    ⇒ I D1 = 0.523 mA
            1.46
         0.523
VSG1 =           + 2 = 2.229 V
           10
vI = 5 + 4.236 − 2.229 ⇒ vI = 7.007 V
         (VI − VGS ) − ( −10 )
                                       = 10 (VGS − 2 )
                                                         2
I D2 =
             1.46
17.007 − VGS
             = 10 (VGS − 4VGS + 4 )
                     2

    1.46
      2
14.6VGS − 57.4VGS + 41.4 = 0

                       ( 57.4 ) − 4 (14.6 )( 41.4 )
                               2
          57.4 ±
VGS =
                            2 (14.6 )
VGS 2 = 2.98 V
I D 2 = 10 ( 2.98 − 2 ) ⇒ I D 2 = 9.60 mA
                           2


VG 4 = vI − VGS 2 = 7 − 2.98 = 4.02 V
VSG 4 = 5 − 4.02 = 0.98 V ⇒ I D 4 = 0

8.40
For v0 = 0
 I Q = I C 3 + I C 2 + I E1
               ⎛ 1+ βn ⎞          IC 3
I B3 = I E 2 = ⎜         ⎟ IC 2 =
               ⎝    βn ⎠          βn
I C 3 = (1 + β n ) I C 2
                ⎛ β ⎞       I
I B 2 = I C 1 = ⎜ P ⎟ I E1 = C 2
                ⎝ 1+ βP ⎠    βn
             ⎛ β ⎞
I C 2 = β n ⎜ P ⎟ I E1
             ⎝ 1+ βP ⎠
                       ⎛ β ⎞
I C 3 = (1 + β n ) β n ⎜ P ⎟ I E1
                       ⎜1+ β ⎟
                       ⎝    p ⎠

                       ⎛ β ⎞              ⎛ β ⎞
 I Q = (1 + β n ) β n ⎜ P ⎟ I E1 + β n ⎜ P ⎟ I E1 + I E1
                       ⎝1+ βP ⎠           ⎝ 1+ βP ⎠
                    ⎛ 10 ⎞            ⎛ 10 ⎞
      = ( 51)( 50 ) ⎜ ⎟ I E1 + ( 50 ) ⎜ ⎟ I E1 + I E1
                    ⎝ 11 ⎠            ⎝ 11 ⎠
 I Q = 2318.18I E1 + 45.45 I E1 + I E1
I E1 = 1.692 μ A ⇒ I C1 = 1.534 μ A
               ⎛ 10 ⎞
I C 2 = ( 50 ) ⎜ ⎟ (1.692 ) ⇒ I C 2 = 76.9 μ A
               ⎝ 11 ⎠
                    ⎛ 10 ⎞
I C 3 = ( 51)( 50 ) ⎜ ⎟ (1.692 ) ⇒ I C 3 = 3.92 mA
                    ⎝ 11 ⎠
Because of rπ 1 and Z, neglect effect of r0. Then neglecting r01, r02 and r03, we find
                                                VX
I X = g m 3Vπ 3 + g m 2Vπ 2 + g m1Vπ 1 +
                                             rπ 1 + Z
Now
       ⎛ r        ⎞
Vπ 1 = ⎜ π 1 ⎟ VX , Vπ 2 ≅ g m1Vπ 1rπ 2
       ⎝ rπ 1 + Z ⎠
and
Vπ 3 = ( g m1Vπ 1 + g m 2Vπ 2 ) rπ 3
     = ⎡ g m1Vπ 1 + g m 2 ( g m1Vπ 1rπ 2 ) ⎤ rπ 3
       ⎣                                   ⎦
       ⎛ r          ⎞
Vπ 3 = ⎜ π 1 ⎟ [ g m1 + g m1 g m 2 rπ 2 ] rπ 3 ⋅ VX
       ⎝ rπ 1 + Z ⎠
       ( β + β1 β 2 ) rπ 3
Vπ 3 = 1                   ⋅ VX
              rπ 1 + Z
                ⎛ r        ⎞         ⎛ βr ⎞
and Vπ 2 = g m1 ⎜ π 1 ⎟ rπ 2VX = ⎜ 1 π 2 ⎟ VX
                ⎝ rπ 1 + Z ⎠         ⎝ rπ 1 + Z ⎠
           ( β + β1 β 2 ) β 3          ββ             β1             VX
Then I X = 1                  ⋅ V X + 1 2 ⋅ VX +           ⋅ VX +
                 rπ 1 + Z            rπ 1 + Z     rπ 1 + Z        rπ 1 + Z
Then
         VX               rπ 1 + Z
R0 =        =
         I X 1 + β1 + β1 β 2 + ( β1 + β1 β 2 ) β 3
         (10 )( 0.026 )
rπ 1 =                    = 0.169 MΩ
        1.534
Z = 25 kΩ
Then
                             169 + 25
R0 =
         1 + (10 ) + (10 )( 50 ) + ⎡10 + (10 )( 50 ) ⎤ ( 50 )
                                   ⎣                 ⎦
          194
R0 =             = 0.00746 kΩ or Ro = 7.46 Ω
         26, 011

8.41
a          Neglect base currents.
                      ⎛I ⎞
VBB    = 2VD = 2VT ln ⎜ Bias ⎟
                      ⎝ IS ⎠
                        ⎛ 5 × 10−3 ⎞
       = 2 ( 0.026 ) ln ⎜      −13 ⎟
                                     ⇒ VBB = 1.281 V
                        ⎝ 10       ⎠
VBE1 + VEB 3 = VBB
I E1 = I E 3 + I C 2
              ⎛ β ⎞
I B2 = IC 3 = ⎜ P ⎟ I E 3
              ⎝ 1+ βP ⎠
                       ⎛ β ⎞
IC 2 = β n I B 2 = β n ⎜ P ⎟ I E 3
                       ⎝ 1+ βP ⎠
                   ⎛ β              ⎞
I E1 = I E 3 + β n ⎜ P              ⎟ IE3
                   ⎝ 1+ βP          ⎠
             ⎡        ⎛ β              ⎞⎤
I E1 = I E 3 ⎢1 + β n ⎜ P              ⎟⎥
             ⎣        ⎝ 1+ βP          ⎠⎦
⎛ 1+ βn ⎞        ⎛ 1+ βP ⎞       ⎡        ⎛ βP           ⎞⎤
⎜       ⎟ I C1 = ⎜       ⎟ I C 3 ⎢1 + β n ⎜              ⎟⎥
⎝ βn ⎠           ⎝ βP ⎠          ⎣        ⎝ 1+ βP        ⎠⎦
             ⎡I ⎤                   ⎡I ⎤
VBE1 = VT ln ⎢ C1 ⎥ , VEB 3 = VT ln ⎢ C 3 ⎥
             ⎣ IS ⎦                 ⎣ IS ⎦
                                  ⎡           ⎛ 20 ⎞ ⎤
(1.01) I C1 = ⎛
                      21 ⎞
              ⎜          ⎟ IC 3   ⎢1 + (100 ) ⎜ 21 ⎟ ⎥
                    ⎝ 20 ⎠        ⎣           ⎝ ⎠⎦
                      ⎡ 21   ⎤
             = I C 3 ⎢ + 100 ⎥ = 101.05 I C 3
                      ⎣ 20   ⎦
I C1   = 100.05 I C 3
      ⎛ 100.05 I C 3 ⎞         ⎛ IC 3 ⎞
VT ln ⎜              ⎟ + VT ln ⎜      ⎟ = VBB
      ⎝     IS       ⎠         ⎝ IS ⎠
      ⎛ 100.05 I C 3 ⎞
                 2
VT ln ⎜      2       ⎟ = VBB
      ⎝     IS       ⎠
         2
100.05 I C 3          ⎛V ⎞
           2
                = exp ⎜ BB ⎟
       I   S          ⎝ VT ⎠
               IS      ⎛V ⎞
IC 3 =            exp ⎜ BB ⎟ = 0.4995 mA = I C3
        100.05         ⎝ VT ⎠
Then I E 3 = 0.5245 mA
Now I C1 = 100.05 I C 3 = 49.97 mA = I C1
               ⎛ 20 ⎞
I C 2 = (100 ) ⎜ ⎟ ( 0.5245 ) = 49.95 mA = I C 2
               ⎝ 21 ⎠
             ⎛I ⎞              ⎛ 49.97 × 10−3 ⎞
VBE1 = VT ln ⎜ C1 ⎟ = 0.026 ln ⎜      −13     ⎟
             ⎝ IS ⎠            ⎝ 10           ⎠
     = 0.70037
              ⎛I ⎞               ⎛ 0.4995 × 10−3 ⎞
VEB 3 = VT ln ⎜ C 3 ⎟ = 0.026 ln ⎜               ⎟
              ⎝ IS ⎠             ⎝     10−13     ⎠
      = 0.58062
Note: VBE1 + VEB 3 = 0.70037 + 0.58062 = 1.28099
        = VBB
b.
10
  v0 = 10 V ⇒ iE1 ≈                   = 0.10 A = iC1
                                  100
         100
  iB1 =        = 1 mA
         100
                        ⎛ 4 × 10−3 ⎞
 VBB   = 2 ( 0.026 ) ln ⎜     −13 ⎟
                                     = 1.2694 V
                        ⎝ 10       ⎠
                    ⎛ 0.1 ⎞
VBE1 = ( 0.026 ) ln ⎜ −13 ⎟ = 0.7184
                    ⎝ 10 ⎠
VEB 3 = 1.2694 − 0.7184 = 0.55099 V
                   ⎛ 0.55099 ⎞
 I C 3 = 10−13 exp ⎜         ⎟ = 0.1598 mA
                   ⎝ 0.026 ⎠
      V 2 (10 )
                           2

  PL = 0 =      ⇒ PL = 1 W
      RL   100
PQ1 = iC1 ⋅ vCE1 = ( 0.1)(12 − 10 ) ⇒ PQ1 = 0.2 W
PQ 3 = iC 3 ⋅ vEC 3 = ( 0.1598 ) (10 − [ 0.7 − 12]) ⇒ PQ 3 = 3.40 mW
 iC 2 = (100 )( iC 3 ) = (100 )( 0.1598 ) = 15.98 mA
PQ 2 = iC 2 ⋅ vCE 2 = (15.98 ) (10 − [ −12]) ⇒ PQ 2 = 0.352 W



8.42
a.
                     ⎛ 10 × 10−3 ⎞
VBB = 3 ( 0.026 ) ln ⎜       −12 ⎟
                                   ⇒ VBB = 1.74195 V
                     ⎝ 2 × 10 ⎠
VBE1 + VBE 2 + VEB 3 = VBB
         IC 2              IC 2
I C1 ≈          , IC 3 ≈
          βn               β n2
      ⎛I ⎞           ⎛I ⎞            ⎛I ⎞
VT ln ⎜ C1 ⎟ + VT ln ⎜ C 2 ⎟ + VT ln ⎜ C 3 ⎟ = VBB
      ⎝ IS ⎠         ⎝ IS ⎠          ⎝ IS ⎠
      ⎡ IC ⎤
          3
VT ln ⎢ 3 2 3 ⎥ = VBB
      ⎣ βn IS ⎦
                      ⎛V ⎞
I C 2 = β n I S 3 exp ⎜ BB ⎟
                      ⎝ VT ⎠
                                    ⎛ 1.74195 ⎞
      = ( 20 ) ( 20 × 10−12 ) 3 exp ⎜         ⎟
                                    ⎝ 0.026 ⎠
 I C 2 = 0.20 A, I C1 ≈ 10 mA, I C 3 ≈ 0.5 mA
                     ⎛ 10 × 10−3 ⎞
VBE1 = ( 0.026 ) ln ⎜        −12 ⎟
                                   ⇒ VBE1 = 0.58065 V
                     ⎝ 2 × 10 ⎠
                     ⎛ 0.2 ⎞
VBE 2 = ( 0.026 ) ln ⎜       −12 ⎟
                                   ⇒ VBE 2 = 0.6585 V
                     ⎝ 2 × 10 ⎠
                     ⎛ 0.5 × 10−3 ⎞
VEB 3 = ( 0.026 ) ln ⎜        −12 ⎟
                                    ⇒ VEB 3 = 0.50276 V
                     ⎝ 2 × 10 ⎠
b.
              1 V2 1 V2
PL = 10 W= ⋅ 0 = ⋅ 0 ⇒ V0 ( max ) = 20 V
              2 RL 2 20
For v0 ( max ) :
v0 ( 20 )
          2        2

PL =        =      ⇒ PL = 20 W
         RL   20
                  20
i0 ( max ) = −        = −1 A
                  20
iC 5 + iC 4 + iE 3 = −io ( max ) = 1 A
         iC 5 ⎛ β n ⎞ iC 4 ⎛ 1 + β p
                                   ⎞
iC 5 +       ⋅⎜      ⎟+    ⎜       ⎟ =1
         βn ⎝ 1 + βn ⎠ βn ⎜ β p
                           ⎝
                                   ⎟
                                   ⎠
       i ⎛ β ⎞ i ⎛ β ⎞ ⎡ 1 ⎛ 1+ β p                 ⎞⎤
iC 5 + C 5 ⎜ n ⎟ + C 5 ⎜ n ⎟ ⎢ ⎜                    ⎟⎥ = 1
       βn ⎝ 1 + βn ⎠ βn ⎝ 1 + βn ⎠ ⎣ βn ⎜ β p
                                   ⎢ ⎝              ⎟⎥
                                                    ⎠⎦
     ⎡    1 ⎛ 20 ⎞ ⎤ ⎛ 1 ⎞ ⎡ 1 ⎛ 6 ⎞ ⎤
iC 5 ⎢1 + ⎜ ⎟ ⎥ + ⎜ ⎟ ⎢ ⎜ ⎟ ⎥ = 1
     ⎣ 20 ⎝ 21 ⎠ ⎦ ⎝ 21 ⎠ ⎣ 20 ⎝ 5 ⎠ ⎦
iC 5 (1.05048 ) = 1 iC 5 = 0.952 A
                       iC 4 = 0.0453 A
                       iE 3 = 0.00272 A
                                      ⎛5⎞
                       iC 3 = 0.00272 ⎜ ⎟
                                      ⎝6⎠
                       = 0.002267 A
                     ⎛ 2.267 × 10−3 ⎞
VEB 3 = ( 0.026 ) ln ⎜         −12  ⎟ = 0.54206 V
                     ⎝ 2 × 10       ⎠
VBE1 + VBE 2 = 1.74195 − 0.54206 = 1.19989
      ⎛ I ⎞           ⎛I ⎞
VT ln ⎜ C 2 ⎟ + VT ln ⎜ C 2 ⎟ = 1.19989
      ⎝ βn IS ⎠       ⎝ IS ⎠
                     ⎛ 1.19989 ⎞
iC 2 = β n ⋅ I S exp ⎜         ⎟
                     ⎝ 0.026 ⎠
    = 20 (18.83) mA
iC 2 = 93.9 mA
      iC 2 ⎛ β n ⎞ 93.9
iC1 =       ⎜         ⎟=         = 4.47 mA
      β n ⎝ 1 + β n ⎠ 21
PQ 2 = I C 2 ( 24 − ( −20 ) ) = ( 0.0939 ) ( 44 ) = 4.13 W
PQ 5 = ( 0.952 ) ( −10 − ( −24 ) ) = 13.3 W

Ch08s

  • 1.
    Chapter 8 Problem Solutions 8.1 a. b. i. VD D = 80 V VD D Maximum power at VDS = = 40 V 2 PT 25 ID = = = 0.625 A VD S 40 80 − 40 RD = ⇒ RD = 64 Ω 0.625 ii. VD D = 50 V VD D Maximum power at VD S = = 25 V 2 PT 25 ID = = =1 A VDS 25 50 − 25 RD = ⇒ RD = 25 Ω 1 8.2 a.
  • 2.
    VC C PQ (max)= I C Q ⋅ 2 2 PQ (max) 2(20) So I C Q = = = 1.67 A VCC 24 VCC − (VCC / 2) 24 − 12 RL = = ⇒ RL = 7.2 Ω I CQ 1.67 I CQ1.67 IB = = ⇒ 20.8 mA β 80 24 − 0.7 RB = ⇒ RB = 1.12 kΩ 20.8 b. I CQ ⋅ RL (1.67 )( 7.2 ) Av = g m RL = = = 462 VT 0.026 V0 (max) 12 V0 (max) = 12 V ⇒ VP = = ⇒ VP ≅ 26 mV Av 462 8.3 VC C a. For maximum power delivered to the load, set VC EQ = 2 Set VC C = 25 V = VCE ( sus ) VCC 25 Then I Cm = = RL 0.1 I Cm = 250 mA < I C ,max 25 − 12.5 I CQ = = 125 mA 0.1 V PQ ( max ) = I CQ ⋅ CC = ( 0.125 )(12.5 ) 2 = 1.56 W < PD,max 125 I BQ = = 1.25 mA 100 25 − 0.7 RB = ⇒ RB = 19.4 kΩ 1.25 1 2 1 PL ( max ) = ⋅ I CQ ⋅ RL = ( 0.125 ) (100 ) ⇒ PL ( max ) = 0.781 W ( rms ) 2 b. 2 2 8.4 Point (b): Maximum power delivered to load. Point (a): Will obtain maximum signal current output. Point (c): Will obtain maximum signal voltage output.
  • 3.
    8.5 a. b. VGG = 5V, I D = 0.25 ( 5 − 4 ) = 0.25 A, VD S = 37.5 V, P = 9.375 W 2 VGG = 6 V, I D = 0.25 ( 6 − 4 ) = 1.0 A, VD S = 30 V, P = 30 W 2 VGG = 7 V, I D = 0.25 ( 7 − 4 ) = 2.25 A, VD S = 17.5 V, P = 39.375 W 2 VGG = 8 V, I D = 0.25 ⎡ 2 ( 8 − 4 )VD S − VD S ⎤ ⎣ 2 ⎦ 40 − VD S = ⇒ VD S = 2.92 10 I D = 3.71 A, P = 10.8 W VGG = 9 V, I D = 0.25 ⎡ 2 ( 9 − 4 ) VD S − VD S ⎤ ⎣ 2 ⎦ 40 − VD S = ⇒ VD S = 1.88 V 10 I D = 3.81 A, P = 7.16 W c. Yes, at VGG = 7 V, P = 39.375 W > PD ,max = 35 W 8.6 a. VDD Set VDSQ = = 25 V 2 50 − 25 I DQ = = 1.25 A 20 I DQ = K n (VGS − VTN ) 2 1.25 + 4 = VGS = 6.5 V 0.2 ⎛ R2 ⎞ VGS = ⎜ ⎟ VDD ⎝ R1 + R2 ⎠ Let R1 + R2 = 100 kΩ ⎛ R ⎞ 6.5 = ⎜ 2 ⎟ ( 50 ) ⇒ R2 = 13 kΩ ⎝ 100 ⎠ R1 = 87 kΩ b. PD = I DQVDSQ = (1.25 )( 25 ) ⇒ PD = 31.25 W c. I D ,max = 2 I DQ ⇒ I D ,max = 2.5 A VDS ,max = VDD ⇒ VDS ,max = 50 V PD ,max = 31.25 W d.
  • 4.
    V0 = g m RL Vi g m = 2 K n I DQ = 2 ( 0.2 )(1.25) = 1 A / V V0 = (1)( 20 )( 0.5 ) = 10 V 1 V02 1 (10 ) 2 PL = ⋅ = ⋅ ⇒ PL = 2.5 W 2 RL 2 20 PQ = 31.25 − 2.5 ⇒ PQ = 28.75 W 8.7 (a) (b) PD = PD ,max − ( Slope ) (T j − 25 ) 60 At PD = 0, T j ,max = + 25 ⇒ T j ,max = 145°C 0.5 T j ,max − Tcase 145 − 25 (c) PD ,max = or θ dev − amb = ⇒ θ dev − amb = 2°C/W θ dev − amb 60 8.8 T j ,max − Tamb PD ,rated = θ dev − case T j ,max − Tamb or θ dev − case = PD ,rated 150 − 25 = = 2.5°C/W 50 Then Tdev − Tamb = PD (θ dev − case + θ case − amb ) 150 − 25 = PD ( 2.5 + θ case − amb ) ⇒ 125 = PD ( 2.5 + θ case − amb ) 8.9 PD = I D ⋅ VDS = ( 4 )( 5 ) = 20 W Tdev − Tamb = PD (θ dev − case + θ case − snk + θ snk − amb ) Tdev − 25 = 20 (1.75 + 0.8 + 3) = 111 ⇒ Tdev = 136°C Tdev − Tcase = PD ⋅θ dev − case = ( 20 )(1.75 ) = 35 Tcase = Tdev − 35 = 136 − 35 ⇒ Tcase = 101°C Tcase − Tsink = PD ⋅θ case − snk = ( 20 )( 0.8 ) = 16°C Tsink = Tcase − 16 = 101 − 16 ⇒ Tsink = 85°C 8.10
  • 5.
    Tdev − Tamb= PD (θ dev − case + θ case − amb ) 200 − 25 = 25 ( 3 + θ case − amb ) ⇒ θ case − amb = 4°C/W 8.11 T j ,max − Tamb 175 − 25 θ dev − case = = = 10°C/W PD ,rated 15 T j ,max − Tamb PD = θ dev − case + θ case −snk + θ snk − amb 175 − 25 = ⇒ PD = 10 W 10 + 1 + 4 8.12 PL η= PS PS = VCC ⋅ I Q ⎛V ⎞ PL = VP ⋅ I P = ⎜ CC ⎟ ( I Q ) ⎝ 2 ⎠ 1 ⋅ VCC ⋅ I Q η= 2 ⇒ η = 50% VCC ⋅ I Q 8.13 vo ( max ) = 4.8 V −0.7 − ( −5 ) iC 3 = iC 2 = = 4.3 mA 1 vS ( min ) vI = vo + 0.7 iL ( max ) = −4.3 mA = 1 so − 3.6 ≤ vI ≤ 5.5 V vo ( min ) = −4.3 V 8.14
  • 6.
    0 − VGS3 − ( −5 ) I D 3 = K (VGS 3 − VTN ) = 2 R 12 (VGS 3 − 0.5 ) = 5 − VGS 3 2 2 2VGS 3 − 11VGS − 2 = 0 (11) + 4 (12 )( 2 ) 2 11 ± VGS 3 = 2 (12 ) VGS 3 = VGS 2 = 1.072 V I D 3 = I D 2 = 12 (1.072 − 0.5 ) = 3.93 mA 2 VDS 2 ( sat ) = VGS 2 − VTN = 1.072 − 0.5 = 0.572 V V0 ( min ) vo ( min ) : i2 ( max ) = −3.93 = ⇒ V0 ( min ) = −3.93 V 1 vI ( min ) = vo ( min ) + VTN = −3.93 + 0.5 vI ( min ) = −3.43 V vo ( max ) = 5 − VDS ( sat ) = 5 − 0.572 vo ( max ) = 4.43 V 4.43 I D1 ( max ) = 3.93 + = 8.36 mA 1 I D1 = 8.36 = 12 (VGS 1 − 0.5 ) ⇒ VGS 1 = 1.33 V 2 vI ( max ) = vo + VGS1 = 4.43 + 1.33 ⇒ vI ( max ) = 5.76 V 8.15 a. Neglect base currents. v0 ( max ) = V + − VCE (sat) = 10 − 0.2 = 9.8 V 9.8 9.8 iL (max) = I Q = = ⇒ I Q = 9.8 mA RL 1 0 − 0.7 − ( −10 ) R= ⇒ R = 949 Ω 9.8 iE1 ( max ) = 2 I Q ⇒ iE1 ( max ) = 19.6 mA iE1 ( min ) = 0 iL ( max ) = I Q = 9.8 mA iL ( min ) = − I Q = −9.8 mA b. 1 1 ( iL ( max ) ) RL = 2 ( 9.8)2 (1) ⇒ PL = 48.02 mW 2 PL = 2 PS = I Q (V + − V − ) + I Q ( 0 − V − ) = 9.8 ( 20 ) + 9.8 (10 ) ⇒ PS = 294 mW PL 48.02 η= = ⇒ η = 16.3% PS 294 8.16 a. v0 ( max ) 10 I Q ( min ) = = ⇒ I Q ( min ) = 100 mA RL 0.1 0 − 0.7 − ( −12 ) R= ⇒ R = 113 Ω 100 b.
  • 7.
    PQ1 = IQ ⋅ VCE1 = (100 )(12 ) ⇒ PQ1 = 1.2 W P (source) = 2 I Q (12 ) = 2.4 W c. (10 ) 2 1 VP2 PL = ⋅ = = 0.5 W 2 RL 2 (100 ) PS = 1.2 + 2.4 = 3.6 W PL 0.5 η= = ⇒ η = 13.9% PS 3.6 8.17 I D1 = K n (VGS − VTN ) = 12 ( 0 − ( −1.8 ) ) 2 2 I D1 = 38.9 mA (a) For RL = ∞ vo ( max ) = 4.8 V VDS ( sat ) = VGS − VTN = 1.8 V vo ( min ) = −5 + 1.8 = −3.2 V vI = vo + 0.7 ⇒ −2.5 ≤ vI ≤ 5.5 V (b) For RL = 500 Ω vo ( max ) = 4.8 V vo −3.2 For vo < 0, vo ( min ) = −3.2 V ′ I2 = = = −6.4 mA RL 0.5 −2.5 ≤ vI ≤ 5.5 V (c) For vo = −2V , I 2 ( max ) = −38.9 mA ′ −2 R2 ( min ) = ⇒ RL ( min ) = 51.4 Ω −38.9 1 v2 1 ( 2) 2 PL = ⋅ o = ⋅ ⇒ PL = 38.9 mW 2 RL 2 51.4 38.9 PL = 10 ( 38.9 ) = 389 mW % = = 10% 389 8.18 V 2 (V ) + 2 PL = P = RL RL 1 (V ) 1 (V ) + 2 − 2 PS = ⋅ + ⋅ , V − = −V + 2 RL 2 RL So PS = (V ) + 2 RL PL η= ⇒ η = 100% PS 8.19 (a)
  • 8.
    As maximum conversionefficiency π V η = , P = 0.785 4 VCC ⎛4⎞ So V p ( max ) = ( 0.785 )( 5 ) ⎜ ⎟ ⎝π ⎠ V p ( max ) = 5 V 2VCC 2 ( 5) (b) Maximum power dissipation occurs when V p = = = 3.183 V π π 2 VCC (c) P ( max ) = θ π RL 2 ( 5) 2 2= ⇒ RL = 1.27 Ω π 2 RL 8.20 2 1 Vp (a) P= ⋅ 2 RL 2 1 Vp 50 = ⋅ ⇒ V p = 49 V ⇒ V + = 52 V, V − = −52 V 2 24 V 49 (b) IP = P = = 2.04 A RL 24 π VP π ⎛ 49 ⎞ (c) η= ⋅ = ⎜ ⎟ 4 VCC 4 ⎝ 52 ⎠ η = 74.0% 8.21 (a) VDS ≥ VDS ( sat ) = VGS − VTN = VGS VDS = 10 − Vo ( max ) and I D = I L = K n (VGS ) 2 Vo ( max ) = K n (VGS ) 2 RL Vo ( max ) VGS = RL ⋅ K n Vo ( max ) Vo ( max ) So 10 − Vo ( max ) = = RL ⋅ K n ( 5 )( 0.4 ) 2 V0 ( max ) ⎡10 − V0 ( max ) ⎤ = ⎣ ⎦ 2 V0 ( max ) 100 − 20V0 ( max ) + V02 ( max ) = 2 V02 ( max ) − 20.5V0 ( max ) + 100 = 0 ( 20.5 ) − 4 (100 ) 2 20.5 ± V0 ( max ) = ⇒ V0 ( max ) = 8 V 2 8 iL = ⇒ iL = 1.6 mA 5 i 1.6 VGS = L = = 2 V ⇒ VI = 10 V Kn 0.4 b.
  • 9.
    1 (8) 2 PL = ⋅ = 6.4 mW 2 5 20 (1.6 ) PS = = 10.2 mW π PL 6.4 η= = ⇒ η = 62.7% PS 10.2 8.22 vO = iL RL and iL = iD = K n ( vGS − VTN ) or iL = K n ( vGS ) and vGS = vI − vO 2 2 Then vO = K n RL ( vI − vO ) or vO = 2 ( vI − vO ) 2 2 dv0 ⎛ dv ⎞ = ( 2 )( 2 )( vI − v0 ) ⎜ 1 − 0 ⎟ dvI ⎝ dvI ⎠ dv0 ⎡1 + 4 ( vI − v0 ) ⎤ = 4 ( vI − v0 ) dvI ⎣ ⎦ dv0 4 ( vI − v0 ) or = dvI 1 + 4 ( vI − v0 ) dv0 4 (10 − 8 ) dv For vI = 10 V, v0 = 8 V ⇒ = ⇒ 0 = 0.889 dvI 1 + 4 (10 − 8 ) dvI dv0 At vI = 0, v0 = 0 ⇒ =0 dvI dv0 At vI = 1, v0 = 0.5 ⇒ = 0.667 dvI 8.23 a. ⎛i ⎞ ⎛ 5 × 10−3 ⎞ VBE = VT ln ⎜ C ⎟ = ( 0.026 ) ln ⎜ −13 ⎟ ⎝ IS ⎠ ⎝ 5 × 10 ⎠ V VBE = BB = 0.5987 V ⇒ VBB = 1.1973 V 2 PQ = iC ⋅ vCE = ( 5 )(10 ) ⇒ PQ = 50 mW b.
  • 10.
    v0 = −8V −8 iL = ⇒ iL = −80 mA 0.1 iCp ≈ 80 mA ⎛ iCp ⎞ ⎛ 80 × 10−3 ⎞ vEB = VT ln ⎜ ⎟ = ( 0.026 ) ln ⎜ −13 ⎟ ⎝ IS ⎠ ⎝ 5 × 10 ⎠ vEB = 0.6708 V VBB vI = − vEB + v0 = 0.5987 − 0.6708 − 8⇒ vI = −8.072 V 2 VBE = VBB − vEB = 1.1973 − 0.6708 = 0.5265 V ⎛v ⎞ ⎛ 0.5265 ⎞ iCn = I S exp ⎜ BE ⎟ = 5 × 10−13 exp ⎜ ⎟ ⇒ iCn = 0.311 mA ⎝ VT ⎠ ⎝ 0.026 ⎠ PL = iL RL = ( 80 ) ( 0.1) ⇒ PL = 640 mW 2 2 PQn = iCn ⋅ vCE = ( 0.311) (10 − ( −8 ) ) ⇒ PQn = 5.60 mW PQp = iCp ⋅ vEC = ( 80 )( 2 ) ⇒ PQp = 160 mW 8.24 iDn = K n ( vGSn − VTN ) 2 (a) 0.5 V + 2 = vGSn = 2.5 V = BB ⇒ VBB = 5.0 V 2 2 Pn = ( 0.5 )(10 ) ⇒ Pn = Pp = 5 mW (b) VDS = VGS − VTN ⇒ VDS = VGS − 2 VDS = 10 − vo ( max ) and iL v ( max ) v ( max ) VGS = + VTN = O +2 = O +2 Kn RL K n ( 2 )(1) so v0 ( max ) v0 ( max ) 10 − v0 ( max ) = +2−2 = 2 2 so v0 ( max ) = 8 V 8 iDn = iL = ⇒ iDn = iL = 8 mA 1 8 VGS = + 2 ⇒ VGS = 4 V 2 V Then vI = vo + VGS − BB = 8 + 4 − 2.5 ⇒ vI = 9.5 V 2 ⎛ VBB ⎞ vSGp = vo − ⎜ vI − ⎟ = 8 − ( 9.5 − 2.5 ) ⎝ 2 ⎠ vSGp = 1 V ⇒ M p cutoff ⇒ iDp = 0 PL = iL RL = ( 8 ) (1) ⇒ PL = 64 mW 2 2 PMn = iDn ⋅ vDS = ( 8 )(10 − 8 ) ⇒ PMn = 16 mW PMp = iDp ⋅ vSD ⇒ PMp = 0 8.25 a.
  • 11.
    24 v0 =24 V ⇒ iL = ⇒ iL ≈ iN = 3 A 8 3 iBn = ⇒ iBn = 73.2 mA 41 For iD = 25 mA ⇒ iR1 = 25 + 73.2 = 98.2 mA ⎛i ⎞ ⎛ 3 ⎞ VBE = VT ln ⎜ N ⎟ = ( 0.026 ) ln ⎜ −12 ⎟ ⎝ IS ⎠ ⎝ 6 × 10 ⎠ = 0.7004 V 30 − ( 24 + 0.7 ) 5.3 Then 98.2 = ⇒ R1 = ⇒ R1 = 53.97 Ω R1 98.2 ⎛ 25 × 10−3 ⎞ VD = ( 0.026 ) ln ⎜ −12 ⎟ = 0.5759 V ⎝ 6 × 10 ⎠ VEB = 2VD − VBE = 2 ( 0.5759 ) − 0.7004 = 0.4514 V ⎛V ⎞ ⎛ 0.4514 ⎞ iP = I S exp ⎜ EB ⎟ = ( 6 × 10−12 ) exp ⎜ ⎟ ⇒ iP = 0.208 mA ⎝ VT ⎠ ⎝ 0.026 ⎠ b. Neglecting base current 30 − 0.6 30 − 0.6 iD ≈ = ⇒ iD ≈ 545 mA R1 53.97 ⎛ 0.545 ⎞ VD = ( 0.026 ) ln ⎜ −12 ⎟ = 0.656 V ⎝ 6 × 10 ⎠ Approximation for iD is okay. Diodes and transistors matched ⇒ iN = iP = 545 mA 8.26 (a) I D1 = K1 (VGS 1 − VTN ) 2 5 VGS1 = +1 = 2 V 5 I D 3 = K 3 (VGS 3 − VTN ) 2 200 = K 3 ( 2 − 1) ⇒ K n3 = K p 4 = 200 μ A / V 2 2 (b) vI + VSG 4 + VGS 3 − VGS1 = vO For vo large, iL = i1 = K n1 (VGS1 − VTN ) 2 iL vo VGS1 = + VTN = + VTN K n1 RL K n1 ⎛ vo ⎞ So vI + 2 + 2 − ⎜ + 1⎟ = v0 ⎜ ( 0.5)( 5) ⎟ ⎝ ⎠ v0 vI = v0 + −3 2.5 dvI dv 1 1 dv =1= 0 + ⋅ ⋅ 0 dvI dvI 2 2.5v0 dvI ⎡ dv0 1 ⎤ 1= ⎢1 + ⎥ ⎢ 2 2.5v0 ⎥ dvI ⎣ ⎦ For vO = 5 V :
  • 12.
    dv0 ⎡ 1 ⎤ dv dv 1= ⎢1 + ⎥ = 0 (1.1414 ) ⇒ 0 = 0.876 dvI ⎢ 2 2.5 ( 5 ) ⎥ dvI dvI ⎣ ⎦ 8.27 VBB I Dn vO = vI + − VGS and VGS = + VTN 2 Kn vO For vO ≈ 0, I Dn = I DQ + iL = I DQ + RL VBB I DQ + ( vO / RL ) V I DQ v Then vO = vI + − VTN − or vO = vI + BB − VTN − ⋅ 1+ O 2 Kn 2 Kn I DQ RL VBB I DQ 1 v For vO small, vO ≅ vI + − VTN − ⋅ 1+ ⋅ O 2 Kn 2 I DQ RL ⎡ 1 I DQ 1 ⎤ V I DQ vO ⎢1 + ⋅ ⋅ ⎥ = vI + BB − VTN − ⎢ 2 Kn ⎣ I DQ RL ⎥ ⎦ 2 Kn Now dvO 1 = = 0.95 dvI ⎡ 1 I DQ 1 ⎤ ⎢1 + ⋅ ⋅ ⎥ ⎢ 2 ⎣ K n I DQ RL ⎥ ⎦ 1 I DQ 1 1 So ⋅ ⋅ = − 1 = 0.0526 2 K n I DQ RL 0.95 1 For RL = 0.1 k Ω, then = 0.01052 K n I DQ Or K n I DQ = 95.1 We can write g m = 2 K n I DQ = 190 mA/V This is the required transconductance for the output transistor. This implies a very large transistor. 8.28 Av = − g m RL I CQ So −12 = − g m ( 2 ) ⇒ g m = 6 mA/V= VT I CQ = ( 6 )( 0.026 ) ⇒ I CQ = 0.156 mA VCC 10 But for maximum symmetrical swing, set I CQ = = = 5 mA ⇒ Av > 12 RL 2 Maximum power to the load: 1 VCC (10 ) 2 2 PL ( max ) = ⋅ = ⇒ PL ( max ) = 25 mW 2 RL 2 ( 2) PS = VCC ⋅ I CQ = (10 )( 5 ) = 50 mW So η = 50%
  • 13.
    5 I CQ I BQ = = = 0.0278 mA β 180 R1 = RTH = 6 kΩ VTH = I BQ RTH + VBE ( on ) + (1 + β ) I BQ RE Set RE = 20 Ω VTH = ( 0.0278 )( 6 ) + 0.7 + (181)( 0.0278 )( 0.020 ) VTH = 0.967 V 1 VTH = ⋅ RTH ⋅ VCC R1 1 0.967 = ( 6 )(10 ) ⇒ R1 = 62.0 kΩ R1 R2 = 6.64 kΩ 8.29 VCC 15 I CQ = = = 15 mA RL 1 15 I BQ = = 0.15 mA 100 (15) 2 1 V2 PL ( max ) = ⋅ CC = ⇒ PL ( max ) = 112.5 mW 2 RL 2 (1) Let RTH = 10 kΩ VTH = I BQ RTH + VBE + (1 + β ) I BQ RE = ( 0.15 )(10 ) + 0.7 + (101)( 0.15 )( 0.1) 1 1 VTH = 3.715 = ⋅ RTH ⋅ VCC = ⋅ (10 )(15 ) R1 R1 R1 = 40.4 kΩ R2 = 13.3 kΩ 8.30 ⎛ R2 ⎞ ⎛ 1.55 ⎞ VTH = ⎜ ⎟ VCC = ⎜ ⎟ (10 ) ⎝ R1 + R2 ⎠ ⎝ 1.55 + 0.73 ⎠ = 6.80 V RTH = R1 R2 = 0.73 1.55 = 0.496 kΩ VTH − VBE 6.80 − 0.70 I BQ = = RTH + (1 + β ) RE 0.496 + ( 26 )( 0.02 ) I BQ = 6.0 mA, I CQ = 150 mA Av = − g m RL and RL = a 2 RL = ( 3) ( 8 ) = 72 Ω 2 ′ ′ I CQ 150 gm = = ⇒ 5.77 A/V VT 0.026
  • 14.
    Av = −( 5.77 )( 72 ) = −415 Vo ′ = Av ⋅ Vi = ( 415 )( 0.017 ) = 7.06 V 7.06 Vo = = 2.35 V 3 7.06 Vo = = 2.35 V 3 7.06 Vo = = 2.35 V 3 PS = I CQ ⋅ VCC = ( 0.15 )(10 ) = 1.5 W PL 0.345 η= = ⇒ η = 23% PS 1.5 8.31 a. Assuming the maximum power is being delivered, then 36 9 Vo′ ( peak ) = 36 V ⇒ Vo = = 9 V ⇒ Vrms = ⇒ Vrms = 6.36 V 4 2 36 b. Vo = ⇒ Vo = 25.5 V 2 PL 2 c. Secondary I rms = = ⇒ I rms = 0.314 A Vrms 6.36 0.314 Primary I P = ⇒ I P = 78.6 mA 4 d. PS = I CQ .VCC = ( 0.15 )( 36 ) = 5.4 W 2 η= ⇒ η = 37% 5.4 8.32 a.
  • 15.
    ⎛V ⎞ ⎛1 ⎞ ve = ⎜ π + g mVπ ′ ⎟ RE = Vπ ′ ⎜ + g m ⎟ RE ⎝ rπ ⎠ ⎝ rπ ⎠ ⎛1+ β ⎞ = Vπ ⎜ ′ ⎟ RE ⎝ rπ ⎠ vi = Vπ + ve ⇒ Vπ = vi − ve ⎛ 1+ β ⎞ ve = (vi − ve ) ⎜ ′ ⎟ RE ⎝ rπ ⎠ 1+ β ⋅ RE′ (1 + β ) RE 2 ve rπ ′ v ⎛n ⎞ = = ′ = e where RE = ⎜ 1 ⎟ RL vi 1 + 1 + β ⋅ R ′ rπ + (1 + β ) RE vi ′ ⎝ n2 ⎠ E rπ ve ⎛n ⎞ v0 = so ve − v0 ⎜ 1 ⎟ ⎛ n1 ⎞ ⎝ n2 ⎠ ⎜ ⎟ ⎝ n2 ⎠ v 1 (1 + β ) RE′ so 0 = ⋅ vi ⎛ n1 ⎞ rπ + (1 + β ) RE ′ ⎜ ⎟ ⎝ n2 ⎠ b. 1 2 n1 I 1 PL = ⋅ I P RL , a = , I CQ = P so PL = .a 2 I CQ RL 2 2 n2 a 2 PS = I CQ .VCC For η = 50% : 1 2 2 ⋅ a I CQ RL a 2 I R PL VCC VCC V = 0.5 = 2 = so a 2 = = ⇒ a 2 = CC CQ L PS I CQ ⋅ VCC 2VCC I CQ ⋅ RL ( 0.1)( 50 ) 5 c. r β VT 49 ( 0.026 ) R0 = π = = ⇒ R0 = 0.255 Ω 1 + β (1 + β ) I CQ ( 50 )( 0.1) 8.33 a. With a 10:1 transformer ratio, we need a current gain of 8 through the transistor. ⎛ R1 R2 ⎞ ie ⎛ R1 R2 ⎞ ie = (1 + β ) ib and ib = ⎜ ⎟ ii so we need = 8 = (1 + β ) ⎜ ⎟ where ⎜R R +R ⎟ ii ⎜R R +R ⎟ ⎝ 1 2 ib ⎠ ⎝ 1 2 ib ⎠ Rib = rπ + (1 + β ) RL ≈ (1 + β ) RL = (101)( 0.8 ) = 80.8 ′ ′
  • 16.
    R1 R2 ⎞ Then 8 = (101) ⎜ ⎜ R R + 80.8 ⎟ ⎟ ⎝ 1 2 ⎠ R1 R2 = 0.0792 or R1 R2 = 6.95 kΩ R1 R2 + 80.8 2VCC V 12 Set = RL ⇒ I CQ = CC = ′ = 15 mA 2 I CQ ′ RL 0.8 15 I BQ = = 0.15 mA 100 VTH = I BQ RTH + VBE 1 ⋅ RTH ⋅ VCC = I BQ RTH + VBE R1 1 ( 6.95)(12 ) = ( 0.15)( 6.95) + 0.7 ⇒ R1 = 47.9 kΩ then R2 = 8.13 kΩ R1 b. I I e = 0.9 I CQ = 13.5 mA = L ⇒ I L = 135 mA a 1 PL = ( 0.135 ) ( 8 ) ⇒ PL = 72.9 mW 2 2 PS = VCC I CQ = (12 )(15 ) ⇒ PS = 180 mW PL η= ⇒ η = 40.5% PS 8.34 a. VP = 2 RL PL VP = 2 ( 8 )( 2 ) = 5.66 V = peak output voltage VP 5.66 IP = = = 0.708 A = peak output current RL 8 Set Ve = 0.9VCC = aVP to minimize distortion ( 0.9 )(18) Then a = ⇒ a = 2.86 5.66 b. 1 ⎛ I P ⎞ 1 ⎛ 0.708 ⎞ Now I CQ = = ⎜ ⎟ ⇒ I CQ = 0.275 A 0.9 ⎜ a ⎟ 0.9 ⎝ 2.86 ⎠ ⎝ ⎠ Then PQ = VCC I Q = (18 )( 0.275 ) ⇒ PQ = 4.95 W Power rating of transistor 8.35 a. Need a current gain of 8 through the transistor.
  • 17.
    ib ⎛ R1 R2 ⎞ = 8 = (1 + β ) ⎜ ⎟ where Rib ≈ (1 + β )( 0.9 ) = 90.9 kΩ ii ⎜R R +R ⎟ ⎝ 1 2 ib ⎠ 8 ⎛ R1 R2 ⎞ =⎜ = 0.0792 or R1 R2 = 7.82 kΩ ⎜ R R + 90.9 ⎟ 101 ⎝ 1 2 ⎟ ⎠ 2VCC 12 Set = 0.9 kΩ ⇒ I CQ = = 13.3 mA 2 I CQ 0.9 13.3 I BQ = = 0.133 mA 100 1 Then ( 7.82 )(12 ) = ( 0.133)( 7.82 ) + 0.7 ⇒ R1 = 53.9 kΩ and R 2 = 9.15 kΩ R1 b. I I e = ( 0.9 ) I CQ = 12 mA = L ⇒ I L = 120 mA a 1 PL = ( 0.12 ) ( 8 ) ⇒ PL = 57.6 mW 2 2 PS = VCC I CQ = (12 )(13.3) ⇒ PS = 159.6 mW PL 57.6 η= = ⇒ η = 36.1% PS 159.6 8.36 a. All transistors are matched. ⎛1+ β ⎞ iC 3 mA = iE1 + iB 3 = ⎜ ⎟ iC + ⎝ β ⎠ β ⎛ 61 1 ⎞ 3 = ⎜ + ⎟ iC ⇒ iC = 2.90 mA ⎝ 60 60 ⎠ b. For vo = 6 V , let RL = 200 Ω. 6 io = = 0.03 A = 30 mA ≅ iE 3 200 30 iB 3 = = 0.492 mA 61 iE1 = 3 − 0.492 = 2.508 mA 2.508 iB1 = ⇒ iB1 = 41.11 μ A 61 3 iE 2 ≅ 3 mA ⇒ iB 2 = ⇒ 49.18 μ A 61 iI = iB 2 − iB1 = 49.18 − 41.11 ⇒ iI = 8.07 μ A Current gain 30 × 10−3 Ai = ⇒ Ai = 3.72 × 103 8.07 × 10−6 ⎛i ⎞ ⎛ 30 × 10−3 ⎞ VBE 3 = VT ln ⎜ E 3 ⎟ = ( 0.026 ) ln ⎜ −13 ⎟ ⎝ IS ⎠ ⎝ 5 × 10 ⎠ VBE 3 = 0.6453 V ⎛i ⎞ ⎛ 2.508 × 10−3 ⎞ VEB1 = VT ln ⎜ E1 ⎟ = ( 0.026 ) ln ⎜ −13 ⎟ ⎝ IS ⎠ ⎝ 5 × 10 ⎠ VEB1 = 0.5807 V
  • 18.
    vI = v0+ VBE 3 − VEB1 = 6 + 0.6453 − 0.5807 vI = 6.0646 V Voltage gain v0 6 Av = = ⇒ Av = 0.989 vI 6.0646 8.37 1 a. For i0 = 1 A, I B 3 ≅ ⇒ 20 mA 50 10 − VEB1 ⎡10 − ( v0,max + VBE 3 ) ⎤ We can then write = 2⎢ − 20 ⎥ R1 ⎢ ⎣ R1 ⎥ ⎦ 10 − VBE 2vo,max If, for simplicity, we assume VEB1 = VBE 3 = 0.7 V, then = + 40 R1 R1 9.3 2 ( 4 ) If we assume v0,max = 4 V, then = + 40 which yields R1 = R2 = 32.5 Ω R1 R1 9.3 b. For vI = 0, I E1 = ⇒ I E1 = 0.286 A = I E 2 32.5 Since I S 3,4 = 10 I S1,2 , then I E 3 = I E 4 = 2.86 A c. We can write ⎧ rπ 1 ⎫ ⎪ rπ 3 + R1 ⎪ 1⎪ 1 + β1 ⎪ R0 = ⎨ ⎬ 2⎪ 1 + β3 ⎪ ⎪ ⎪ ⎩ ⎭ βV ( 50 )( 0.026 ) Now rπ 3 = 3 T = = 0.4545 Ω IC 3 2.86 β1VT (120 )( 0.026 ) rπ 1 = = = 10.91 Ω I C1 0.286 So ⎧ 10.91 ⎫ 0.4545 + 32.5 1⎪⎪ 121 ⎪⎪ R0 = ⎨ ⎬ 2⎪ 51 ⎪ ⎪ ⎩ ⎪ ⎭ 10.91 32.5 = 32.5 0.0902 = 0.0900 121 1 ⎧ 0.4545 + 0.0900 ⎫ Then R0 = ⎨ ⎬ or R 0 = 0.00534 Ω 2⎩ 51 ⎭ 8.38
  • 19.
    Ri = 1 2 { ⎣ } rπ 1 + (1 + β ) ⎡ R1 ( rπ 3 + (1 + β ) 2 RL ) ⎤ ⎦ iC1 ≈ 7.2 mA and iC 3 ≈ 7.2 mA ( 60 )( 0.026 ) Then rπ = = 0.217 kΩ 7.2 So Ri = 1 2 { 0.217 + ( 61) ⎡ 2 ( 0.217 + ( 61)( 0.2 ) ) ⎤ ⎣ ⎦ } 1 2 { ⎣ ⎦ } = 0.217 + 61 ⎡ 2 12.4 ⎤ or Ri = 52.6 kΩ 8.39 a. b. V + − VSG I1 = K1 (VSG + VTP ) = 2 R1 5 = 10 (VSG − 2 ) ⇒ VSG = 2.707 V 2 10 − 2.707 5= ⇒ R1 = R2 = 1.46 kΩ R1 c. RL = 100 Ω For a sinusoidal output signal:
  • 20.
    1 (v )1 ( 5) 2 2 PL = ⋅ o = ⋅ ⇒ PL = 125 mW 2 RL 2 0.1 ( vo ) ( 5 ) iD 3 ≈ = ⇒ iD 3 = 50 mA RL 0.1 50 VGS 3 = + 2 = 4.236 V 10 10 − ( 4.236 + 5 ) I1 = ⇒ I D1 = 0.523 mA 1.46 0.523 VSG1 = + 2 = 2.229 V 10 vI = 5 + 4.236 − 2.229 ⇒ vI = 7.007 V (VI − VGS ) − ( −10 ) = 10 (VGS − 2 ) 2 I D2 = 1.46 17.007 − VGS = 10 (VGS − 4VGS + 4 ) 2 1.46 2 14.6VGS − 57.4VGS + 41.4 = 0 ( 57.4 ) − 4 (14.6 )( 41.4 ) 2 57.4 ± VGS = 2 (14.6 ) VGS 2 = 2.98 V I D 2 = 10 ( 2.98 − 2 ) ⇒ I D 2 = 9.60 mA 2 VG 4 = vI − VGS 2 = 7 − 2.98 = 4.02 V VSG 4 = 5 − 4.02 = 0.98 V ⇒ I D 4 = 0 8.40 For v0 = 0 I Q = I C 3 + I C 2 + I E1 ⎛ 1+ βn ⎞ IC 3 I B3 = I E 2 = ⎜ ⎟ IC 2 = ⎝ βn ⎠ βn I C 3 = (1 + β n ) I C 2 ⎛ β ⎞ I I B 2 = I C 1 = ⎜ P ⎟ I E1 = C 2 ⎝ 1+ βP ⎠ βn ⎛ β ⎞ I C 2 = β n ⎜ P ⎟ I E1 ⎝ 1+ βP ⎠ ⎛ β ⎞ I C 3 = (1 + β n ) β n ⎜ P ⎟ I E1 ⎜1+ β ⎟ ⎝ p ⎠ ⎛ β ⎞ ⎛ β ⎞ I Q = (1 + β n ) β n ⎜ P ⎟ I E1 + β n ⎜ P ⎟ I E1 + I E1 ⎝1+ βP ⎠ ⎝ 1+ βP ⎠ ⎛ 10 ⎞ ⎛ 10 ⎞ = ( 51)( 50 ) ⎜ ⎟ I E1 + ( 50 ) ⎜ ⎟ I E1 + I E1 ⎝ 11 ⎠ ⎝ 11 ⎠ I Q = 2318.18I E1 + 45.45 I E1 + I E1 I E1 = 1.692 μ A ⇒ I C1 = 1.534 μ A ⎛ 10 ⎞ I C 2 = ( 50 ) ⎜ ⎟ (1.692 ) ⇒ I C 2 = 76.9 μ A ⎝ 11 ⎠ ⎛ 10 ⎞ I C 3 = ( 51)( 50 ) ⎜ ⎟ (1.692 ) ⇒ I C 3 = 3.92 mA ⎝ 11 ⎠
  • 21.
    Because of rπ1 and Z, neglect effect of r0. Then neglecting r01, r02 and r03, we find VX I X = g m 3Vπ 3 + g m 2Vπ 2 + g m1Vπ 1 + rπ 1 + Z Now ⎛ r ⎞ Vπ 1 = ⎜ π 1 ⎟ VX , Vπ 2 ≅ g m1Vπ 1rπ 2 ⎝ rπ 1 + Z ⎠ and Vπ 3 = ( g m1Vπ 1 + g m 2Vπ 2 ) rπ 3 = ⎡ g m1Vπ 1 + g m 2 ( g m1Vπ 1rπ 2 ) ⎤ rπ 3 ⎣ ⎦ ⎛ r ⎞ Vπ 3 = ⎜ π 1 ⎟ [ g m1 + g m1 g m 2 rπ 2 ] rπ 3 ⋅ VX ⎝ rπ 1 + Z ⎠ ( β + β1 β 2 ) rπ 3 Vπ 3 = 1 ⋅ VX rπ 1 + Z ⎛ r ⎞ ⎛ βr ⎞ and Vπ 2 = g m1 ⎜ π 1 ⎟ rπ 2VX = ⎜ 1 π 2 ⎟ VX ⎝ rπ 1 + Z ⎠ ⎝ rπ 1 + Z ⎠ ( β + β1 β 2 ) β 3 ββ β1 VX Then I X = 1 ⋅ V X + 1 2 ⋅ VX + ⋅ VX + rπ 1 + Z rπ 1 + Z rπ 1 + Z rπ 1 + Z Then VX rπ 1 + Z R0 = = I X 1 + β1 + β1 β 2 + ( β1 + β1 β 2 ) β 3 (10 )( 0.026 ) rπ 1 = = 0.169 MΩ 1.534 Z = 25 kΩ Then 169 + 25 R0 = 1 + (10 ) + (10 )( 50 ) + ⎡10 + (10 )( 50 ) ⎤ ( 50 ) ⎣ ⎦ 194 R0 = = 0.00746 kΩ or Ro = 7.46 Ω 26, 011 8.41 a Neglect base currents. ⎛I ⎞ VBB = 2VD = 2VT ln ⎜ Bias ⎟ ⎝ IS ⎠ ⎛ 5 × 10−3 ⎞ = 2 ( 0.026 ) ln ⎜ −13 ⎟ ⇒ VBB = 1.281 V ⎝ 10 ⎠
  • 22.
    VBE1 + VEB3 = VBB I E1 = I E 3 + I C 2 ⎛ β ⎞ I B2 = IC 3 = ⎜ P ⎟ I E 3 ⎝ 1+ βP ⎠ ⎛ β ⎞ IC 2 = β n I B 2 = β n ⎜ P ⎟ I E 3 ⎝ 1+ βP ⎠ ⎛ β ⎞ I E1 = I E 3 + β n ⎜ P ⎟ IE3 ⎝ 1+ βP ⎠ ⎡ ⎛ β ⎞⎤ I E1 = I E 3 ⎢1 + β n ⎜ P ⎟⎥ ⎣ ⎝ 1+ βP ⎠⎦ ⎛ 1+ βn ⎞ ⎛ 1+ βP ⎞ ⎡ ⎛ βP ⎞⎤ ⎜ ⎟ I C1 = ⎜ ⎟ I C 3 ⎢1 + β n ⎜ ⎟⎥ ⎝ βn ⎠ ⎝ βP ⎠ ⎣ ⎝ 1+ βP ⎠⎦ ⎡I ⎤ ⎡I ⎤ VBE1 = VT ln ⎢ C1 ⎥ , VEB 3 = VT ln ⎢ C 3 ⎥ ⎣ IS ⎦ ⎣ IS ⎦ ⎡ ⎛ 20 ⎞ ⎤ (1.01) I C1 = ⎛ 21 ⎞ ⎜ ⎟ IC 3 ⎢1 + (100 ) ⎜ 21 ⎟ ⎥ ⎝ 20 ⎠ ⎣ ⎝ ⎠⎦ ⎡ 21 ⎤ = I C 3 ⎢ + 100 ⎥ = 101.05 I C 3 ⎣ 20 ⎦ I C1 = 100.05 I C 3 ⎛ 100.05 I C 3 ⎞ ⎛ IC 3 ⎞ VT ln ⎜ ⎟ + VT ln ⎜ ⎟ = VBB ⎝ IS ⎠ ⎝ IS ⎠ ⎛ 100.05 I C 3 ⎞ 2 VT ln ⎜ 2 ⎟ = VBB ⎝ IS ⎠ 2 100.05 I C 3 ⎛V ⎞ 2 = exp ⎜ BB ⎟ I S ⎝ VT ⎠ IS ⎛V ⎞ IC 3 = exp ⎜ BB ⎟ = 0.4995 mA = I C3 100.05 ⎝ VT ⎠ Then I E 3 = 0.5245 mA Now I C1 = 100.05 I C 3 = 49.97 mA = I C1 ⎛ 20 ⎞ I C 2 = (100 ) ⎜ ⎟ ( 0.5245 ) = 49.95 mA = I C 2 ⎝ 21 ⎠ ⎛I ⎞ ⎛ 49.97 × 10−3 ⎞ VBE1 = VT ln ⎜ C1 ⎟ = 0.026 ln ⎜ −13 ⎟ ⎝ IS ⎠ ⎝ 10 ⎠ = 0.70037 ⎛I ⎞ ⎛ 0.4995 × 10−3 ⎞ VEB 3 = VT ln ⎜ C 3 ⎟ = 0.026 ln ⎜ ⎟ ⎝ IS ⎠ ⎝ 10−13 ⎠ = 0.58062 Note: VBE1 + VEB 3 = 0.70037 + 0.58062 = 1.28099 = VBB b.
  • 23.
    10 v0= 10 V ⇒ iE1 ≈ = 0.10 A = iC1 100 100 iB1 = = 1 mA 100 ⎛ 4 × 10−3 ⎞ VBB = 2 ( 0.026 ) ln ⎜ −13 ⎟ = 1.2694 V ⎝ 10 ⎠ ⎛ 0.1 ⎞ VBE1 = ( 0.026 ) ln ⎜ −13 ⎟ = 0.7184 ⎝ 10 ⎠ VEB 3 = 1.2694 − 0.7184 = 0.55099 V ⎛ 0.55099 ⎞ I C 3 = 10−13 exp ⎜ ⎟ = 0.1598 mA ⎝ 0.026 ⎠ V 2 (10 ) 2 PL = 0 = ⇒ PL = 1 W RL 100 PQ1 = iC1 ⋅ vCE1 = ( 0.1)(12 − 10 ) ⇒ PQ1 = 0.2 W PQ 3 = iC 3 ⋅ vEC 3 = ( 0.1598 ) (10 − [ 0.7 − 12]) ⇒ PQ 3 = 3.40 mW iC 2 = (100 )( iC 3 ) = (100 )( 0.1598 ) = 15.98 mA PQ 2 = iC 2 ⋅ vCE 2 = (15.98 ) (10 − [ −12]) ⇒ PQ 2 = 0.352 W 8.42 a. ⎛ 10 × 10−3 ⎞ VBB = 3 ( 0.026 ) ln ⎜ −12 ⎟ ⇒ VBB = 1.74195 V ⎝ 2 × 10 ⎠ VBE1 + VBE 2 + VEB 3 = VBB IC 2 IC 2 I C1 ≈ , IC 3 ≈ βn β n2 ⎛I ⎞ ⎛I ⎞ ⎛I ⎞ VT ln ⎜ C1 ⎟ + VT ln ⎜ C 2 ⎟ + VT ln ⎜ C 3 ⎟ = VBB ⎝ IS ⎠ ⎝ IS ⎠ ⎝ IS ⎠ ⎡ IC ⎤ 3 VT ln ⎢ 3 2 3 ⎥ = VBB ⎣ βn IS ⎦ ⎛V ⎞ I C 2 = β n I S 3 exp ⎜ BB ⎟ ⎝ VT ⎠ ⎛ 1.74195 ⎞ = ( 20 ) ( 20 × 10−12 ) 3 exp ⎜ ⎟ ⎝ 0.026 ⎠ I C 2 = 0.20 A, I C1 ≈ 10 mA, I C 3 ≈ 0.5 mA ⎛ 10 × 10−3 ⎞ VBE1 = ( 0.026 ) ln ⎜ −12 ⎟ ⇒ VBE1 = 0.58065 V ⎝ 2 × 10 ⎠ ⎛ 0.2 ⎞ VBE 2 = ( 0.026 ) ln ⎜ −12 ⎟ ⇒ VBE 2 = 0.6585 V ⎝ 2 × 10 ⎠ ⎛ 0.5 × 10−3 ⎞ VEB 3 = ( 0.026 ) ln ⎜ −12 ⎟ ⇒ VEB 3 = 0.50276 V ⎝ 2 × 10 ⎠ b. 1 V2 1 V2 PL = 10 W= ⋅ 0 = ⋅ 0 ⇒ V0 ( max ) = 20 V 2 RL 2 20 For v0 ( max ) :
  • 24.
    v0 ( 20) 2 2 PL = = ⇒ PL = 20 W RL 20 20 i0 ( max ) = − = −1 A 20 iC 5 + iC 4 + iE 3 = −io ( max ) = 1 A iC 5 ⎛ β n ⎞ iC 4 ⎛ 1 + β p ⎞ iC 5 + ⋅⎜ ⎟+ ⎜ ⎟ =1 βn ⎝ 1 + βn ⎠ βn ⎜ β p ⎝ ⎟ ⎠ i ⎛ β ⎞ i ⎛ β ⎞ ⎡ 1 ⎛ 1+ β p ⎞⎤ iC 5 + C 5 ⎜ n ⎟ + C 5 ⎜ n ⎟ ⎢ ⎜ ⎟⎥ = 1 βn ⎝ 1 + βn ⎠ βn ⎝ 1 + βn ⎠ ⎣ βn ⎜ β p ⎢ ⎝ ⎟⎥ ⎠⎦ ⎡ 1 ⎛ 20 ⎞ ⎤ ⎛ 1 ⎞ ⎡ 1 ⎛ 6 ⎞ ⎤ iC 5 ⎢1 + ⎜ ⎟ ⎥ + ⎜ ⎟ ⎢ ⎜ ⎟ ⎥ = 1 ⎣ 20 ⎝ 21 ⎠ ⎦ ⎝ 21 ⎠ ⎣ 20 ⎝ 5 ⎠ ⎦ iC 5 (1.05048 ) = 1 iC 5 = 0.952 A iC 4 = 0.0453 A iE 3 = 0.00272 A ⎛5⎞ iC 3 = 0.00272 ⎜ ⎟ ⎝6⎠ = 0.002267 A ⎛ 2.267 × 10−3 ⎞ VEB 3 = ( 0.026 ) ln ⎜ −12 ⎟ = 0.54206 V ⎝ 2 × 10 ⎠ VBE1 + VBE 2 = 1.74195 − 0.54206 = 1.19989 ⎛ I ⎞ ⎛I ⎞ VT ln ⎜ C 2 ⎟ + VT ln ⎜ C 2 ⎟ = 1.19989 ⎝ βn IS ⎠ ⎝ IS ⎠ ⎛ 1.19989 ⎞ iC 2 = β n ⋅ I S exp ⎜ ⎟ ⎝ 0.026 ⎠ = 20 (18.83) mA iC 2 = 93.9 mA iC 2 ⎛ β n ⎞ 93.9 iC1 = ⎜ ⎟= = 4.47 mA β n ⎝ 1 + β n ⎠ 21 PQ 2 = I C 2 ( 24 − ( −20 ) ) = ( 0.0939 ) ( 44 ) = 4.13 W PQ 5 = ( 0.952 ) ( −10 − ( −24 ) ) = 13.3 W